WO2024055859A1 - 运动数据获取方法及电子设备 - Google Patents

运动数据获取方法及电子设备 Download PDF

Info

Publication number
WO2024055859A1
WO2024055859A1 PCT/CN2023/116733 CN2023116733W WO2024055859A1 WO 2024055859 A1 WO2024055859 A1 WO 2024055859A1 CN 2023116733 W CN2023116733 W CN 2023116733W WO 2024055859 A1 WO2024055859 A1 WO 2024055859A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning data
user
data
site
target
Prior art date
Application number
PCT/CN2023/116733
Other languages
English (en)
French (fr)
Inventor
李科汕
姜金
肖超逸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055859A1 publication Critical patent/WO2024055859A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/19Sporting applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system

Definitions

  • the present application relates to the field of terminal technology, and in particular, to a motion data acquisition method and electronic device.
  • a playground mode can usually be set in an electronic device.
  • the electronic device can obtain the user's global positioning system (GPS) data at different locations in real time, and determine the user's location on the playground based on the GPS data.
  • GPS global positioning system
  • Running speed, running distance, running trajectory, etc., and finally the determined running distance, running trajectory, running speed and other related sports data are displayed to the user. This makes it easier for users to understand their exercise status.
  • the electronic device when the electronic device is currently in the playground mode, the user needs to run 1 or 2 laps each time before the electronic device can determine the playground the user is currently on and parameters such as the center point and deflection angle of the playground. This will make it difficult to determine the playground. If it takes a long time, it will also take a long time to determine the user's running motion data based on the playground and playground parameters, thereby reducing the efficiency of the electronic device in obtaining relevant motion data. Moreover, when the electronic device is in playground mode, if the user's running position deviates from the current track, the movement trajectory determined by the electronic device will be difficult to accurately display the user's trajectory after the deviation, thereby affecting the user's experience.
  • Embodiments of the present application provide a sports data acquisition method and electronic device, which can save the historical venue and venue parameters of the user's previous exercise in the electronic device, so that when the user exercises at the same venue again, the electronic device can quickly determine This venue and obtains the corresponding venue parameters, and even if the user deviates from the current runway by a small distance, the electronic device will truly reflect the trajectory of the user after deviating from the runway, improving the user experience.
  • a method for obtaining sports data is provided, which method is applied to an electronic device.
  • the electronic device stores at least one historical venue and venue parameters corresponding to the historical venue.
  • the electronic device obtains multiple first positioning data corresponding to different positions of the user during exercise, and based on the multiple first positioning data and the venue parameters corresponding to the historical venue, from The target site is identified from at least one historical site.
  • the electronic device obtains multiple second positioning data corresponding to different positions of the user during exercise, and based on the multiple first positioning data, the multiple second positioning data, the field parameters corresponding to the target field and the preset error threshold, The movement trajectory of the user on the target field during movement is determined, wherein the acquisition time of the second positioning data is later than the acquisition time of the first positioning data.
  • the above-mentioned preset error threshold is smaller than the threshold for drawing motion trajectories in currently common playground modes. Therefore, even if the user deviates from the current runway by a small distance, the electronic device will not align the user's deviated position to the original trajectory. It will truly reflect the user's trajectory after deviating from the track, more accurately provide the user's overall trajectory when running in playground mode, provide users with a reference, and improve the user's experience.
  • the electronic device can store the historical venue parameters of the user's movement, and when the user exercises on the saved historical venue again, the historical venue (ie, the target venue) and the venue parameters can be quickly obtained without spending any money. Excessive time is required to re-determine the historical site parameters, thereby improving the efficiency of the electronic device in obtaining the target site and site parameters.
  • the motion data in the solution of this application may include running speed, running distance, running trajectory, etc.
  • the site parameters of the target site may include the center point positioning data and deflection angle of the target site, etc.
  • the electronic device also first determines a position point corresponding to the target first positioning data in the plurality of first positioning data. Then for each historical venue, obtain the center point position of the historical venue according to the venue parameters corresponding to the historical venue, and obtain the first distance between the center point position and the position point corresponding to the target first positioning data; if the first distance is less than or Equal to the first preset length, the electronic device will determine the historical site as the target site. In this implementation, you can determine The location of the center point of the historical site is used to determine the target site.
  • the electronic device uses the multiple historical venues as multiple candidate venues. For each candidate site, the electronic device obtains the data error of each first positioning data in the plurality of first positioning data according to the site parameters corresponding to the candidate site; if the data error of each first positioning data is less than or equal to the preset difference value, the electronic device determines this candidate site as the target site.
  • the target site can be determined from multiple candidate historical sites through the data error of the first positioning data.
  • the electronic device determines the position of the position point corresponding to the first positioning data in the candidate site according to the site parameters corresponding to the candidate site and the first positioning data.
  • a location area where the candidate site includes multiple location areas.
  • the electronic device determines the reference location of the candidate site according to the location area, determines the second distance between the location point corresponding to the first positioning data and the reference location, and obtains the third distance between the location area and the reference location. Finally, the electronic device determines the absolute value of the difference between the second distance and the third distance as the data error of the first positioning data.
  • the data error of the first positioning data may represent the possibility that the user is located at the candidate site when the first positioning data is obtained. When the data error is small, it can mean that the user is more likely to be located at the candidate site when the first positioning data is obtained. When the data error is small, it can mean that the user is less likely to be located at the candidate site when the first positioning data is obtained.
  • the data error of each first positioning data in the plurality of first positioning data for a candidate site can be calculated respectively. And for a candidate site, if the data errors of multiple consecutive first positioning data are small, it can be considered that the user may have been located at the candidate site. In this case, the electronic device can determine the candidate site as the target site. . Moreover, the accuracy of the target site determined in this way is also relatively high.
  • the electronic device determines the data error of each positioning data in the plurality of first positioning data and the plurality of second positioning data according to site parameters corresponding to the target site.
  • site parameters corresponding to the target site For the specific method of determining the data error, please refer to the aforementioned implementable methods. If there is positioning data whose data error is less than or equal to the preset error threshold, the electronic device will align the position point corresponding to the positioning data with the position point corresponding to the previous positioning data, and continue to obtain a relatively smooth motion trajectory; if there is a data error greater than If the positioning data with the error threshold is preset, the electronic device will connect the position point corresponding to the positioning data with the position point corresponding to the previous positioning data, and continue to obtain the motion trajectory.
  • the electronic device will truly reflect the trajectory of the user after deviating from the runway, and provide the user with more accurate information about the trajectory of the user in playground mode.
  • the overall running trajectory provides users with a reference and improves the user experience.
  • the electronic device determines the target site parameters of the target site based on a plurality of third positioning data corresponding to different positions of the user during exercise, where the plurality of third positioning data includes multiple first positioning data and part of the second positioning data among the plurality of second positioning data.
  • the electronic device determines the first parameter error corresponding to the target field parameter of the target field according to the plurality of fourth positioning data corresponding to the different positions of the user during the exercise, and determines the second parameter error corresponding to the saved field parameter of the target field,
  • the acquisition time of the fourth positioning data is later than the acquisition time of the third positioning data
  • the plurality of second positioning data include a plurality of fourth positioning data.
  • the electronic device saves the target site parameters corresponding to the target site and the site parameters with smaller parameter errors among the saved site parameters, and deletes the site parameters with larger errors, thereby It ensures that the venue parameters of the target venue become more and more accurate, and also ensures that when the user runs again on the target venue, the user's running speed and running distance can be more accurately determined.
  • the electronic device determines the first data error of the fourth positioning data according to the fourth positioning data and the target site parameters. Then, the electronic device determines the average error of the first data errors of the plurality of fourth positioning data, and uses the average error to determine the first parameter error.
  • the first parameter error represents the accuracy of the target site parameters. If the first parameter error is smaller, the accuracy of the target site parameters will be higher, and the user's motion trajectory determined based on the target site parameters will be more accurate.
  • the electronic device determines the second data error of the fourth positioning data according to the fourth positioning data and the saved site parameters of the target site. Then, the electronic device determines the average error of the second data errors of the plurality of fourth positioning data, and determines the second parameter error from the average error.
  • the second parameter error represents the accuracy of the site parameters of each saved target site. If the second parameter error is smaller, the accuracy of the saved site parameters of the target site is higher, so that the old site of the saved target site is The user's movement trajectory determined by the parameters is also more accurate.
  • the electronic device After determining the target venue from at least one historical venue, the electronic device obtains corresponding fifth positioning data during the user's movement, where the amount of fifth positioning data is greater than the amount of first positioning data.
  • the electronic device determines the venue parameters of the venue where the user is currently located based on the fifth positioning data, and saves the venue parameters of the venue where the user is currently located after the user's exercise is completed.
  • the electronic device can determine the venue parameters of the current sports venue from the user's current positioning data during exercise, and save the venue parameters.
  • the electronic device can quickly obtain the venue and venue parameters without having to re-determine the venue and venue parameters through long-term calculations, thereby improving the efficiency of the electronic device in acquiring the target venue and venue parameters.
  • the site parameters corresponding to the historical site include site center point positioning data, site deflection angle, etc.
  • the electronic device also determines the user's movement duration, movement speed and other movement trajectories based on the user's multiple different positions on the target field during the movement, where the movement includes running.
  • the electronic device displays the movement trajectory during the user's movement or at the end of the movement, thereby providing the user with a movement reference.
  • an electronic device in a second aspect, includes a memory and one or more processors; the memory is coupled to the processor; wherein computer program code is stored in the memory, and the computer program code includes computer instructions.
  • the computer instructions When the computer instructions are processed
  • the processor When the processor is executed, the electronic device is caused to execute the motion data acquisition method in any implementation manner of the first aspect.
  • a computer-readable storage medium including computer instructions.
  • the electronic device causes the electronic device to execute the motion data acquisition method in any implementation manner of the first aspect.
  • a computer program product is provided.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the motion data acquisition method in any implementation manner of the first aspect.
  • Figure 1 is a schematic diagram of establishing a plane rectangular coordinate system based on playground parameters according to an embodiment of the present application
  • Figure 2 is a schematic diagram of a running trajectory according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a positioning system according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a method for obtaining motion data according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of a user running on a playground according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another motion data acquisition method according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of multiple target playgrounds according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of another running trajectory according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of a watch display page according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of determining site parameters according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of yet another electronic device according to an embodiment of the present application.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to describe the same items with basically the same functions and effects. or similar items to distinguish.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • users When users run on a playground with a track, they usually want to know where they are, how fast they are running, how far they are running, etc.
  • users can wear electronic devices such as watches and bracelets with sports functions.
  • corresponding playground modes are usually set.
  • users When users are running on the playground, they can control the electronic device to turn on the playground mode.
  • the electronic device After turning on the playground mode, the electronic device can obtain the user's global positioning system (GPS) data at different locations in real time during the user's running process, and determine the user's running distance and running trajectory on the playground based on the GPS data. and running speed and other sports data, and finally display these sports data.
  • GPS global positioning system
  • the GPS data of the center point of the playground can be determined based on the different GPS data of the user running 1 or 2 laps on the track.
  • the deflection angle of the playground can be determined by using the longest axis of the playground and true north, Expressed as the angle between due south, due east, or due west directions.
  • the electronic device collects the GPS data of the user at different locations when the user is running, and determines the center point A of the playground in Figure 1 and the center point GPS data based on the GPS data of 1 or 2 circles. Then, establish a rectangular coordinate system with the center point A of the playground as the origin, the due north direction as the Y-axis direction, and the due east direction as the X-axis direction.
  • Electronic devices can provide users with relevant motion data during running in the above manner. However, every time the user runs, he needs to run 1 or 2 laps first before the electronic device can determine the playground the user is currently on and the center point and deflection angle of the playground. This will take a long time to determine the playground and parameters. If it is long, it will take a long time to determine the user's running speed and distance based on the playground and parameters, thereby reducing the efficiency of the electronic device in obtaining relevant sports data.
  • the electronic device will detect the distance the user deviates from the track when running. When the distance is within a certain threshold, the electronic device will align the user's deviation position to a running track that is similar in shape to the track. When this distance exceeds the threshold, the electronic device will connect the previous position of the running trajectory with the user's current deviated position point, thereby connecting the offset position with the original trajectory to form a new trajectory.
  • the threshold value is usually set relatively large, such as 60-70 meters. In this way, after the previous position of the running trajectory is connected with the user's current deviated position point, the new trajectory will obviously have a longer period.
  • Straight-line trajectory segment for example, as shown in Figure 2, in which a large section of track a1 appears on the running trajectory L1, that is, this trajectory a1 shows the user's straight-line trajectory from the original running trajectory to location point B, but this straight-line trajectory It does not completely represent the real trajectory of the user moving to location point B.
  • the user's real trajectory may be trajectory a2. Therefore, in the target playground mode, the determined running trajectory is not accurate enough and cannot accurately reflect the user's real running trajectory, thereby affecting the user's experience.
  • embodiments of the present application provide a method for obtaining motion data.
  • the electronic device pre-stores the historical venues where the user moves and the venue parameters corresponding to the historical venues.
  • the electronic device obtains multiple first positioning data corresponding to different positions of the user during exercise, and determines the target venue from at least one pre-stored historical venue based on the multiple first positioning data and venue parameters corresponding to the historical venue.
  • the electronic device continues to obtain a plurality of second positioning data corresponding to different positions of the user during exercise, and determines the positioning data based on the plurality of second positioning data, a smaller preset error threshold (such as the above-mentioned threshold) and the target site.
  • the corresponding field parameters determine the user's movement trajectory on the target field during movement.
  • the acquisition time of the second positioning data is later than the acquisition time of the first positioning data.
  • the user's sports venue includes at least one standard track.
  • the electronic device can store the venue parameters of the historical venue where the user exercised, and when the user exercises again on the saved historical venue, the electronic device can quickly obtain the historical venue (ie, the target venue) and Site parameters without spending too much time re-determining site parameters, thereby improving the efficiency of the electronic device in acquiring the target site and site parameters.
  • the electronic device since the threshold is set to be smaller, such as 20-30 meters, even if the user deviates from the current runway by a small distance, the electronic device will not align the user's deviated position to the original trajectory, but will It truly reflects the user's trajectory after deviating from the track, thereby more accurately providing the overall trajectory of the user's running in playground mode, providing users with a reference, and improving the user's experience.
  • the above-mentioned site parameters of the target site and historical site may include the center point positioning data of the site, the site deflection angle, the center position of the circular runway, etc.
  • the positioning system may include an electronic device 100 and at least one GPS positioning satellite 200 .
  • the electronic device 100 Take the electronic device 100 as a watch as an example.
  • the electronic device 100 can obtain positioning signals sent by multiple GPS positioning satellites 200, thereby determining the user's GPS data at different locations based on the multiple positioning signals.
  • the electronic device 100 acquires a target venue near the user's location based on multiple GPS data.
  • the electronic device 100 can determine the target venue from the pre-saved historical venues based on multiple GPS data, and obtain the corresponding venue parameters.
  • the electronic device 100 can locate the user's position on the target venue according to the venue parameters of the target venue and the positioning data of the user's current movement process, and combine the venue parameters of the target venue, the user's position and the smaller preset difference value set Determine the user's movement trajectory.
  • the electronic device 100 can store the historical venue where the user moved and the corresponding venue parameters, and when the user moves on the saved historical venue again, it can quickly obtain the historical venue (ie, the target venue) and the venue parameters. , without spending too much time re-determining the site parameters, thereby improving the efficiency of the electronic device 100 in acquiring the target site and site parameters.
  • the electronic device since the threshold is set to be smaller, such as 20-30 meters, even if the user deviates from the current runway by a small distance, the electronic device will not align the user's deviated position to the original trajectory, but will It truly reflects the user's trajectory after deviating from the track, thereby more accurately providing the overall trajectory of the user's running in playground mode, and this trajectory will also be smoother, providing users with a reference and improving the user's experience.
  • the electronic device 100 in the embodiment of the present application can be a smart hand-worn device that has computing and storage functions and is easy to carry during exercise, such as a smart watch, a smart bracelet, etc., or it can also be a mobile phone, tablet computer, and other devices.
  • the user's sports may include walking, running, etc.
  • the user's sports venues may include standard track and field fields, sports fields, playgrounds, etc., and these venues include at least one track.
  • the size and length of each runway in a standard venue also conform to unified standard specifications. Taking a 400-meter-circle runway as an example, the runway is divided into two semi-circular runways and two straight-line runways. The standard specifications indicate that the radius of the two semi-circular runways is 36.5 meters, and the length of the straight-line runway is usually 84.39 meters.
  • the electronic device 100 may include a positioning module 101 , a parameter storage module 102 and a site identification module 103 .
  • the positioning module 101 can communicate with the GPS positioning satellite to obtain the positioning signal sent by the GPS positioning satellite during the user's movement, and obtain the user's positioning data during the movement based on the positioning signal.
  • the positioning module 101 can also send the positioning data to the site identification module 103.
  • the venue identification module 103 obtains pre-saved historical venues and venue parameters from the parameter storage module 102, and determines the target venue and corresponding venue parameters from the historical venues according to the user's positioning data.
  • the site identification module 103 can also determine new site parameters of the target site (ie, target site parameters) based on the positioning data of the user's movement on the target site, and when the error of the new site parameter is less than the error of the stored site parameter
  • the new venue parameters of the target venue are saved in the parameter storage module 102, thereby achieving the purpose of continuously updating the venue parameters, making the venue parameters of the target venue more and more accurate.
  • the parameter storage module 102 can provide a storage medium for saving parameters, data, etc., and save historical venues and historical venue parameters.
  • the above-mentioned electronic device 100 can store the historical venue and corresponding venue parameters of the user's exercise, and when the user exercises on the saved historical venue again, the historical venue (i.e., the target venue) and the venue parameters can be quickly obtained without spending any money. It takes too much time to re-determine the site parameters, thereby improving the efficiency of the electronic device 100 in acquiring the target site and site parameters.
  • the electronic device since the threshold is set to be smaller, such as 20-30 meters, even if the user deviates from the current runway by a small distance, the electronic device will not align the user's deviated position to the original trajectory, but will It truly reflects the user's trajectory after deviating from the track, thereby more accurately providing the overall trajectory of the user's running in playground mode, and this trajectory will also be smoother, providing users with a reference and improving the user's experience.
  • the site determination method in the embodiment of the present application includes the following steps S501-S502.
  • the watch After the watch turns on the playground mode, it obtains multiple first positioning data corresponding to different positions of the user during exercise, and based on the multiple first positioning data and the playground parameters corresponding to the historical playgrounds saved in the watch, at least The target playground is determined from a historical playground.
  • Positioning data can include GPS data, global navigation satellite system (GNSS) data, cellular positioning data, wireless-fidelity (wireless-fidelity, WIFI) positioning data, etc.
  • GPS data is used as an example to illustrate the method for determining the site.
  • the watch may determine a location point corresponding to the target first positioning data among the plurality of first positioning data. For each historical playground, the watch obtains the center point position of the historical playground according to the playground parameters corresponding to the historical playground, and obtains the first distance between the center point position and the location point corresponding to the target first positioning data. If the first distance is less than or equal to the first preset length, the watch determines the historical playground as the target playground.
  • the above-mentioned first target positioning data may represent the positioning data of the user at the current location after the watch turns on the playground mode.
  • the watch can obtain positioning data based on the received positioning signal. Among them, users can run first and then control the watch to turn on the playground mode, or they can control the watch to turn on the playground mode first and then run.
  • the target first positioning data may represent the first first positioning data among the plurality of first positioning data.
  • the watch can pre-store the historical playground and corresponding playground parameters of the user's previous runs.
  • the playground parameters of the historical playground include the positioning data of the playground reference point, the playground deflection angle, the number of runways, etc.
  • the positioning data of the reference point can represent the positioning data of the center point, the positioning data of the center point of the semicircular track on the playground, etc.
  • the watch can determine the position of the reference point of the historical playground, such as determining the position of the center point, determining the position of the center point of the semicircle runway of the playground, etc.
  • the first preset length can be determined based on the distance between the saved center points of each historical playground.
  • the first preset length can be between 109 meters and 111 meters, such as 109 meters, 110 meters, and 111 meters. wait.
  • first distance between the center point of the historical playground and the position point corresponding to the first positioning data of the target is less than or equal to the first preset length, it indicates that the user may be running on the historical playground, and the historical playground can be determined at this time. for the target playground. And if the first distance between the center point of the historical playground and the position point corresponding to the first positioning data is greater than the first preset length, it means that the user may not have run on the historical playground, and the historical playground will not be determined at this time. for the target playground.
  • whether the historical playground is the target playground can be determined by determining whether the distance between the center point of the historical playground and the user's initial position is less than or equal to the first preset length. Usually, if there is a playground within the first preset length near the user's location, there will only be one playground. Therefore, after the watch determines the target playground, there is a high probability that the target playground will be the playground where the user is currently located.
  • the watch can also verify the target playground to further determine the accuracy of the target playground. Moreover, the watch can verify the target playground based on the user's multiple first positioning data on the target playground. The plurality of first positioning data include corresponding target first positioning data when the user is at the initial position.
  • the plurality of first positioning data represent positioning data obtained by the watch when the user is in different positions during running on the target playground. It is understandable that the watch first obtains the first positioning data of the target, and then obtains other first positioning data.
  • the plurality of second positioning data may also have a time sequence.
  • the watch can sequentially obtain the first positioning data g21 when the user is at position point b, the first positioning data g22 when the user is at position point c, the first positioning data g23 when the user is at position point d, and the first positioning data g23 when the user is at position point e.
  • Certain bit data g24 when the user is running on the current playground, he passes position point b, position point c, position d and position point e in sequence. Then the watch can sequentially obtain the first positioning data g21 when the user is at position point b, the first positioning data g22 when the user is at position point c, the first positioning data g23 when the user is at position point d, and the first positioning data g23 when the user is at position point e.
  • the watch can obtain a plurality of first positioning data of the user within a second preset length, and the second preset length represents the distance that the user needs to run on the target playground. And the plurality of first positioning data indicates that the user is in different locations within the second preset length. Positioning data at the same location.
  • the second preset length may be 1/4, 1/3, 1/2, etc. of the total length of a target runway on the target playground. For example, when the target runway length is 400 meters, the second preset length It can be 100 meters, 200 meters, etc.
  • the plurality of first positioning data may also represent positioning data corresponding to position points separated by a preset distance within the second preset length. Among them, the shorter the preset distance is, the more first positioning data is, and the accuracy of the target playground determined based on the first positioning data may be more reliable.
  • multiple first positioning data may also represent a preset number of first positioning data. The greater the preset number, the more reliable the accuracy of the determined target playground.
  • the watch can obtain the data error of each first positioning data in the multiple first positioning data. If each first positioning data If the data errors are less than or equal to the first preset difference, the target playground is determined to be more accurate, and the playground corresponding to the target playground can be used to continue locating the user and determining the user's running trajectory.
  • the watch when obtaining the data error of the first positioning data, can determine the location area of the position point corresponding to the first positioning data in the historical playground based on the first positioning data.
  • the historical playground can include multiple location areas, such as a straight runway area, a semicircular runway area, etc. Then, the watch determines the reference position of the historical playground based on the location area where the position point corresponding to the first positioning data is located.
  • the reference position of the historical playground may include the long axis of the historical playground, the center of the semicircular track of the historical playground, etc.
  • the watch determines the second distance between the position point corresponding to the first positioning data and the reference position, and obtains the third distance between the position area where the position point corresponding to the first positioning data is located and the reference position. Finally, the watch will The absolute value of the difference between the second distance and the third distance is determined as the data error of the first positioning data. If the data error of each first positioning data is less than or equal to the first preset difference, the target playground is determined with high accuracy and can continue to be used.
  • the above-mentioned reference position can also be any point, a line, an area, etc. on the candidate playground. Since the runway of the playground has standard specifications, when the reference position is known, different position areas and the reference can be determined. The distance between locations. The above third distance may represent a standard distance or a reference distance.
  • the watch when obtaining the data error of the first positioning data, referring to Figure 7, the watch can perform the following steps S5011-S5014.
  • the watch establishes a plane rectangular coordinate system based on the pre-saved playground parameters of the target playground.
  • the origin of the plane rectangular coordinate system is the point corresponding to the center point positioning data in the playground parameters, and the Y-axis of the plane rectangular coordinate system points to the north direction, and the angle between the long axis of the target playground and the Y-axis is in the playground parameters. playground deflection angle.
  • the watch converts the first positioning data into position points (or coordinate points) in the above-mentioned plane rectangular coordinate system. And, based on the coordinates of the position point, the coordinate point range where the semicircular runway of the target playground is located, and the coordinate point range where the straight runway is located, determine the location area of the position point on the target playground. For example, determine whether the location point is on a semicircular runway or a straight runway.
  • the watch determines the reference position of the target playground based on the position area of the above-mentioned position point on the target playground, determines the second distance between the above-mentioned position point and the reference position, and obtains the third distance between the position area and the reference position. .
  • the center of the semicircular runway of the target playground is determined as the reference position. If the above position point is on a straight runway, then the long axis of the target playground is determined as the reference position. , where the long axis is the axis where the line connecting the centers of the two semicircular runways on the target playground is located.
  • the second distance is the distance between the position point and the center of the semi-circular runway
  • the third distance is the radius of the semi-circular runway of the standard specification runway
  • the second distance is the distance between the location point and the long axis
  • the third distance is the distance between the straight runway and the long axis of a standard runway.
  • the watch can pre-save standard track data corresponding to each historical playground.
  • the distance between the straight track and the long axis of the playground, and the half-length track data can be obtained based on the track data.
  • the user can select on which track in the playground to run on the watch. Because the playground is a standard playground, the length and specifications of each track on the playground are also determined. After the user selects the target runway, the watch can also obtain the runway data of the target runway from the pre-saved data.
  • the watch calculates the absolute value of the difference between the second distance and the third distance as the data error of the first positioning data.
  • the data error is less than or equal to the first preset difference, determine the first positioning data corresponding to the position point.
  • the data error is small.
  • the data error is greater than the first preset difference, it is determined that the data error of the first positioning data corresponding to the position point is relatively large.
  • the data error of the first positioning data may indicate that the user is located in the target operation when the first positioning data is obtained. field possibility. When the data error is small, it can mean that the user is more likely to be located in the target playground when the first positioning data is obtained. When the data error is small, it can mean that the user is less likely to be located in the target playground when the first positioning data is obtained.
  • the data error of each first positioning data in the plurality of first positioning data can be calculated respectively. And for this target playground, if the data errors of multiple consecutive first positioning data are small, it can be considered that the user may have been located on the target playground. In this case, the watch can continue to use the playground parameters corresponding to the target playground to obtain User's running trajectory, running speed and other sports data. Moreover, the accuracy of the target playground determined in this way is also relatively high.
  • the watch when the watch determines the target playground, it may also determine multiple target playgrounds. For example, as shown in Figure 8, the user is in the center of four playgrounds, then the first distances M1, M2, M3, and M4 between the center points of the four playgrounds and the user's location may all be less than or equal to the first preset length. In this case, the multiple target playgrounds identified can be regarded as candidate playgrounds. Afterwards, the watch determines the real target playground from the candidate playgrounds based on multiple first positioning data.
  • the watch may first determine the data error of each first positioning data in the plurality of first positioning data for one candidate playground.
  • the plurality of first positioning data are positioning data when the user is at different positions within the third preset length.
  • the third preset length may be 1/4, 1/3, 1/2, etc. of the total length of the target runway selected by the user.
  • the second preset length may be 100 meters, 200 meters, etc.
  • the method of determining the data error of the first positioning data may refer to the aforementioned steps S5011-S5014.
  • the currently targeted candidate playground is determined as the target playground.
  • Both the above-mentioned second preset length and the third preset length can be used to determine the target playground, and both the second preset length and the third preset length are less than the length of one circle of the track. Therefore, in the embodiment of the present application, the target playground is determined.
  • the positioning data used is relatively small, which can also reduce the time required to obtain the target playground and playground parameters.
  • the watch After determining the target playground, the watch continues to obtain the user's second positioning data during the running process, and based on multiple first positioning data, multiple second positioning data, the third preset difference value and the target playground corresponding Playground parameters determine the user's running trajectory on the target playground during exercise.
  • the third preset difference value (such as the aforementioned preset error threshold) may be in the range of 20-30 meters, such as 20 meters, 25 meters, 30 meters, etc.
  • the aforementioned first preset difference value and second preset difference value may be equal to the third preset difference value, or may be smaller than the third preset difference value.
  • the watch first obtains the first positioning data and then the second positioning data. And the first positioning data can be used to determine the target playground, and both the first positioning data and the second positioning data can be used to determine the user's running trajectory.
  • the watch can still first determine the data error of each second positioning data in the plurality of second positioning data for the target playground.
  • the specific method of determining the data error please refer to the aforementioned steps S5011-S5014. Since the data error of the first positioning data has been determined in the steps of the aforementioned embodiment, the watch can directly obtain the data error of each first positioning data at this time.
  • the watch determines whether the data error of each positioning data in the plurality of first positioning data and the plurality of second positioning data is less than or equal to the third preset difference value.
  • the watch can align the position points corresponding to the positioning data whose data error is less than or equal to the third preset difference value to a running track that is the same or similar to the user's current track shape, thereby continuing to generate or obtain a relatively smooth running track; and if When there is positioning data with a data error greater than the third preset difference, the watch will connect the position point corresponding to this positioning data with the previous position point to continue to generate or obtain the running trajectory.
  • the data error of the above positioning data is less than or equal to the third preset difference, it can be regarded as that the user does not deviate from the current target track when running or the distance from the current target track is very small. At this time, the user can The position points corresponding to the positioning data are aligned.
  • the data error of the above positioning data is greater than the third preset difference, it can be considered that the user has deviated from the current target track when running.
  • the position points corresponding to the positioning data cannot be Rather than performing alignment processing, it is necessary to truly reflect the user's running trajectory that deviates from the target track.
  • the electronic device can accurately obtain the position of the user deviating from the target runway, thereby It more accurately provides users with the overall trajectory of running in playground mode, provides users with a reference, and improves user experience. For example, see Figure 9. After the watch obtains the user's running trajectory, it can also display this trajectory. Moreover, the displayed trajectory can intuitively and accurately show the trajectory of the user after deviating from the target runway.
  • the electronic device can store the history of the user's sports and the operation of the playground. Field parameters, and when the user exercises on the saved historical playground again, the historical playground (i.e., the target playground) and playground parameters can be quickly obtained without spending too much time re-determining the playground parameters, thereby improving the acquisition of electronic equipment. Efficiency of target playground and playground parameters.
  • the watch can also first determine the user's position on the target playground based on the above-mentioned first positioning data, the second positioning data and the pre-saved playground data corresponding to the target playground, and then determine the position of the user on the target playground during the user's exercise. Different positions on the screen can determine the user's running speed, running length and other sports data.
  • the watch determines the position of the center point based on the center point positioning data of the playground in the playground parameters, and establishes a plane rectangular coordinate system corresponding to the target playground based on the playground deflection angle in the playground parameters. Afterwards, the watch converts the obtained first positioning data and second positioning data into position points in plane rectangular coordinates, thereby determining the different positions of the user on the target playground when the first positioning data and second positioning data are obtained.
  • the watch can determine the user's running length and running speed based on multiple different locations.
  • the watch after obtaining the target playground, can display prompt information to the user, so that the user knows that the target playground has been matched. For example, see Figure 10, after the watch obtains the target playground, it can display prompt information such as "The playground information has been matched, you can continue running" on the display page.
  • the watch can also determine the target playground parameters of the target playground based on multiple third positioning data during the user's running process, that is, the new playground parameters.
  • the plurality of third positioning data may include part of the second positioning data among the plurality of first positioning data and the plurality of second positioning data, and the amount of the third positioning data is less than the total number of the first positioning data and the second positioning data. quantity. For example, if the user ran a total of 6 laps on the target playground, the third positioning data may be all the corresponding positioning data when the user ran the first 2 laps.
  • the watch After determining the new playground parameters, the watch continues to determine whether the new playground parameters or the pre-saved old playground parameters of the target playground are more accurate based on multiple fourth positioning data during the user's running process. In this way, more accurate playground parameters are saved and the purpose of updating playground parameters is achieved. When the user runs on the same playground again, the watch can determine the user's running trajectory and other sports data based on more accurate playground parameters.
  • the plurality of fourth positioning data do not include the plurality of third positioning data, or the acquisition time of the fourth positioning data is later than the acquisition time of the third positioning data, and the plurality of fourth positioning data are the aforementioned plurality of second positioning data. Positioning data in .
  • the watch may first obtain the first parameter error of the new playground parameters of the target playground and the second parameter error of the old playground parameters based on the fourth positioning data.
  • the first parameter error and the second parameter error are then compared to determine the playground parameter corresponding to the smaller parameter error, and then the playground parameter is saved. For example, if the first parameter error is smaller than the second parameter error, it can be considered that the new playground parameter corresponding to the first parameter error is more accurate, and then the watch will save the new playground parameter, that is, replace the old playground parameter with the new playground parameter. parameter. If the first parameter error is greater than the second parameter error, it can be considered that the old playground parameters corresponding to the second parameter error are more accurate, and the watch will still save the old playground parameters.
  • the above-mentioned first parameter error represents an average error of a plurality of data errors (eg, a plurality of first data errors) calculated based on each fourth positioning data and the new playground parameters.
  • a plurality of data errors e.g. a plurality of first data errors
  • the above-mentioned second parameter error represents an average error of a plurality of data errors (eg, a plurality of second data errors) calculated based on each fourth positioning data and the old playground parameters.
  • the method of calculating the second data error of the fourth positioning data based on the old playground parameters may refer to the aforementioned steps S5011-S5014.
  • the error of the first parameter is smaller, and the accuracy of the new playground parameters is higher. Therefore, the user's running trajectory and other motion data determined based on the new playground parameters are also more accurate. Moreover, the smaller the second parameter error is, the higher the accuracy of the old playground parameters will be. Therefore, the user's running trajectory and other motion data determined based on the old playground parameters will be more accurate.
  • the watch after determining the target playground, can also determine new playground parameters of the target playground. And after the user's exercise is completed, the new playground parameters corresponding to the target playground and the more accurate playground parameters of the old playground parameters are saved, thereby ensuring that the playground parameters of the target playground become more and more accurate, thereby ensuring that the user is in the same playground again.
  • the watch can determine the user's running trajectory and other sports data based on more accurate playground parameters.
  • the watch when the user is running on the current playground, if the watch does not obtain the target playground according to the foregoing content, it can be considered that the watch does not save the current playground parameters, or the user is running on the current playground for the first time. .
  • the watch can determine the location based on multiple fifth positioning data collected during the process. Determine the playground parameters of the current playground and save the playground parameters after the user's exercise is completed. Therefore, when the user comes to the playground for a run again, the watch can quickly obtain the playground and playground parameters without having to re-determine the playground and playground parameters through long calculations.
  • the fifth positioning data represents the positioning data obtained by the user during one or two runs, and the amount of the fifth positioning data is greater than the amount of the first positioning data.
  • the watch determines the playground parameters of the current playground based on multiple fifth positioning data
  • the number of multiple fifth positioning data since the number of multiple fifth positioning data is large, it may include positioning data of the user running 1 to 2 laps, so the watch can determine the parameters of the current playground based on the fifth positioning data.
  • Multiple fifth positioning data determine the center point of the playground, and then convert the multiple fifth positioning data from the longitude and latitude coordinate system to the polar coordinate system to calculate the angular velocity, thereby obtaining the deflection angle of the playground relative to the true north direction.
  • the electronic device is a watch and the watch has a calculation function and a storage function as an example to describe the motion data acquisition method in the embodiment of the present application.
  • the electronic device may also be a bracelet, a mobile phone, a tablet computer, etc.
  • the above-mentioned electronic devices can save historical sites and site parameters in their own storage space.
  • the method in the embodiment of the present application can also realize that all venues (such as track and field, sports fields, playgrounds, etc.) and venue parameters (such as playground center point positioning data, playground deflection angle) are pre-set It is stored in the electronic device, so that no matter whether it is the first time for the user to exercise on a certain venue, the electronic device can correspondingly obtain the venue and venue parameters, thereby speeding up the determination of the venue, and also improving the determination of the user's location and movement data. efficiency and improve user experience.
  • venues such as track and field, sports fields, playgrounds, etc.
  • venue parameters such as playground center point positioning data, playground deflection angle
  • the method in the embodiment of the present application can also realize data transmission between electronic devices and cloud devices (such as cloud servers, etc.).
  • cloud devices such as cloud servers, etc.
  • Each user's electronic device can communicate with the cloud device, and the corresponding venue when each user exercises is and venue parameters are uploaded to the same cloud device, so that the cloud device can receive and save venue parameters of different venues.
  • the electronic device can obtain the venue and venue parameters from the cloud device, thereby speeding up the determination of the venue. It can also improve the efficiency of determining the user's location and motion data, and improve the user experience. usage experience.
  • the electronic device includes corresponding hardware and/or software modules that perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or by computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions in conjunction with the embodiments for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • This embodiment can divide the electronic device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device may include one or more processors 1001, memories 1002, and communication interfaces 1003.
  • the memory 1002, the communication interface 1003 and the processor 1001 are coupled.
  • memory 1002, communication interface 1003, and processor 1001 may be coupled together by bus 1004.
  • the communication interface 1003 is used for data transmission with other devices.
  • Computer program code is stored in memory 1002.
  • the computer program code includes computer instructions.
  • the electronic device causes the electronic device to execute the motion data acquisition method in the embodiment of the present application.
  • the processor 1001 may be a processor or a controller, such as a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), or an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the bus 1004 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the above-mentioned bus 1004 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • Computer program code is stored in the computer storage medium.
  • the electronic device executes the relevant method steps in the above-mentioned method embodiment.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the relevant method steps in the above method embodiments.
  • the electronic equipment, computer storage media or computer program products provided by this application are all used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to the corresponding methods provided above. The beneficial effects will not be repeated here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another device, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the software product is stored in a storage medium and includes several Instructions are used to cause a device (which may be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种运动数据获取方法及电子设备,涉及终端技术领域。电子设备(100)保存有至少一个历史场地和历史场地对应的场地参数,开启操场模式后,获取用户在运动过程中的不同位置对应的多个第一定位数据,并根据多个第一定位数据和历史场地对应的场地参数,从至少一个历史场地中确定出目标场地(S501);继续获取用户在运动过程中的不同位置对应的多个第二定位数据,并根据多个第一定位数据、多个第二定位数据、目标场地对应的场地参数和预设误差阈值,确定用户运动过程中在目标场地上的运动轨迹(S502)。由于设置的预设误差阈值较小,因此,即使用户偏移当前跑道很小的一段距离,电子设备也不会将用户偏离的位置拉齐到原来的轨迹上,而是会真实地体现用户偏离跑道后的轨迹,从而更加精准地提供用户在操场模式下跑步的整体轨迹,为用户提供参考,改善用户的体验。

Description

运动数据获取方法及电子设备
本申请要求于2022年09月15日提交国家知识产权局、申请号为202211130506.5、申请名称为“运动数据获取方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种运动数据获取方法及电子设备。
背景技术
通常,用户可以佩戴手表、手环等电子设备进行跑步等运动。电子设备中通常可以设置操场模式,用户在操场模式下跑步时,电子设备可以实时获取用户在不同位置处的全球定位系统(global positioning system,GPS)数据,并根据GPS数据确定用户在操场上的跑步速度、跑步距离和跑步轨迹等,最后再将确定的跑步距离、跑步轨迹和跑步速度等相关运动数据为用户显示出来。从而方便用户了解自己的运动状态。
然而,目前电子设备处于操场模式时,用户每次都需要先跑1圈或者2圈,电子设备才能确定出用户当前所处的操场和操场的中心点和偏转角等参数,这样会使得确定操场的时间较长,那么基于操场和操场的参数确定用户跑步的运动数据的时间也会较长,从而降低电子设备获取相关运动数据的效率。并且,电子设备处于操场模式时,如果用户跑步的位置偏离当前的跑道,电子设备确定出的运动轨迹也难以准确地展示用户偏离后的轨迹,从而影响用户的体验。
发明内容
本申请实施例提供一种运动数据获取方法及电子设备,可以将用户前一次运动时的历史场地和场地参数保存在电子设备中,从而当用户再次在同一个场地运动时,电子设备可以快速确定这个场地并获取对应的场地参数,并且,即使用户偏移当前跑道很小的一段距离,电子设备也会真实地体现用户偏离跑道后的轨迹,改善用户的体验。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种运动数据获取方法,该方法应用于电子设备,电子设备保存有至少一个历史场地和历史场地对应的场地参数。该运动数据获取方法中,电子设备在开启操场模式后,获取用户在运动过程中的不同位置对应的多个第一定位数据,并根据多个第一定位数据和历史场地对应的场地参数,从至少一个历史场地中确定出目标场地。之后,电子设备获取用户在运动过程中的不同位置对应的多个第二定位数据,并根据多个第一定位数据、多个第二定位数据、目标场地对应的场地参数和预设误差阈值,确定用户运动过程中在目标场地上的运动轨迹,其中,第二定位数据的获取时间晚于第一定位数据的获取时间。
上述预设误差阈值小于目前常见的操场模式中绘制运动轨迹的阈值,从而即使用户偏移当前跑道很小的一段距离,电子设备也不会将用户偏离的位置拉齐到原来的轨迹上,而是会真实地体现用户偏离跑道后的轨迹,更加精准地提供用户在操场模式下跑步的整体轨迹,为用户提供参考,改善用户的体验。
另外,上述方法中,电子设备可以存储用户运动的历史场地参数,并且在用户再次在已保存的历史场地上运动时,能够快速获取到这个历史场地(即目标场地)和场地参数,而无需耗费过多时间重新确定历史场地参数,从而能够提高电子设备获取目标场地和场地参数的效率。
本申请方案中的运动数据可以包括跑步速度、跑步距离、跑步轨迹等,以及目标场地的场地参数可以包括目标场地的中心点定位数据和偏转角等。
在第一方面的一种可实现方式中,电子设备还会先确定多个第一定位数据中的目标第一定位数据对应的位置点。再针对每个历史场地,根据历史场地对应的场地参数获取历史场地的中心点位置,并获取中心点位置与目标第一定位数据对应的位置点之间的第一距离;若第一距离小于或者等于第一预设长度,电子设备会将历史场地确定为目标场地。这种实现方式中,可以通过确定 历史场地中心点的位置来确定目标场地。
在第一方面的一种可实现方式中,若存在多个历史场地对应的第一距离小于或者第一预设时长的情况,则电子设备将多个历史场地作为多个候选场地。针对每个候选场地,电子设备根据候选场地对应的场地参数,获取多个第一定位数据中每个第一定位数据的数据误差;若每个第一定位数据的数据误差小于或者等于预设差值,则电子设备将这个候选场地确定为目标场地。这种实现方式中,可以通过第一定位数据的数据误差从多个候选的历史场地中确定目标场地。
在第一方面的一种可实现方式中,针对于每个第一定位数据,电子设备根据候选场地对应的场地参数和第一定位数据,确定第一定位数据对应的位置点在候选场地中的位置区域,其中候选场地包括多个位置区域。电子设备根据位置区域,确定候选场地的参考位置,以及确定第一定位数据对应的位置点与参考位置之间的第二距离,并获取位置区域与参考位置之间的第三距离。最后,电子设备将第二距离与第三距离之间的差值绝对值确定为第一定位数据的数据误差。
其中,第一定位数据的数据误差可以表示获取第一定位数据时,用户位于候选场地的可能性。当数据误差较小时,可以表示获取第一定位数据时,用户位于候选场地的可能性较大。而当数据误差较小时,可以表示获取第一定位数据时,用户位于候选场地的可能性较小。
这种实现方式中,可以分别计算出针对一个候选场地,多个第一定位数据中的每个第一定位数据的数据误差。并且针对于一个候选场地,如果连续的多个第一定位数据的数据误差都较小,那么可以认为用户可能一直位于候选场地上,这种情况下,电子设备可以将候场地场确定为目标场地。并且,这种方式确定出的目标场地的准确性也比较高。
在第一方面的一种可实现方式中,针对目标场地,电子设备根据目标场地对应的场地参数,确定多个第一定位数据和多个第二定位数据中每个定位数据的数据误差。其中,确定数据误差的具体方式可以参见前述可实现方式。若存在数据误差小于或者等于预设误差阈值的定位数据,则电子设备将定位数据对应的位置点与上一个定位数据对应的位置点拉齐,继续获得比较平滑的运动轨迹;若存在数据误差大于预设误差阈值的定位数据,则电子设备将定位数据对应的位置点与上一个定位数据对应的位置点进行连线,继续获得运动轨迹。这种实现方式中,由于预设误差阈值较小,因此即使用户偏移当前跑道很小的一段距离,电子设备也会真实地体现用户偏离跑道后的轨迹,更加精准地提供用户在操场模式下跑步的整体轨迹,为用户提供参考,改善用户的体验。
在第一方面的一种可实现方式中,电子设备根据用户在运动过程中的不同位置对应的多个第三定位数据,确定目标场地的目标场地参数,其中,多个第三定位数据包括多个第一定位数据和多个第二定位数据中的部分第二定位数据。电子设备根据用户在运动过程中的不同位置对应的多个第四定位数据,确定目标场地的目标场地参数对应的第一参数误差,以及确定保存的目标场地的场地参数对应的第二参数误差,其中,第四定位数据的获取时间晚于第三定位数据的获取时间,以及多个第二定位数据包括多个第四定位数据。若第一参数误差小于第二参数误差,则在用户运动结束后,将保存的目标场地对应的场地参数更新为目标场地参数。这种实现方式中,在用户运动结束后,电子设备将目标场地对应的目标场地参数和已保存的场地参数中参数误差更小的场地参数进行保存,并将误差更大的场地参数删除,从而保证目标场地的场地参数越来越准确,也能保证后续用户在目标场地上再次跑步时,能更加准确地确定出用户的跑步速度和跑步距离等。
在第一方面的一种可实现方式中,针对于每个第四定位数据,电子设备根据第四定位数据和目标场地参数,确定第四定位数据的第一数据误差。而后,电子设备确定多个第四定位数据的第一数据误差的平均误差,并将平均误差确定第一参数误差。第一参数误差表示目标场地参数的准确性,如果第一参数误差较小,目标场地参数的准确性就较高,从而根据目标场地参数确定出的用户的运动轨迹也越准确。
以及,在第一方面的一种可实现方式中,针对于每个第四定位数据,电子设备根据第四定位数据和保存的目标场地的场地参数,确定第四定位数据的第二数据误差。而后,电子设备确定多个第四定位数据的第二数据误差的平均误差,并将平均误差确定第二参数误差。第二参数误差表示每个保存的目标场地的场地参数的准确性,如果第二参数误差较小,保存的目标场地的场地参数的准确性就较高,从而根据保存的目标场地的旧的场地参数确定出的用户的运动轨迹也越准确。
在第一方面的一种可实现方式中,若根据多个第一定位数据和历史场地对应的场地参数,未 从至少一个历史场地中确定出目标场地,则电子设备获取用户运动过程中对应的第五定位数据,其中,第五定位数据的数量大于第一定位数据的数量。电子设备根据第五定位数据确定用户当前所在场地的场地参数,并在用户运动结束后,保存用户当前所在场地的场地参数。这种实现方式中,如果电子设备并未保存过用户当前运动场地的场地参数,那么电子设备可以将用户当前的运动过程中定位数据确定当前运动场地的场地参数,并将场地参数保存。当用户再次来到这个场地运动时,电子设备能快速获取到这个场地和场地参数,而无需经过长时间地计算再次确定场地和场地参数,从而提高电子设备获取目标场地和场地参数的效率。
在第一方面的一种可实现方式中,历史场地对应的场地参数包括场地中心点定位数据和场地偏转角等。
在第一方面的一种可实现方式中,电子设备还会根据运动过程中用户在目标场地上的多个不同位置,确定用户的运动时长、运动速度等运动轨迹,其中的运动包括跑步。
在第一方面的一种可实现方式中,电子设备会在用户运动过程中或者运动结束时,显示运动轨迹,从而为用户提供运动参考。
第二方面,提供一种电子设备,电子设备包括存储器、一个或多个处理器;存储器与处理器耦合;其中,存储器中存储有计算机程序代码,计算机程序代码包括计算机指令,当计算机指令被处理器执行时,使得电子设备执行如第一方面任一实现方式中的运动数据获取方法。
第三方面,提供一种计算机可读存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行如第一方面任一实现方式中的运动数据获取方法。
第四方面,提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如第一方面任一实现方式中的运动数据获取方法。
可以理解地,上述提供的第二方面所述的电子设备,第三方面所述的计算机可读存储介质,第四方面所述的计算机程序产品所能达到的有益效果,可参考第一方面及其任一种可能的设计方式中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例示出的一种根据操场参数建立平面直角坐标系的示意图;
图2为本申请实施例示出的一种跑步轨迹的示意图;
图3为本申请实施例示出的一种定位系统的示意图;
图4为本申请实施例示出的一种电子设备的结构示意图;
图5为本申请实施例示出的一种运动数据获取方法的流程示意图;
图6为本申请实施例示出的一种用户在操场跑步的示意图;
图7为本申请实施例示出的又一种运动数据获取方法的流程示意图;
图8为本申请实施例示出的多个目标操场的示意图;
图9为本申请实施例示出的又一种跑步轨迹的示意图;
图10为本申请实施例示出的一种手表显示页面的示意图;
图11为本申请实施例示出的一种确定场地参数的示意图;
图12为本申请实施例示出的又一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项 或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
用户在带有跑道的操场跑步时,通常希望了解自己所在的位置和自己跑步的速度、跑步的距离等。这种情况下,用户可以佩戴具有运动功能的手表、手环等电子设备。在这些电子设备中,通常设置有对应的操场模式。当用户在操场上跑步时,可以控制电子设备开启操场模式。开启操场模式后,电子设备可以在用户跑步的过程中,实时获取用户在不同位置处的全球定位系统(global positioning system,GPS)数据,并根据GPS数据确定用户在操场上的跑步距离、跑步轨迹和跑步速度等运动数据,最后再将这些运动数据显示出来。
电子设备开启操场模式后,通常需要先确定操场的中心点GPS数据和操场的偏转角等。以带有标准规格跑道的操场为例,操场的中心点GPS数据可以根据用户在跑道上跑步1圈或者2圈的不同GPS数据而确定,操场的偏转角可以用操场最长轴与正北、正南、正东或者正西方向之间的夹角表示。
示例性的,参见图1,以标准规格的跑道为400米一圈的跑道为例,该跑道分为两个半圆跑道和两条直线跑道。其中,两个半圆跑道的半径为36.5米,而直线跑道为84.39米。电子设备在用户跑步时采集用户处于不同位置处的GPS数据,并根据1圈或者2圈的GPS数据确定出图1中操场的中心点A以及中心点GPS数据。然后,以操场中心点A为原点,以正北方向为Y轴方向,以正东方向为X轴方向建立直角坐标系。确定操场最长轴L与Y轴之间的夹角α1即为操场的偏转角。之后,再获取用户跑步时的GPS数据,将其利用操场中心点GPS和偏转角转换为操场坐标系上的坐标点,从而确定用户在操场上的位置。确定用户跑步时的多个位置后,即可获得用户跑步的轨迹,并确定用户跑步的速度和距离等。
电子设备可以通过上述这种方式为用户提供跑步时的相关运动数据。然而,用户每次跑步时,都需要先跑1圈或者2圈,电子设备才能确定出用户当前所处的操场和操场的中心点和偏转角等参数,这样会使得确定操场和参数的时间较长,那么基于操场和参数确定用户跑步的速度和距离的时间也会较长,从而降低电子设备获取相关运动数据的效率。
并且,用户每次跑步时,都要先跑1圈或者2圈后才能了解到自己跑步的速度和距离等。这样也会影响用户的使用体验等。
再有,目前的操场模式下,电子设备会检测用户跑步时偏离跑道的距离,当这个距离在一定阈值内时,电子设备会将用户偏离的位置拉齐到与跑道形状相似的跑步轨迹上,而当这个距离超过阈值时,电子设备会将跑步轨迹的上一个位置与用户当前偏离的位置点做连线,从而将偏移的位置与原来的轨迹连接,形成新的轨迹。目前的这种操场模式下,设置的阈值通常比较大,例如60-70米,这样跑步轨迹的上一个位置与用户当前偏离的位置点做连线后,新的轨迹会明显出现一段较长的直线轨迹段,例如图2所示,其中,跑步轨迹L1上出现了一大段规迹a1,即这个轨迹a1显示了用户从原本的跑步轨迹上到位置点B的直线轨迹,但是这个直线轨迹并不能完全表示用户移动到位置点B的真实轨迹,用户的真实轨迹可能是轨迹a2。因此,目标的操场模式下,确定的跑步轨迹并不够精准,不能准确体现出用户真实的跑步轨迹,从而影响用户的体验。
基于上述内容,本申请实施例提供了一种运动数据获取方法。该方法中,电子设备预先存储用户运动的历史场地和历史场地对应的场地参数。电子设备获取用户在运动过程中的不同位置对应的多个第一定位数据,并根据多个第一定位数据和历史场地对应的场地参数,从预存至少一个历史场地中确定出目标场地。而后,电子设备再继续获取用户在运动过程中的不同位置对应的多个第二定位数据,并根据多个第二定位数据、设置的更小的预设误差阈值(例如上述阈值)和目标场地对应的场地参数,确定用户运动过程中在目标场地上的运动轨迹。
其中,第二定位数据的获取时间晚于第一定位数据的获取时间。以及用户运动的场地包括至少一条标准规格的跑道。
本申请实施例中的上述方法中,电子设备可以存储用户运动的历史场地的场地参数,并且在用户再次在已保存的历史场地上运动时,能够快速获取到这个历史场地(即目标场地)和场地参数,而无需耗费过多时间重新确定场地参数,从而能够提高电子设备获取目标场地和场地参数的效率。
并且,由于设置的阈值更小,例如20-30米,因此,即使用户偏移当前跑道很小的一段距离,电子设备也不会将用户偏离的位置拉齐到原来的轨迹上,而是会真实地体现用户偏离跑道后的轨迹,从而更加精准地提供用户在操场模式下跑步的整体轨迹,为用户提供参考,改善用户的体验。
上述目标场地和历史场地的场地参数可以包括场地的中心点定位数据、场地偏转角、圆形跑道圆心位置等。
本申请实施例中的上述运动数据获取方法可以应用于定位系统中。参见图3,定位系统可以包括电子设备100和至少一个GPS定位卫星200。以电子设备100是手表为例。用户携带电子设备100在当前场地运动时,电子设备100可以获取到多个GPS定位卫星200发送的定位信号,从而根据多个定位信号,确定出用户在不同位置处的GPS数据。电子设备100根据多个GPS数据获取用户所在场地附近的目标场地。而后,电子设备100可以根据多个GPS数据从预先保存的历史场地中确定出目标场地,并获得对应的场地参数。从而电子设备100可以根据目标场地的场地参数和用户当前运动过程的定位数据,定位用户在目标场地上的位置,并结合目标场地的场地参数、用户的位置和设置的更小的预设差值确定用户的运动轨迹。
上述定位系统中,电子设备100可以存储用户运动的历史场地和对应的场地参数,并且在用户再次在已保存的历史场地上运动时,能够快速获取到这个历史场地(即目标场地)和场地参数,而无需耗费过多时间重新确定场地参数,从而能够提高电子设备100获取目标场地和场地参数的效率。
并且,由于设置的阈值更小,例如20-30米,因此,即使用户偏移当前跑道很小的一段距离,电子设备也不会将用户偏离的位置拉齐到原来的轨迹上,而是会真实地体现用户偏离跑道后的轨迹,从而更加精准地提供用户在操场模式下跑步的整体轨迹,并且这个轨迹也会比较平滑,从为用户提供参考,改善用户的体验。
本申请实施例中的电子设备100可以是具有计算和存储功能的且便于运动时携带的智能手戴设备,例如智能手表、智能手环等,还可以是手机、平板电脑等设备。
本申请实施例中,用户的运动可以包括步行、跑步等,用户的运动场地可以包括标准规格田径场、运动场、操场等,并且这些场地都包括至少一条跑道。其中,标准规格场地的每条跑道的尺寸、长度等也是符合统一的标准规格的。以400米一圈的跑道为例,该跑道分为两个半圆跑道和两条直线跑道,标准规格表示两个半圆跑道的半径为36.5米,直线跑道长度通常为84.39米。
以电子设备100是智能手表(后文简称“手表”)为例,参见图4,电子设备100可包括定位模块101、参数存储模块102和场地识别模块103。其中,定位模块101可以与GPS定位卫星通信,从而获取用户运动过程中,GPS定位卫星发送的定位信号,并根据定位信号获取用户在运动过程中的定位数据。定位模块101还可以将定位数据发送给场地识别模块103。场地识别模块103从参数存储模块102中获取预先保存的历史场地和场地参数,并根据用户的定位数据从历史场地中确定目标场地和对应的场地参数。另外,场地识别模块103还可以根据用户在目标场地上运动的定位数据确定出目标场地的新的场地参数(即目标场地参数),并在新的场地参数的误差小于存储的场地参数的误差的情况下,将目标场地的新的场地参数保存到参数存储模块102中,从而实现不断更新场地参数的目的,使得目标场地的场地参数越来越精准,当用户再次在目标场地上运动时,可以根据更加准确的场地参数等确定出用户的运动轨迹。参数存储模块102可以提供保存参数、数据等的存储介质,并且保存历史场地和历史场地参数。
上述电子设备100可以存储用户运动的历史场地和对应的场地参数,并且在用户再次在已保存的历史场地上运动时,能够快速获取到这个历史场地(即目标场地)和场地参数,而无需耗费过多时间重新确定场地参数,从而能够提高电子设备100获取目标场地和场地参数的效率。
并且,由于设置的阈值更小,例如20-30米,因此,即使用户偏移当前跑道很小的一段距离,电子设备也不会将用户偏离的位置拉齐到原来的轨迹上,而是会真实地体现用户偏离跑道后的轨迹,从而更加精准地提供用户在操场模式下跑步的整体轨迹,并且这个轨迹也会比较平滑,从为用户提供参考,改善用户的体验。
以下以电子设备是智能手表,以运动场地是操场为例,对本申请实施例中的运动数据获取方法进行说明,其中,用户在操场上进行的运动为跑步。参见图5,本申请实施例中的场地确定方法包括如下步骤S501-S502。
S501、手表开启操场模式后,获取用户在运动过程中的不同位置对应的多个第一定位数据,并根据多个第一定位数据和手表中保存的历史操场对应的操场参数,从保存的至少一个历史操场中确定出目标操场。
定位数据可以包括GPS数据、全球卫星导航系统(global navigation satellite system,GNSS)数据、蜂窝定位数据、无线保真(wireless-fidelity,WIFI)定位数据等。本申请实施例中,以GPS数据为例,对所述场地确定方法进行说明。
在一些实施例中,手表可以确定所述多个第一定位数据中的目标第一定位数据对应的位置点。针对每个历史操场,手表根据历史操场对应的操场参数获取历史操场的中心点位置,并获取中心点位置与目标第一定位数据对应的位置点之间的第一距离。若第一距离小于或者等于第一预设长度,则手表将历史操场确定为目标操场。
上述目标第一定位数据可以表示在手表开启操场模式后,用户在当前位置处的定位数据。手表可以根据接收到的定位信号获取到定位数据。其中,用户可以先跑步再控制手表开启操场模式,也可以先控制手表开启操场模式再跑步。目标第一定位数据可以表示上述多个第一定位数据中的首个第一定位数据。
本申请实施例中,手表中可以预先保存用户之前跑步时的历史操场和对应的操场参数。其中,历史操场的操场参数包括操场参考点的定位数据、操场偏转角、跑道数量等。其中,参考点的定位数据,可以表示中心点定位数据、操场半圆跑道圆心点定位数据等。手表根据历史操场的参考点的定位数据,可以确定出历史操场的参考点的位置,例如确定中心点的位置、确定操场半圆跑道圆心点的位置等。
第一预设长度可以根据保存的各个历史操场的中心点之间的距离而确定,示例性的,第一预设长度可以处于109米—111米之间,例如109米、110米、111米等。
如果历史操场的中心点与目标第一定位数据对应的位置点之间的第一距离小于或者等于第一预设长度,则说明用户可能在该历史操场上跑步,此时可以将该历史操场确定为目标操场。而如果历史操场的中心点与第一定位数据对应的位置点之间的第一距离大于第一预设长度,则说明用户可能未在该历史操场上跑步,此时不会将该历史操场确定为目标操场。
上述实施例中,可以通过判断历史操场中心点与用户初始位置之间距离是否小于或者等于第一预设长度,来确定历史操场是否为目标操场。通常在用户所在位置处附近的第一预设长度内如果存在操场,那么只会存在一个操场,因此,手表确定出目标操场后,这个目标操场大概率会是用户当前所在的操场。
在一些实施例中,手表在确定出目标操场后,还可以对目标操场进行校验,从而进一步确定目标操场的准确性。并且,手表可以根据用户在目标操场上的多个第一定位数据来对目标操场进行校验。其中,多个第一定位数据包括用户处于初始位位置时对应的目标第一定位数据。
在一些实施例中,多个第一定位数据表示手表在目标操场上跑步过程中获取的用户处于不同位置时的定位数据。可以理解的是,手表先获取目标第一定位数据,再获取其他第一定位数据。多个第二定位数据之间也可以具有时间顺序。
示例性的,参见图6,用户在当前的操场上跑步时,依次经过位置点b、位置点c、位置d和位置点e。那么手表可以依次获取到用户在位置点b时的第一定位数据g21、在位置点c时的第一定位数据g22、在位置点d时的第一定位数据g23和在位置点e时的第一定位数据g24。
在一些实施例中,手表可以获取用户在第二预设长度内的多个第一定位数据,第二预设长度表示用户在目标操场上需要跑步的距离。并且多个第一定位数据为用户在第二预设长度内处于不 同位置时的定位数据。其中,第二预设长度可以是目标操场上某一条目标跑道总长度的1/4、1/3、1/2等,示例性的,当目标跑道长度为400米时,第二预设长度可以是100米、200米等。
在一些实施例中,多个第一定位数据还可以表示在第二预设长度内间隔预设距离的位置点对应的定位数据。其中,预设距离越短,第一定位数据越多,根据第一定位数据确定的目标操场的准确性可能更加可靠。另外,多个第一定位数据还可以表示预设数量的第一定位数据,预设数量越多,确定的目标操场的准确性也更加可靠。
手表在根据用户在目标操场上的多个第一定位数据对目标操场进行校验时,可以获取多个第一定位数据中的每个第一定位数据的数据误差,如果每个第一定位数据的数据误差都小于或者等于第一预设差值,则确定目标操场是较为准确的,后续可以使用该目标操场对应的操场继续定位用户以及确定用户的跑步轨迹等。
在一些实施例中,在获取第一定位数据的数据误差时,手表可以根据第一定位数据确定第一定位数据对应的位置点在历史操场中的位置区域。其中,历史操场可以包括多个位置区域,例如直线跑道区域、半圆形跑道区域等。而后,手表根据第一定位数据对应的位置点所在的位置区域,确定历史操场的参考位置,其中,历史操场的参考位置可以包括历史操场的长轴、历史操场半圆形跑道的圆心等。以及手表确定第一定位数据对应的位置点与参考位置之间的第二距离,并获取第一定位数据对应的位置点所在的位置区域与参考位置之间的第三距离,最后,手表将第二距离与第三距离之间的差值绝对值确定为第一定位数据的数据误差。若每个第一定位数据的数据误差都小于或者等于第一预设差值,则确定目标操场的准确性较高,可以继续使用。
另外,上述参考位置还可以是候选操场上任意一个点、一条线、一个区域等,由于操场的跑道是具有标准规格的,因此在参考位置已知的情况下,可以确定出不同位置区域与参考位置之间的距离。上述第三距离可以表示一个标准距离,或者参考距离。
示例性的,在在获取第一定位数据的数据误差时,参见图7,手表可以进行如下步骤S5011-S5014。
S5011、手表根据预先保存的目标操场的操场参数建立平面直角坐标系。
示例性的,平面直角坐标系的原点为操场参数中中心点定位数据对应的点,以及平面直角坐标系的Y轴指向正北方向,目标操场的长轴与Y轴的夹角为操场参数中的操场偏转角。
S5012、手表将第一定位数据转换为上述平面直角坐标系中的位置点(或者坐标点)。以及,根据该位置点的坐标、目标操场的半圆形跑道所在坐标点范围和直线跑道所在的坐标点范围,确定该位置点在目标操场上位置区域。例如,确定该位置点处于半圆形跑道还是处于直线跑道。
S5013、手表根据上述位置点在目标操场上的位置区域,确定目标操场的参考位置,以及确定上述位置点与参考位置之间的第二距离,并且获取位置区域与参考位置之间的第三距离。
示例性的,如果上述位置点处于半圆形跑道上,则将目标操场半圆形跑道的圆心确定为参考位置,如果上述位置点处于直线跑道上,则将目标操场的长轴确定为参考位置,其中,长轴为目标操场两个半圆跑道圆心的连线所在的轴。
以及,当上述位置点处于半圆形跑道上时,第二距离为位置点与半圆形跑道圆心之间的距离,第三距离为标准规格的跑道的半圆形跑道的半径;当上述位置点处于直线跑道上时,第二距离为位置点与长轴之间的距离,第三距离为标准规格的跑道的直线跑道与长轴之间的距离。
在一些实施例中,手表可以预先保存各个历史操场相对应的标准规格的跑道数据,其中,标准规格的跑道数据中,根据跑道数据可以获取到直线跑道与操场长轴之间的距离,以及半圆形跑道的半径等。
示例性的,用户在控制手表开启操场模式时,可以在手表上选择在操场的哪一个跑道上跑步,因为操场是标准规格的操场,因此操场上每条跑道的长度和规格也是确定的。用户在选择了目标跑道后,手表也可以从预先保存的数据中获取到目标跑道的跑道数据。
S5014、手表计算上述第二距离与第三距离的差值绝对值作为第一定位数据的数据误差,当数据误差小于或者等于第一预设差值时,确定上述位置点对应的第一定位数据的数据误差较小。而当数据误差大于第一预设差值时,确定上述位置点对应的第一定位数据的数据误差较大。
本申请实施例中,第一定位数据的数据误差可以表示获取第一定位数据时,用户位于目标操 场的可能性。当数据误差较小时,可以表示获取第一定位数据时,用户位于目标操场的可能性较大。而当数据误差较小时,可以表示获取第一定位数据时,用户位于目标操场的可能性较小。
根据上述方法可以分别计算出多个第一定位数据中的每个第一定位数据的数据误差。并且针对于这个目标操场,如果连续的多个第一定位数据的数据误差都较小,那么可以认为用户可能一直位于目标操场上,这种情况下,手表可以继续使用目标操场对应的操场参数获取用户的跑步轨迹、跑步速度等运动数据。并且,这种方式确定出的目标操场的准确性也比较高。
在一些实施例中,手表在确定目标操场时,还可能确定出多个目标操场。例如,如图8所示,用户处于四个操场的中心,那么这四个操场的中心点与用户所在位置之间的第一距离M1、M2、M3、M4可能都小于或者等于第一预设长度。这种情况下,确定出的多个目标操场都可以看做是候选操场,之后,手表再从候选操场中根据多个第一定位数据确定出真正的目标操场。
手表从候选操场中确定目标操场时,可以首先确定针对于一个候选操场而言,多个第一定位数据中每个第一定位数据的数据误差。这种情况下,多个第一定位数据为用户在第三预设长度内处于不同位置时的定位数据。其中,第三预设长度可以是用户选择的目标跑道总长度的1/4、1/3、1/2等,示例性的,当目标跑道长度为400米时,第二预设长度可以是100米、200米等。
确定第一定位数据的数据误差的方式可以参见前述步骤S5011-S5014。当每个第一定位数据的数据误差都小于或者等于第二预设差值时,将当前针对的候选操场确定为目标操场。
上述第二预设长度和第三预设长度都可以用来确定目标操场,并且第二预设长度和第三预设长度都小于跑道一圈的长度,因此,本申请实施例中确定目标操场所使用的定位数据比较少,这样也能减少获取目标操场和操场参数的耗时。
S502、在确定出目标操场后,手表继续获取用户在跑步过程中的第二定位数据,并根据多个第一定位数据、多个第二定位数据、第三预设差值和目标操场对应的操场参数,确定用户运动过程中在目标操场上的跑步轨迹。
本申请实施例中,第三预设差值(例如前述预设误差阈值)可以处于20-30米的范围内,例如20米、25米、30米等。以及,前述的第一预设差值和第二预设差值可以与第三预设差值相等,也可以小于第三预设差值。
可以理解的是,手表先获取第一定位数据,再获取第二定位数据。并且第一定位数据可以用来确定目标操场,而第一定位数据和第二定位数据都可以用来确定用户的跑步轨迹。
在确定用户的跑步轨迹时,手表仍可以首先针对目标操场,确定多个第二定位数据中每个第二定位数据的数据误差,具体的数据误差的确定方式可以参见前述步骤S5011-S5014。由于前述实施例的步骤中已经确定出了第一定位数据的数据误差,那么此时手表可以直接获取到每个第一定位数据的数据误差。
而后,手表确定多个第一定位数据和多个第二定位数据中每个定位数据的数据误差是否小于或者等于第三预设差值。手表可以将数据误差小于或者等于第三预设差值的定位数据对应的位置点拉齐至与用户当前跑道形状相同或者相似的跑步轨迹上,从而继续生成或者获得比较平滑的跑步轨迹;而如果出现数据误差大于第三预设差值的定位数据时,手表会将这个定位数据对应的位置点与上一个位置点进行连线,从而继续生成或者获得跑步轨迹。
可以理解的是,当上述定位数据的数据误差小于或者等于第三预设差值时,可以看作是用户跑步时未偏离当前的目标跑道或者偏离当前目标跑道的距离很小,此时可以将定位数据对应的位置点进行拉齐处理。而当上述定位数据的数据误差大于第三预设差值时,可以认为用户跑步时偏离了当前的目标跑道,此时为了准确地表现出用户的跑步轨迹,则不能将定位数据对应的位置点进行拉齐处理,而是要真实体现出用户偏离目标跑道的跑步轨迹。
由于第三预设差值相比于目前常见的操场模式中的阈值要小,因此,即使用户偏离目标跑道很小的一段距离,电子设备也可以准确地获取到用户偏离目标跑道的位置,从而更加精准地提供用户在操场模式下跑步的整体轨迹,为用户提供参考,改善用户的体验。示例性的,参见图9,手表在获取到用户跑步的轨迹后,也可以将这个轨迹显示出来。并且,显示出的轨迹可以直观地、准确地展示出用户偏离目标跑道后的轨迹。
另外,本申请实施例中的运动数据获取方法中,电子设备可以存储用户运动的历史操场的操 场参数,并且在用户再次在已保存的历史操场上运动时,能够快速获取到这个历史操场(即目标操场)和操场参数,而无需耗费过多时间重新确定操场参数,从而能够提高电子设备获取目标操场和操场参数的效率。
在一些实施例中,手表还可以先根据上述第一定位数据、第二定位数据和预先保存的目标操场对应的操场数据确定出用户在目标操场上的位置,而后根据用户运动过程中在目标操场上的不同位置,确定出用户的跑步速度、跑步长度等运动数据。
示例性的,获取目标操场的操场参数后,手表根据操场参数中的操场的中心点定位数据确定中心点的位置,以及结合操场参数中的操场偏转角建立目标操场对应的平面直角坐标系。之后,手表再将获取到的第一定位数据和第二定位数据转换为平面直角坐标中的位置点,从而确定获取第一定位数据和第二定位数据时用户在目标操场上的不同位置。手表可以根据多个不同位置确定用户的跑步长度和跑步速度等。
在一些实施例中,在获取到目标操场后,手表可以向用户显示提示信息,从而让用户了解到当前已经匹配到了目标操场。示例性的,参见图10,手表获取到目标操场后,可以在显示页面上显示例如“已经匹配到操场信息,您可以继续跑步”等提示信息。
在一些实施例中,手表还可以根据用户跑步过程中的多个第三定位数据确定目标操场的目标操场参数,即新的操场参数。其中,多个第三定位数据可以包括前述多个第一定位数据和多个第二定位数据中的部分第二定位数据,第三定位数据的数量小于第一定位数据和第二定位数据的总数量。示例性的,如果用户在目标操场上一共跑了6圈,第三定位数据可以是用户跑前2圈时对应的所有定位数据。
在确定出新的操场参数后,手表继续根据用户跑步过程中的多个第四定位数据确定新的操场参数和预先保存的目标操场的旧的操场参数哪一个更加准确。从而将更加准确的操场参数保存起来,实现操场参数更新的目的。当用户再次在同一个操场上跑步时,手表可以根据更加准确的操场参数确定出用户的跑步轨迹等运动数据。
其中,多个第四定位数据不包括多个第三定位数据,或者第四定位数据的获取时间晚于第三定位数据的获取时间,以及多个第四定位数据是前述多个第二定位数据中的定位数据。
在一些实施例中,手表可以先根据第四定位数据获取目标操场新的操场参数的第一参数误差,和旧的操场参数的第二参数误差。再将第一参数误差和第二参数误差进行比较,从而确定出误差更小的参数误差对应的操场参数,再将该操场参数保存下来。示例性的,如果第一参数误差小于第二参数误差,可以认为第一参数误差对应的新的操场参数更加准确,那么手表将新的操场参数保存,即,用新的操场参数替换旧的操场参数。而如果第一参数误差大于第二参数误差,那么可以认为第二参数误差对应的旧的操场参数更加准确,那么手表则仍旧保存旧的操场参数。
上述第一参数误差表示根据每个第四定位数据与新的操场参数计算的多个数据误差(例如多个第一数据误差)的平均误差。其中,针对新的操场参数计算第四定位数据的第一数据误差的方式可以参见前述步骤S5011-S5014。
上述第二参数误差表示根据每个第四定位数据与旧的操场参数计算的多个数据误差(例如多个第二数据误差)的平均误差。其中,针对旧的操场参数计算第四定位数据的第二数据误差的方式可以参见前述步骤S5011-S5014。
本申请实施例中,第一参数误差较小,新的操场参数的准确性就较高,从而根据新的操场参数确定出的用户的跑步轨迹等运动数据也越准确。并且,第二参数误差较小,旧的操场参数的准确性就较高,从而根据旧的操场参数确定出的用户的跑步轨迹等运动数据也越准确。
上述实施例中,手表在确定出目标操场后,还可以确定目标操场的新的操场参数。以及在用户运动结束后,将目标操场对应的新的操场参数和旧的操场参数中更准确的操场参数进行保存,从而保证目标操场的操场参数越来越准确,从而保证用户再次在同一个操场上跑步时,手表可以根据更加准确的操场参数确定出用户的跑步轨迹等运动数据。
在一些实施例中,用户在当前的操场上跑步时,如果手表根据前述内容并未获取到目标操场,可以认为手表并未保存当前的操场参数,或者用户是第一次在当前的操场上跑步。这种情况下,参见图11,手表可以在用户跑完一圈或者两圈之后,根据在此过程中采集的多个第五定位数据确 定出当前操场的操场参数,并在用户运动结束后,将操场参数保存。从而,当用户再次来到这个操场跑步时,手表能快速获取到这个操场和操场参数,而无需经过长时间地计算再次确定操场和操场参数。其中,第五定位数据表示用户在跑步一圈或者两圈内获取的定位数据,并且第五定位数据的数量大于第一定位数据的数量。
示例性的,手表根据多个第五定位数据确定当前操场的操场参数时,由于多个第五定位数据的数量较多,大约可以包括用户跑步1圈-2圈的定位数据,因此手表可以根据多个第五定位数据确定出操场的中心点,再将多个第五定位数据从经纬度坐标系转化到极坐标系计算出角速度,从而求得操场相对于正北方向的偏转角。
前述实施例中,均以电子设备是手表,以及手表具有计算功能和存储功能为例,对本申请实施例中的运动数据获取方法进行说明。在其他一些实施例中,电子设备也可以是手环、手机、平板电脑等。
上述这些电子设备可以将历史场地和场地参数保存在自身的存储空间。对于一些存储空间较大的电子设备,本申请实施例中的方法也可以实现将所有场地(例如田径场、运动场、操场等)和场地参数(例如操场中心点定位数据、操场偏转角)都预先存储在电子设备中,从而无论用户是否是第一次在某个场地上运动,电子设备都能对应获取到该场地和场地参数,从而加快确定场地的速度,也可以提高确定用户位置、运动数据的效率,改善用户的使用体验。
或者,本申请实施例中的方法也可以实现电子设备与云端设备(例如云端服务器等)的数据传输,每个用户的电子设备都可以与云端设备通信,并将每个用户运动时对应的场地和场地参数上传至同一个云端设备,从而这个云端设备中可以接收并保存各个不同场地的场地参数。无论用户是否是第一次在某个场地上运动,电子设备都可以从云端设备获取到这个场地和场地参数,从而加快确定场地的速度,也可以提高确定用户位置、运动数据的效率,改善用户的使用体验。
可以理解的是,为了实现上述功能,电子设备包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例还提供一种电子设备,如图12所示,该电子设备可以包括一个或者多个处理器1001、存储器1002和通信接口1003。
其中,存储器1002、通信接口1003与处理器1001耦合。例如,存储器1002、通信接口1003与处理器1001可以通过总线1004耦合在一起。
其中,通信接口1003用于与其他设备进行数据传输。存储器1002中存储有计算机程序代码。计算机程序代码包括计算机指令,当计算机指令被处理器1001执行时,使得电子设备执行本申请实施例中的运动数据获取方法。
其中,处理器1001可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,总线1004可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。上述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种计算机可读存储介质,该计算机存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行上述方法实施例中的相关方法步骤。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述方法实施例中的相关方法步骤。
其中,本申请提供的电子设备、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种运动数据获取方法,其特征在于,应用于电子设备,所述电子设备保存有至少一个历史场地和所述历史场地对应的场地参数,所述方法包括:
    开启操场模式后,获取用户在运动过程中的不同位置对应的多个第一定位数据,并根据所述多个第一定位数据和所述历史场地对应的场地参数,从所述至少一个历史场地中确定出目标场地;
    获取所述用户在运动过程中的不同位置对应的多个第二定位数据,并根据所述多个第一定位数据、所述多个第二定位数据、所述目标场地对应的场地参数和预设误差阈值,确定所述用户运动过程中在所述目标场地上的运动轨迹;第二定位数据的获取时间晚于第一定位数据的获取时间。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多个第一定位数据和所述历史场地对应的场地参数,从所述至少一个历史场地中确定出目标场地,包括:
    确定所述多个第一定位数据中的目标第一定位数据对应的位置点;
    针对每个历史场地,根据所述历史场地对应的场地参数获取所述历史场地的中心点位置,并获取所述中心点位置与所述目标第一定位数据对应的位置点之间的第一距离;
    若所述第一距离小于或者等于第一预设长度,将所述历史场地确定为所述目标场地。
  3. 根据权利要求2所述的方法,其特征在于,若所述第一距离小于或者等于第一预设长度,将所述历史场地确定为所述目标场地,包括:
    若存在多个历史场地对应的第一距离小于或者第一预设时长的情况,则将所述多个历史场地作为多个候选场地;
    针对每个候选场地,根据所述候选场地对应的场地参数,获取所述多个第一定位数据中每个第一定位数据的数据误差;
    若每个第一定位数据的数据误差小于或者等于预设差值,将所述候选场地确定为所述目标场地。
  4. 根据权利要求3所述的方法,其特征在于,针对每个候选场地,根据所述候选场地对应的场地参数,获取所述多个第一定位数据中每个第一定位数据的数据误差,包括:
    针对于每个第一定位数据,根据所述候选场地对应的场地参数和所述第一定位数据,确定所述第一定位数据对应的位置点在所述候选场地中的位置区域;所述候选场地包括多个位置区域;
    根据所述位置区域,确定所述候选场地的参考位置,以及确定所述第一定位数据对应的位置点与所述参考位置之间的第二距离,并获取所述位置区域与所述参考位置之间的第三距离;
    将所述第二距离与所述第三距离之间的差值绝对值确定为所述第一定位数据的数据误差。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,根据所述多个第一定位数据、所述多个第二定位数据、所述目标场地对应的场地参数和预设误差阈值,确定所述用户运动过程中在所述目标场地上的运动轨迹,包括:
    针对所述目标场地,根据所述目标场地对应的场地参数,确定所述多个第一定位数据和所述多个第二定位数据中每个定位数据的数据误差;
    若存在数据误差小于或者等于预设误差阈值的定位数据,则将所述定位数据对应的位置点与上一个定位数据对应的位置点拉齐,继续获得运动轨迹;
    若存在数据误差大于预设误差阈值的定位数据,则将所述定位数据对应的位置点与上一个定位数据对应的位置点进行连线,继续获得运动轨迹。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    根据所述用户在运动过程中的不同位置对应的多个第三定位数据,确定所述目标场地的目标场地参数;所述多个第三定位数据包括所述多个第一定位数据和所述多个第二定位数据中的部分第二定位数据;
    根据所述用户在运动过程中的不同位置对应的多个第四定位数据,确定所述目标场地的目标场地参数对应的第一参数误差,以及确定保存的所述目标场地的场地参数对应的第二参数误差;第四定位数据的获取时间晚于所述第三定位数据的获取时间,以及所述多个第二定位数据包括所述多个第四定位数据;
    若所述第一参数误差小于所述第二参数误差,则在所述用户运动结束后,将保存的所述目标 场地对应的场地参数更新为所述目标场地参数。
  7. 根据权利要求6所述的方法,其特征在于,根据所述用户在运动过程中的不同位置对应的多个第四定位数据,确定所述目标场地的目标场地参数对应的第一参数误差,包括:
    针对于每个第四定位数据,根据所述第四定位数据和所述目标场地参数,确定所述第四定位数据的第一数据误差;
    确定多个所述第四定位数据的第一数据误差的平均误差,并将所述平均误差确定所述第一参数误差。
  8. 根据权利要求6-7任一项所述的方法,其特征在于,根据所述用户在运动过程中的不同位置对应的多个第四定位数据,确定保存的所述目标场地的场地参数对应的第二参数误差,包括:
    针对于每个第四定位数据,根据所述第四定位数据和保存的所述目标场地的场地参数,确定所述第四定位数据的第二数据误差;
    确定多个所述第四定位数据的第二数据误差的平均误差,并将所述平均误差确定所述第二参数误差。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    若根据所述多个第一定位数据和所述历史场地对应的场地参数,未从所述至少一个历史场地中确定出目标场地,则获取所述用户运动过程中对应的第五定位数据;所述第五定位数据的数量大于所述第一定位数据的数量;
    根据所述第五定位数据确定所述用户当前所在场地的场地参数,并在所述用户运动结束后,保存所述用户当前所在场地的场地参数。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述历史场地对应的场地参数包括场地中心点定位数据和场地偏转角。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    在所述用户运动过程中,显示所述运动轨迹;或者,在所述用户结束运动后,显示所述运动轨迹。
  12. 一种电子设备,其特征在于,所述电子设备包括存储器、一个或多个处理器;所述存储器与所述处理器耦合;其中,所述存储器中存储有计算机程序代码,所述计算机程序代码包括计算机指令,当所述计算机指令被所述处理器执行时,使得所述电子设备执行如权利要求1-11任一项所述的运动数据获取方法。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机可以执行如权利要求1-11任一项所述的运动数据获取方法。
PCT/CN2023/116733 2022-09-15 2023-09-04 运动数据获取方法及电子设备 WO2024055859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211130506.5 2022-09-15
CN202211130506.5A CN117741697A (zh) 2022-09-15 2022-09-15 运动数据获取方法及电子设备

Publications (1)

Publication Number Publication Date
WO2024055859A1 true WO2024055859A1 (zh) 2024-03-21

Family

ID=90253217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116733 WO2024055859A1 (zh) 2022-09-15 2023-09-04 运动数据获取方法及电子设备

Country Status (2)

Country Link
CN (1) CN117741697A (zh)
WO (1) WO2024055859A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170453A (ja) * 2010-02-16 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 場所存在確率算出装置及び方法及びプログラム及びトラベルルート推薦装置及び方法及びプログラム
US20140278688A1 (en) * 2013-03-15 2014-09-18 Disney Enterprises, Inc. Guest movement and behavior prediction within a venue
CN108008415A (zh) * 2017-11-14 2018-05-08 上海斐讯数据通信技术有限公司 一种gps轨迹优化的方法及系统
CN114510542A (zh) * 2020-10-29 2022-05-17 荣耀终端有限公司 一种生成运动轨迹的方法、电子设备及服务器
CN114545455A (zh) * 2022-02-26 2022-05-27 青岛瑰宝电子科技有限公司 基于多重算法校正的gps历史轨迹方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170453A (ja) * 2010-02-16 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 場所存在確率算出装置及び方法及びプログラム及びトラベルルート推薦装置及び方法及びプログラム
US20140278688A1 (en) * 2013-03-15 2014-09-18 Disney Enterprises, Inc. Guest movement and behavior prediction within a venue
CN108008415A (zh) * 2017-11-14 2018-05-08 上海斐讯数据通信技术有限公司 一种gps轨迹优化的方法及系统
CN114510542A (zh) * 2020-10-29 2022-05-17 荣耀终端有限公司 一种生成运动轨迹的方法、电子设备及服务器
CN114545455A (zh) * 2022-02-26 2022-05-27 青岛瑰宝电子科技有限公司 基于多重算法校正的gps历史轨迹方法及系统

Also Published As

Publication number Publication date
CN117741697A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN111044056B (zh) 基于道路匹配的定位方法、芯片子系统及电子设备
US20180321055A1 (en) Navigation apparatus and navigation method
EP3098569B1 (en) Method, apparatus and computer program code for providing navigation information in relation to augmented reality guidance
CN103560813B (zh) 一种基于蓝牙技术的移动终端定位方法及装置
US11049297B2 (en) Generating valid polygon data based on input data with errors
EP3023740B1 (en) Method, apparatus and computer program product for route matching
JP6712180B2 (ja) 電子地図上にビーコンの受信状態を表示させる、コンピュータで実施される方法
CN113538622B (zh) 一种路口绘制方法、装置、设备及存储介质
CN105387857A (zh) 导航方法及装置
CN113393580B (zh) 一种地图道路绘制方法、装置及相关产品
US11016198B2 (en) Broadcast transmission of information indicative of a pseudorange correction
CN111781619B (zh) 基于近距离通信网络的定位方法、装置、设备和存储介质
Stranner et al. A high-precision localization device for outdoor augmented reality
CN115164936A (zh) 高精地图制作中用于点云拼接的全局位姿修正方法及设备
WO2024055859A1 (zh) 运动数据获取方法及电子设备
CN110909456A (zh) 一种建模方法、装置、终端设备及介质
CN113218380B (zh) 一种电子罗盘的校正方法、装置、电子设备及存储介质
CN104581633A (zh) 支持隐私保护的障碍空间内的区域最近邻查询系统及方法
CN112857377B (zh) 定位方法、装置、电子设备、存储介质及计算机程序产品
US20210400432A1 (en) Method and apparatus for guiding probe data collection
CN113643440A (zh) 定位方法、装置、设备和存储介质
CN115221159A (zh) 定位方法和相关装置
TWI547707B (zh) Positioning navigation system
CN117308966B (zh) 室内定位与导航方法、系统、计算机设备
EP4258766A1 (en) Data processing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864591

Country of ref document: EP

Kind code of ref document: A1