WO2024055778A1 - 移动状态检测方法、装置和计算机设备 - Google Patents

移动状态检测方法、装置和计算机设备 Download PDF

Info

Publication number
WO2024055778A1
WO2024055778A1 PCT/CN2023/111686 CN2023111686W WO2024055778A1 WO 2024055778 A1 WO2024055778 A1 WO 2024055778A1 CN 2023111686 W CN2023111686 W CN 2023111686W WO 2024055778 A1 WO2024055778 A1 WO 2024055778A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
scene
positioning
mobile terminal
speed
Prior art date
Application number
PCT/CN2023/111686
Other languages
English (en)
French (fr)
Inventor
张磊
Original Assignee
深圳市广和通无线股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市广和通无线股份有限公司 filed Critical 深圳市广和通无线股份有限公司
Publication of WO2024055778A1 publication Critical patent/WO2024055778A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/66Devices characterised by the determination of the time taken to traverse a fixed distance using electric or magnetic means

Definitions

  • the present disclosure generally relates to the technical field of intelligent terminals, and more specifically to mobile state detection methods, devices and computer equipment.
  • three-dimensional acceleration is mainly obtained through a three-dimensional acceleration sensor, and the movement status of the mobile terminal is determined by calculating the acceleration components in the vertical and horizontal directions.
  • using the above mobile state detection method requires an additional three-dimensional speed sensor in the mobile terminal, which increases the complexity of the hardware design.
  • the present disclosure relates to a mobile state detection method, including:
  • the preset scene speed mapping information determine the mobile scene that matches the positioning movement speed, and obtain the target movement scene where the mobile terminal is located;
  • the present disclosure relates to a mobile state detection device, including:
  • a data acquisition module configured to acquire mobile positioning data obtained by positioning the mobile terminal by the positioning module; the positioning module is built into the mobile terminal;
  • a speed extraction module configured to extract the positioning movement speed of the mobile terminal from the mobile positioning data
  • the scene matching module is configured to determine the mobile scene that matches the positioning movement speed based on the preset scene speed mapping information, and obtain the target movement scene where the mobile terminal is located;
  • the state detection module is configured to determine the movement state of the mobile terminal according to the target movement scenario.
  • the mobile positioning data is obtained by positioning the mobile terminal multiple times at preset time intervals; the positioning movement speed is the positioning movement speed of the multiple positionings.
  • the scene matching module is also configured to calculate the average moving speed of the positioning moving speeds of multiple positionings; and determine the target moving scene that matches the average moving speed based on the preset scene speed mapping information.
  • the scene speed mapping information includes a correspondence between the movement speed range and the movement state.
  • the status detection module includes a status determination unit and an advanced detection unit.
  • the state determination unit is configured to determine the movement state corresponding to each positioning movement speed of the continuous positioning based on the correspondence between the movement speed range and the movement state when the target movement scene is a flight-related scene.
  • the advanced detection unit is configured to further detect whether the mobile terminal is in the target movement scene according to the movement state corresponding to each positioning movement speed of the continuous positioning.
  • the status determination unit is further configured to determine the movement status of the mobile terminal according to the advanced detection result.
  • the advanced detection unit is further configured to, when the target moving scene matching the average moving speed is an airplane takeoff scene, if there is flight in the moving state corresponding to a preset number of consecutive positioning moving speeds. state, it is determined that the mobile terminal is in an airplane takeoff scene; when the target moving scene matching the average moving speed is an airplane landing scene, if there is a non-flying state in the moving state corresponding to the preset number of consecutive positioning moving speeds, Then it is determined that the mobile terminal is in an airplane landing scene.
  • the status determination unit is further configured to determine that the mobile terminal is in a target movement scenario if it is further detected that the average movement speed and the current positioning times for the mobile terminal meet the flight conditions in the target movement scenario. in flight status.
  • the flight conditions in the target moving scene include: the average moving speed is within the preset takeoff speed range, and the current number of positioning is within the preset takeoff positioning. Within the range of times; the take-off speed range is based on the movement speed range corresponding to the aircraft take-off scene in the scene speed mapping information. Sure.
  • the flight conditions in the target moving scene include: the average moving speed is within the preset landing speed range, and the current number of positioning is within the preset landing positioning. Within the range of times; the landing speed range is determined based on the moving speed range matched by the aircraft landing scene in the scene speed mapping information.
  • the mobile state detection device further includes a communication control module, and the communication control module is configured to control the radio frequency of the wireless communication module in the mobile terminal to be in a closed state if the mobile state is a flight state, so as to close the communication of the mobile terminal. Function; if the mobile state is a non-flight state, the radio frequency of the wireless communication module is controlled to be on to restore the communication function of the mobile terminal.
  • the present disclosure relates to a computer device, including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the movement state detection method of the present disclosure is implemented.
  • the present disclosure relates to a computer-readable storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the movement state detection method of the present disclosure is implemented.
  • the present disclosure relates to a computer program product, including a computer program, wherein the computer program implements the movement state detection method of the present disclosure when executed by a processor.
  • the present disclosure does not need to add additional hardware sensors, but can realize automatic detection of movement status by processing the mobile positioning data obtained by the built-in positioning module of the mobile terminal, thus reducing the complexity of hardware design. Spend.
  • Figure 1 is an architectural block diagram of a mobile terminal in an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a movement state detection method in an embodiment of the present disclosure
  • Figure 3 is an architectural block diagram of a mobile terminal in an embodiment of the present disclosure
  • Figure 4 is an architectural block diagram of a mobile terminal in an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of a matching table composed of scene speed mapping information in an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of a movement state detection method in an embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart of a movement state detection method in an embodiment of the present disclosure.
  • Figure 8 is a structural block diagram of a movement state detection device in an embodiment of the present disclosure.
  • FIG. 9 is an internal structure diagram of a computer device in an embodiment of the present disclosure.
  • movement status detection is mainly implemented by adding a three-dimensional acceleration sensor to a mobile terminal.
  • the corresponding architecture block diagram of the mobile terminal is shown in Figure 1.
  • the three-dimensional acceleration sensor is used to calculate the acceleration components of the mobile terminal in the vertical and horizontal directions. Based on the magnitude of the acceleration component, it is judged whether the mobile terminal is in the takeoff, climb and landing stages of the aircraft. The mobile terminal then automatically turns on or off the wireless communication module based on this status. of radio frequency.
  • using the above method requires an additional three-dimensional acceleration sensor inside the mobile terminal, which also has higher requirements on hardware size and layout, and will also bring additional cost overhead.
  • the present disclosure proposes a mobile state detection method, device, computer equipment, storage medium and computer program product, without adding additional hardware sensors, but by processing the mobile positioning data obtained by the built-in positioning module of the mobile terminal. Automatic detection of movement status can therefore reduce hardware design complexity and reduce cost.
  • the present disclosure provides a mobile state detection method.
  • This embodiment illustrates the application of this method to a computer device.
  • the computer device may be a server or a mobile terminal. It can be understood that this method can also be applied to a system including a server and a mobile terminal, and is implemented through the interaction of the server and the terminal.
  • the mobile terminal may be, but is not limited to, at least one of various personal computers, laptops, smartphones, tablets, Internet of Things devices, or portable wearable devices.
  • the portable wearable device may be at least one of a smart watch, a smart bracelet, or a head-mounted device.
  • the method includes the following steps:
  • Step 202 Obtain mobile positioning data obtained by positioning the mobile terminal by the positioning module; the positioning module is built into the mobile terminal;
  • Step 204 Extract the positioning movement speed of the mobile terminal from the mobile positioning data
  • Step 206 Determine the mobile scene that matches the positioning movement speed according to the preset scene speed mapping information, and obtain the target movement scene where the mobile terminal is located;
  • Step 208 Determine the movement status of the mobile terminal according to the target movement scenario.
  • the positioning module refers to a module capable of locating the location of the mobile terminal in real time.
  • the positioning module may be a Global Positioning System (GPS) module, a Beidou satellite positioning module, a base station positioning module, At least one of WiFi module or Bluetooth module.
  • GPS Global Positioning System
  • Beidou satellite positioning module a Beidou satellite positioning module
  • base station positioning module At least one of WiFi module or Bluetooth module.
  • the positioning module is built into the mobile terminal, and the mobile terminal can be positioned through the positioning module of the mobile terminal to obtain corresponding positioning data, that is, mobile positioning data.
  • the computer device obtains positioning data obtained by positioning the mobile terminal one or more times by the positioning module, that is, mobile positioning data.
  • the mobile terminal in addition to the built-in positioning module, also has a built-in wireless communication module.
  • the wireless communication module can be built into the positioning module.
  • the wireless communication module can also be designed separately from the positioning module, and a bus for communication, such as an I2C bus or a serial data bus, can be connected between the wireless communication module and the positioning module to enable wireless communication. Modules and positioning modules can communicate with each other.
  • the I2C bus is a simple, bidirectional, two-wire synchronous serial bus that requires only two wires to transmit information between devices connected to the bus.
  • the serial data bus enables bidirectional communication and enables full-duplex transmission and reception.
  • mobile positioning data refers to positioning data obtained by positioning the mobile terminal by the positioning module.
  • the positioning movement speed refers to the current speed of the mobile terminal when the positioning module locates the mobile terminal.
  • the current speed of the mobile terminal may be the speed of the mobile terminal in the horizontal direction or the speed of the mobile terminal in the vertical direction, which is not specifically limited in this disclosure.
  • the computer device extracts the positioning movement speed of the mobile terminal from the mobile positioning data.
  • the mobile positioning data obtained by positioning the mobile terminal by the GPS module includes the time in Coordinated Universal Time (Universal Time Coordinated, UTC), positioning status, latitude, latitude hemisphere, and longitude. , longitude hemisphere, ground speed, ground heading, date in UTC, magnetic declination, magnetic declination direction or mode indication.
  • UTC Universal Time Coordinated
  • the mobile terminal can extract the ground speed of the mobile terminal during positioning from the above mobile positioning data as the positioning movement speed of the mobile terminal.
  • the preset scene speed mapping information includes the movement scenes that the mobile terminal may correspond to during movement, and the movement speed range that matches the movement scenes. It can be understood that by comparing the corresponding positioning movement speed of the mobile terminal with the movement speed range in the scene speed mapping information, the corresponding movement scene can be determined.
  • the computer device obtains the corresponding movement speed range according to each movement scene in the preset scene speed mapping information and the movement speed range corresponding to each movement scene. Locate the mobile scene that matches the moving speed and obtain the target mobile scene where the mobile terminal is located.
  • the preset scene speed mapping information includes two moving scenes, namely an airplane takeoff scene and an airplane taxiing scene, and the moving speed range corresponding to the airplane takeoff scene is 300km/h to 370km/h
  • the positioning movement speed falls within the movement speed range corresponding to the airplane takeoff scene. At this time, it can be determined that the movement scene corresponding to the mobile terminal is the airplane takeoff scene.
  • the movement state includes at least one of a flight state or a non-flight state.
  • the flight state refers to the state in which the mobile terminal is in the flight phase
  • the non-flight state refers to the state in which the mobile terminal is in the non-flight phase.
  • the computer device further determines the movement status of the mobile terminal according to the target movement scenario of the mobile terminal.
  • the present disclosure does not need to add additional hardware sensors, but can realize automatic detection of movement status by processing the mobile positioning data obtained by the built-in positioning module of the mobile terminal, thus reducing the complexity of hardware design. Spend.
  • the mobile positioning data is obtained by positioning the mobile terminal multiple times at preset time intervals; the positioning movement speed is the positioning movement speed of the multiple positionings.
  • step 206 includes, but is not limited to, including: calculating the average moving speed of the positioning moving speeds of multiple positionings; and determining a target moving scene that matches the average moving speed based on preset scene speed mapping information.
  • the preset time interval is a time interval set according to actual needs and is used to control the positioning frequency of the mobile terminal by the positioning module. In some embodiments, if the preset time interval is 5 seconds, the positioning module will position the mobile terminal every 5 seconds. The positioning module can position the mobile terminal multiple times at intervals to obtain multiple positioning movement speeds.
  • the computer device obtains the positioning movement speed obtained through multiple positionings, and calculates the average speed corresponding to the positioning movement speeds of the multiple positionings to obtain the average movement speed. Then, the computer device obtains the moving scene that matches the average moving speed according to each moving scene in the preset scene speed mapping information and the moving speed range corresponding to each moving scene, and obtains the target moving scene where the mobile terminal is located.
  • the present disclosure can reduce errors caused by directly matching moving scenes using a single positioning movement speed, and can improve the accuracy of scene matching.
  • step 208 includes, but is not limited to: when the target movement scene is a flight-related scene, based on the relationship between the movement speed range and the movement state According to the relationship, the movement state corresponding to each positioning movement speed of continuous positioning is determined; according to the movement state corresponding to each positioning movement speed of continuous positioning, whether the mobile terminal is in the target movement scene is advancedly detected; the movement of the mobile terminal is determined according to the advanced detection results state.
  • the preset scene speed mapping information includes not only the movement scenes that the mobile terminal may correspond to during movement, and the movement speed range matching the movement scene, but also includes the relationship between the movement speed range and the movement state. corresponding relationship.
  • the flight-related scene refers to a movement scene related to flight
  • the flight-related scene includes at least one of an airplane taxiing scene, an airplane taking off scene, an airplane landing scene, or an airplane level flight scene.
  • the computer device can determine the target moving speed range from each moving speed range of the scene speed mapping information according to the specific positioning moving speed or average moving speed, and determine the target moving scene that matches the target speed range.
  • the computer device can also determine the target moving speed range from each moving speed range of the scene speed mapping information based on the specific positioning moving speed or average moving speed, and determine the target moving state that matches the target speed range.
  • the computer device determines the respective positioning movement speeds of each continuous positioning according to the corresponding relationship between the movement speed range and the movement state in the scene speed mapping information. The corresponding movement status. Then, the computer device further detects whether the mobile terminal is in the target movement scene according to the movement status corresponding to each positioning movement speed of the continuous positioning, that is, further detects whether the mobile terminal is really in the target movement scene, and based on the advanced detection results Further determine the movement status of the mobile terminal.
  • the present disclosure can further ensure the accuracy of scene matching by advancedly detecting whether the mobile terminal is in a target movement scene, thereby improving the accuracy of the movement state detected based on the target movement scene.
  • the matching table composed of the scene speed mapping information is shown in Figure 5, including the movement scenarios that the mobile terminal may correspond to during movement, as well as the movement speed range and movement state that match the movement scenarios.
  • the corresponding positioning movement speed of the mobile terminal is relatively stable in at least one of the urban public transportation scene, the high-speed transportation scene, the ordinary railway transportation scene, the high-speed rail transportation scene, the freighter transportation scene, or the speedboat scene.
  • the corresponding positioning movement speed of the mobile terminal changes greatly in at least one of the airplane takeoff scene or the airplane landing scene.
  • the positioning movement speed of the mobile terminal may simultaneously satisfy the movement speed ranges corresponding to the airplane takeoff scene and the airplane landing scene.
  • This is The specific movement scene can be determined based on the speed changes of each positioning movement speed. In some cases In the implementation plan, if the moving speed of each positioning shows an increasing trend, it is determined that the mobile terminal is in the airplane takeoff scene; if the moving speed of each positioning shows a decreasing trend, it is determined that the mobile terminal is in the airplane landing scene.
  • the step "Advanced detection of whether the mobile terminal is in a target movement scene based on the movement state corresponding to each positioning movement speed of continuous positioning” includes but is not limited to: in a target movement scene that matches the average movement speed. In the case of an airplane takeoff scene, if there is a flight state in the movement state corresponding to a consecutive preset number of positioning movement speeds, the mobile terminal is determined to be in the airplane takeoff scene.
  • the computer device when the target movement scene that matches the average movement speed is an airplane takeoff scene, the computer device obtains each positioning movement speed of the continuous positioning, and obtains the location movement speed of each positioning from the scene speed mapping information. The corresponding movement status. If there is a flight state in the movement state corresponding to the consecutive preset number of positioning movement speeds, that is to say, the movement states corresponding to the consecutive preset number of positioning movement speeds are not all non-flying states, then it is determined that the mobile terminal is in an airplane takeoff scene .
  • the present disclosure executes different flight state detection processes for different target movement scenarios, which can improve the accuracy of movement state detection.
  • the movement states corresponding to the preset number of consecutive positioning movement speeds are all non-flight states, it means that the aircraft takeoff scene previously obtained by matching the average movement speed is incorrect. At this time, you need to clear the current number of positioning times and enable the positioning function of the positioning module after the preset restart positioning time. This can reduce the power consumption generated by positioning.
  • the positioning module if the positioning module fails to position the mobile terminal for a preset number of consecutive times, the current number of positioning times can also be cleared, and the positioning function of the positioning module can be enabled after a preset restart positioning time, which can also reduce Power consumption caused by positioning.
  • the step "Advancedly detecting whether the mobile terminal is in a target movement scene based on the movement status corresponding to each positioning movement speed of continuous positioning” also includes, but is not limited to, including: when the target movement matches the average movement speed When the scene is an airplane landing scene, if there is a non-flying state in the movement state corresponding to a preset number of consecutive positioning movement speeds, the mobile terminal is determined to be in the airplane landing scene.
  • the computer device when the target movement scene matching the average movement speed is an airplane landing scene, the computer device obtains each positioning movement speed of the continuous positioning, and obtains the location movement speed of each positioning from the scene speed mapping information. The corresponding movement state. If there is a non-flying state in the movement states corresponding to the consecutively preset number of positioning movement speeds, that is to say, the movement states corresponding to the consecutive preset number of positioning movement speeds are not all flight states, then it is determined that the mobile terminal is in the aircraft landing state. Scenes.
  • This disclosure executes different flight status detection processes for different target movement scenarios, which can improve the accuracy of movement status detection. Accuracy.
  • the movement states corresponding to the consecutive preset number of positioning movement speeds are all flight states, it means that the aircraft landing scene previously obtained by matching the average movement speed is incorrect. At this time, you need to clear the current number of positioning times and enable the positioning function of the positioning module after the preset restart positioning time. This can reduce the power consumption generated by positioning.
  • the step "determining the movement status of the mobile terminal based on the advanced detection results" includes, but is not limited to, including: if the advanced detection is that the mobile terminal is in the target movement scene, and the average moving speed and the current positioning for the mobile terminal If the number of times meets the flight conditions in the target movement scenario, it is determined that the mobile terminal is in the flight state.
  • the flight condition in the target movement scenario may be one or multiple.
  • the mobile terminal if it is further detected that the mobile terminal is in a target movement scenario, and the average moving speed and the current number of positioning times for the mobile terminal meet one of the flight conditions in the target movement scenario, it can be determined that the mobile terminal is in flight. state.
  • the mobile terminal can be determined to be in flight. state.
  • the flight conditions in the target moving scene include: the average moving speed is within the preset takeoff speed range, and the current number of positioning is within the preset takeoff positioning. Within the range of times; the take-off speed range is determined according to the moving speed range corresponding to the aircraft take-off scene in the scene speed mapping information.
  • the take-off speed range refers to the corresponding flight speed of the aircraft during take-off.
  • the current number of positioning refers to the cumulative number of positioning times that the positioning module positions the mobile terminal.
  • the moving speed range corresponding to the scene speed mapping information of the airplane takeoff scene can be directly used as the preset takeoff speed range, or the moving speed corresponding to the airplane takeoff scene in the scene speed mapping information can be used. In the range, select a part of the moving speed range and use this part of the moving speed range as the take-off speed range.
  • the moving speed range corresponding to the aircraft take-off scene in the scene speed mapping information can also be range expanded to obtain the expanded moving speed range, and the expanded moving speed range can be used as the take-off speed range.
  • the flight conditions include at least one set of judgment conditions, and each set of judgment conditions corresponds to a takeoff speed.
  • Range and take-off positioning number range There is a negative correlation between the take-off speed range of each group and the corresponding range of take-off positioning times. That is, the larger the take-off speed range, the smaller the range of the corresponding take-off positioning times; the smaller the take-off speed range, the smaller the range of the corresponding take-off positioning times. big.
  • the computer device can compare the average moving speed and current positioning times of the mobile terminal with multiple sets of judgment conditions under flight conditions at the same time, as long as the average moving speed If one of the set of judgment conditions is met and the current positioning times are met, it can be determined that the mobile terminal is in a flight state. In other embodiments, the computer device can also compare the average moving speed and the current number of positionings of the mobile terminal with multiple sets of judgment conditions under flight conditions one by one, as long as it is judged that the average moving speed and the current number of positionings satisfy one of the sets of judgments. If the conditions are met, it can be determined that the mobile terminal is in flight status and the comparison process ends.
  • the flight conditions in the target moving scene include: the average moving speed is within the preset landing speed range, and the current number of positioning is within the preset landing positioning. Within the range of times; the landing speed range is determined based on the moving speed range matched by the aircraft landing scene in the scene speed mapping information.
  • the takeoff and landing range refers to the corresponding flight speed of the aircraft during landing.
  • the current number of positioning refers to the cumulative number of positioning times that the positioning module positions the mobile terminal.
  • the movement speed range corresponding to the scene speed mapping information of the aircraft landing scene can be directly used as the preset landing speed range, or the movement speed corresponding to the scene speed mapping information of the aircraft landing scene can be used. In the range, select a part of the movement speed range and use this part of the movement speed range as the landing speed range.
  • the moving speed range corresponding to the aircraft landing and takeoff scene in the scene speed mapping information can also be range expanded to obtain the expanded moving speed range, and the expanded moving speed range can be used as Falling speed range.
  • the flight conditions include at least one set of judgment conditions, and each set of judgment conditions corresponds to a landing speed range and a landing positioning number range.
  • the landing speed range of each group There is a positive correlation between the landing speed range of each group and the corresponding range of landing positioning times. That is, the larger the landing speed range, the larger the corresponding range of landing positioning times; the smaller the landing speed range, the smaller the corresponding range of landing positioning times. .
  • the computer device can compare the average moving speed and current positioning times of the mobile terminal with multiple sets of judgment conditions under flight conditions at the same time, as long as the average moving speed and current targeting times If the number satisfies one set of judgment conditions, it can be determined that the mobile terminal is in a non-flying state. In some embodiments, the computer device can also compare the average moving speed and the current number of positionings of the mobile terminal with multiple sets of judgment conditions under flight conditions one by one, as long as it is judged that the average moving speed and the current number of positionings satisfy one of the sets of judgments. If the conditions are met, it can be determined that the mobile terminal is in a non-flying state and the comparison process ends.
  • the mobile state detection method also includes but is not limited to: if the mobile state is a flight state, controlling the radio frequency of the wireless communication module in the mobile terminal to be in an off state to shut down the communication function of the mobile terminal; if the mobile state is a non-flight state, controlling the radio frequency of the wireless communication module to be in an on state to restore the communication function of the mobile terminal.
  • the radio frequency of the wireless communication module in the mobile terminal when the computer device detects that the movement state of the mobile terminal is the flight state, the radio frequency of the wireless communication module in the mobile terminal is controlled to be in a closed state to close the communication function of the mobile terminal, so that the mobile terminal Enter airplane mode.
  • the computer device detects that the mobile terminal's movement state is a non-flight state, it controls the radio frequency of the wireless communication module to be in an on state to restore the communication function of the mobile terminal and cause the mobile terminal to exit the flight mode.
  • the process for the computer device to detect the movement status of the mobile terminal for the aircraft takeoff scenario includes:
  • Step 602 The positioning module positions the mobile terminal every 5 seconds;
  • Step 604 Determine whether the positioning module fails to position the mobile terminal for 10 consecutive times. If the positioning module fails to position the mobile terminal for 10 consecutive times, perform step 606; if the positioning module fails to position the mobile terminal for 10 consecutive times, perform step 606. 608;
  • Step 606 Clear the positioning times to zero and wait for 10 minutes before restarting positioning
  • Step 608 Record the current positioning times and match the target movement scene according to the average movement speed of the mobile terminal.
  • the computer device obtains the mobile positioning data obtained by positioning the mobile terminal by the positioning module, extracts the positioning movement speed of the mobile terminal from the mobile positioning data, calculates the average of the positioning movement speeds of multiple positionings, and obtains the average Moving speed. According to the preset scene speed mapping information, the target moving scene that matches the average moving speed is determined.
  • step 610 when the target movement scene is an airplane takeoff scene, determine whether the mobile terminal is in a non-flying state for 15 consecutive times based on the positioning movement speed of the mobile terminal. If the mobile terminal is in the non-flying state for 15 consecutive times, step 606 is executed; if the mobile terminal is not in the non-flying state for 15 consecutive times, step 612 is executed.
  • step 612 determines whether the average moving speed is greater than or equal to 400km/h and the current number of positioning is greater than or equal to 5. If both the average moving speed is greater than or equal to 400km/h and the current positioning times are greater than or equal to 5, step 616 is executed. If it is not satisfied that the average moving speed is greater than or equal to 400km/h and the current number of positioning is greater than or equal to 5, step 614 is executed.
  • step 614 determines whether the average moving speed is greater than or equal to 350km/h and the current number of positioning is less than 15. If both the average moving speed and the current positioning count are less than 15 and the average moving speed is greater than or equal to 350km/h, step 616 is executed. If it is not satisfied that the average moving speed is greater than or equal to 350km/h and the current number of positioning is less than 15, step 602 is executed.
  • step 616 turns off the radio frequency of the wireless communication module and causes the mobile terminal to enter airplane mode.
  • the process for the computer device to detect the mobile terminal's movement status for the aircraft landing scenario includes:
  • Step 702 The positioning module positions the mobile terminal every 5 seconds;
  • Step 704 determining whether the positioning module fails to locate the mobile terminal for 10 consecutive times. If the positioning module fails to locate the mobile terminal for 10 consecutive times, executing step 706; if the positioning module does not fail to locate the mobile terminal for 10 consecutive times, executing step 708;
  • Step 706 Clear the positioning times to zero and wait for 10 minutes before restarting positioning
  • Step 708 Record the current positioning times and match the target movement scene according to the average movement speed of the mobile terminal.
  • the computer device obtains mobile positioning data obtained by positioning the mobile terminal by the positioning module, extracts the positioning movement speed of the mobile terminal from the mobile positioning data, calculates the average of the positioning movement speeds of multiple positionings, and obtains the average Moving speed. According to the preset scene speed mapping information, the target moving scene that matches the average moving speed is determined.
  • step 710 when the target movement scene is an airplane landing scene, determine whether the mobile terminal is in the flight state for 15 consecutive times according to the positioning movement speed of the mobile terminal. If the mobile terminal is in the flight state for 15 consecutive times, step 706 is executed; if the mobile terminal is not in the flight state for 15 consecutive times, step 712 is executed.
  • step 712 determines whether the average moving speed is less than or equal to 30km/h and the current number of positioning is less than 5. If both the average moving speed is less than or equal to 30km/h and the current positioning times are less than 5, step 718 is executed. If it is not satisfied that the average moving speed is less than or equal to 30km/h and the current number of positioning is less than 5, step 714 is executed.
  • step 714 determines whether the average moving speed is less than or equal to 100 km/h and the current number of positioning is less than 10. If both the average moving speed is less than or equal to 100km/h and the current positioning times are less than 10, step 718 is executed. If it is not satisfied that the average moving speed is less than or equal to 100km/h and the current number of positioning is less than 10, step 716 is executed.
  • step 716 determines whether the average moving speed is less than or equal to 150km/h and the current number of positioning is less than 15. If both the average moving speed is less than or equal to 150km/h and the current positioning times are less than 15, step 718 is executed. If it is not satisfied that the average moving speed is less than or equal to 150km/h and the current number of positioning is less than 15, step 702 is executed.
  • step 718 turns on the radio frequency of the wireless communication module and restores related services of the mobile terminal.
  • the present disclosure also provides a mobile state detection device for implementing the mobile state detection method of the present disclosure.
  • the implementation solution provided by this device to solve the problem is similar to the implementation solution recorded in the above method. Therefore, for the specific limitations in one or more embodiments of the movement state detection device provided below, please refer to the above description of the movement state detection method. Limitations will not be repeated here.
  • the present disclosure provides a mobile state detection device, including: a data acquisition module 802, a speed extraction module 804, a scene matching module 806 and a state detection module 808, wherein:
  • the data acquisition module 802 is configured to acquire mobile positioning data obtained by positioning the mobile terminal by the positioning module; the positioning module is built in the mobile terminal;
  • the speed extraction module 804 is configured to extract the positioning movement speed of the mobile terminal from the mobile positioning data
  • the scene matching module 806 is configured to determine the mobile scene that matches the positioning movement speed according to the preset scene speed mapping information, and obtain the target movement field where the mobile terminal is located. scenery;
  • the status detection module 808 is configured to determine the movement status of the mobile terminal according to the target movement scenario.
  • the present disclosure does not need to add additional hardware sensors, but can realize automatic detection of movement status by processing the mobile positioning data obtained by the built-in positioning module of the mobile terminal, thus reducing the complexity of hardware design. Spend.
  • the mobile positioning data is obtained by positioning the mobile terminal multiple times at preset time intervals; the positioning movement speed is the positioning movement speed of the multiple positionings.
  • the scene matching module 806 is also configured to calculate the average moving speed of the positioning moving speeds of multiple positionings; and determine the target moving scene that matches the average moving speed according to the preset scene speed mapping information.
  • the scene speed mapping information includes a correspondence between the movement speed range and the movement state
  • the state detection module 808 includes a state determination unit and an advanced detection unit.
  • the state determination unit is configured to determine the movement state corresponding to each positioning movement speed of the continuous positioning based on the correspondence between the movement speed range and the movement state when the target movement scene is a flight-related scene.
  • the advanced detection unit is configured to advancedly detect whether the mobile terminal is in a target movement scene based on the movement state corresponding to each positioning movement speed of the continuous positioning.
  • the status determination unit is further configured to determine the movement status of the mobile terminal according to the advanced detection result.
  • the advanced detection unit is further configured to, when the target moving scene matching the average moving speed is an airplane takeoff scene, if there is flight in the moving state corresponding to a preset number of consecutive positioning moving speeds. state, it is determined that the mobile terminal is in an airplane take-off scene; when the target moving scene matching the average moving speed is an airplane landing scene, if there is a non-flying state in the moving state corresponding to the preset number of consecutive positioning moving speeds, Then it is determined that the mobile terminal is in an airplane landing scene.
  • the status determination unit is further configured to determine that the mobile terminal is in a target movement scenario if it is further detected that the average movement speed and the current positioning times for the mobile terminal meet the flight conditions in the target movement scenario. in flight status.
  • the flight conditions in the target moving scene include: the average moving speed is within the preset takeoff speed range, and the current number of positioning is within the preset takeoff positioning. Within the range of times; the take-off speed range is determined according to the moving speed range corresponding to the aircraft take-off scene in the scene speed mapping information.
  • the flight conditions in the target moving scene include: the average moving speed is at the preset landing speed. Within the range, and the current number of positionings is within the preset range of landing positioning times; the landing speed range is determined according to the moving speed range of the aircraft landing scene matched in the scene speed mapping information.
  • the mobile state detection device further includes a communication control module, and the communication control module is configured to control the radio frequency of the wireless communication module in the mobile terminal to be in a closed state if the mobile state is a flight state, so as to close the communication of the mobile terminal. Function; if the mobile state is a non-flight state, the radio frequency of the wireless communication module is controlled to be on to restore the communication function of the mobile terminal.
  • Each module in the above-mentioned mobile state detection device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the present disclosure provides a computer device, which may be a server, and its internal structure diagram may be as shown in Figure 9.
  • the computer device includes a processor, memory, and network interfaces connected through a system bus.
  • the computer device's processor is configured to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the computer device's database is configured to store data related to module configuration.
  • the network interface of the computer device is configured to communicate with an external terminal through a network connection.
  • the computer program when executed by the processor, implements a module configuration method.
  • a computer device may include more or fewer components than shown in the figures, or some combinations of components, or have a different arrangement of components.
  • the present disclosure also provides a computer device, including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, the movement state detection method of the present disclosure is implemented.
  • the present disclosure provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the movement state detection method of the present disclosure is implemented.
  • the present disclosure provides a computer program product, including a computer program, which when executed by a processor implements the above-mentioned movement state detection method of the present disclosure.
  • user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, storage, etc.
  • data are all information and data authorized by the user or fully authorized by all parties.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to a memory, database, or other medium used in the various embodiments provided by this disclosure may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory can include random access memory (Random Access Memory, RAM) or external cache memory.
  • RAM Random Access Memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM Dynamic Random Access Memory
  • the database involved in each embodiment provided by the present disclosure may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in various embodiments provided by the present disclosure may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

公开了移动状态检测方法、装置和计算机设备。该方法包括:获取由定位模块对移动终端定位得到的移动定位数据;定位模块内置于移动终端中;从移动定位数据中提取移动终端的定位移动速度;根据预设的场景速度映射信息,确定与定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场景;以及根据目标移动场景确定移动终端的移动状态。

Description

移动状态检测方法、装置和计算机设备
相关申请的引用
本公开要求于2022年9月13日向中华人民共和国国家知识产权局提交的申请号为202211107566.5、发明名称为“移动状态检测方法、装置和计算机设备”的中国发明专利申请的全部权益,并通过引用的方式将其全部内容并入本公开。
领域
本公开大体上涉及智能终端技术领域,更具体地涉及移动状态检测方法、装置和计算机设备。
背景
随着科技的发展,移动终端已经成为人们必不可少的生活必需品。众所周知,用户在搭乘某些交通运输设备的时候,例如用户在搭乘飞机的时候需要关闭无线通信网络,否则会对交通运输设备的正常运行造成一定的干扰。
目前,主要是通过三维加速度传感器来获取三维加速度,并通过计算垂直方向和水平方向的加速度分量来判断移动终端的移动状态。但是采用上述的移动状态检测方法,需要在移动终端中额外增加三维速度传感器,导致增加硬件设计的复杂度。
概述
一方面,本公开涉及移动状态检测方法,包括:
获取由定位模块对移动终端定位得到的移动定位数据;定位模块内置于移动终端中;
从移动定位数据中提取移动终端的定位移动速度;
根据预设的场景速度映射信息,确定与定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场景;以及
根据目标移动场景确定移动终端的移动状态。
另一方面,本公开涉及移动状态检测装置,包括:
数据获取模块,配置为获取由定位模块对移动终端定位得到的移动定位数据;定位模块内置于移动终端中;
速度提取模块,配置为从移动定位数据中提取移动终端的定位移动速度;
场景匹配模块,配置为根据预设的场景速度映射信息,确定与定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场景;以及
状态检测模块,配置为根据目标移动场景确定移动终端的移动状态。
在某些实施方案中,移动定位数据是按照预设时间间隔对移动终端进行多次定位得到的;定位移动速度为多次定位的定位移动速度。
在某些实施方案中,场景匹配模块还配置为计算多次定位的定位移动速度的平均移动速度;根据预设的场景速度映射信息,确定与平均移动速度相匹配的目标移动场景。
在某些实施方案中,场景速度映射信息中包括移动速度范围和移动状态之间的对应关系。
在某些实施方案中,状态检测模块包括状态确定单元和进阶检测单元。
在某些实施方案中,状态确定单元配置为在目标移动场景为飞行相关场景的情况下,根据移动速度范围和移动状态之间的对应关系,确定连续定位的各个定位移动速度对应的移动状态。
在某些实施方案中,进阶检测单元配置为根据连续定位的各个定位移动速度对应的移动状态,进阶检测移动终端是否处于目标移动场景。
在某些实施方案中,状态确定单元还配置为根据进阶检测结果确定移动终端的移动状态。
在某些实施方案中,进阶检测单元还配置为在与平均移动速度相匹配的目标移动场景为飞机起飞场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在飞行状态,则判定移动终端处于飞机起飞场景;在与平均移动速度相匹配的目标移动场景为飞机降落场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在非飞行状态,则判定移动终端处于飞机降落场景。
在某些实施方案中,状态确定单元还配置为若进阶检测到移动终端处于目标移动场景,且平均移动速度和针对移动终端的当前定位次数满足目标移动场景下的飞行条件,则判定移动终端处于飞行状态。
在某些实施方案中,在目标移动场景为飞机起飞场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的起飞速度范围内,且当前定位次数位于预设的起飞定位次数范围内;起飞速度范围根据飞机起飞场景在场景速度映射信息中所对应的移动速度范围 确定。
在某些实施方案中,在目标移动场景为飞机降落场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的降落速度范围内,且当前定位次数位于预设的降落定位次数范围内;降落速度范围根据飞机降落场景在场景速度映射信息中所匹配的移动速度范围确定。
在某些实施方案中,移动状态检测装置还包括通信控制模块,通信控制模块配置为若移动状态为飞行状态,则控制移动终端中的无线通信模块的射频处于关闭状态,以关闭移动终端的通信功能;若移动状态为非飞行状态,则控制无线通信模块的射频处于开启状态,以恢复移动终端的通信功能。
再一方面,本公开涉及计算机设备,包括存储器和处理器,其中存储器存储有计算机程序,处理器执行计算机程序时实现本公开的移动状态检测方法。
又一方面,本公开涉及计算机可读存储介质,其上存储有计算机程序,其中计算机程序被处理器执行时实现本公开的移动状态检测方法。
其他方面,本公开涉及计算机程序产品,包括计算机程序,其中该计算机程序被处理器执行时实现本公开的移动状态检测方法。
在某些实施方案中,本公开无需增加额外的硬件传感器,而是通过对移动终端内置的定位模块所获取的移动定位数据进行处理,就能够实现移动状态的自动检测,因此能够降低硬件设计复杂度。
附图简要说明
图1为本公开一实施例中的移动终端的架构框图;
图2为本公开一实施例中的移动状态检测方法的流程示意图;
图3为本公开一实施例中的移动终端的架构框图;
图4为本公开一实施例中的移动终端的架构框图;
图5为本公开一实施例中的由场景速度映射信息所构成的匹配表的示意图;
图6为本公开一实施例中的移动状态检测方法的流程示意图;
图7为本公开一实施例中的移动状态检测方法的流程示意图;
图8为本公开一实施例中的移动状态检测装置的结构框图;以及
图9为本公开一实施例中的计算机设备的内部结构图。
详述
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在相关技术中,移动状态检测主要是通过在移动终端中增加三维加速度传感器来实现的,其对应的移动终端的架构框图如图1所示。通过三维加速度传感器计算移动终端在垂直方向和水平方向的加速度分量,根据加速度分量的大小以此判断移动终端是否处于飞机的起飞爬升和降落阶段,移动终端再根据此状态自动打开或者关闭无线通信模块的无线射频。但是,采用上述方法需要在移动终端内部额外三维加速度传感器,对硬件尺寸和布局也有更高的要求,同时会带来额外的成本开销。
本公开提出了移动状态检测方法、装置、计算机设备、存储介质和计算机程序产品,无需增加额外的硬件传感器,而是通过对移动终端内置的定位模块所获取的移动定位数据进行处理,就能够实现移动状态的自动检测,因此能够降低硬件设计复杂度,并且还能将降低成本开销。
如图2所示,本公开提供了移动状态检测方法,本实施例以该方法应用于计算机设备进行举例说明,该计算机设备可以是服务器或移动终端。可以理解的是,该方法还可以应用于包括服务器和移动终端的系统,并通过服务器和终端的交互实现。在某些实施方案中,该移动终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备或便携式可穿戴设备中的至少一种。便携式可穿戴设备可为智能手表、智能手环或头戴设备等中的至少一种。本实施例中,该方法包括以下步骤:
步骤202,获取由定位模块对移动终端定位得到的移动定位数据;所述定位模块内置于所述移动终端中;
步骤204,从移动定位数据中提取移动终端的定位移动速度;
步骤206,根据预设的场景速度映射信息,确定与定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场景;以及
步骤208,根据目标移动场景确定移动终端的移动状态。
在某些实施方案中,定位模块指的是能够实时对移动终端的位置进行定位的模块。
在某些实施方案中,定位模块可以是全球定位系统(Global Positioning System,GPS)模块、北斗卫星定位模块、基站定位模块、 WiFi模块或蓝牙模块中的至少一种。
在某些实施方案中,定位模块内置于移动终端中,可以通过移动终端的定位模块对移动终端进行定位,以得到对应的定位数据,即移动定位数据。
在某些实施方案中,计算机设备获取由定位模块对移动终端进行一次或多次定位得到的定位数据,即移动定位数据。
在某些实施方案中,移动终端除了内置有定位模块之外,还内置有无线通信模块。可以理解,参照图3,该无线通信模块可以内置于定位模块中。此外,参照图4,该无线通信模块还可以与定位模块分离式设计,且还可以在无线通信模块和定位模块之间连接用于通信的总线,例如I2C总线或串行数据总线,使无线通信模块和定位模块之间可以互相通信。I2C总线是一种简单、双向二线制同步串行总线,它只需要两根线即可在连接于总线上的器件之间传送信息。串行数据总线可双向通信,并且实现全双工传输和接收。
在某些实施方案中,移动定位数据指的是定位模块对移动终端进行定位得到的定位数据。
在某些实施方案中,定位移动速度指的是定位模块对移动终端进行定位时,移动终端当前的速度。
在某些实施方案中,移动终端当前的速度可以是移动终端在水平方向上的速度,也可以是移动终端在垂直方向上的速度,本公开不做具体限制。
在某些实施方案中,计算机设备从移动定位数据中提取移动终端的定位移动速度。
在某些实施方案中,若定位模块为GPS模块,则GPS模块对移动终端进行定位得到的移动定位数据包括协调世界时(Universal Time Coordinated,UTC)的时间、定位状态、纬度、纬度半球、经度、经度半球、地面速率、地面航向、UTC的日期、磁偏角、磁偏角方向或模式指示中的至少一种。移动终端可以从以上的移动定位数据中提取移动终端在定位时的地面速率,作为移动终端的定位移动速度。
在某些实施方案中,预设的场景速度映射信息包括移动终端在移动过程中可能对应的移动场景,以及与该移动场景相匹配的移动速度范围。可以理解,将移动终端对应的定位移动速度与场景速度映射信息中的移动速度范围进行对比,能够确定出对应的移动场景。
在某些实施方案中,计算机设备根据预设的场景速度映射信息中的各个移动场景,以及各个移动场景对应的移动速度范围中,获取与 定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场景。
在某些实施方案中,若预设的场景速度映射信息包括两个移动场景,分别是飞机起飞场景和飞机滑行场景,且飞机起飞场景所对应的移动速度范围为300km/h至370km/h,飞机滑行场景所对应的移动速度范围为<=20km/h。在移动终端对应的定位移动速度为330km/h的情况下,该定位移动速度落入飞机起飞场景所对应的移动速度范围中,此时可确定移动终端所对应的移动场景为飞机起飞场景。
在某些实施方案中,移动状态包括飞行状态或非飞行状态中的至少一种。飞行状态指的是移动终端处于飞行阶段中的状态,非飞行状态指的是移动终端处于非飞行阶段中的状态。
在某些实施方案中,计算机设备根据移动终端的目标移动场景,进一步确定移动终端的移动状态。
在某些实施方案中,本公开无需增加额外的硬件传感器,而是通过对移动终端内置的定位模块所获取的移动定位数据进行处理,就能够实现移动状态的自动检测,因此能够降低硬件设计复杂度。
在某些实施方案中,移动定位数据是按照预设时间间隔对移动终端进行多次定位得到的;定位移动速度为多次定位的定位移动速度。在某些实施方案中,步骤206包括但不限于包括:计算多次定位的定位移动速度的平均移动速度;根据预设的场景速度映射信息,确定与平均移动速度相匹配的目标移动场景。
在某些实施方案中,预设时间间隔是根据实际需求设置的时间间隔,用于控制定位模块对移动终端的定位频率。在某些实施方案中,若预设时间间隔为5秒,则定位模块每隔5秒会对移动终端进行定位,定位模块间隔多次对移动终端进行定位就可以得到多次的定位移动速度。
在某些实施方案中,计算机设备获取经过多次定位得到的定位移动速度,并计算多次定位的定位移动速度所对应的平均速度,得到平均移动速度。接着,计算机设备根据预设的场景速度映射信息中的各个移动场景,以及各个移动场景对应的移动速度范围中,获取与平均移动速度相匹配的移动场景,得到移动终端所处的目标移动场景。本公开通过利用多个定位移动速度所对应的平均速度进行移动场景的匹配,能够减少直接通过单个定位移动速度进行移动场景匹配所带来的误差,能够提高场景匹配的准确性。
在某些实施方案中,步骤208包括但不限于包括:在目标移动场景为飞行相关场景的情况下,根据移动速度范围和移动状态之间的对 应关系,确定连续定位的各个定位移动速度对应的移动状态;根据连续定位的各个定位移动速度对应的移动状态,进阶检测移动终端是否处于目标移动场景;根据进阶检测结果确定移动终端的移动状态。
在某些实施方案中,预设的场景速度映射信息除了包括移动终端在移动过程中可能对应的移动场景,以及与该移动场景相匹配的移动速度范围,还包括移动速度范围和移动状态之间的对应关系。
在某些实施方案中,飞行相关场景指的是与飞行有关的移动场景,飞行相关场景包括飞机滑行场景、飞机起飞场景、飞机降落场景或飞机平飞场景中的至少一种。
计算机设备可以根据具体的定位移动速度或平均移动速度,从场景速度映射信息的各个移动速度范围中确定目标移动速度范围,并确定与该目标速度范围相匹配的目标移动场景。计算机设备还可以根据具体的定位移动速度或平均移动速度,从场景速度映射信息的各个移动速度范围中确定目标移动速度范围,并确定与该目标速度范围相匹配的目标移动状态。
在某些实施方案中,在目标移动场景为飞行相关场景的情况下,计算机设备根据场景速度映射信息中的移动速度范围和移动状态之间的对应关系,确定连续定位的各个定位移动速度各自所对应的移动状态。接着,计算机设备根据连续定位的各个定位移动速度各自所对应的移动状态,进阶检测移动终端是否处于目标移动场景,即进一步检测移动终端是否真的处于该目标移动场景,并根据进阶检测结果进一步确定移动终端的移动状态。本公开通过进阶检测移动终端是否处于目标移动场景,能够进一步保证场景匹配的准确率,进而提高基于目标移动场景所检测得到的移动状态的准确率。
在某些实施方案中,场景速度映射信息所构成的匹配表如图5所示,包括移动终端在移动过程中可能对应的移动场景,以及与该移动场景相匹配的移动速度范围和移动状态。需要说明的是,移动终端在市内公共交通场景、高速运输场景、普通铁路运输场景、高速铁路运输场景、货轮运输场景或快艇场景中的至少一种场景下所对应的定位移动速度是相对平稳的,移动终端在飞机起飞场景或飞机降落场景中的至少一种场景下所对应的定位移动速度是变化较大的。
若场景速度映射信息中的飞机起飞场景和飞机降落场景所对应的速度范围存在重合部分,则移动终端的各个定位移动速度有可能同时满足飞机起飞场景和飞机降落场景所对应的移动速度范围,此时可根据各个定位移动速度的速度变化情况确定具体的移动场景。在某些实 施方案中,若各个定位移动速度呈递增趋势,则判定移动终端位于飞机起飞场景;若各个定位移动速度呈递减趋势,则判定移动终端位于飞机降落场景。
在某些实施方案中,步骤“根据连续定位的各个定位移动速度对应的移动状态,进阶检测移动终端是否处于目标移动场景”包括但不限于包括:在与平均移动速度相匹配的目标移动场景为飞机起飞场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在飞行状态,则判定移动终端处于飞机起飞场景。
在某些实施方案中,在与平均移动速度相匹配的目标移动场景为飞机起飞场景的情况下,计算机设备获取连续定位的各个定位移动速度,并从场景速度映射信息中获取各个定位移动速度所对应的移动状态。若连续预设个数的定位移动速度对应的移动状态中存在飞行状态,也就是说连续预设个数的定位移动速度对应的移动状态并不都是非飞行状态,则判定移动终端处于飞机起飞场景。本公开针对不同目标移动场景执行不同的飞行状态检测流程,能够提高移动状态检测的准确率。
在某些实施方案中,若连续预设个数的定位移动速度对应的移动状态都是非飞行状态,则说明之前根据平均移动速度相匹配得到的飞机起飞场景有误。此时需要清空当前的定位次数,并在预设的重启定位时长后开启定位模块的定位功能,这样能够降低定位所产生的功耗。
在某些实施方案中,若定位模块在连续预设次数下对移动终端定位失败,则也可以清空当前的定位次数,并在预设的重启定位时长后开启定位模块的定位功能,同样能够降低定位所产生的功耗。
在某些实施方案中,步骤“根据连续定位的各个定位移动速度对应的移动状态,进阶检测移动终端是否处于目标移动场景”还包括但不限于包括:在与平均移动速度相匹配的目标移动场景为飞机降落场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在非飞行状态,则判定移动终端处于飞机降落场景。
在某些实施方案中,在与平均移动速度相匹配的目标移动场景为飞机降落场景的情况下,计算机设备获取连续定位的各个定位移动速度,并从场景速度映射信息中获取各个定位移动速度所对应的移动状态。若连续预设个数的定位移动速度对应的移动状态中存在非飞行状态,也就是说连续预设个数的定位移动速度对应的移动状态并不都是飞行状态,则判定移动终端处于飞机降落场景。本公开针对不同目标移动场景执行不同的飞行状态检测流程,能够提高移动状态检测的准 确率。
在某些实施方案中,若连续预设个数的定位移动速度对应的移动状态都是飞行状态,则说明之前根据平均移动速度相匹配得到的飞机降落场景有误。此时需要清空当前的定位次数,并在预设的重启定位时长后开启定位模块的定位功能,这样能够降低定位所产生的功耗。
在某些实施方案中,步骤“根据进阶检测结果确定移动终端的移动状态”包括但不限于包括:若进阶检测到移动终端处于目标移动场景,且平均移动速度和针对移动终端的当前定位次数满足目标移动场景下的飞行条件,则判定移动终端处于飞行状态。
在某些实施方案中,目标移动场景下的飞行条件可以为一个,也可以为多个。
在某些实施方案中,若进阶检测到移动终端处于目标移动场景,且平均移动速度和针对移动终端的当前定位次数满足该目标移动场景下的其中一个飞行条件,则可以判定移动终端处于飞行状态。
在某些实施方案中,若进阶检测到移动终端处于目标移动场景,且平均移动速度和针对移动终端的当前定位次数需同时满足目标移动场景下的所有飞行条件,才可以判定移动终端处于飞行状态。
在某些实施方案中,在目标移动场景为飞机起飞场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的起飞速度范围内,且当前定位次数位于预设的起飞定位次数范围内;起飞速度范围根据飞机起飞场景在场景速度映射信息中所对应的移动速度范围确定。
在某些实施方案中,起飞速度范围指的是飞机在起飞过程对应的飞行速度。
在某些实施方案中,当前定位次数指的是定位模块对移动终端进行定位的累积定位次数。
在某些实施方案中,可以直接将飞机起飞场景在场景速度映射信息中所对应的移动速度范围作为预设的起飞速度范围,也可以从飞机起飞场景在场景速度映射信息中所对应的移动速度范围中,选取部分的移动速度范围,并将这部分的移动速度范围作为起飞速度范围。
在某些实施方案中,还可以将飞机起飞场景在场景速度映射信息中所对应的移动速度范围进行范围扩增,得到扩增后的移动速度范围,并将扩增后的移动速度范围作为起飞速度范围。
在某些实施方案中,在目标移动场景为飞机起飞场景的情况下,飞行条件包括至少一组判断条件,每组判断条件对应于一个起飞速度 范围和起飞定位次数范围。每组的起飞速度范围和对应的起飞定位次数范围呈负相关,即起飞速度范围越大,其对应设置的起飞定位次数范围越小;起飞速度范围越小,其对应设置的起飞定位次数范围越大。
在某些实施方案中,在目标移动场景为飞机起飞场景的情况下,计算机设备可以将移动终端的平均移动速度和当前定位次数同时与飞行条件下的多组判断条件进行比较,只要平均移动速度和当前定位次数满足其中一组判断条件,就可以判定移动终端处于飞行状态。在另一些实施例中,计算机设备还可以将移动终端的平均移动速度和当前定位次数逐个与飞行条件下的多组判断条件进行比较,只要判断出平均移动速度和当前定位次数满足其中一组判断条件,就可以判定移动终端处于飞行状态并结束比较流程。
在某些实施方案中,在目标移动场景为飞机降落场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的降落速度范围内,且当前定位次数位于预设的降落定位次数范围内;降落速度范围根据飞机降落场景在场景速度映射信息中所匹配的移动速度范围确定。
在某些实施方案中,起飞降落范围指的是飞机在降落过程对应的飞行速度。
在某些实施方案中,当前定位次数指的是定位模块对移动终端进行定位的累积定位次数。
在某些实施方案中,可以直接将飞机降落场景在场景速度映射信息中所对应的移动速度范围作为预设的降落速度范围,也可以从飞机降落场景在场景速度映射信息中所对应的移动速度范围中,选取部分的移动速度范围,并将这部分的移动速度范围作为降落速度范围。
在某些实施方案中,还可以将飞机降落起飞场景在场景速度映射信息中所对应的移动速度范围进行范围扩增,得到扩增后的移动速度范围,并将扩增后的移动速度范围作为降落速度范围。
在某些实施方案中,在目标移动场景为飞机降落场景的情况下,飞行条件包括至少一组判断条件,每组判断条件对应于一个降落速度范围和降落定位次数范围。每组的降落速度范围和对应的降落定位次数范围呈正相关,即降落速度范围越大,其对应设置的降落定位次数范围越大;降落速度范围越小,其对应设置的降落定位次数范围越小。
在某些实施方案中,在目标移动场景为飞机降落场景的情况下,计算机设备可以将移动终端的平均移动速度和当前定位次数同时与飞行条件下的多组判断条件进行比较,只要平均移动速度和当前定位次 数满足其中一组判断条件,就可以判定移动终端处于非飞行状态。在某些实施方案中,计算机设备还可以将移动终端的平均移动速度和当前定位次数逐个与飞行条件下的多组判断条件进行比较,只要判断出平均移动速度和当前定位次数满足其中一组判断条件,就可以判定移动终端处于非飞行状态并结束比较流程。
在某些实施方案中,移动状态检测方法还包括但不限于包括:若移动状态为飞行状态,则控制移动终端中的无线通信模块的射频处于关闭状态,以关闭移动终端的通信功能;若移动状态为非飞行状态,则控制无线通信模块的射频处于开启状态,以恢复移动终端的通信功能。
在某些实施方案中,在计算机设备检测到移动终端的移动状态为飞行状态的情况下,则控制移动终端中的无线通信模块的射频处于关闭状态,以关闭移动终端的通信功能,使移动终端进入飞行模式。在计算机设备检测到移动终端的移动状态为非飞行状态的情况下,则控制无线通信模块的射频处于开启状态,以恢复移动终端的通信功能,使移动终端退出飞行模式。
在某些实施方案中,如图6所示,计算机设备针对飞机起飞场景对移动终端进行移动状态检测的流程包括:
步骤602,定位模块每隔5秒对移动终端进行一次定位;
步骤604,判断定位模块是否连续10次对移动终端定位失败,若定位模块连续10次对移动终端定位失败,则执行步骤606;若定位模块并不是连续10次对移动终端定位失败,则执行步骤608;
步骤606,将定位次数清零,等待10分钟再重启定位;
步骤608,记录当前定位次数,根据移动终端的平均移动速度匹配目标移动场景。
在某些实施方案中,计算机设备获取由定位模块对移动终端定位得到的移动定位数据,从移动定位数据中提取移动终端的定位移动速度,计算多次定位的定位移动速度的平均值,得到平均移动速度。根据预设的场景速度映射信息,确定与平均移动速度相匹配的目标移动场景。
在某些实施方案中,步骤610,在目标移动场景为飞机起飞场景的情况下,根据移动终端的定位移动速度判断移动终端是否连续15次均处于非飞行状态。若移动终端连续15次均处于非飞行状态,则执行步骤606;若移动终端并不是连续15次均处于非飞行状态,则执行步骤612。
在某些实施方案中,步骤612,判断是否同时满足平均移动速度大于或等于400km/h且当前定位次数大于或等于5。若同时满足平均移动速度大于或等于400km/h且当前定位次数大于或等于5,则执行步骤616。若不同时满足平均移动速度大于或等于400km/h且当前定位次数大于或等于5,则执行步骤614。
在某些实施方案中,步骤614,判断是否同时满足平均移动速度大于或等于350km/h且当前定位次数小于15。若同时满足平均移动速度大于或等于350km/h且当前定位次数小于15,则执行步骤616。若不同时满足平均移动速度大于或等于350km/h且当前定位次数小于15,则执行步骤602。
在某些实施方案中,步骤616,关闭无线通信模块的射频,使移动终端进入飞行模式。
在某些实施方案中,如图7所示,计算机设备针对飞机降落场景对移动终端进行移动状态检测的流程包括:
步骤702,定位模块每隔5秒对移动终端进行一次定位;
步骤704,判断定位模块是否连续10次对移动终端定位失败,若定位模块连续10次对移动终端定位失败,则执行步骤706;若定位模块并不是连续10次对移动终端定位失败,则执行步骤708;
步骤706,将定位次数清零,等待10分钟再重启定位;
步骤708,记录当前定位次数,根据移动终端的平均移动速度匹配目标移动场景。
在某些实施方案中,计算机设备获取由定位模块对移动终端定位得到的移动定位数据,从移动定位数据中提取移动终端的定位移动速度,计算多次定位的定位移动速度的平均值,得到平均移动速度。根据预设的场景速度映射信息,确定与平均移动速度相匹配的目标移动场景。
在某些实施方案中,步骤710,在目标移动场景为飞机降落场景的情况下,根据移动终端的定位移动速度判断移动终端是否连续15次均处于飞行状态。若移动终端连续15次均处于飞行状态,则执行步骤706;若移动终端并不是连续15次均处于飞行状态,则执行步骤712。
在某些实施方案中,步骤712,判断是否同时满足平均移动速度小于或等于30km/h且当前定位次数小于5。若同时满足平均移动速度小于或等于30km/h且当前定位次数小于5,则执行步骤718。若不同时满足平均移动速度小于或等于30km/h且当前定位次数小于5,则执行步骤714。
在某些实施方案中,步骤714,判断是否同时满足平均移动速度小于或等于100km/h且当前定位次数小于10。若同时满足平均移动速度小于或等于100km/h且当前定位次数小于10,则执行步骤718。若不同时满足平均移动速度小于或等于100km/h且当前定位次数小于10,则执行步骤716。
在某些实施方案中,步骤716,判断是否同时满足平均移动速度小于或等于150km/h且当前定位次数小于15。若同时满足平均移动速度小于或等于150km/h且当前定位次数小于15,则执行步骤718。若不同时满足平均移动速度小于或等于150km/h且当前定位次数小于15,则执行步骤702。
在某些实施方案中,步骤718,打开无线通信模块的射频,恢复移动终端的相关业务。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本公开中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
本公开还提供了用于实现本公开的移动状态检测方法的移动状态检测装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个移动状态检测装置实施例中的具体限定可以参见上文中对于移动状态检测方法的限定,在此不再赘述。
如图8所示,本公开提供了移动状态检测装置,包括:数据获取模块802、速度提取模块804、场景匹配模块806和状态检测模块808,其中:
数据获取模块802,配置为获取由定位模块对移动终端定位得到的移动定位数据;定位模块内置于移动终端中;
速度提取模块804,配置为从移动定位数据中提取移动终端的定位移动速度;
场景匹配模块806,配置为根据预设的场景速度映射信息,确定与定位移动速度相匹配的移动场景,得到移动终端所处的目标移动场 景;以及
状态检测模块808,配置为根据目标移动场景确定移动终端的移动状态。
在某些实施方案中,本公开无需增加额外的硬件传感器,而是通过对移动终端内置的定位模块所获取的移动定位数据进行处理,就能够实现移动状态的自动检测,因此能够降低硬件设计复杂度。
在某些实施方案中,移动定位数据是按照预设时间间隔对移动终端进行多次定位得到的;定位移动速度为多次定位的定位移动速度。场景匹配模块806还配置为计算多次定位的定位移动速度的平均移动速度;根据预设的场景速度映射信息,确定与平均移动速度相匹配的目标移动场景。
在某些实施方案中,场景速度映射信息中包括移动速度范围和移动状态之间的对应关系,状态检测模块808包括状态确定单元和进阶检测单元。状态确定单元配置为在目标移动场景为飞行相关场景的情况下,根据移动速度范围和移动状态之间的对应关系,确定连续定位的各个定位移动速度对应的移动状态。进阶检测单元配置为根据连续定位的各个定位移动速度对应的移动状态,进阶检测移动终端是否处于目标移动场景。状态确定单元还配置为根据进阶检测结果确定移动终端的移动状态。
在某些实施方案中,进阶检测单元还配置为在与平均移动速度相匹配的目标移动场景为飞机起飞场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在飞行状态,则判定移动终端处于飞机起飞场景;在与平均移动速度相匹配的目标移动场景为飞机降落场景的情况下,若连续预设个数的定位移动速度对应的移动状态中存在非飞行状态,则判定移动终端处于飞机降落场景。
在某些实施方案中,状态确定单元还配置为若进阶检测到移动终端处于目标移动场景,且平均移动速度和针对移动终端的当前定位次数满足目标移动场景下的飞行条件,则判定移动终端处于飞行状态。
在某些实施方案中,在目标移动场景为飞机起飞场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的起飞速度范围内,且当前定位次数位于预设的起飞定位次数范围内;起飞速度范围根据飞机起飞场景在场景速度映射信息中所对应的移动速度范围确定。
在某些实施方案中,在目标移动场景为飞机降落场景的情况下,目标移动场景下的飞行条件包括:平均移动速度位于预设的降落速度 范围内,且当前定位次数位于预设的降落定位次数范围内;降落速度范围根据飞机降落场景在场景速度映射信息中所匹配的移动速度范围确定。
在某些实施方案中,移动状态检测装置还包括通信控制模块,通信控制模块配置为若移动状态为飞行状态,则控制移动终端中的无线通信模块的射频处于关闭状态,以关闭移动终端的通信功能;若移动状态为非飞行状态,则控制无线通信模块的射频处于开启状态,以恢复移动终端的通信功能。
上述移动状态检测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
本公开提供了计算机设备,该计算机设备可以是服务器,其内部结构图可以如图9所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。在某些实施方案中,该计算机设备的处理器配置为提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库配置为存储与模块配置相关的数据。该计算机设备的网络接口配置为与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种模块配置方法。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本公开的方案相关的部分结构的框图,并不构成对本公开的方案所应用于其上的计算机设备的限定。在某些实施方案中,计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本公开还提供了计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现本公开的移动状态检测方法。
本公开提供了计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本公开的移动状态检测方法。
本公开提供了计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述本公开的移动状态检测方法。
需要说明的是,本公开所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储 的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。本公开所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本公开所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本公开所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本公开记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开的保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开的保护范围应以所附权利要求书为准。

Claims (10)

  1. 移动状态检测方法,包括:
    获取由定位模块对移动终端定位得到的移动定位数据;所述定位模块内置于所述移动终端中;
    从所述移动定位数据中提取所述移动终端的定位移动速度;
    根据预设的场景速度映射信息,确定与所述定位移动速度相匹配的移动场景,得到所述移动终端所处的目标移动场景;以及
    根据所述目标移动场景确定所述移动终端的移动状态。
  2. 如权利要求1所述的移动状态检测方法,其中所述移动定位数据是按照预设时间间隔对所述移动终端进行多次定位得到的;所述定位移动速度为多次定位的定位移动速度;
    所述根据预设的场景速度映射信息,确定与所述定位移动速度相匹配的移动场景,得到所述移动终端所处的目标移动场景,包括:
    计算所述多次定位的定位移动速度的平均移动速度;以及
    根据预设的场景速度映射信息,确定与所述平均移动速度相匹配的目标移动场景。
  3. 如权利要求1或2所述的移动状态检测方法,其中所述场景速度映射信息中包括移动速度范围和移动状态之间的对应关系;
    所述根据所述目标移动场景确定所述移动终端的移动状态包括:
    在所述目标移动场景为飞行相关场景的情况下,根据所述移动速度范围和移动状态之间的对应关系,确定连续定位的各个定位移动速度对应的移动状态;
    根据连续定位的各个定位移动速度对应的移动状态,进阶检测所述移动终端是否处于所述目标移动场景;以及
    根据进阶检测结果确定所述移动终端的移动状态。
  4. 如权利要求3所述的移动状态检测方法,其中所述根据连续定位的各个定位移动速度对应的移动状态,进阶检测所述移动终端是否处于所述目标移动场景包括:
    在与平均移动速度相匹配的目标移动场景为飞机起飞场景的情况下,若所述连续预设个数的定位移动速度对应的移动状态中存在飞行状态,则判定所述移动终端处于所述飞机起飞场景;以及
    在与平均移动速度相匹配的目标移动场景为飞机降落场景的情况 下,若所述连续预设个数的定位移动速度对应的移动状态中存在非飞行状态,则判定所述移动终端处于所述飞机降落场景。
  5. 如权利要求3或4所述的移动状态检测方法,其中所述根据进阶检测结果确定所述移动终端的移动状态包括:
    若进阶检测到所述移动终端处于所述目标移动场景,且所述平均移动速度和针对所述移动终端的当前定位次数满足所述目标移动场景下的飞行条件,则判定所述移动终端处于飞行状态。
  6. 如权利要求1至5中任一权利要求所述的移动状态检测方法,其中在所述目标移动场景为飞机起飞场景的情况下,目标移动场景下的飞行条件包括:所述平均移动速度位于预设的起飞速度范围内,且所述当前定位次数位于预设的起飞定位次数范围内;所述起飞速度范围根据所述飞机起飞场景在所述场景速度映射信息中所对应的移动速度范围确定。
  7. 如权利要求1至5中任一权利要求所述的移动状态检测方法,其中在所述目标移动场景为飞机降落场景的情况下,目标移动场景下的飞行条件包括:所述平均移动速度位于预设的降落速度范围内,且所述当前定位次数位于预设的降落定位次数范围内;所述降落速度范围根据所述飞机降落场景在所述场景速度映射信息中所匹配的移动速度范围确定。
  8. 如权利要求1至7中任一权利要求所述的移动状态检测方法,其还包括:
    若所述移动状态为飞行状态,则控制所述移动终端中的无线通信模块的射频处于关闭状态,以关闭所述移动终端的通信功能;
    若所述移动状态为非飞行状态,则控制所述无线通信模块的射频处于开启状态,以恢复所述移动终端的通信功能。
  9. 移动状态检测装置,包括:
    数据获取模块,配置为获取由定位模块对移动终端定位得到的移动定位数据;所述定位模块内置于所述移动终端中;
    速度提取模块,配置为从所述移动定位数据中提取所述移动终端的定位移动速度;
    场景匹配模块,配置为根据预设的场景速度映射信息,确定与所述定位移动速度相匹配的移动场景,得到所述移动终端所处的目标移动场景;以及
    状态检测模块,配置为根据所述目标移动场景确定所述移动终端的移动状态。
  10. 计算机设备,包括存储器和处理器,其中所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1至8中任一权利要求所述的移动状态检测方法。
PCT/CN2023/111686 2022-09-13 2023-08-08 移动状态检测方法、装置和计算机设备 WO2024055778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211107566.5 2022-09-13
CN202211107566.5A CN115541923A (zh) 2022-09-13 2022-09-13 移动状态检测方法、装置和计算机设备

Publications (1)

Publication Number Publication Date
WO2024055778A1 true WO2024055778A1 (zh) 2024-03-21

Family

ID=84726245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111686 WO2024055778A1 (zh) 2022-09-13 2023-08-08 移动状态检测方法、装置和计算机设备

Country Status (2)

Country Link
CN (1) CN115541923A (zh)
WO (1) WO2024055778A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115541923A (zh) * 2022-09-13 2022-12-30 深圳市广和通无线股份有限公司 移动状态检测方法、装置和计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315056A (ja) * 2001-04-13 2002-10-25 Hitachi Ltd 携帯端末
CN101557433A (zh) * 2008-04-07 2009-10-14 联发科技股份有限公司 自动切换操作情景模式的方法及相关移动装置
CN101888444A (zh) * 2010-04-26 2010-11-17 宇龙计算机通信科技(深圳)有限公司 一种移动终端控制通信功能的方法、系统及移动终端
CN102868967A (zh) * 2011-07-04 2013-01-09 三星电子株式会社 用于改变便携式终端的操作模式的方法及系统
CN104363339A (zh) * 2014-11-07 2015-02-18 惠州Tcl移动通信有限公司 一种基于速度的移动终端模式切换方法及系统
CN105721691A (zh) * 2016-01-29 2016-06-29 努比亚技术有限公司 一种移动终端及其控制飞行模式的方法
CN115541923A (zh) * 2022-09-13 2022-12-30 深圳市广和通无线股份有限公司 移动状态检测方法、装置和计算机设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315056A (ja) * 2001-04-13 2002-10-25 Hitachi Ltd 携帯端末
CN101557433A (zh) * 2008-04-07 2009-10-14 联发科技股份有限公司 自动切换操作情景模式的方法及相关移动装置
CN101888444A (zh) * 2010-04-26 2010-11-17 宇龙计算机通信科技(深圳)有限公司 一种移动终端控制通信功能的方法、系统及移动终端
CN102868967A (zh) * 2011-07-04 2013-01-09 三星电子株式会社 用于改变便携式终端的操作模式的方法及系统
CN104363339A (zh) * 2014-11-07 2015-02-18 惠州Tcl移动通信有限公司 一种基于速度的移动终端模式切换方法及系统
CN105721691A (zh) * 2016-01-29 2016-06-29 努比亚技术有限公司 一种移动终端及其控制飞行模式的方法
CN115541923A (zh) * 2022-09-13 2022-12-30 深圳市广和通无线股份有限公司 移动状态检测方法、装置和计算机设备

Also Published As

Publication number Publication date
CN115541923A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN110830141B (zh) 时间同步方法、系统、存储介质及处理器
US9769634B2 (en) Providing personalized content based on historical interaction with a mobile device
US9749794B2 (en) Scalability and reliability of hardware geo-fencing with failover support
KR102209523B1 (ko) 전자 장치 및 그 측위 방법
WO2024055778A1 (zh) 移动状态检测方法、装置和计算机设备
US9552371B2 (en) Electronic apparatus, information determining server, information determining method, program, and information determining system
US11109340B2 (en) Electronic device and method for determining position
CN111328020B (zh) 基于室内定位系统的业务处理方法和装置
US9661464B2 (en) Matching multiple devices to identify joint movement of the mobile devices
US20160366547A1 (en) Locating devices by correlating time series datasets
US20130122928A1 (en) Systems and methods for identifying and acting upon states and state changes
US20180082477A1 (en) Systems and Methods for Improved Data Integration in Virtual Reality Architectures
CN105865478A (zh) 一种导航信息推送方法和装置、设备
US20220109953A1 (en) Methods and systems for service transfer
US11294465B1 (en) Dynamic interface flow based on device location
CN108700668A (zh) 检测无人机的定位设备的方法、无人机
US10972872B2 (en) Travel compliance detection using body-worn offender monitoring electronic devices
US20210112373A1 (en) Systems and Methods for Mapping Indoor User Movement Using a Combination of Wi-Fi and 60 GHZ Sensing
US20220234740A1 (en) Flight information synchronization using ad hoc networking
WO2019071838A1 (zh) 一种定位方法及设备
US11991597B2 (en) Systems and methods for transportation mode determination using motion
CN111397602A (zh) 一种宽频电磁指纹与组合导航融合的高精度定位方法与设备
US10306053B1 (en) Restricting computing devices used by vehicle operators
US10129702B1 (en) Methods and systems for determining semantic location information
Liu et al. An Outdoor Pedestrian Localization Scheme Fusing PDR and VPR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864512

Country of ref document: EP

Kind code of ref document: A1