WO2024055895A1 - 一种收发装置及终端设备 - Google Patents

一种收发装置及终端设备 Download PDF

Info

Publication number
WO2024055895A1
WO2024055895A1 PCT/CN2023/117496 CN2023117496W WO2024055895A1 WO 2024055895 A1 WO2024055895 A1 WO 2024055895A1 CN 2023117496 W CN2023117496 W CN 2023117496W WO 2024055895 A1 WO2024055895 A1 WO 2024055895A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
rdss
communication system
antennas
satellite communication
Prior art date
Application number
PCT/CN2023/117496
Other languages
English (en)
French (fr)
Inventor
胡建悦
欧松林
黄欣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055895A1 publication Critical patent/WO2024055895A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a transceiver device and terminal equipment.
  • Radio determination satellite service is a unique service function of the Beidou satellite navigation system, which can provide two-way short message services through satellite signals.
  • terminal devices can send messages to satellites through the RDSS transmission link, and the satellites will forward the received messages to the ground station, and can parse the messages forwarded by the ground station through the satellite based on the RDSS reception link.
  • RDSS For terminal equipment, the biggest difference between RDSS and RNSS is that RDSS has a transmission link, and because the transmitted signal needs to communicate with satellites, it has higher requirements for transmission power.
  • RDSS has a transmission link, and because the transmitted signal needs to communicate with satellites, it has higher requirements for transmission power.
  • one implementation is to complete the transmission of RDSS signals through active transceiver antennas so that the transmitted signals meet the transmission power requirements.
  • active antennas require additional power modules and signal amplification modules, which are obviously not suitable for smaller terminal devices such as mobile phones.
  • Embodiments of the present application provide a transceiver device and terminal equipment to increase the transmission power of satellite communication signals of the terminal equipment and reduce the terminal equipment's need for hardware such as power amplifiers, thereby reducing the design difficulty of the terminal equipment.
  • a transceiver device which includes N first satellite communication system transmitting channels, N first satellite positioning system receiving channels, and N first antennas.
  • the N first antennas are respectively connected with The N first satellite communication system transmitting channels and the N first satellite positioning system receiving channels are connected one by one, N is an integer greater than or equal to 1; each first antenna among the N first antennas is used to send the connected
  • the first satellite communication system transmits the signal of the path, or is used to send the signal from the satellite positioning system to the connected first satellite positioning system receiving path.
  • the first satellite communication system transmitting path is an RDSS transmitting path
  • the first satellite positioning system receiving path is an RNSS receiving path.
  • a corresponding number of first satellite communication system (such as RDSS) transmission channels can be set up according to the strength requirements of the transmitted signal, thereby increasing the transmission power of the signal, reducing the terminal equipment's demand for hardware such as power amplifiers, and reducing the design of the terminal equipment. Difficulty.
  • the number of antennas in the transceiver device can be reduced, and the integration cost of the transceiver device can be reduced.
  • N is less than or equal to 3
  • the N first antennas are N of L1 band antennas, L2 band antennas and L5 band antennas of the satellite positioning system.
  • the receiving frequency of the L1 band antenna, L2 band antenna and L5 band antenna of the satellite positioning system can be used to be similar to the frequency of the transmitting frequency of the transmitting channel of the first satellite communication system (such as RDSS).
  • the transmission path of the first satellite communication system is realized to reuse the antenna of the first satellite positioning system, and the system integration cost of the transceiver device is reduced.
  • the transceiver device also includes a local oscillator (LO), and the LO is connected to the N first satellite communication system transmission paths.
  • the N first satellite communication system transmission channels are connected to the same LO, and the same LO provides the clock signal, which is conducive to clock synchronization of the N first satellite communication system transmission channels and meets the clock synchronization requirements of multiple transmission channels for transmitting signals.
  • LO local oscillator
  • the LO is also connected to N first satellite positioning system receiving paths.
  • the N first satellite communication system transmitting channels and the N first satellite positioning system receiving channels can share the same LO, which can reduce the system integration cost of the transceiver device.
  • the device also includes M second satellite communication system transmitting channels and M second antennas.
  • the M second antennas are connected to the M second satellite communication system transmitting channels one by one, and M is greater than Or an integer equal to 1; each of the M second antennas is used to send signals of the connected second satellite communication system transmission path.
  • the system receiving channel shares (or multiplexes) the satellite communication system transmitting channel of the antenna to further meet the signal transmission power requirements of the satellite communication system.
  • the transceiver device also includes an LO, which is connected to N first satellite communication system transmission channels and M second satellite communication system transmission channels.
  • the N first satellite communication system transmission channels and the M second satellite communication system transmission channels can achieve clock synchronization, meeting the clock synchronization requirements for signals transmitted by multiple transmission channels.
  • the LO is also connected to N satellite positioning system receiving paths.
  • N first satellite communication system transmitting channels, M second satellite communication system transmitting channels and N first satellite positioning system receiving channels can share the same LO, which can reduce the system integration cost of the transceiver device.
  • embodiments of the present application provide a chip that includes the transceiver device in the first aspect or any possible design of the first aspect.
  • embodiments of the present application provide a terminal device, which includes the transceiver device in the first aspect or any possible design of the first aspect.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the basic working process of an RNSS provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the basic working process of a RDSS provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of an RDSS transmission link provided by an embodiment of the present application.
  • FIG5 is a schematic diagram of a transceiver provided in an embodiment of the present application.
  • Figure 6 is the second schematic diagram of the transceiver device provided by the embodiment of the present application.
  • Figure 7 is the third schematic diagram of the transceiver device provided by the embodiment of the present application.
  • Figure 8 is the fourth schematic diagram of the transceiver device provided by the embodiment of the present application.
  • Figure 9 is the fifth schematic diagram of the transceiver device provided by the embodiment of the present application.
  • Figure 10 is the sixth schematic diagram of the transceiver device provided by the embodiment of the present application.
  • Figure 11 is a schematic diagram of RDSS signal transmission provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a possible application scenario provided by the embodiment of the present application.
  • This application scenario includes satellites, ground stations and terminal equipment.
  • the terminal device can send uplink signals to the satellite, the satellite forwards the uplink signal to the ground station, the ground station can send downlink signals to the satellite, and the satellite forwards the downlink signal to the terminal device.
  • the satellite positioning system and the satellite communication system can coexist, the satellite can broadcast the signals of the satellite positioning system (such as radio navigation signals), and the terminal device can complete ranging and positioning based on the signals of the satellite positioning system. .
  • the terminal equipment can also complete the sending and receiving of signals of the satellite communication system based on the satellite, and communicate with the satellite ground station. It should be noted that the number of satellites, ground stations and terminal equipment in the application scenario shown in Figure 1 is not limited in the embodiment of the present application.
  • the satellite positioning system can be, but is not limited to, a radio navigation satellite system (RNSS).
  • RNSS can broadcast satellite radio navigation signals
  • the terminal device can autonomously complete ranging and positioning after capturing a sufficient number of satellites.
  • the satellite communication system can be, but is not limited to, a radio determination satellite system (RDSS).
  • RDSS is a service function of the Beidou satellite navigation system and can provide two-way short message information services (ie, satellite communication function).
  • the basic working process of RNSS can be seen in Figure 2: the terminal device can receive radio navigation signals from multiple satellites through the RNSS receiving link to complete positioning (such as determining the positions of multiple satellites based on the received radio navigation signals from multiple satellites). and the distance between the terminal device and multiple satellites respectively, thereby determining the location of the terminal device).
  • the basic working process of RDSS can be seen in Figure 3: When users need communication services, they use the RDSS transmission link of the terminal device to send signals to the satellite through the uplink, and the satellite forwards them to the ground station through the downlink. The ground station receives the satellite signal, processes the user information and sends it to the satellite through the uplink. The satellite then forwards the communication information to the terminal device through the downlink, and the terminal device receives the communication information through the RDSS receiving link.
  • the above terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may include a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices, consumer terminals (such as watches, bracelets, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, remote medical surgery Wireless terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • MID mobile Internet devices
  • wearable devices consumer terminals (such as watches, bracelets, etc.)
  • consumer terminals such as watches, bracelets, etc.
  • virtual reality virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in self-driving remote medical surgery
  • Wireless terminals wireless terminals in smart grids
  • wireless terminals in transportation safety wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • FIG 4 is a schematic diagram of the RDSS transmit (TX) link, including the antenna, RDSS TX radio frequency (RF) front-end, RDSS TX carrier modulation module, RDSS TX filter/digital data converter (digital data converter) , DDC) module, RDSS TX spread spectrum module and RDSS channel coding module.
  • TX transmit
  • RF radio frequency
  • RDSS TX carrier modulation module RDSS TX carrier modulation module
  • RDSS TX filter/digital data converter (digital data converter) digital data converter
  • DDC digital data converter
  • RDSS TX spread spectrum module RDSS channel coding module
  • the above-mentioned RDSS TX carrier modulation module, RDSS TX filter/digital data converter (DDC) module, RDSS TX spread spectrum module and RDSS channel coding module can constitute the RDSS baseband signal processing unit.
  • the RDSS channel coding module can be used to channel code the information to be sent, that is, channel code the original information bit stream corresponding to the message to be sent edited by the user to ensure that the receiving end obtains the preset through corresponding channel decoding channel coding gain.
  • RDSS TX spread spectrum module can be used to perform spread spectrum modulation processing on the symbol data obtained after channel coding.
  • RDSS TX filtering/DDC and other modules can be used to shape and filter the modulated signal spectrum, eliminate inter-symbol interference, and move the frequency point to move the center frequency point of the signal spectrum to the designated transmission frequency band.
  • RDSS TX carrier modulation module Carrier modulation is performed on the filtered signal to modulate the signal to a certain intermediate frequency.
  • RDSS TX RF front-end also known as the RDSS transmit path
  • DAC digital analog converte
  • PA power amplifier
  • RDSS has a transmission link
  • the terminal equipment usually requires the equivalent omnidirectional transmission of the signal.
  • the radiated power (equivalent isotropically radiated power, EIRP) value should be no less than 3.5 decibel watts (dBW) and no more than 19dBW.
  • EIRP equivalent isotropically radiated power
  • dBW decibel watts
  • 19dBW decibel watts
  • embodiments of the present application provide a transceiver device and terminal equipment to increase the transmission power of satellite communication signals of the terminal equipment, reduce the terminal equipment's demand for hardware such as power amplifiers (such as PAs), and thereby reduce the design difficulty of the terminal equipment. .
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the device includes N first satellite communication system transmitting channels, N first satellite positioning system receiving channels, and N first antennas.
  • the first antenna is connected to the N first satellite communication system transmitting channels and the N first satellite positioning system receiving channels respectively, where N is an integer greater than or equal to 1; each of the N first antennas, It is used to send signals of the connected first satellite communication system transmitting channel, or used to send signals from the satellite positioning system to the connected first satellite positioning system receiving channel.
  • the first satellite communication system transmitting channel and the first satellite positioning system receiving channel can share an antenna, which can reduce the number of antennas in the transceiver device, thereby reducing the size of the transceiver device and reducing the system integration cost of the transceiver device.
  • the satellite communication system transmitting path may be an RDSS transmitting path
  • the satellite positioning system receiving path may be an RNSS receiving path, that is, the first satellite communication system transmitting path is the first RDSS transmitting path, and the first satellite positioning system receiving path is is the first RNSS receiving path.
  • the satellite communication system transmitting path is the RDSS transmitting path
  • the satellite positioning system receiving path is the RNSS receiving path as an example.
  • the RDSS transmit path may include at least one of the following: digital-to-analog converters, filters, mixers, local oscillators, gain controllers, and power amplifiers.
  • the RDSS transmission path can implement at least one of the following processing of RDSS signals: digital-to-analog conversion, filtering, frequency conversion, power gain control, power amplification and other processing.
  • the RNSS receive path may include at least one of the following: a filter, a low-noise amplifier, a mixer, a local oscillator, a variable gain amplifier, and an analog-to-digital converter.
  • the RNSS receiving path can implement at least one of the following processing on the RNSS signal: filtering, signal amplification, frequency conversion, analog-to-digital conversion and other processing.
  • the digital-to-analog converter can be implemented through a digital-to-analog converter (DAC), which completes the conversion of digital signals to analog signals.
  • DAC digital-to-analog converter
  • the analog-to-digital converter can be implemented through an analog-to-digital converter (ADC), which completes the conversion of analog signals to digital signals.
  • ADC analog-to-digital converter
  • Filters can be implemented through low pass filters (LPF), surface acoustic wave filters (SAW), etc., to complete signal filtering to suppress unnecessary signals (such as interference signals) from affecting the chain.
  • LPF low pass filters
  • SAW surface acoustic wave filters
  • the influence of the path is improved, the path performance is improved, and the filter can be reused.
  • the mixer can be implemented through a MIXER, which can be used to change the signal frequency together with a local oscillator (LO). For example: it can be used to complete the frequency upconversion of the RDSS transmitting path, or to complete the frequency downconversion of the RNSS receiving path.
  • LO local oscillator
  • the gain controller can be implemented through a pulse power amplifier (PPA), which can be used to control the output signal power of the transmit link.
  • PPA pulse power amplifier
  • the power amplifier can be implemented through a PA, which can be used to amplify the radio frequency signal in the transmission path.
  • variable gain amplifier can be implemented by a variable-gain amplifier (VGA), and the VGC can be used for automatic gain control of the input signal.
  • VGA variable-gain amplifier
  • the low-noise amplifier can be implemented through a low-noise amplifier (LNA).
  • LNA low-noise amplifier
  • the LNA can be used to amplify the RNSS received signal and reduce noise interference.
  • the LNA provided on the chip can be called internal LNA (internal LNA, iLNA).
  • the transceiver device may also include N first switches, and the N first antennas are respectively connected to the N first satellite communication system transmission paths and the N first satellite positioning systems through the N first switches.
  • the receiving paths are connected one by one, and the first switch may be a single-pole double-throw switch.
  • the first RDSS transmitting path includes DAC, LPF, MIXER, LO, PPA, and PA
  • the first RNSS receiving path includes SAW, LNA, iLNA, MIXER, LO, LPF, VGA, and ADC
  • a first antenna, two first switches, two first RDSS transmitting channels and two first RNSS receiving channels are taken as an example for illustration.
  • the transceiver device can be as shown in Figure 6 .
  • each first switch may include a first end, a second end and a third end, the first end is connected to the first antenna, the second end is connected to the first RDSS transmitting path, and the third end is connected to the first RNSS receiving path.
  • the first antenna 1 when the first end and the second end are connected, the first antenna is connected to the first RDSS transmitting channel; when the first end and the third end are connected, the first antenna is connected to the first RNSS receiving channel. That is to say, the first RDSS transmitting path and the first RNSS receiving path can share the first antenna through the first switch.
  • the end connected to the first switch 1 and the first antenna 1 can be understood as the first end, and the end connected to the first end is the first end.
  • the end connected to an RDSS transmitting channel 1 can be understood as the second end, and the end connected to the first RNSS receiving channel 1 can be understood as the third end.
  • the antenna of the first RNSS receiving channel can be reused to complete the transmission of RDSS signals. That is, when N is less than or equal to 3, the Nth One antenna is N of the L1 frequency band antenna, L2 frequency band antenna and L5 frequency band antenna of the RNSS. As an example, as shown in Figure 6, when N is 2, the two first antennas may be the L1 frequency band antenna and the L5 frequency band antenna of the RNSS respectively.
  • N first RDSS transmitting channels can be connected to the same RDSS baseband signal processing unit, and the N first RDSS transmitting channels are connected to the same RDSS baseband signal processing unit.
  • RDSS baseband message The processing unit provides the signal.
  • the N first RNSS receiving channels can be connected to the same RNSS baseband signal processing unit, and the RNSS baseband signal processing unit processes the RNSS signals received by the N first RNSS receiving channels.
  • the RNSS baseband processing unit is mainly responsible for processing the L1/L5 frequency RNSS baseband signal.
  • the RNSS baseband processing unit can include a digital front-end (DFE), an acquisition module (ACQ), and a tracking module. (tracking module, TRK) and other sub-modules.
  • DFE digital front-end
  • ACQ acquisition module
  • TRK tracking module
  • the RDSS baseband processing unit is mainly responsible for the processing of multi-antenna RDSS baseband signals, including reception and transmission.
  • the reception processing flow is similar to the RNSS baseband processing unit but adds multi-antenna parallel processing and transmission. Including multi-channel RDSS signal assembly, shaping filtering, interpolation filtering and other processes.
  • N first RDSS transmitting channels can be connected to the same LO, and the same LO provides multiple N first RDSS The transmit path provides the clock signal.
  • the LO can also be connected to the N first RNSS receiving channels, and can provide clocks to the N first RDSS transmitting channels and the N first RNSS receiving channels in the form of frequency division. Signal.
  • LO can also be replaced by a phase locking loop (PLL), and the PLL provides clock signals to the N first RDSS transmitting channels and the N first RNSS receiving channels in the form of frequency division. (Also called LO signal).
  • PLL phase locking loop
  • the transceiver device shown in Figure 8 can support the simultaneous operation of the RNSS receiving channel (such as the second RNSS receiving channel 1) and the RDSS transmitting channel (such as the first RDSS transmitting channel 1 and the first RDSS transmitting channel 2). During this period, the RNSS receiving channel can also receive RNSS signals normally to ensure that positioning is not lost.
  • the RNSS receiving channel such as the second RNSS receiving channel 1
  • the RDSS transmitting channel such as the first RDSS transmitting channel 1 and the first RDSS transmitting channel 2.
  • the transceiver device may also include M second RDSS transmission channels and M second antennas, and the M second antennas are connected to the M second RDSS
  • the emission channels are connected one by one, and M is an integer greater than or equal to 1.
  • Each of the M second antennas is used to send signals of the connected second RDSS transmission path.
  • the transceiver device can be as shown in Figure 9, including a first RDSS transmitting channel 1 and a first RNSS receiving channel 1 that share a first antenna (L1 band antenna), and a separate channel 1 and a first RNSS receiving channel 1.
  • the second RDSS transmitting channel 1 is connected to two antennas 1 (such as another L1 band antenna), and the second RNSS receiving channel 2 is connected to the third antenna 1 (L5 band antenna) alone.
  • N in Figures 9 and 10, N is 1 as an example
  • M in Figures 9 and 10 (taking M as 1 as an example)
  • the second RDSS transmitting channels can be connected to the same LO, and the same LO provides clock signals for the N first RDSS transmitting channels and M second transmitting channels.
  • the N first RNSS receiving channels and O can also be combined with the Nth RNSS receiving channels.
  • One RDSS transmitting channel and M second RDSS transmitting channels share the same LO.
  • the LO can be divided into N first RDSS transmitting channels + M second RDSS transmitting channels, and N first RNSS receiving channels + O second RNSS receiving paths provide clock signals.
  • n antennas connected to n can transmit signals to a specific satellite (n) through beam forming and other technologies.
  • satellite 1 transmits RDSS signals (that is, RDSS signals), which can increase the RDSS signal transmission gain.
  • RDSS signals that is, RDSS signals
  • it can further reduce the demand for PA in the RDSS transmission channel and meet the requirements for RDSS signal transmission.
  • EIRP value When the RDSS TX link shown in Figure 11 includes dual RDSS transmit channels and dual antennas, compared to the RDSS TX link shown in Figure 4, the signal sensitivity can be stably improved by 2-3db.
  • the embodiment of the present application also provides a terminal device 1200, including a processor 1210, and a transceiver 1220 as shown in any of Figures 5-9.
  • the processor 1210 and the transceiver Devices 1220 are coupled to each other.
  • the transceiver 1220 may be used to receive signals from other devices (such as satellites, base stations, etc.) other than the terminal device and transmit them to the processor 1210 or to send signals from the processor 1210 to other devices other than the terminal device.
  • the terminal device 1200 may also include a memory 1230 for storing instructions executed by the processor 1210 or input data required for the processor 1210 to run the instructions or data generated after the processor 1210 executes the instructions.
  • the memory 1230 may be a physically separate unit, may be coupled to the processor 1210, or the processor 1210 may include the memory 1230.
  • connection medium between the processor 1210, the transceiver device 1220, and the memory 1230 is not limited in the embodiment of the present application.
  • the processor 1210, the transceiver device 1220 and the memory 1230 are connected through a bus as an example.
  • the bus The thick lines are shown in FIG. 12 , and the connection method is only schematically illustrated and not limited thereto.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • Each functional unit in the embodiment of the present application may be integrated into a processing unit, or each unit may be an independent physical module.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a computer device, such as a personal computer. , a server, or a network device, etc., or a processor (processor) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: universal serial bus flash drive, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk Or various media such as CDs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种收发装置及终端设备,用以提升终端设备卫星通信信号的发射功率,降低终端设备对功放等硬件的需求,从而减少终端设备的设计难度。该收发装置包括N个第一卫星通信系统发射通路、N个第一卫星定位系统接收通路和N个第一天线,N个第一天线分别与N个第一卫星通信系统发射通路和N个第一卫星定位系统接收通路一一连接,N为大于或等于1的整数;N个第一天线中的每个第一天线,用于发送连接的第一卫星通信系统发射通路的信号,或用于将来自卫星定位系统的信号发送至连接的第一卫星定位系统接收通路。

Description

一种收发装置及终端设备
相关申请的交叉引用
本申请要求在2022年09月14日提交中国专利局、申请号为202211117566.3、申请名称为“一种收发装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种收发装置及终端设备。
背景技术
在卫星通信场景中,无线电导航系统(radio navigation satellite system,RNSS)中的卫星可以播发无线电导航信号,终端设备在捕获到足够数量卫星播发的无线电导航信号后能够自主完成测距、定位。卫星无线电测定业务(radio determination satellite service,RDSS)是北斗卫星导航系统的独有服务功能,可以通过卫星信号提供双向短报文服务。例如:终端设备可以通过RDSS发射链路向卫星发送消息,卫星将接收到的消息转发至地面站,以及可以基于RDSS接收链路解析地面站通过卫星转发的消息。
对于终端设备来说RDSS和RNSS最大的区别在于RDSS有发射链路,并且由于发射的信号需要和卫星进行通信,因此对发射功率有较高的要求。目前,一种实现是通过有源收发天线完成对RDSS信号的发送,以使发送的信号达到发射功率要求。然而,有源天线需要额外的电源模块和信号放大模块,对于体积较小的手机等终端设备显然并不适用。
发明内容
本申请实施例提供一种收发装置及终端设备,用以提升终端设备卫星通信信号的发射功率,降低终端设备对功放等硬件的需求,从而减少终端设备的设计难度。
第一方面,本申请实施例提供一种收发装置,该装置包括N个第一卫星通信系统发射通路、N个第一卫星定位系统接收通路和N个第一天线,N个第一天线分别与N个第一卫星通信系统发射通路和N个第一卫星定位系统接收通路一一连接,N为大于或等于1的整数;N个第一天线中的每个第一天线,用于发送连接的第一卫星通信系统发射通路的信号,或用于将来自卫星定位系统的信号发送至连接的第一卫星定位系统接收通路。可选地,第一卫星通信系统发射通路为RDSS发射通路,第一卫星定位系统接收通路为RNSS接收通路。
采用上述方法,可以根据发射信号的强度需求,设置相应数量的第一卫星通信系统(如RDSS)发射通路,从而增加信号的发射功率,降低终端设备对功放等硬件的需求,减少终端设备的设计难度。并且通过第一卫星通信系统发射通路与第一卫星定位系统(如RNSS)共用(或复用)天线,能够减少收发装置中天线的数量,降低收发装置的集成成本。
在一种可能的设计中,N小于或等于3,N个第一天线为卫星定位系统的L1频段天线、L2频段天线和L5频段天线中的N个。这样,能够利用卫星定位系统(如RNSS)的L1频段天线、L2频段天线和L5频段天线的接收频点,与第一卫星通信系统(如RDSS)发射通路的发射频点的频率相近的特性,实现第一卫星通信系统发射通路复用第一卫星定位系统的天线,降低收发装置的系统集成成本。
在一种可能的设计中,该收发装置还包括本地振荡器(local oscillator,LO),LO与N个第一卫星通信系统发射通路连接。这样,N个第一卫星通信系统发射通路连接同一LO,由同一LO提供时钟信号,有利于N个第一卫星通信系统发射通路实现时钟同步,满足多个发射通路发射信号的时钟同步要求。
在一种可能的设计中,LO还与N个第一卫星定位系统接收通路连接。这样,N个第一卫星通信系统发射通路和N个第一卫星定位系统接收通路可以共用同一LO,能够降低收发装置的系统集成成本。
在一种可能的设计中,该装置还包括M个第二卫星通信系统发射通路和M个第二天线,M个第二天线与M个第二卫星通信系统发射通路一一连接,M为大于或等于1的整数;M个第二天线中的每个第二天线,用于发送连接的第二卫星通信系统发射通路的信号。上述设计中,还可以设置未与卫星定位 系统接收通路共用(或复用)天线的卫星通信系统发射通路,进一步满足卫星通信系统的信号发射功率需求。
在一种可能的设计中,该收发装置还包括LO,LO与N个第一卫星通信系统发射通路和M个第二卫星通信系统发射通路连接。这样,N个第一卫星通信系统发射通路和M个第二卫星通信系统发射通路能够实现时钟同步,满足多个发射通路发射信号的时钟同步要求。
在一种可能的设计中,LO还与N个卫星定位系统接收通路连接。这样,N个第一卫星通信系统发射通路、M个第二卫星通信系统发射通路和N个第一卫星定位系统接收通路可以共用同一LO,能够降低收发装置的系统集成成本。
第二方面,本申请实施例提供一种芯片,该芯片包括第一方面或者第一方面的任一种可能的设计中的收发装置。
第三方面,本申请实施例提供一种终端设备,该终端设备包括第一方面或者第一方面的任一种可能的设计中的收发装置。
上述第二方面至第三方面所能达到的技术效果请参照上述第一方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例提供的一种应用场景示意图;
图2为本申请实施例提供的一种RNSS基本工作过程示意图;
图3为本申请实施例提供的一种RDSS基本工作过程示意图;
图4为本申请实施例提供的一种RDSS发射链路示意图;
图5为本申请实施例提供的收发装置示意图之一;
图6为本申请实施例提供的收发装置示意图之二;
图7为本申请实施例提供的收发装置示意图之三;
图8为本申请实施例提供的收发装置示意图之四;
图9为本申请实施例提供的收发装置示意图之五;
图10为本申请实施例提供的收发装置示意图之六;
图11为本申请实施例提供的一种RDSS信号发射示意图;
图12为本申请实施例提供的一种终端设备结构示意图。
具体实施方式
图1为本申请实施例提供的一种可能的应用场景示意图。该应用场景中包括卫星、地面站和终端设备。在该应用场景中,终端设备可以发送上行信号至卫星,卫星转发该上行信号到地面站,地面站可以发送下行信号到卫星,卫星再将该下行信号转发至终端设备。示例性的,在该应用场景中,卫星定位系统和卫星通信系统可以同时存在,卫星可以播发卫星定位系统的信号(如无线电导航信号),终端设备可以基于卫星定位系统的信号完成测距、定位。终端设备也可以基于卫星完成卫星通信系统的信号的发送和接收,与卫星地面站进行通信。需要说明的是,本申请实施例中不限定图1所示应用场景中卫星、地面站和终端设备的个数。
可选的,卫星定位系统可以但不限于为卫星无线电导航系统(radio navigation satellite system,RNSS),RNSS可以播发卫星无线电导航信号,终端设备在捕捉到足够的卫星数后可以自主完成测距、定位。卫星通信系统可以但不限于为卫星无线电测定系统(radio determination satellite system,RDSS),RDSS是北斗卫星导航系统的服务功能,可以提供双向短报文信息服务(即卫星通信功能)。
RNSS基本工作过程可以参照图2所示:终端设备可以通过RNSS接收链路接收来自多个卫星的无线电导航信号完成定位(如基于接收的来自多个卫星的无线电导航信号,确定多个卫星的位置和终端设备分别与多个卫星的距离,从而确定终端设备的位置)。RDSS基本工作过程可以参照图3所示:用户需要通信服务时,利用终端设备的RDSS发射链路通过上行链路发送信号至卫星,卫星通过下行链路转发至地面站。地面站接收卫星信号,处理用户信息后通过上行链路发送至卫星。然后卫星通过下行链路向终端设备转发通信信息,终端设备通过RDSS接收链路接收通信信息。
上述终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备可以包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、消费终端(如手表、手环等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
参照图4所示,为RDSS发射(transport,TX)链路示意图,包括天线、RDSS TX射频(radio frequency,RF)前端、RDSS TX载波调制模块、RDSS TX滤波/数字数据转换器(digital data converter,DDC)模块、RDSS TX扩频模块和RDSS信道编码模块。
其中,上述RDSS TX载波调制模块、RDSS TX滤波/数字数据转换器(digital data converter,DDC)模块、RDSS TX扩频模块和RDSS信道编码模块可以构成RDSS基带信号处理单元。
RDSS信道编码模块,可用于对待发送的信息进行信道编码,即对用户编辑的待发送报文所对应的原始信息比特(bit)流进行信道编码,以确保接收端通过对应信道译码获得预设的信道编码增益。
RDSS TX扩频模块,可用于对信道编码后得到的符号数据进行扩频调制处理。
RDSS TX滤波/DDC等模块,可用于对调制好的信号频谱进行整形滤波,消除码间干扰,并进行频点搬移,将信号频谱的中心频点搬移到指定的发射频段上。
RDSS TX载波调制模块:对完成滤波的信号进行载波调制,将信号调制到某个中频上。
RDSS TX RF前端,也可以称为RDSS发射通路,可用于针对完成中频载波调制的信号进行数模转换(digital analog converte,DAC)得到模拟信号,并依赖射频前端电路对该模拟信号上变频至发射频率,经过功率放大器(power amplifier,PA),放大至预定功率强度后通过天线完成信号的发射。
对于终端设备来说RDSS和RNSS最大的区别在于RDSS有发射链路,并且由于发射的信号需要和卫星进行通信,因此对发射功率有较高的要求,通常要求终端设备发射信号的等效全向辐射功率(equivalent isotropically radiated power,EIRP)值应不小于3.5分贝瓦(dBW)且不大于19dBW。对于手机等终端设备来说,即使是最低的3.5dBW EIRP值也需要很强的PA才能达到,因此如何提高发射信号的功率对手机等终端设备来说是非常重要的诉求。而采用有源天线需要额外的电源模块和信号放大模块,对于体积较小的手机等终端设备显然也并不适用。
鉴于此,本申请实施例提供了一种收发装置及终端设备,用以提升终端设备卫星通信信号的发射功率,降低终端设备对功放(如PA)等硬件的需求,从而减少终端设备的设计难度。
另外,需要理解的是,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一天线和第二天线,并不是表示这两个天线对应的优先级或者重要程度等的不同。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
如图5所示,为本申请实施例提供的一种收发装置示意图,该装置包括N个第一卫星通信系统发射通路、N个第一卫星定位系统接收通路和N个第一天线,N个第一天线分别与N个第一卫星通信系统发射通路和N个第一卫星定位系统接收通路一一连接,N为大于或等于1的整数;N个第一天线中的每个第一天线,用于发送连接的第一卫星通信系统发射通路的信号,或用于将来自卫星定位系统的信号发送至连接的第一卫星定位系统接收通路。这样第一卫星通信系统发射通路和第一卫星定位系统接收通路可以共用天线,可以减少收发装置中天线的数量,从而减少收发装置的体积,降低收发装置的系统集成成本。
在一些实施中,卫星通信系统发射通路可以为RDSS发射通路,卫星定位系统接收通路可以为RNSS接收通路,也即第一卫星通信系统发射通路为第一RDSS发射通路,第一卫星定位系统接收通路为第一RNSS接收通路。在以下的描述中,为方便描述,仅以卫星通信系统发射通路为RDSS发射通路,卫星定位系统接收通路为RNSS接收通路为例进行说明。
RDSS发射通路可以包括以下至少一项:数模转换器、滤波器、混频器、本地振荡器、增益控制器、功率放大器。RDSS发射通路可以实现对RDSS信号的以下中至少一项处理:数模转换、滤波、变频、功率增益控制、功率放大等处理。
RNSS接收通路可以包括以下至少一项:滤波器、低噪音放大器、混频器、本地振荡器、可变增益放大器、模数转换器。RNSS接收通路可以实现对RNSS信号的以下中至少一项处理:滤波、信号放大、变频、模数转换等处理。
其中,数模转换器可以通过数字模拟转换器(digital-to-analog converter,DAC)实现,该DAC完成数字信号到模拟信号的转换。
模数转换器可以通过模拟数字转换器(analog-to-digital converter,ADC)实现,该ADC完成模拟信号到数字信号的转换。
滤波器可以通过低通滤波器(low pass filter,LPF)、声表面波滤波器(surface acoustic wave,SAW)等实现,用于完成信号的滤波,以抑制非必要信号(如干扰信号)对链路的影响,提升通路性能,滤波器可复用。
混频器可以通过MIXER实现,该MIXER可以用于和本地振荡器(local oscillator,LO)一起更改信号频率。比如:可以用于完成RDSS发射通路的上变频,或者用于完成RNSS接收通路的下变频。
增益控制器可以通过脉冲功率放大器(pulse power amplifier,PPA)实现,该PPA可用于控制发射链路的输出信号功率。
功率放大器可以通过PA实现,该PA可用于实现发射通路的射频信号放大。
可变增益放大器可以通过可变增益放大器(variable-gain amplifier,VGA)实现,VGC可以用于对输入信号的自动增益控制。
低噪音放大器可以通过低噪音放大器(low noise amplifier,LNA)实现,LNA可以用于放大RNSS接收信号,降低噪声干扰。其中,在芯片上设置的LNA可以称为了内部LNA(internal LNA,iLNA)。
应理解,上述器件的实现方式仅为示例,还可以通过其他具体器件实现,本申请不再一一列举。
在一种可能的实施中,该收发装置还可以包括N个第一开关,N个第一天线分别通过N个第一开关与N个第一卫星通信系统发射通路和N个第一卫星定位系统接收通路一一连接,其中第一开关可以为单刀双掷开关。
以第一RDSS发射通路包括DAC、LPF、MIXER、LO、PPA、PA,第一RNSS接收通路包括SAW、LNA、iLNA、MIXER、LO、LPF、VGA、ADC,收发装置包括2(N=2)个第一天线、2个第一开关、2个第一RDSS发射通路和2个第一RNSS接收通路为例进行说明,收发装置可以如图6所示。其中,每个第一开关可以包括第一端、第二端和第三端,第一端与第一天线连接,第二端与第一RDSS发射通路连接,第三端与第一RNSS接收通路连接;当第一端和第二端连接时,第一天线与第一RDSS发射通路连接;当第一端和第三端连接时,第一天线与第一RNSS接收通路连接。也就是说,第一RDSS发射通路和第一RNSS接收通路可以通过第一开关共用第一天线。以第一天线1通过第一开关1分别与第一RDSS发射通路1和第一RNSS接收通路1连接为例,第一开关1与第一天线1连接的端可以理解为第一端,与第一RDSS发射通路1连接的端可以理解为第二端,与第一RNSS接收通路1连接的端可以理解为第三端。
另外,因为RDSS的接收频点和发射频点分别为2.4GHz和1.6GHz,而RNSS的L1频段天线、L2频段天线和L5频段天线所对应的频段分别为1.559-1.610GHz、1.215-1.300GHz、1.164-1.215GHz,与RDSS的发射频点相近,因此在本申请实施例中,可以复用第一RNSS接收通路的天线完成RDSS信号的发射,也即在N小于或等于3时,N个第一天线为RNSS的L1频段天线、L2频段天线和L5频段天线中的N个。作为一种示例,如图6所示,在N为2时,2个第一天线可以分别为RNSS的L1频段天线和L5频段天线。
可以理解的,为了进一步提高收发装置的集成度,减少收发装置的体积,如图7所示,N个第一RDSS发射通路可以连接同一RDSS基带信号处理单元,N个第一RDSS发射通路由同一RDSS基带信 号处理单元提供信号。类似的,N个第一RNSS接收通路可以连接同一RNSS基带信号处理单元,由RNSS基带信号处理单元对N个第一RNSS接收通路接收到的RNSS信号进行处理。其中,RNSS基带处理单元主要负责L1/L5频点RNSS基带信号的处理,在RNSS基带处理单元中可以包括数字前端(digital front-end(,DFE)、捕获模块(acquisition module,ACQ)、跟踪模块(tracking module,TRK)等子模块。RDSS基带处理单元主要负责多天线RDSS基带信号的处理,包含接收和发射两部分,其中接收处理流程和RNSS基带处理单元类似但增加了多天线并行处理,发射包含多路RDSS信号组装、整形滤波、插值滤波等流程。
在一些实施例中,为了保证多个第一RDSS发射通路发射信号的同步性,如图7所示,N个第一RDSS发射通路可以连接同一LO,由同一LO为多个N个第一RDSS发射通路提供时钟信号。另外,为了进一步提高收发装置的集成度,LO还可以与N个第一RNSS接收通路连接,并可以通过分频的形式分别向N个第一RDSS发射通路和N个第一RNSS接收通路提供时钟信号。
需要理解的是,上述LO也可以替换为锁相环(phase locking loop,PLL),由PLL向通过分频的形式分别向N个第一RDSS发射通路和N个第一RNSS接收通路提供时钟信号(也可以称为LO信号)。
在一些实施中,为了避免RDSS信号发射期间,因为第一RNSS接收通路的天线被第一RDSS发射通路使用,无法接收RNSS信号,收发装置还可以包括不与RDSS发射通路共用天线的RNSS接收通路,如包括O个第二RNSS接收通路,O为大于或等于0的整数。如图8所示的收发装置,在图7所示的收发装置的基础上收发装置还包括1个(O=1)不与RDSS发射通路共用天线的第二RNSS接收通路和第三天线。采用图8所示的收发装置能够支持RNSS接收通路(如第二RNSS接收通路1)和RDSS发射通路(如第一RDSS发射通路1和第一RDSS发射通路2)同时工作,在RDSS发射通路工作期间,RNSS接收通路也能正常接收RNSS信号以确保不失定位。
另外,为了进一步降低对PA的需求,增加RDSS信号的发射强度,该收发装置还可以包括M个第二RDSS发射通路和M个第二天线,M个第二天线与所述M个第二RDSS发射通路一一连接,M为大于或等于1的整数。M个第二天线中的每个第二天线,用于发送连接的第二RDSS发射通路的信号。
以M等于1为例,作为一种示例:收发装置可以如图9所示,包括共用第一天线(L1频段天线)的第一RDSS发射通路1和第一RNSS接收通路1,以及单独与第二天线1(如另一个L1频段天线)连接的第二RDSS发射通路1、单独与第三天线1(L5频段天线)连接的第二RNSS接收通路2。
另外,为了保证多个第一RDSS发射通路发射信号的同步性,如图9和图10所示,N(图9和图10中以N为1为例)个第一RDSS发射通路和M(图9和图10中以M为1为例)个第二RDSS发射通路可以连接同一LO,由同一LO为N个第一RDSS发射通路和M个第二发射通路提供时钟信号。
此外,为了进一步提高收发装置的集成度,如图10所示,N个第一RNSS接收通路和O(图10中以O为1为例)个第二RNSS接收通路,还可以与N个第一RDSS发射通路和M个第二RDSS发射通路共用同一LO,LO可以通过分频的形式分别向N个第一RDSS发射通路+M个第二RDSS发射通路,以及N个第一RNSS接收通路+O个第二RNSS接收通路提供时钟信号。
参照如图11所示的RDSS信号发射示意图,在本申请实施例中,n(n为N或者N+M)个RDSS发射通路所连接的n个天线,可以通过波束成型等技术向特定卫星(如卫星1)发射RDSS信号(即RDSS的信号),能够增加RDSS信号发射增益,相对于现有单个RDSS发射通路的发射方式,能够进一步降低RDSS发射通路对PA的需求,达到RDSS信号发射所需的EIRP值。在图11所示的RDSS TX链路包括双RDSS发射通路双天线的情况下,相对于如图4所示的RDSS TX链路,可稳定提升信号灵敏度2-3db。
基于同一技术构思,如图12所示,本申请实施例还提供一种终端设备1200,包括处理器1210,以及如图5-9任一附图所示的收发装置1220,处理器1210和收发装置1220之间相互耦合。收发装置1220可用于接收来自该终端设备之外的其它设备(如卫星、基站等)的信号并传输至处理器1210或将来自处理器1210的信号发送给该终端设备之外的其它设备。
可选的,终端设备1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。存储器1230可以是物理上独立的单元,也可以与处理器1210耦合,或者处理器1210包括该存储器1230。
本申请实施例中不限定上述处理器1210、收发装置1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以处理器1210、收发装置1220以及存储器1230之间通过总线连接为例,总线 在图12中以粗线表示,其连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,应该理解到,所揭露的设备,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
在本申请实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(universal serial bus flash drive)、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种收发装置,其特征在于,包括N个第一卫星通信系统发射通路、N个第一卫星定位系统接收通路和N个第一天线,所述N个第一天线分别与所述N个第一卫星通信系统发射通路和所述N个第一卫星定位系统接收通路一一连接,所述N为大于或等于1的整数;
    所述N个第一天线中的每个第一天线,用于发送连接的所述第一卫星通信系统发射通路的信号,或用于将来自卫星定位系统的信号发送至连接的所述第一卫星定位系统接收通路。
  2. 如权利要求1所述的装置,其特征在于,所述N小于或等于3,所述N个第一天线为卫星定位系统的L1频段天线、L2频段天线和L5频段天线中的N个。
  3. 如权利要求1所述的装置,其特征在于,所述收发装置还包括本地振荡器LO,所述LO与所述N个第一卫星通信系统发射通路连接。
  4. 如权利要求1所述的装置,其特征在于,所述LO还与所述N个第一卫星定位系统接收通路连接。
  5. 如权利要求1或2所述的装置,其特征在于,所述装置还包括M个第二卫星通信系统发射通路和M个第二天线,所述M个第二天线与所述M个第二卫星通信系统发射通路一一连接,所述M为大于或等于1的整数;
    所述M个第二天线中的每个第二天线,用于发送连接的所述第二卫星通信系统发射通路的信号。
  6. 如权利要求5所述的装置,其特征在于,所述收发装置还包括LO,所述LO与所述N个第一卫星通信系统发射通路和所述M个第二卫星通信系统发射通路连接。
  7. 如权利要求6所述的装置,其特征在于,所述LO还与所述N个第一卫星定位系统接收通路连接。
  8. 如权利要求7所述的装置,其特征在于,所述第一卫星通信系统发射通路和所述第二卫星通信系统发射通路为卫星无线电测定系统RDSS发射通路。
  9. 如权利要求1-8中任一项所述的装置,其特征在于,所述第一卫星定位系统接收通路为无线电导航卫星系统RNSS接收通路。
  10. 一种终端设备,其特征在于,包括如权利要求1-9中任一项所述的收发装置。
PCT/CN2023/117496 2022-09-14 2023-09-07 一种收发装置及终端设备 WO2024055895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117566.3A CN117749208A (zh) 2022-09-14 2022-09-14 一种收发装置及终端设备
CN202211117566.3 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055895A1 true WO2024055895A1 (zh) 2024-03-21

Family

ID=90259695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117496 WO2024055895A1 (zh) 2022-09-14 2023-09-07 一种收发装置及终端设备

Country Status (2)

Country Link
CN (1) CN117749208A (zh)
WO (1) WO2024055895A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193108A1 (en) * 2001-05-10 2002-12-19 Robinett Robert L. Multi-mode satellite and terrestrial communication device with position location
CN106597494A (zh) * 2016-12-13 2017-04-26 中国电子科技集团公司第二十研究所 一种北斗导航终端双模抗干扰微系统
CN107317620A (zh) * 2017-06-28 2017-11-03 北京华力创通科技股份有限公司 应用卫星天线进行通信的终端和方法
CN108761506A (zh) * 2018-08-31 2018-11-06 北京星地恒通信息科技有限公司 一种北斗rnss、rdss双模用户机快速定位系统
CN109067449A (zh) * 2018-05-28 2018-12-21 成都市精准时空科技有限公司 一种具有多天线线路的多模卫星通信终端及方法
CN112511215A (zh) * 2020-11-24 2021-03-16 泰斗微电子科技有限公司 一种数据信道切换方法及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020193108A1 (en) * 2001-05-10 2002-12-19 Robinett Robert L. Multi-mode satellite and terrestrial communication device with position location
CN106597494A (zh) * 2016-12-13 2017-04-26 中国电子科技集团公司第二十研究所 一种北斗导航终端双模抗干扰微系统
CN107317620A (zh) * 2017-06-28 2017-11-03 北京华力创通科技股份有限公司 应用卫星天线进行通信的终端和方法
CN109067449A (zh) * 2018-05-28 2018-12-21 成都市精准时空科技有限公司 一种具有多天线线路的多模卫星通信终端及方法
CN108761506A (zh) * 2018-08-31 2018-11-06 北京星地恒通信息科技有限公司 一种北斗rnss、rdss双模用户机快速定位系统
CN112511215A (zh) * 2020-11-24 2021-03-16 泰斗微电子科技有限公司 一种数据信道切换方法及终端设备

Also Published As

Publication number Publication date
CN117749208A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US11218286B2 (en) Reducing intermodulation distortion for intra-band dual connectivity
JP2012130021A (ja) マルチセクタオムニ基地局におけるコンバイナ損失を低減するための方法と装置
US10523305B2 (en) Variable channelized bandwidth booster
US10763795B2 (en) Multi-path communication device for sharing feedback path for digital pre-distortion
JP2008510391A (ja) 無線データ通信装置
CN112152643B (zh) 一种天线的切换电路和电子设备
EP3567749A1 (en) Multiple-input multiple-output (mimo) repeater system
JP2006174449A (ja) 複数帯域ハンドセットのアーキテクチャ
CN102833884A (zh) 双模移动通信终端
WO2018057288A1 (en) Multiplexing an rf signal with a control signal and/or a feedback signal
CN110880942B (zh) 一种射频电路及通信设备
US9380527B2 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
WO2024055895A1 (zh) 一种收发装置及终端设备
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
EP4002717A1 (en) Direct digital channelizer repeater
CN101707816A (zh) 移动终端的发射装置及其实现信号发射的方法
CN111787646A (zh) 一种基于降频WiFi的自组网通信系统及其方法
WO2024055896A1 (zh) 一种芯片、电路板组件及通信装置
EP4231525A1 (en) Radio-frequency unit, antenna, and signal processing method
WO2019000393A1 (zh) 天线系统、基站以及通信系统
CN202998493U (zh) 频率变换装置
EP1501216A1 (en) Access method and umts repeater system with spectral exchange between umts wave frequencies
WO2024016125A1 (zh) 一种射频隔离模块及通信系统
WO2022155287A1 (en) Repeater system for use with 5g new radio base station
WO2022006463A1 (en) Pre-amplifier for a modem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864627

Country of ref document: EP

Kind code of ref document: A1