WO2019000393A1 - 天线系统、基站以及通信系统 - Google Patents

天线系统、基站以及通信系统 Download PDF

Info

Publication number
WO2019000393A1
WO2019000393A1 PCT/CN2017/091097 CN2017091097W WO2019000393A1 WO 2019000393 A1 WO2019000393 A1 WO 2019000393A1 CN 2017091097 W CN2017091097 W CN 2017091097W WO 2019000393 A1 WO2019000393 A1 WO 2019000393A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna system
antenna
frequency bands
signal
transmitters
Prior art date
Application number
PCT/CN2017/091097
Other languages
English (en)
French (fr)
Inventor
陈卫
郑晓军
熊斌
金涛
陈帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780092727.9A priority Critical patent/CN110800160A/zh
Priority to KR1020207001969A priority patent/KR102241860B1/ko
Priority to PCT/CN2017/091097 priority patent/WO2019000393A1/zh
Priority to EP17915721.9A priority patent/EP3637549A4/en
Publication of WO2019000393A1 publication Critical patent/WO2019000393A1/zh
Priority to US16/728,481 priority patent/US11165165B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present application relates to the field of communications and, more particularly, to antenna systems, base stations, and communication systems in the field of communications.
  • High-gain beam and high user multiplex rate can be obtained using the active sky system, and the diversity gain can be improved on multiple channels, thereby obtaining a high-performance wireless network.
  • the frequency of the active antenna system is deployed more and more, and the future site will evolve to the 6 to 9 frequency band.
  • broadbandization can be understood as a frequency band in which a signal received or transmitted on the sky surface can include a plurality of single frequency points.
  • the use of large array antennas has become an important means of improving spectral efficiency.
  • the active modules of the existing antenna systems simultaneously support the transmission and reception of signals in various frequency bands, and the size, weight and cost of the wide-band antenna system with wide frequency are greatly increased. Moreover, it is difficult to achieve a large array antenna with multiple frequencies for transmission and reception at the existing manufacturing process level.
  • the present application provides an antenna system having a signal transceiving capability of an asymmetric frequency band, which can reduce the size, weight, and cost of the antenna system.
  • an antenna system in a first aspect, includes an antenna element, a feed network, and a radio frequency module. among them,
  • the radio frequency module includes m transmitters and n receivers, and the m transmitters and the n receivers are respectively connected to the feed network, wherein the m transmitters respectively work in m In the frequency band, the n receivers operate in n frequency bands, respectively, and the set of the n frequency bands is a subset of the set of the m frequency bands.
  • the feed network is further coupled to the antenna array and feeds transmit signals generated by the m transmitters to the antenna element, and/or feeds received signals of the antenna elements to the n receive machine.
  • n and n are positive integers, respectively, and n is less than m.
  • the antenna system in the embodiment of the present application transmits a signal on a wider frequency band, and the received signal only in a narrow frequency band, that is, the downlink can transmit a signal on the m-band, and the uplink can receive the signal on the n-band.
  • the n-band belongs to a subset of the m-band, which can reduce the number of receiving channels, reduce the complexity of the receiver, reduce the complexity and power consumption of the antenna system, and reduce the production cost.
  • the embodiment of the present application can achieve the purpose of further reducing the cost of the antenna system by reducing the number of channels on the n receiving frequency bands.
  • n 1, m ⁇ 2.
  • the transmitter can be configured to transmit in multiple frequency bands
  • the receiver is configured to receive single-band, that is, the transmitter transmits signals in multiple frequency bands, and the receiver is at a single frequency point. receive signal.
  • the present embodiment only receives and processes the signal of the single-band, so that the number of the receiving channels in the radio frequency module is further reduced, thereby reducing the complexity and power consumption of the antenna system, and reducing Xiaosheng Production cost.
  • the feed network is provided with at least one passive port for connecting with an external receiver and/or an external transmitter, the external The frequency band in which the receiver operates is different from the n frequency bands, and the frequency band in which the external transmitter operates is different from the m frequency bands.
  • the feed network is further for feeding a signal generated by the external transmitter to the antenna element and/or feeding a received signal of the antenna element to the external receiver.
  • the antenna system in the embodiment of the present application can be compatible with the existing antenna of the existing network, and utilizes the existing antenna of the existing network to implement signal transmission and reception of the frequency band not covered by the antenna system, thereby realizing the transmission and reception capability of the antenna system. Expand to achieve reuse of existing network storage devices.
  • the set of frequency bands in which the external receiver operates is a subset of the set of m frequency bands.
  • signals in other frequency bands than the signals of the frequency band that the receiver can receive in the uplink direction can be received by the existing antenna of the existing network, that is, in other frequency bands than the signals of the frequency band that the receiver can receive.
  • the signal can be received and signal processed by an external receiver.
  • the radio frequency module further includes a duplexer, where the duplexer includes m transmit filters in one-to-one correspondence with the m frequency bands, where the m transmit filters are included Each of the transmit filters is configured to select a transmit signal of a frequency band corresponding to each of the transmit filters.
  • the duplexer further includes n receiving filters that are in one-to-one correspondence with the n frequency bands, and each of the n receiving filters is configured to select a corresponding one of the receiving filters The received signal of the frequency band passes.
  • m transmit filters and n receive filters in the duplexer perform uplink filtering and downlink according to a slot ratio of the mobile communication system. Filtering switching.
  • the duplexer increases at the same time, so that the size, weight, and cost of the antenna system are greatly increased.
  • the asymmetric antenna system in the embodiment of the present application can further simplify the structure of the duplexer by reducing the receiving RF channel in the antenna system, thereby reducing the complexity and power consumption of the antenna system, and reducing the production cost.
  • a combiner is further included in the transmit channel in the radio frequency module, and the combiner is configured to combine the transmit signals generated by the m transmitters into one transmit signal.
  • the transmit channel in the radio frequency module further includes a broadband amplifier, the broadband amplifier is connected to the combiner, and the wideband amplifier is used to output the combiner The signal is transmitted for power amplification.
  • a low noise amplifier is included in the receive channel in the radio frequency module, and the low noise amplifier is used to perform low noise power amplification on the received signal.
  • the embodiment of the present application provides a base station, where the base station includes the antenna system in the first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication system, where the communication system includes the base station in the second aspect.
  • FIG. 1 shows a schematic block diagram of an antenna system of an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing an antenna system architecture of an embodiment of the present application.
  • Figure 3 shows a schematic structural diagram of an antenna system of one embodiment of the present application.
  • FIG. 4 is a block diagram showing another antenna system of an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing an antenna system architecture of an embodiment of the present application.
  • FIG. 1 shows a schematic block diagram of an antenna system of an embodiment of the present application.
  • the antenna system is an active antenna system, and may also be referred to as an active antenna array, a smart antenna, or the like.
  • the antenna system includes a radio frequency module, a feed network 201, and an antenna array.
  • the number of the radio frequency modules may be X
  • the X radio frequency modules may be the radio frequency module 1 101, the radio frequency module 2 102, ..., the radio frequency module X 10X.
  • the number of antenna elements may be W, and the W antenna elements are respectively an antenna element 301, an antenna element 302, ..., and each of the antenna elements 30W has a corresponding radio frequency module.
  • the antenna array is usually in the form of a panel.
  • W and X are positive integers, respectively.
  • signals on one radio frequency module can be fed to one or more antenna elements, so one radio frequency module can correspond to one or more antenna elements.
  • the transmitter and the receiver can share the antenna array, that is, the transmitter and the receiver can transmit or receive the radio frequency signal by using the same antenna array.
  • the transmitter and the receiver do not share an antenna frame.
  • one or a certain group of antenna elements is only used to receive radio frequency signals or only to transmit radio frequency signals.
  • Each of the X radio frequency modules includes m transmitters and n receivers (m and n are positive integers, respectively), and the m transmitters and the n receivers respectively
  • the feed network 201 is connected, wherein the m transmitters respectively operate in m different frequency bands (m-bands), and the n receivers respectively operate in n different frequency bands (n-bands), and
  • the set of n frequency bands is a subset of the set of m frequency bands, and m is greater than n. That is to say, in the embodiment of the present application, the range of the frequency band supported by the transmitter includes and is larger than the range of the frequency band supported by the receiver.
  • the feed network 201 is connected to the W antenna elements, and feeds the transmission signals generated by the m transmitters to the each antenna element, and/or feeds the received signals of each antenna element To the n receivers.
  • the antenna system in the embodiments of the present application can support transmitting signals on the m-band and receiving signals on the n-band, and can be applied to base stations supporting one or more mobile communication systems.
  • different mobile communication systems have different frequency bands, and there may be at least one frequency band in one mobile communication system.
  • the mobile communication system in the embodiment of the present application is, for example, a Global System of Mobile Communication (GSM) system, a Code Division Multiple Access (CDMA) system, and a Wideband Code Division Multiple Access (Wideband Code Division Multiple).
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • Universal Mobile Telecommunications System Universal Mobile Telecommunication System, UMTS
  • next-generation communication systems such as 5G systems.
  • each transmitter has a transmission channel including a digital to analog converter (DAC), a frequency upconverter, and a power amplifier.
  • Each receiver has a receive channel that includes a low noise amplifier, a frequency downconverter, and an analog to digital converter (ADC).
  • DAC digital to analog converter
  • ADC analog to digital converter
  • a transmitter may be understood as a radio frequency unit including a transmission channel and having a suitable transmitting component
  • the receiver may be understood as a radio frequency unit including a receiving channel and having a suitable receiving component.
  • the antenna system in the embodiment of the present application transmits a signal on a wider frequency band, and the received signal only in a narrow frequency band, that is, the downlink can transmit a signal on the m-band, and the uplink can receive the signal on the n-band.
  • the n-band belongs to a subset of the m-band, which can reduce the number of receiving channels, reduce the complexity of the receiver, reduce the complexity and power consumption of the antenna system, and reduce the production cost.
  • FIG. 2 is a schematic diagram showing an antenna system architecture of an embodiment of the present application.
  • the RF module 10 in FIG. 2 is connected to the baseband 20, and the RF module 10 includes an active transmitting module 11 and an active receiving module 12, wherein the active transmitting module 11 includes three transmitters, respectively, operating in Band A (Band A).
  • FIG. 3 is a schematic structural view of an antenna system of an embodiment of the present application, and the same or similar portions in FIG. 3 as those in FIG. 1 or 2 are denoted by the same reference numerals.
  • the transmitter can simultaneously support the transmission of signals in the 1.8 GHz band and the 2.1 GHz band, while the receiver only supports the reception of signals in the 1.8 GHz band.
  • the 1.8 GHz band and the 2.1 GHz band may be two bands in the same mobile communication system, and the mobile communication system supports multi-user access.
  • the baseband 40 can generate multiple transmit signals on the 1.8 GHz and 2.1 GHz frequency bands, respectively, and process the multiple received signals at a single frequency of 1.8 GHz, for example, the transmit signal and the receive signal can each be 32 channels.
  • the transmit channel includes an intermediate frequency process 111 and a carrier modulation 112
  • the receive channel includes a carrier demodulation 122 and an intermediate frequency process 121.
  • the embodiment of the present application can achieve the purpose of further reducing the cost of the antenna system by reducing the number of channels on the n receiving frequency bands. For example, 32 channels of received signals can be reduced to 16 or 8 channels.
  • the transmitting channel in the radio frequency module further includes a combiner, and the combiner is configured to combine the transmit signals generated by the m transmitters into one transmit signal.
  • the transmit channel in the radio frequency module can also include a wideband amplifier for power amplifying the transmit signal.
  • the broadband amplifier can be connected to the combiner and power-amplify one of the transmit signals output by the combiner.
  • each combiner is connected to a broadband amplifier, for example, combiner 1131 is connected to wideband amplifier 1141, combiner 1132 is connected to wideband amplifier 1142, and combiner 113X is connected to wideband amplifier 114X.
  • each combiner 1131 can be all the way The 1.8 GHz transmit signal and one 2.1 GHz transmit signal are combined into one transmit signal, and the combined one output signal is output to the wideband amplifier 1141.
  • the wideband amplifier power-amplifies the transmit signal output from the combiner.
  • the receiving channel in the radio frequency module further includes a low noise amplifier.
  • a low noise amplifier Specifically, there are a total of X low noise amplifier LNAs in FIG. 3, which are LNA 1231, LNA 1232, ..., LNA 123X.
  • the LNA is used for low noise power amplification of the received signal.
  • the present embodiment only receives and processes the single-band signal, so that the number of receiving channels in the radio frequency module is further reduced, thereby reducing the complexity and power consumption of the antenna system. And reduce production costs.
  • the radio frequency module further includes a duplexer.
  • a duplexer Specifically, in the antenna system shown in FIG. 3, X duplexers are included, each of which is connected to a broadband amplifier and connected to an LNA.
  • the wideband amplifier is used to output a transmit signal to the duplexer
  • the LNA is used to receive the received signal from the duplexer output.
  • the wideband amplifier 1141 and the LNA 1231 are respectively connected to the duplexer 1151
  • the wideband amplifier 1142 and the LNA 1232 are respectively connected to the duplexer 1152
  • the wideband amplifier 114X and the LNA 123X are respectively connected to the duplexer 115X.
  • the duplexer includes m transmit filters that are in one-to-one correspondence with the m frequency bands, and the m transmit filters are used to select a transmit signal of a frequency band corresponding to each of the transmit filters. Passing; the duplexer includes n receiving filters that are in one-to-one correspondence with the n frequency bands, and the n receiving filters are configured to select a received signal of a frequency band corresponding to each of the receiving filters to pass.
  • the filter in the duplexer satisfies the requirements of the radio frequency index of the transmitter and the receiver.
  • each duplexer has a transmission filter that selects a transmission signal of a 2.1 GHz band, a reception filter that selects a transmission signal of a 1.8 GHz band, and a selective reception of a 1.8 GHz band.
  • the receive filter through which the signal passes.
  • the m transmit filters and the n receive filters in the duplexer perform uplink according to the slot ratio of the mobile communication system. Switching between filtering and downstream filtering.
  • the duplexer In the prior art symmetric multi-band antenna system, there is a filter for selecting a transmission signal of each frequency band and a filter for selecting a reception signal of each frequency band, and therefore, the duplexer is designed to be performed in multiple frequency bands. Signal transmission and reception is very difficult.
  • the duplexer increases at the same time, so that the size, weight, and cost of the antenna system are greatly increased.
  • the asymmetric antenna system in the embodiment of the present application reduces the receiving RF channel in the antenna system, which can further simplify the structure of the duplexer, thereby reducing the complexity and power consumption of the antenna system, and reducing the production cost.
  • the structure of the duplexer can be further simplified, thereby reducing the complexity and power consumption of the antenna system, and reducing the production cost.
  • the feed network is provided with at least one passive port, and the passive port is used for connecting with an external receiver and/or an external transmitter, and the external receiver works.
  • the frequency band is different from the n frequency bands
  • the external transmitter operates a frequency band different from the m frequency bands
  • the feed network is further configured to feed the signal generated by the external transmitter to the Each antenna element, and/or a received signal of each of the antenna elements is fed to the external receiver.
  • FIG. 4 is a block diagram showing another antenna system of an embodiment of the present application.
  • the passive drive networks 202, 203, 204, and 204 in FIG. 4 are respectively a specific implementation form of the feed network 201, and the passive drive networks 202 and 203 share a set of antenna elements, and the passive drive networks 204 and 205 share A set of antennas.
  • the active transmit modules belonging to the antenna system connected to the passive drive networks 202, 203, 204 and 204 support transmitting signals on multiple frequency bands, and the active receive module can support receiving signals at a single frequency point.
  • the passive drive networks 202, 203, 204, and 205 are divided into There are passive ports 51, 52, 53 and 54.
  • External transceivers 61, 62, 63 and 64 are externally connected to the passive ports 51, 52, 53 and 54 respectively.
  • the transceivers 61, 62, 63, and 64 are capable of transmitting and receiving signals on a frequency band that the antenna system cannot transmit and receive.
  • the antenna system in the embodiment of the present application can be compatible with the existing antenna of the existing network, and utilizes the existing antenna of the existing network to implement signal transmission and reception of the frequency band not covered by the antenna system, thereby realizing the transmission and reception capability of the antenna system. Expand to achieve reuse of existing network storage devices.
  • the set of frequency bands in which the external receiver operates may be a subset of the set of the m frequency bands.
  • signals in other frequency bands than the signals of the frequency band that the receiver can receive in the uplink direction can be received by the existing antenna of the existing network, that is, in other frequency bands than the signals of the frequency band that the receiver can receive.
  • the signal can be received and signal processed by an external receiver.
  • FIG. 5 is a schematic diagram showing an antenna system architecture of an embodiment of the present application. Parts in FIG. 5 that are the same as or similar to those in FIG. 1 or FIG. 2 are denoted by the same reference numerals.
  • An external receiver 30 is also included in the antenna system architecture of FIG. 5 as compared to the antenna system architecture of FIG. Specifically, the external receiver 30 includes a receiver operating in Band A and a receiver operating in Band C. Further, a receiver operating in the band A and a receiver operating in the band C are respectively connected to the baseband 40. Specifically, the receiver 30 is capable of receiving the received signals of the frequency band A and the frequency band C, and processes the received signals and transmits them to the baseband 40. That is to say, in the antenna system shown in FIG. 2, the received signals on the band A and the band C can be received by the stock antenna of the live network.
  • the embodiment of the present application further provides a base station, where the base station includes an antenna system, an antenna network, a feed network, and a radio frequency module.
  • the radio frequency module includes m transmitters and n receivers, and the m transmitters and the n receivers are respectively connected to the feed network, wherein the m transmitters respectively work in For m frequency bands, the n receivers operate in n frequency bands, respectively, and the set of the n frequency bands is a subset of the set of the m frequency bands.
  • the feed network is further coupled to the antenna array and feeds transmit signals generated by the m transmitters to the antenna element, and/or feeds received signals of the antenna elements to the n receive machine.
  • n and n are each a positive integer, and n is smaller than m.
  • the antenna system in the embodiment of the present application transmits a signal on a wider frequency band, and the received signal only in a narrow frequency band, that is, the downlink can transmit a signal on the m-band, and the uplink can receive the signal on the n-band.
  • the n-band belongs to a subset of the m-band, which can reduce the number of receiving channels, reduce the complexity of the receiver, reduce the complexity and power consumption of the antenna system, and reduce the production cost.
  • the embodiment of the present application further provides a communication system, which includes the base station involved in the embodiment of the present application, and the base station includes the antenna system involved in the embodiment of the present application, where the antenna system includes an antenna element and a feed network. And RF modules.
  • the radio frequency module includes m transmitters and n receivers, and the m transmitters and the n receivers are respectively connected to the feed network, wherein the m transmitters respectively work in For m frequency bands, the n receivers operate in n frequency bands, respectively, and the set of the n frequency bands is a subset of the set of the m frequency bands.
  • the feed network is further coupled to the antenna array and feeds transmit signals generated by the m transmitters to the antenna element, and/or feeds received signals of the antenna elements to the n receive machine.
  • n and n are each a positive integer, and n is smaller than m.
  • the antenna system in the embodiment of the present application transmits a signal on a wider frequency band, and the received signal only in a narrow frequency band, that is, the downlink can transmit a signal on the m-band, and the uplink can receive the signal on the n-band.
  • the n-band belongs to a subset of the m-band, which can reduce the number of receiving channels, reduce the complexity of the receiver, reduce the complexity and power consumption of the antenna system, and reduce the production cost.
  • association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately and exists at the same time. A and B, there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be a calculation Any available media that the machine can access is a data storage device such as a server, data center, or the like that contains one or more available media integrations.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种天线系统,包括天线阵子、馈电网络和射频模块。其中,所述射频模块包括m个发射机和n个接收机,所述m个发射机和所述n个接收机分别与所述馈电网络连接,其中,所述m个发射机分别工作在m个频带,所述n个接收机分别工作在n个频带,且所述n个频带的集合为所述m个频带的集合的子集。所述馈电网络还与所述天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述n个接收机,m和n分别为正整数,且n小于m。本申请实施例中够降低接收机的复杂度,进一步降低天线系统的复杂度、功耗,且减小生产成本。

Description

天线系统、基站以及通信系统 技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中的天线系统、基站以及通信系统。
背景技术
随着对无线宽带的需求越来越大,需要不断提升无线网络的性能。使用有源天系统可以得到高增益波束和高用户复用率,并且可以在多个通道上提高分集增益,由此获得高性能的无线网络。随着用户对话务量的要求变大,有源天线系统中对频点的部署越来越多,未来站点将向6至9频段演进。然而,运营商增加天面数量的可能性非常小,因此需要简化天面的设计,这使得天面模块的宽频化成一个趋势。这里,宽频化可以理解为天面上接收或者发送的信号的频带可以包括多个单频点。另外,随着多天线技术的演进,使用大阵列天线成为了提升频谱效率的重要手段。
然而,现有的天线系统的有源模块同时支持各频段信号的收发,宽频化的大阵列天线系统的体积、重量和成本都会大幅增加。并且,现有的制造工艺水平很难实现收发都是多频的大阵列天线。
发明内容
本申请提供一种具有不对称频带的信号收发能力的天线系统,能够减小天线系统的体积、重量和成本。
第一方面,提供了一种天线系统,包括天线阵子、馈电网络和射频模块。其中,
所述射频模块包括m个发射机和n个接收机,所述m个发射机和所述n个接收机分别与所述馈电网络连接,其中,所述m个发射机分别工作在m个频带,所述n个接收机分别工作在n个频带,且所述n个频带的集合为所述m个频带的集合的子集。
所述馈电网络还与所述天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述n个接收机。
m和n分别为正整数,且n小于m。
由于接收和发送都做成宽频时,体积成本和指标难以满足。因此,本申请实施例中的天线系统在较宽的频带上发射信号,仅在较窄的频带上的接收信号,即下行可以在m-频带上发射信号,上行可以在n-频带上接收信号,n-频带属于m-频带的一个子集,能够减小接收通道的数量,降低接收机的复杂度,降低天线系统的复杂度、功耗,且减小生产成本。
另外,由于基站的上下行业务需求的不对称性,本申请实施例可以通过减小n个接收频段上的通道数量,可以达到进一步减少天线系统成本的目的。
在一些可能的实现方式中,n=1,m≥2。
也就是说,本申请实施例中的有源天线系统中发射机可以做成多频段发射,接收机做成单频段接收,即发射机在多个频带上发射信号,接收机在单频点上接收信号。相对于现有技术的对称的多频段天线系统,本实施例仅对单频段的信号进行接收处理,使得射频模块中的接收通道数量进一步减少,进而降低天线系统的复杂度、功耗,且减小生 产成本。
在一些可能的实现方式中,所述馈电网络上设置有至少一个无源端口,所述无源端口用于与外置的接收机和/或外置的发射机连接,所述外置的接收机工作的频带与所述n个频带不同,所述外置的发射机工作的频带与所述m个频带不同。
所述馈电网络还用于将所述外置的发射机产生的信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述外置的接收机。
这样,本申请实施例中的天线系统可以实现与现网的存量天线兼容,并利用现网的存量天线,实现对该天线系统没有覆盖的频段的信号的收发,实现对天线系统的收发能力的扩展,实现现网存量设备的重用。
在一些可能的实现方式中,且所述外置的接收机工作的频带的集合为所述m个频带的集合的子集。
也就是说,上行方向上的除接收机能够接收的频带的信号之外的其他频带上的信号可以依赖现网的存量天线接收,即除接收机能够接收的频带的信号之外的其他频带上的信号可以由外置的接收机进行信号接收和信号处理。
在一些可能的实现方式中,所述射频模块中还包括双工器,所述双工器中包括与所述m个频带一一对应的m个发射滤波器,所述m个发射滤波器中的每个发射滤波器用于选择与所述每个发射滤波器对应的频带的发射信号通过。
所述双工器中还包括与所述n个频带一一对应的n个接收滤波器,所述n个接收滤波器中的每个接收滤波器用于选择与所述每个接收滤波器对应的频带的接收信号通过。
在所述天线系统适用的通信系统为时分双工系统时,所述双工器中的m个发射滤波器和n个接收滤波器根据所述移动通信系统的时隙配比进行上行滤波和下行滤波的切换。
在天线系统中随着天线数的增加,双工器同时增加,使得天线系统的体积、重量和成本大量增加。而本申请实施例中的不对称的天线系统,通过减少天线系统中的接收射频通道,可以进一步简化双工器的结构,进而降低天线系统的复杂度、功耗,且减小生产成本。
可选的,本申请实施例中,所述双工器还用于将所述m个发射机产生的m个发射信号隔离。进一步的,双工器还用于将所述天线阵子接收的n个接收信号隔离。并且,当n=1时,双工器不需要对接收信号进行隔离。
在一些可能的实现方式中,所述射频模块中的发射通道中还包括合路器,所述合路器用于将所述m个发射机产生的发射信号合为一路发射信号。
在一些可能的实现方式中,所述射频模块中的发射通道中还包括宽频放大器,所述宽频放大器与所述合路器连接,且所述宽频放大器用于将所述合路器输出的一路发射信号进行功率放大。
在一些可能的实现方式中,射频模块中的接收通道中还包括低噪声放大器,所述低噪声放大器用于对接收信号进行低噪声功率放大。
第二方面,本申请实施例提供了一种基站,所述基站包括第一方面或第一方面任意可能的实现方式中的天线系统。
第三方面,本申请实施例提供了一种通信系统,所述通信系统包括第二方面中所述的基站。
附图说明
图1示出了本申请实施例的一种天线系统的示意性框图。
图2示出了本申请实施例的一种天线系统架构的示意图。
图3示出了本申请一个实施例的天线系统的示意性结构图.
图4示出了本申请实施例的另一种天线系统的结构图。
图5示出了本申请实施例的一种天线系统架构的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了本申请实施例的一种天线系统的示意性框图。该天线系统为有源天线系统,也可以称为有源天线阵列、智能天线等。该天线系统包括射频模块、馈电网络201和天线阵子。具体的,射频模块的数量可以为X,该X个射频模块分别可以为射频模块1 101,射频模块2 102,…,射频模块X 10X。天线阵子的数量可以为W,该W个天线阵子分别为天线阵子301,天线阵子302,…,天线阵子30W中的每个天线阵子分别具有对应的射频模块。天线阵子通常为面板的形式。
这里,W和X分别为正整数。并且,一个射频模块上的信号可以馈送至一个或多个天线阵子,因此一个射频模块可以对应一个或多个天线阵子。本申请实施例中,发射机和接收机可以共用天线阵子,也就是说,发射机和接收机可以使用同一个天线阵子发射或接收射频信号。或者,发射机和接收机不共用天线阵子,具体来说,某个或某组天线阵子只用于接收射频信号或只用于发射射频信号。
所述X个射频模块中的每个射频模块分别包括m个发射机和n个接收机(m和n分别为正整数),所述m个发射机和所述n个接收机分别与所述馈电网络201连接,其中,所述m个发射机分别工作在m个不同的频带(m-频带),所述n个接收机分别工作在n个不同的频带(n-频带),且所述n个频带的集合为所述m个频带的集合的子集,并且,m大于n。也就是说,本申请实施例中,发射机支持的频带的范围包括且大于接收机支持的频带的范围。
所述馈电网络201与所述W个天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述每个天线阵子,和/或将所述每个天线阵子的接收信号馈送至所述n个接收机。
本申请实施例中的天线系统可以支持在m-频带上发射信号,在n-频带上接收信号,可以应用于支持一种或多种移动通信系统的基站。通常,不同的移动通信系统具有不同的频带,并且一个移动通信系统中可以具有至少一个频带。本申请实施例中的移动通信系统例如为:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或下一代通信系统,如5G系统等。
这里,每个发射机具有发射通道,发射通道包括数字模拟转换器(Digital to Analog Converter,DAC)、频率上变频器和功率放大器。每个接收机具有接收通道,接收通道包括低噪声放大器、频率下变频器和模拟数字转换器(Analog to Digital Converter,ADC)。 在本申请实施例中,发射机可以理解为包括发射通道,且具有合适的发射组件的射频单元,接收机可以理解为包括接收通道,且具有合适的接收组件的射频单元。
由于接收和发送都做成宽频时,体积成本和指标难以满足。因此,本申请实施例中的天线系统在较宽的频带上发射信号,仅在较窄的频带上的接收信号,即下行可以在m-频带上发射信号,上行可以在n-频带上接收信号,n-频带属于m-频带的一个子集,能够减小接收通道的数量,降低接收机的复杂度,降低天线系统的复杂度、功耗,且减小生产成本。
可选的,本申请实施例中,接收机的数量n=1,发射机的数量m≥2。
也就是说,本申请实施例中的有源天线系统中发射机可以做成多频段发射,接收机做成单频段接收,即发射机在多个频带上发射信号,接收机在单频点上接收信号。图2示出了本申请实施例的一种天线系统架构的示意图。图2中的射频模块10与基带20连接,射频模块10中包括有源发送模块11和有源接收模块12,其中有源发送模块11包括3个发射机,分别工作在频带A(Band A)、频带B(Band B)和频带C(Band C),有源接收模块12包括一个接收机,其工作在频带B(Band B)。
图3示出了本申请一个实施例的天线系统的示意性结构图,图3中与图1或图2中相同或相似的部分用相同的附图标记指代。图3中所示的天线系统中,发射机可以同时支持1.8GHz频段和2.1GHz频段信号的发射,而接收机仅支持1.8GHz频段信号的接收。这里,1.8GHz频段和2.1GHz频段可以是相同移动通信系统中的两个频带,且该移动通信系统支持多用户接入。基带40可以分别在1.8GHz和2.1GHz两个频带上产生多路发射信号,在1.8GHz单频点上对多路接收信号进行处理,例如发射信号和接收信号可以分别为32路。在该天线系统中,发射通道包括中频处理111和载波调制112,接收通道包括载波解调122和中频处理121。
另外,由于基站的上下行业务需求的不对称性,本申请实施例可以通过减小n个接收频段上的通道数量,可以达到进一步减少天线系统成本的目的。例如,可以将32路接收信号减少至16路或者8路。
可选的,本申请实施例中,所述射频模块中的发射通道还包括合路器,所述合路器用于将所述m个发射机产生的发射信号合为一路发射信号。所述射频模块中的发射通道还可以包括宽频放大器,所述宽频放大器用于将所述发射信号进行功率放大。具体的,宽频放大器可以与合路器连接,并将合路器输出的一路发射信号进行功率放大。
图3中共有X个合路器,分别为合路器1131、合路器1132,…,合路器113X,X的数量与发射信号的数量相关,例如当发射信号有32路时,合路器的数量X为32。每个合路器分别与一个宽频放大器连接,例如合路器1131与宽频放大器1141连接,合路器1132与宽频放大器1142连接,合路器113X与宽频放大器114X连接。每个合路器的输入为每个频带的一路发射信号,合路器将该多路发射信号合为一路发射信号并输出至与之连接的宽频放大器,例如每个合路器1131可以将一路1.8GHz的发射信号和一路2.1GHz的发射信号合为一路发射信号,并将合成的一路输出信号输出至宽频放大器1141。宽频放大器对合路器输出的发射信号进行功率放大。
本申请实施例中,射频模块中的接收通道还包括低噪声放大器。具体的,图3中共有X个低噪声放大器LNA,分别为LNA 1231,LNA 1232,…,LNA 123X。LNA用于对接收信号进行低噪声功率放大。
因此,相对于现有技术的对称的多频段天线系统,本实施例仅对单频段的信号进行接收处理,使得射频模块中的接收通道数量进一步减少,进而降低天线系统的复杂度、功耗,且减小生产成本。
本申请实施例中,所述射频模块中还包括双工器。具体的,在图3所示的天线系统中,包括X个双工器,每个双工器分别与一个宽频放大器连接,并且与一个LNA连接。宽频放大器用于向双工器输出发射信号,LNA用于接收双工器输出的接收信号。例如宽频放大器1141和LNA 1231分别与双工器1151连接,宽频放大器1142和LNA 1232分别与双工器1152连接,宽频放大器114X和LNA 123X分别与双工器115X连接。
可选的,所述双工器中包括与所述m个频带一一对应的m个发射滤波器,所述m个发射滤波器用于选择与所述每个发射滤波器对应的频带的发射信号通过;所述双工器中包括与所述n个频带一一对应的n个接收滤波器,所述n个接收滤波器用于选择与所述每个接收滤波器对应的频带的接收信号通过。本申请实施例中,双工器中的滤波器满足发射机和接收机的射频指标需求。
例如,图3中所示的天线系统中,每个双工器具有选择2.1GHz频段的发射信号通过的发射滤波器、选择1.8GHz频段的发射信号通过的接收滤波器和1.8GHz频段的选择接收信号通过的接收滤波器。
作为一个实施例,当该天线系统适用的移动通信系统为时分双工系统时,双工器中的m个发射滤波器和n个接收滤波器根据所述移动通信系统的时隙配比进行上行滤波和下行滤波的切换。
而现有技术的对称的多频带天线系统中,具有选择每个频段的发射信号通过的滤波器和选择每个频段的接收信号通过的滤波器,因此,将双工器设计为在多频带进行信号的收发难度非常大。而在天线系统中随着天线数的增加,双工器同时增加,使得天线系统的体积、重量和成本大量增加。而本申请实施例中的不对称的天线系统,减少了天线系统中的接收射频通道,可以进一步简化双工器的结构,进而降低天线系统的复杂度、功耗,且减小生产成本。
可选的,本申请实施例中,所述双工器还用于将所述m个发射机产生的m个发射信号隔离。进一步的,当n大于1时,双工器还用于将所述天线阵子接收的n个接收信号隔离。当n=1时,双工器不需要对接收信号进行隔离。
这样,通过减小天线系统中接收射频通道,可以进一步简化双工器的结构,进而降低天线系统的复杂度、功耗,且减小生产成本。
可选的,所述馈电网络上设置有至少一个无源端口,所述无源端口用于与外置的接收机和/或外置的发射机连接,所述外置的接收机工作的频带与所述n个频带不同,所述外置的发射机工作的频带与所述m个频带不同,所述馈电网络还用于将所述外置的发射机产生的信号馈送至所述每个天线阵子,和/或将所述每个天线阵子的接收信号馈送至所述外置的接收机。
图4示出了本申请实施例的另一种天线系统的结构图。图4中的无源驱动网络202、203、204和204分别为馈电网络201的一种具体实现形式,且无源驱动网络202和203共用一组天线阵子,无源驱动网络204和205共用一组天线阵子。无源驱动网络202、203、204和204上连接的属于该天线系统的有源发射模块支持在多频带上发射信号,有源接收模块可以支持在单频点上接收信号。并且,该无源驱动网络202、203、204和205上分 别具有无源端口51、52、53和54。无源端口51、52、53和54上分别外接外置的收发器61、62、63和64。收发器61、62、63和64能够对该天线系统不能够收发的频带上的信号进行收发。
这样,本申请实施例中的天线系统可以实现与现网的存量天线兼容,并利用现网的存量天线,实现对该天线系统没有覆盖的频段的信号的收发,实现对天线系统的收发能力的扩展,实现现网存量设备的重用。
可选的,本申请实施例中,所述外置的接收机工作的频带的集合可以为所述m个频带的集合的子集。
也就是说,上行方向上的除接收机能够接收的频带的信号之外的其他频带上的信号可以依赖现网的存量天线接收,即除接收机能够接收的频带的信号之外的其他频带上的信号可以由外置的接收机进行信号接收和信号处理。
图5示出了本申请实施例的一种天线系统架构的示意图。图5中与图1或图2中相同或相似的部分用相同的附图标记指代。与图2中的天线系统架构相比,图5中的天线系统架构中还包括外置的接收机30。具体的,外置的接收机30包括工作在频带A的接收机和工作在频带C的接收机。并且,工作在频带A的接收机和工作在频带C的接收机分别与基带40连接。具体而言,接收机30能够接收频带A和频带C的接收信号,并将接收信号进行处理,传输至基带40。也就是说,图2中所示的天线系统中,频带A和频带C上的接收信号可以依赖现网的存量天线接收。
本申请实施例还提供了一种基站,该基站包括本申请实施例中所涉及的天线系统,该天线系统包括天线阵子、馈电网络和射频模块。
其中,所述射频模块包括m个发射机和n个接收机,所述m个发射机和所述n个接收机分别与所述馈电网络连接,其中,所述m个发射机分别工作在m个频带,所述n个接收机分别工作在n个频带,且所述n个频带的集合为所述m个频带的集合的子集。
所述馈电网络还与所述天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述n个接收机。
这里,m和n分别为正整数,且n小于m。
由于接收和发送都做成宽频时,体积成本和指标难以满足。因此,本申请实施例中的天线系统在较宽的频带上发射信号,仅在较窄的频带上的接收信号,即下行可以在m-频带上发射信号,上行可以在n-频带上接收信号,n-频带属于m-频带的一个子集,能够减小接收通道的数量,降低接收机的复杂度,降低天线系统的复杂度、功耗,且减小生产成本。
本申请实施例还提供了一种通信系统,该通信系统包括本申请实施例中所涉及的基站,该基站包括本申请实施例中所涉及的天线系统,该天线系统包括天线阵子、馈电网络和射频模块。
其中,所述射频模块包括m个发射机和n个接收机,所述m个发射机和所述n个接收机分别与所述馈电网络连接,其中,所述m个发射机分别工作在m个频带,所述n个接收机分别工作在n个频带,且所述n个频带的集合为所述m个频带的集合的子集。
所述馈电网络还与所述天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述n个接收机。
这里,m和n分别为正整数,且n小于m。
由于接收和发送都做成宽频时,体积成本和指标难以满足。因此,本申请实施例中的天线系统在较宽的频带上发射信号,仅在较窄的频带上的接收信号,即下行可以在m-频带上发射信号,上行可以在n-频带上接收信号,n-频带属于m-频带的一个子集,能够减小接收通道的数量,降低接收机的复杂度,降低天线系统的复杂度、功耗,且减小生产成本。
应理解,本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算 机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如DVD)或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种天线系统,其特征在于,包括天线阵子、馈电网络和射频模块,其中,
    所述射频模块包括m个发射机和n个接收机,所述m个发射机和所述n个接收机分别与所述馈电网络连接,其中,所述m个发射机分别工作在m个频带,所述n个接收机分别工作在n个频带,且所述n个频带的集合为所述m个频带的集合的子集;
    所述馈电网络还与所述天线阵子连接,并将所述m个发射机产生的发射信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述n个接收机;
    m和n分别为正整数,且n小于m。
  2. 根据权利要求1所述的天线系统,其特征在于,n=1,m≥2。
  3. 根据权利要求1或2所述的天线系统,其特征在于,所述馈电网络上设置有至少一个无源端口,所述无源端口用于与外置的接收机和/或外置的发射机连接,所述外置的接收机工作的频带与所述n个频带不同,所述外置的发射机工作的频带与所述m个频带不同;
    所述馈电网络还用于将所述外置的发射机产生的信号馈送至所述天线阵子,和/或将所述天线阵子的接收信号馈送至所述外置的接收机。
  4. 根据权利要求3所述的天线系统,其特征在于,且所述外置的接收机工作的频带的集合为所述m个频带的集合的子集。
  5. 根据权利要求1-4任一项所述的天线系统,其特征在于,所述射频模块中还包括双工器,
    所述双工器中包括与所述m个频带一一对应的m个发射滤波器,所述m个发射滤波器中的每个发射滤波器用于选择与所述每个发射滤波器对应的频带的发射信号通过;
    所述双工器中还包括与所述n个频带一一对应的n个接收滤波器,所述n个接收滤波器中的每个接收滤波器用于选择与所述每个接收滤波器对应的频带的接收信号通过。
  6. 根据权利要求5所述的天线系统,其特征在于,
    在所述天线系统适用的通信系统为时分双工系统时,所述m个发射滤波器和所述n个接收滤波器根据所述移动通信系统的时隙配比进行上行滤波和下行滤波的切换。
  7. 根据权利要求1-6任一项所述的天线系统,其特征在于,所述射频模块还包括合路器,所述合路器用于将所述m个发射机产生的发射信号合为一路发射信号。
  8. 根据权利要求7所述的天线系统,其特征在于,所述射频模块还包括宽频放大器,所述宽频放大器与所述合路器连接,且所述宽频放大器用于将所述合路器输出的一路发射信号进行功率放大。
  9. 一种基站,其特征在于,所述基站包括权利要求1-8中任一项所述的天线系统。
  10. 一种通信系统,其特征在于,所述通信系统包括权利要求9中所述的基站。
PCT/CN2017/091097 2017-06-30 2017-06-30 天线系统、基站以及通信系统 WO2019000393A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780092727.9A CN110800160A (zh) 2017-06-30 2017-06-30 天线系统、基站以及通信系统
KR1020207001969A KR102241860B1 (ko) 2017-06-30 2017-06-30 안테나 시스템, 기지국, 및 통신 시스템
PCT/CN2017/091097 WO2019000393A1 (zh) 2017-06-30 2017-06-30 天线系统、基站以及通信系统
EP17915721.9A EP3637549A4 (en) 2017-06-30 2017-06-30 ANTENNA SYSTEM, BASE STATION AND COMMUNICATION SYSTEM
US16/728,481 US11165165B2 (en) 2017-06-30 2019-12-27 Antenna system, base station, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/091097 WO2019000393A1 (zh) 2017-06-30 2017-06-30 天线系统、基站以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,481 Continuation US11165165B2 (en) 2017-06-30 2019-12-27 Antenna system, base station, and communications system

Publications (1)

Publication Number Publication Date
WO2019000393A1 true WO2019000393A1 (zh) 2019-01-03

Family

ID=64742752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091097 WO2019000393A1 (zh) 2017-06-30 2017-06-30 天线系统、基站以及通信系统

Country Status (5)

Country Link
US (1) US11165165B2 (zh)
EP (1) EP3637549A4 (zh)
KR (1) KR102241860B1 (zh)
CN (1) CN110800160A (zh)
WO (1) WO2019000393A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957578B (zh) * 2018-09-27 2022-01-14 华为技术有限公司 一种天线装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860391A (zh) * 1998-08-18 2010-10-13 直视集团公司 多层载波离散多音通信技术
WO2014137203A2 (en) * 2013-03-08 2014-09-12 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
CN104467901A (zh) * 2013-09-25 2015-03-25 联想(北京)有限公司 一种天线复用装置、方法和电子设备
CN105322283A (zh) * 2014-06-30 2016-02-10 英特尔Ip公司 用于无线通信的具有耦合器元件的天线配置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132694A (en) * 1989-06-29 1992-07-21 Ball Corporation Multiple-beam array antenna
SE510995C2 (sv) * 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
KR100606024B1 (ko) * 2004-03-15 2006-07-28 삼성전자주식회사 다중 모드, 다중 대역 이동국 및 다중 모드, 다중 대역 이동국의 동작 방법
US20070243832A1 (en) * 2004-03-15 2007-10-18 Hyung-Weon Park Multimode/Multiband Mobile Station and Method for Operating the Same
US20060121937A1 (en) * 2004-12-07 2006-06-08 Samsung Electronics Co., Ltd. Wireless transmission/reception apparatus for transmitting/receiving frequency band signals according to mobile communication services
US7538740B2 (en) * 2006-03-06 2009-05-26 Alcatel-Lucent Usa Inc. Multiple-element antenna array for communication network
US7894779B2 (en) * 2006-06-22 2011-02-22 Honeywell International Inc. Apparatus and method for transmitting and receiving multiple radio signals over a single antenna
US8947302B2 (en) * 2010-11-05 2015-02-03 Apple Inc. Antenna system with antenna swapping and antenna tuning
US8872706B2 (en) * 2010-11-05 2014-10-28 Apple Inc. Antenna system with receiver diversity and tunable matching circuit
WO2014130877A1 (en) * 2013-02-22 2014-08-28 Quintel Technology Limited Multi-array antenna
WO2014148958A1 (en) * 2013-03-20 2014-09-25 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for phase calibration of transmit and/or receive paths of an antenna array
US20150003436A1 (en) * 2013-05-30 2015-01-01 Celeno Communications (Israel) Ltd. Wlan device with parallel wlan reception using auxiliary receiver chain
EP2945450B1 (en) * 2014-05-15 2017-06-28 Celeno Communications (Israel) Ltd. Wlan device with parallel wlan reception using auxiliary receiver chain
CN107192396A (zh) 2017-02-13 2017-09-22 问众智能信息科技(北京)有限公司 汽车精确导航方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860391A (zh) * 1998-08-18 2010-10-13 直视集团公司 多层载波离散多音通信技术
WO2014137203A2 (en) * 2013-03-08 2014-09-12 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
CN104467901A (zh) * 2013-09-25 2015-03-25 联想(北京)有限公司 一种天线复用装置、方法和电子设备
CN105322283A (zh) * 2014-06-30 2016-02-10 英特尔Ip公司 用于无线通信的具有耦合器元件的天线配置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637549A4 *

Also Published As

Publication number Publication date
US11165165B2 (en) 2021-11-02
CN110800160A (zh) 2020-02-14
KR102241860B1 (ko) 2021-04-19
US20200136266A1 (en) 2020-04-30
EP3637549A4 (en) 2020-06-17
EP3637549A1 (en) 2020-04-15
KR20200013786A (ko) 2020-02-07

Similar Documents

Publication Publication Date Title
US9225410B2 (en) Communication system, apparatus and method
US9225382B2 (en) Tunable filter front end architecture for non-contiguous carrier aggregation
US8565701B2 (en) Multi-band and multi-mode antenna system and method
US20170279566A1 (en) Carrier aggregation device
EP3661321A1 (en) Distributed antenna system architectures
JP2012130021A (ja) マルチセクタオムニ基地局におけるコンバイナ損失を低減するための方法と装置
CN105376872A (zh) 一种支持载波聚合的方法及终端
EP3220553A1 (en) Antenna and active antenna system
US8433242B2 (en) Active antenna array for a mobile communications network with multiple amplifiers using separate polarisations for transmission and a combination of polarisations for reception of separate protocol signals
US9294135B2 (en) Digital radio frequency (RF) receiver
KR20130103732A (ko) 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법
JP6526080B2 (ja) マルチバンドのアクティブ‐パッシブ基地局アンテナ
CN102763446A (zh) 接收和发送信号的方法、发射机、接收机及其系统
CN116918261A (zh) 用于减少发送和接收路径资源的时分双工(tdd)无线电配置
US11165165B2 (en) Antenna system, base station, and communications system
US20170214152A1 (en) Active Dual Antenna Arrangement
CN110224704B (zh) 射频系统和基站设备
US11736961B2 (en) Multi-band remote unit in a wireless communications system (WCS)
JP2013110741A (ja) エネルギ消費削減方法及び無線通信端末
US11277165B2 (en) Radio frequency front-end transmission module, chip, and communications terminal
EP4092912A1 (en) Digital pre-processing chip for mmwave transceiver architectures
CN108282165A (zh) 一种无线通信系统架构
US20160072566A1 (en) Antenna cross connect scheme for lte
JP2021528900A (ja) 非同期tddマルチ帯域動作のための無線ユニット
EP4231525A1 (en) Radio-frequency unit, antenna, and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017915721

Country of ref document: EP

Effective date: 20200107

ENP Entry into the national phase

Ref document number: 20207001969

Country of ref document: KR

Kind code of ref document: A