WO2024055736A1 - 制氢控制的方法、装置、存储介质和控制器 - Google Patents

制氢控制的方法、装置、存储介质和控制器 Download PDF

Info

Publication number
WO2024055736A1
WO2024055736A1 PCT/CN2023/107013 CN2023107013W WO2024055736A1 WO 2024055736 A1 WO2024055736 A1 WO 2024055736A1 CN 2023107013 W CN2023107013 W CN 2023107013W WO 2024055736 A1 WO2024055736 A1 WO 2024055736A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulating valve
hydrogen production
regulating
opening
production control
Prior art date
Application number
PCT/CN2023/107013
Other languages
English (en)
French (fr)
Inventor
朱琛
Original Assignee
无锡隆基氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡隆基氢能科技有限公司 filed Critical 无锡隆基氢能科技有限公司
Publication of WO2024055736A1 publication Critical patent/WO2024055736A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to the field of hydrogen production control, and specifically, to a method, device, storage medium and controller for hydrogen production control.
  • this application provides a method, device, storage medium and controller for hydrogen production control.
  • this application provides a method for hydrogen production control, which is applied to a controller in a hydrogen production control system.
  • the hydrogen production control system includes a controller and a plurality of positioners connected to the controller.
  • the plurality of positioners are connected correspondingly to a plurality of regulating valves, and are used to control the regulating valves according to the control signals of the controller.
  • the regulating valves are located in the hydrogen and oxygen separators and gas storage in the hydrogen production control system.
  • the gas delivery pipeline between the devices is used to adjust the pressure difference between the hydrogen and oxygen separators;
  • the controller is used to control the opening or closing of the regulating valve.
  • the method includes: obtaining hydrogen production control parameters.
  • the hydrogen production control parameters include hydrogen production current and the opening of the regulating valve opened at the latest moment.
  • the hydrogen production current is The working current of electrolyzed water; controlling the opening or closing of the plurality of regulating valves according to the hydrogen production control parameters to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system.
  • the hydrogen production control parameters include hydrogen production current
  • controlling the opening or closing of the regulating valve according to the hydrogen production control parameters includes: obtaining the hydrogen production current and the rated current of the hydrogen production control system. current proportion, and the number of regulating valves of the plurality of regulating valves; determine one or more preset proportion thresholds according to the number of regulating valves; control the regulating valve according to the current proportion and the preset proportion threshold On or off.
  • determining one or more preset ratio thresholds according to the number of regulating valves includes: when the maximum regulating flows corresponding to the plurality of regulating valves are the same, comparing the number of regulating valves with the preset number The difference is used as the threshold number of the preset proportion threshold; according to the number of regulating valves and the number of thresholds, the one or more preset proportion thresholds are determined, and each preset proportion threshold corresponds to one regulating valve.
  • controlling the opening or closing of the regulating valve according to the current ratio and the preset ratio threshold includes: according to the order of the preset ratio threshold from small to large, when the current ratio is greater than the In the case of a preset proportional threshold, the regulating valve corresponding to the preset proportional threshold is opened.
  • controlling the opening or closing of the regulating valve according to the current ratio and the preset proportion threshold includes: when the maximum regulating flows corresponding to the plurality of regulating valves are different, if the current If the proportion is greater than the preset proportion threshold, determine whether the designated regulating valve is open; when the designated regulating valve is opened, other regulating valves are opened according to the preset regulating valve opening sequence, and the designated regulating valve is closed; The other regulating valves are the regulating valves among the plurality of regulating valves except the designated regulating valve; when the designated regulating valve is closed, the designated regulating valve is opened.
  • the hydrogen production control parameters include the opening of the regulating valve that was opened at the latest moment, and controlling the opening or closing of the regulating valve according to the hydrogen production control parameters includes: obtaining the opening of the regulating valve that was opened at the latest moment. degree; when the maximum regulating flows corresponding to the plurality of regulating valves are the same, the regulating valve is opened according to the opening of the regulating valve opened at the latest moment and the preset regulating valve opening sequence; when the corresponding maximum regulating flows of the plurality of regulating valves are When the maximum regulating flow rate is different, the regulating valve is controlled to open or close according to the opening of the regulating valve recently opened and the status of the designated regulating valve; so The status of the specified regulating valve includes open or closed.
  • the regulating valve is controlled to open or close according to the opening of the regulating valve that was opened at the latest moment and the state of the designated regulating valve. It includes: when the opening of the regulating valve opened at the latest moment is greater than the first preset opening threshold, determining the state of the designated regulating valve; when the state of the designated regulating valve is open, determining according to Preset the opening sequence of the regulating valves, open other regulating valves, and close the designated regulating valve; the other regulating valves include the regulating valves among the plurality of regulating valves except the designated regulating valve; in the designated regulating valve When the valve status is closed, the designated regulating valve is opened.
  • controlling the opening or closing of the regulating valve according to the hydrogen production control parameter includes: closing the regulating valve when the opening of the regulating valve is less than or equal to a second preset opening threshold. ;
  • the second preset opening threshold is smaller than the first preset opening threshold.
  • this application provides a device for hydrogen production control, which is applied to a controller in a hydrogen production control system.
  • the hydrogen production control system includes a controller and a plurality of positioners connected to the controller.
  • the plurality of positioners are connected correspondingly to a plurality of regulating valves, and are used to control the regulating valves according to the control signals of the controller.
  • the regulating valves are located in the hydrogen and oxygen separators and gas storage in the hydrogen production control system.
  • the gas transportation pipeline between the devices is used to adjust the pressure difference between the hydrogen and oxygen separators; the controller is used to control the opening or closing of the regulating valve.
  • the device includes:
  • An acquisition module used to acquire hydrogen production control parameters, where the hydrogen production control parameters include hydrogen production current and the opening of the regulating valve opened at the latest moment, where the hydrogen production current is the working current of electrolyzed water;
  • a control module configured to control the opening or closing of the plurality of regulating valves according to the hydrogen production control parameters to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system.
  • the hydrogen production control parameters include hydrogen production current
  • the control module is used to obtain the current ratio between the hydrogen production current and the rated current of the hydrogen production control system, and the current ratio of the plurality of regulating valves.
  • the number of regulating valves determining one or more preset proportion thresholds according to the number of regulating valves; controlling the opening or closing of the regulating valve according to the current ratio and the preset proportion threshold.
  • control module is configured to use the difference between the number of regulating valves and the preset number as the threshold of the preset proportion threshold when the maximum regulating flows corresponding to the plurality of regulating valves are the same.
  • Quantity determine the one or more preset proportion thresholds according to the number of regulating valves and the number of thresholds, and each preset proportion threshold corresponds to one regulating valve.
  • control module is configured to start the adjustment corresponding to the preset proportion threshold when the current proportion is greater than the preset proportion threshold according to the order from small to large of the preset proportion threshold. valve.
  • control module is configured to determine whether the designated regulating valve is opened if the current ratio is greater than the preset proportion threshold when the maximum regulating flows corresponding to the plurality of regulating valves are different; When the designated regulating valve is opened, other regulating valves are opened according to the preset regulating valve opening sequence, and the designated regulating valve is closed; the other regulating valves are the plurality of regulating valves except the designated regulating valve. regulating valve; when the designated regulating valve is closed, open the designated regulating valve.
  • the hydrogen production control parameters include the opening of the regulating valve opened at the latest moment, and the control module is used to obtain the opening of the regulating valve opened at the latest moment; when the maximum value corresponding to the multiple regulating valves is When the regulating flow rates are the same, the regulating valve is opened according to the opening of the regulating valve opened at the latest moment and the preset regulating valve opening sequence; when the maximum regulating flow rates corresponding to the multiple regulating valves are different, the regulating valve is opened according to the latest moment.
  • the opening degree of the opened regulating valve and the state of the designated regulating valve control the opening or closing of the regulating valve; the state of the designated regulating valve includes opening or closing.
  • control module is configured to determine the status of the designated regulating valve when the opening of the regulating valve opened at the latest moment is greater than the first preset opening threshold; When the status is open, other regulating valves are opened according to the preset regulating valve opening sequence, and the designated regulating valve is closed; the other regulating valves include the plurality of regulating valves except the designated regulating valve. the regulating valve; when the state of the designated regulating valve is closed, open the designated regulating valve.
  • control module is configured to close the regulating valve when the opening of the regulating valve is less than or equal to a second preset opening threshold; the second preset opening threshold is less than the second preset opening threshold.
  • the first preset opening threshold is configured to close the regulating valve when the opening of the regulating valve is less than or equal to a second preset opening threshold; the second preset opening threshold is less than the second preset opening threshold. The first preset opening threshold.
  • the present application provides a non-transitory computer-readable storage medium on which a computer program is stored, which implements the steps of the above method when executed by a processor.
  • this application provides a controller including:
  • a processor configured to execute the computer program in the memory to implement the above method step.
  • the hydrogen production control parameters include the hydrogen production current and the opening of the regulating valve opened at the latest moment, the hydrogen production current is the working current of electrolyzed water; according to the hydrogen production
  • the control parameters control the opening or closing of the plurality of regulating valves to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system. In this way, controlling the opening or closing of the regulating valve through hydrogen production parameters will help optimize the control signal, reduce the pressure difference between the hydrogen and oxygen separators, ensure production safety, and improve the efficiency of the hydrogen production system.
  • Figure 1 is a schematic diagram of a hydrogen production control system shown in this application according to an exemplary embodiment
  • Figure 2 is a flow chart of a hydrogen production control method illustrated in this application according to an exemplary embodiment
  • Figure 3 is a device block diagram of a hydrogen production control device shown in this application according to an exemplary embodiment
  • Figure 4 is a block diagram of a controller shown in this application according to an exemplary embodiment.
  • FIG. 1 is a production process according to an exemplary embodiment of the present application.
  • the hydrogen control system includes: oxygen separator 1, hydrogen separator 2, oxygen side differential pressure transmitter 3, hydrogen side differential pressure transmitter 4, controller 5, positioner 6, positioner 7, regulating valve 8 and regulating valve 9; among them, oxygen separator 1 and hydrogen separator 2 are used to obtain oxygen and hydrogen respectively, and store the obtained oxygen and hydrogen in corresponding storage devices respectively; oxygen side differential pressure transmitter 3 and hydrogen side
  • the differential pressure transmitter 4 is used to obtain the pressure difference of the oxygen separator 1 and the hydrogen separator 2 respectively;
  • ⁇ P represents the pressure difference
  • represents the density of the electrolyte
  • g represents the gravity acceleration
  • ⁇ h represents the liquid level
  • the liquid levels of the oxygen separator 1 and the hydrogen separator 2 are respectively determined according to the above formula, and then control signals are sent to the positioner 5 and the positioner 6.
  • the positioner 5 and the positioner 6 are used to receive the controller. 5, and converts the control signal into mechanical action for controlling the valves of the regulating valve 8 and the regulating valve 9.
  • a specified input signal type needs to be passed through the positioner of the regulating valve.
  • the positioner accepts voltage signals of different sizes. According to the size of the signal, the positioner outputs the regulating valve valve opening.
  • control of the regulating valve requires a variety of specified input signal types, and the control signals are complex, resulting in a high probability of signal deviation, and the control signals are too complex, which is not conducive to the control of the hydrogen and oxygen separators.
  • the present application provides a method, device, storage medium and controller for hydrogen production control, which are applied to the controller in the hydrogen production control system.
  • the hydrogen production control system includes a controller, and a controller with the controller.
  • a plurality of connected positioners, the plurality of positioners are correspondingly connected to a plurality of regulating valves, and are used to control the regulating valve according to the control signal of the controller.
  • the regulating valve is located at the hydrogen and oxygen in the hydrogen production control system.
  • the gas transmission pipeline between the separator and the gas storage device is used to adjust the pressure difference between the hydrogen and oxygen separators; the controller is used to control the opening or closing of the regulating valve.
  • the method includes: obtaining hydrogen production control parameters,
  • the hydrogen production control parameters include the hydrogen production current and the opening of the regulating valve that was opened at the latest moment.
  • the hydrogen production current is the working current of electrolyzed water; the plurality of regulating valves are controlled to open or close according to the hydrogen production control parameters to adjust the The pressure difference between the hydrogen and oxygen separators in the hydrogen production control system. so, Controlling the opening or closing of the regulating valve through hydrogen production parameters can help optimize the control signal, reduce the pressure difference between the hydrogen and oxygen separators, ensure production safety, and improve the efficiency of the hydrogen production system.
  • FIG. 2 is a hydrogen production control method illustrated in this application according to an exemplary embodiment. As shown in Figure 2, this method is applied to a controller in a hydrogen production control system.
  • the hydrogen production control system includes a controller, and A plurality of positioners connected to the controller, the plurality of positioners are correspondingly connected to a plurality of regulating valves, and are used to control the regulating valves according to the control signals of the controller.
  • the regulating valves are located in the hydrogen production control system.
  • the gas transmission pipeline between the hydrogen and oxygen separators and the gas storage device is used to adjust the pressure difference between the hydrogen and oxygen separators; the controller is used to control the opening or closing of the regulating valve.
  • the method includes:
  • the hydrogen production control parameters include hydrogen production current and the opening of the recently opened regulating valve.
  • the hydrogen production current is the working current of electrolyzed water.
  • the hydrogen production control current may be the current operating current of the hydrogen production control system obtained through a preset current acquisition device.
  • the current acquisition device may be a current sensor or other device, and the opening of the regulating valve may be adjusted according to the The corresponding positioner of the valve is determined.
  • the regulating valve can be controlled by the hydrogen production current of the electrolyzed water in the system; then the hydrogen production control
  • the parameters include a hydrogen production current, through which the plurality of regulating valves are controlled to open or close.
  • the system may include three regulating valves.
  • the system starts to produce hydrogen, at least one regulating valve will be opened.
  • the three regulating valves will open.
  • the valve will be fully opened.
  • the first opened regulating valve is regarded as the designated regulating valve, and then the valve can be opened according to the actual hydrogen production current.
  • the number of control valves is set to 2 preset proportional thresholds, respectively For the two control valves other than the designated control valve, the two control valves other than the designated control valve are controlled to open or close based on the current ratio between the actual hydrogen production current of the system and the rated current.
  • the difference between the number of regulating valves and the preset number is used as the threshold number of the preset proportion threshold; according to the number of regulating valves and The threshold number determines the one or more preset proportion thresholds, and each preset proportion threshold corresponds to a regulating valve. According to the order of the preset proportion thresholds from small to large, when the current proportion is greater than the preset proportion threshold, the regulating valve corresponding to the preset proportion threshold is opened.
  • regulating valve 1 there are three regulating valves in the system, marked as regulating valve 1, regulating valve 2 and regulating valve 3.
  • regulating valve 1 When regulating valve 1 is set as the designated regulating valve, the system starts to produce hydrogen. Open the regulating valve 1 below. Since there is 1 designated regulating valve, the preset quantity is 1.
  • the 2 preset proportion thresholds can be determined, and the maximum regulating flow corresponding to the 3 regulating valves is the same. Therefore, it can be determined
  • the two preset proportion thresholds are 33% and 67% respectively.
  • the corresponding preset proportion threshold of the regulating valve 2 is 33%.
  • the corresponding preset proportion threshold of the regulating valve 3 is 67%.
  • the regulating valve 1 and the regulating valve 2 are set as designated regulating valves, there are two designated regulating valves, that is, the regulating valve 1 and the regulating valve 2 are opened at the same time when the system starts to produce hydrogen, Then the preset number is 2, and 1 preset proportion threshold can be determined, and the maximum adjustment flow corresponding to the three regulating valves is the same, then it can be determined that the preset proportion threshold corresponding to the regulating valve 3 is 67%, and at this current ratio When the current ratio is less than 67%, the regulating valve 1 and the regulating valve 2 are opened. When the current ratio is greater than or equal to 67%, the three regulating valves are opened.
  • regulating valve in actual production, there is generally one designated regulating valve. Therefore, the subsequent embodiments of this application take one designated regulating valve as an example. In the case of multiple designated regulating valves, refer to the above example for simple modifications. This application does not Repeat.
  • a strategy of setting a larger preset proportion threshold can be adopted. As shown above, there are 3 regulating valves and 1 designated regulating valve.
  • the preset proportion threshold can set the two proportion thresholds to 35% and 68% respectively to avoid frequent opening and closing of the regulating valve caused by parameter jumps.
  • the opening or closing of the regulating valve is controlled by the current proportion, which reduces the number of control signals. It is beneficial to ensure production safety and improve the working efficiency of the hydrogen production system.
  • the designated regulating valve when the maximum regulating flows corresponding to the plurality of regulating valves are different, if the current ratio is greater than the preset proportion threshold, it is determined whether the designated regulating valve is opened; in the case that the designated regulating valve is opened , according to the preset regulating valve opening sequence, open other regulating valves and close the designated regulating valve; the other regulating valves are the regulating valves other than the designated regulating valve among the multiple regulating valves; when the designated regulating valve is closed , open the designated regulating valve.
  • the system has 1 small regulating valve and 2 large regulating valves.
  • the maximum regulating flow of the large regulating valve is twice that of the small regulating valve.
  • the small regulating valve is used as the designated regulating valve.
  • the two large regulating valves are respectively The first open first regulating valve and the second open second regulating valve; when the system starts to produce hydrogen, the small regulating valve is opened, and when the current ratio reaches the first preset ratio threshold , close the small regulating valve and open the first regulating valve; when the current ratio reaches the second preset proportion threshold, open the small regulating valve; when the current ratio reaches the third preset proportion threshold, Close the small regulating valve and open the second regulating valve; when the current ratio reaches the fourth preset proportion threshold, open the small regulating valve.
  • the number of preset proportional thresholds is twice the difference between the number of regulating valves minus the number of specified regulating valves, that is, 4.
  • the preset proportional threshold Let the proportion thresholds be 22%, 42%, 62% and 82% respectively.
  • the opening or closing of the regulating valve can be controlled by the regulating valve opening.
  • the hydrogen production control parameters include the opening degree of the recently opened regulating valve.
  • the opening degree of the recently opened regulating valve can be obtained, and the opening or closing of the regulating valve in the system is controlled by the opening degree of the recently opened regulating valve. .
  • the regulating valve is opened according to the opening of the regulating valve opened at the latest moment and the preset regulating valve opening sequence.
  • the next regulating valve is opened according to the preset regulating valve opening sequence.
  • the first preset opening may be 90%, and the opening of the regulating valve opened at the latest moment is greater than In 90% of cases, the next regulating valve can be opened according to the preset regulating valve opening sequence.
  • the regulating valve is controlled by the regulating valve opening, and the control logic is simple and clear, which is beneficial to ensuring the stability and safety of the system.
  • the regulating valve when the maximum regulating flows corresponding to the plurality of regulating valves are different, the regulating valve is controlled to open or close according to the opening of the regulating valve that was recently opened and the state of the designated regulating valve; the Specifies the status of the regulating valve, including open or closed.
  • the state of the designated regulating valve is determined; when the state of the designated regulating valve is open, the state of the designated regulating valve is determined according to the preset
  • the regulating valve opening sequence opens other regulating valves and closes the designated regulating valve; the other regulating valves include the regulating valves among the plurality of regulating valves except the designated regulating valve; when the status of the designated regulating valve is closed , open the designated regulating valve.
  • the maximum regulating flow of the small regulating valve can be between 1/4 and 1/2 of the large regulating valve to ensure that the small regulating valve When the target control accuracy can be achieved, avoid frequent opening and closing.
  • the designated regulating valve is opened.
  • the opening of the designated regulating valve is greater than the first preset opening threshold, the first sequence of regulating valves is opened according to the preset regulating valve opening sequence.
  • the regulating valve when the opening of the regulating valve is less than or equal to the second preset opening threshold, the regulating valve is closed; the second preset opening threshold is less than the first preset opening threshold.
  • the second preset opening threshold can be between 10% and 20%, such as 10%, 13%, 15%, 17% or 20%.
  • the regulating valve at the latest moment is less than or When it is equal to the second preset opening threshold, the regulating valve is closed.
  • the small regulating valve is closed; when the opening of the large regulating valve When it is less than or equal to the second preset opening threshold, the large regulating valve is closed and the small regulating valve serving as the designated regulating valve is opened.
  • the hydrogen production control parameters include the hydrogen production current and the opening of the regulating valve opened at the latest moment.
  • the hydrogen production current is the working current of the electrolyzed water; the hydrogen production control parameters are controlled according to the hydrogen production control parameters.
  • Multiple regulating valves are opened or closed to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system. In this way, controlling the opening or closing of the regulating valve through hydrogen production parameters will help optimize the control signal, reduce the pressure difference between the hydrogen and oxygen separators, ensure production safety, and improve the efficiency of the hydrogen production system.
  • FIG. 3 is a hydrogen production control device shown in this application according to an exemplary embodiment. As shown in Figure 3, the device is applied to a controller in a hydrogen production control system.
  • the hydrogen production control system includes a controller, and A plurality of positioners connected to the controller, the plurality of positioners are correspondingly connected to a plurality of regulating valves, and are used to control the regulating valves according to the control signals of the controller.
  • the regulating valves are located in the hydrogen production control system.
  • the gas transmission pipeline between the hydrogen and oxygen separators and the gas storage device is used to adjust the pressure difference between the hydrogen and oxygen separators; the controller is used to control the opening or closing of the regulating valve.
  • the device includes:
  • the acquisition module 301 is used to obtain the hydrogen production control parameters, which include the hydrogen production current and the opening of the regulating valve opened at the latest moment.
  • the hydrogen production current is the working current of electrolyzed water;
  • the control module 302 is used to control the opening or closing of the plurality of regulating valves according to the hydrogen production control parameters to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system.
  • the hydrogen production control parameters include hydrogen production current
  • the control module 302 is used to obtain the current ratio between the hydrogen production current and the rated current of the hydrogen production control system, and the number of regulating valves of the plurality of regulating valves;
  • One or more preset proportional thresholds are determined based on the number of regulating valves; and the regulating valve is controlled to open or close based on the current ratio and the preset proportional threshold.
  • control module 302 is configured to use the difference between the number of regulating valves and the preset number as the threshold number of the preset proportion threshold when the maximum regulating flows corresponding to the plurality of regulating valves are the same; according to The number of regulating valves and the number of thresholds determine the one or more preset proportional thresholds, and each preset proportional threshold corresponds to one regulating valve.
  • control module 302 is configured to open the regulating valve corresponding to the preset proportion threshold when the current ratio is greater than the preset proportion threshold according to the order of the preset proportion threshold from small to large.
  • control module 302 is configured to determine whether the designated regulating valve is opened if the current ratio is greater than the preset proportion threshold when the maximum regulating flows corresponding to the multiple regulating valves are different; When the designated regulating valve is open, other regulating valves are opened according to the preset regulating valve opening sequence, and the designated regulating valve is closed; the other regulating valves are the regulating valves among the multiple regulating valves except the designated regulating valve. ; When the designated regulating valve is closed, open the designated regulating valve.
  • the hydrogen production control parameters include the opening of the most recently opened regulating valve.
  • the control module 302 is used to obtain the opening of the most recently opened regulating valve; when the corresponding maximum regulating flows of the multiple regulating valves are the same
  • the regulating valve is opened according to the opening of the regulating valve opened at the latest moment and the preset regulating valve opening sequence; when the maximum regulating flow rates corresponding to the multiple regulating valves are different, the regulating valve is opened according to the regulating valve opened at the latest moment.
  • the opening degree and the state of the designated regulating valve control the opening or closing of the regulating valve; the state of the designated regulating valve includes opening or closing.
  • control module 302 is configured to determine the state of the designated regulating valve when the opening of the regulating valve opened at the latest moment is greater than the first preset opening threshold; when the state of the designated regulating valve is When open, follow the preset control valve opening sequence to open other control valves and close the designated control valve; the other control valves include the control valves among the multiple control valves except the designated control valve; in the designated When the status of the regulating valve is closed, open the designated regulating valve.
  • control module 302 is configured to close the regulating valve when the opening of the regulating valve is less than or equal to a second preset opening threshold; the second preset opening threshold is less than the first preset opening. Set the opening threshold.
  • the hydrogen production control parameters include the hydrogen production current and the opening of the regulating valve opened at the latest moment.
  • the hydrogen production current is the working current of the electrolyzed water; the hydrogen production control parameters are controlled according to the hydrogen production control parameters.
  • Multiple regulating valves are opened or closed to adjust the pressure difference of the hydrogen and oxygen separators in the hydrogen production control system. In this way, controlling the opening or closing of the regulating valve through hydrogen production parameters will help optimize the control signal, reduce the pressure difference between the hydrogen and oxygen separators, ensure production safety, and improve the efficiency of the hydrogen production system.
  • FIG. 4 is a block diagram of a controller 400 according to an exemplary embodiment.
  • the controller 400 may include: a processor 401 and a memory 402 .
  • the controller 400 may also include one or more of a multimedia component 403, an input/output (I/O) interface 404, and a communication component 405.
  • the processor 401 is used to control the overall operation of the controller 400 to complete all or part of the steps in the above hydrogen production control method.
  • the memory 402 is used to store various types of data to support operations on the controller 400. These data may include, for example, instructions for any application program or method operating on the controller 400, as well as application program-related data. For example, contact data, messages sent and received, pictures, audios, videos, etc.
  • the memory 402 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, SRAM for short), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM for short), Programmable Read-Only Memory (Programmable Read-Only Memory for short), read-only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • Multimedia components 403 may include screen and audio components.
  • the screen may be a touch screen, for example, and the audio component is used to output and/or input audio signals.
  • the audio component may include a microphone for receiving external audio signals.
  • the received audio signals may be further stored in memory 402 or sent via communication component 405 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the I/O interface 404 provides an interface between the processor 401 and other interface modules.
  • the other interface modules may be keyboards, mice, buttons, etc. These buttons can be virtual buttons or physical buttons.
  • the communication component 405 is used for wired or wireless communication between the controller 400 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them The combination is not limited here. Therefore, the corresponding communication component 405 may include: Wi-Fi module, Bluetooth module, NFC module, etc.
  • the controller 400 may be configured by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), or Digital Signal Processors (DSPs). Signal Processing Device (DSPD for short), Programmable Logic Device (PLD for short), Field Programmable Gate Array (FPGA for short), controller, microcontroller, microprocessor or other electronic components Implement a method for performing the above hydrogen production control.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPs Digital Signal Processors
  • DSPs Digital Signal Processors
  • DSPs Digital Signal Processors
  • DSPD Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a computer-readable storage medium including program instructions is also provided.
  • the program instructions are executed by a processor, the steps of the method for controlling hydrogen production are implemented.
  • the computer-readable storage medium may be the above-mentioned memory 402 including program instructions, and the above-mentioned program instructions may be executed by the processor 401 of the controller 400 to complete the above-mentioned hydrogen production control method.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the hydrogen production control method.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种制氢控制的方法、装置、存储介质和应用于制氢控制系统中的控制器,该制氢控制系统包括控制器,以及与该控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,该调节阀位于该制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节该氢氧分离器之间的压差;该控制器用于控制调节阀的开启或者关闭,该方法包括:获取制氢控制参数,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流;根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。

Description

制氢控制的方法、装置、存储介质和控制器
相关申请的交叉引用
本公开要求在2022年9月14日提交中国专利局、申请号为202211117622.3、名称为“制氢控制的方法、装置、存储介质和控制器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及制氢控制的领域,具体地,涉及一种制氢控制的方法、装置、存储介质和控制器。
背景技术
重视新能源已成为全球多数国家的发展共识,作为新能源的载体之一。氢能是一种清洁高效的能源,相比其它能源,其能量密度是最高的。因此,推动新能源制氢必然成为未来的一种重要的储能措施。
目前技术手段成熟,而且能适应大规模制氢的方法是碱性电解水制氢。但是新能源制氢受到季节和气候的影响波动较大,并且新能源制氢是多台电解槽组成,设备阵列的形式并联运行,在电源系统波动的时候部分设备会计划性停机或者启动,那么产气量就会发生变化,为了保障氢氧分离器在产气量发生变化的情况下保持压差平衡,因此就需要一套能够调节氢氧分离系统压力的控制策略。
发明内容
为了解决上述问题,本申请提供了一种制氢控制的方法、装置、存储介质和控制器。
第一方面,本申请提供了一种制氢控制的方法,应用于制氢控制系统中的控制器,所述制氢控制系统包括控制器,以及与所述控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,所述调节阀位于所述制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节所述氢氧分离器之间的压差;所 述控制器用于控制调节阀的开启或者关闭,所述方法包括:获取制氢控制参数,所述制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,所述制氢电流为电解水的工作电流;根据所述制氢控制参数控制所述多个调节阀开启或者关闭,以调节所述制氢控制系统中氢氧分离器的压差。
可选的,所述制氢控制参数包括制氢电流,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:获取所述制氢电流和所述制氢控制系统的额定电流的电流比例,以及所述多个调节阀的调节阀数量;根据所述调节阀数量确定一个或者多个预设比例阈值;根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭。
可选的,所述根据所述调节阀数量确定一个或者多个预设比例阈值包括:在所述多个调节阀对应的最大调节流量相同的情况下,将所述调节阀数量与预设数量的差值作为所述预设比例阈值的阈值数量;根据所述调节阀数量和所述阈值数量,确定所述一个或者多个预设比例阈值,每个预设比例阈值对应一个调节阀。
可选的,所述根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭包括:根据所述预设比例阈值从小到大的顺序,在所述电流比例大于所述预设比例阈值的情况下,开启所述预设比例阈值对应的调节阀。
可选的,所述根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭包括:在所述多个调节阀对应的最大调节流量不同的情况下,若所述电流比例大于所述预设比例阈值,确定指定调节阀是否开启;在所述指定调节阀开启的情况下,按照预设调节阀开启顺序,开启其他调节阀,并关闭所述指定调节阀;所述其他调节阀为所述多个调节阀中除所述指定调节阀外的调节阀;在所述指定调节阀关闭的情况下,开启所述指定调节阀。
可选的,所述制氢控制参数包括最近时刻开启的调节阀开度,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:获取所述最近时刻开启的调节阀的开度;在所述多个调节阀对应的最大调节流量相同的情况下,根据所述最近时刻开启的调节阀开度和预设调节阀开启顺序,开启调节阀;在所述多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的所述调节阀的开度和指定调节阀的状态,控制所述调节阀开启或者关闭;所 述指定调节阀的状态包括开启或者关闭。
可选的,所述在所述多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的所述调节阀的开度和指定调节阀的状态,控制所述调节阀开启或者关闭包括:在最近时刻开启的所述调节阀的开度大于第一预设开度阈值的情况下,确定所述指定调节阀的状态;在所述指定调节阀的状态为开启的情况下,按照预设调节阀开启顺序,开启其它调节阀,并关闭所述指定调节阀;所述其它调节阀包括所述多个调节阀中除所述指定调节阀之外的调节阀;在所述指定调节阀的状态为关闭的情况下,开启所述指定调节阀。
可选的,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:在所述调节阀的开度小于或者等于第二预设开度阈值的情况下,关闭所述调节阀;所述第二预设开度阈值小于所述第一预设开度阈值。
第二方面,本申请提供了一种制氢控制的装置,应用于制氢控制系统中的控制器,所述制氢控制系统包括控制器,以及与所述控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,所述调节阀位于所述制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节所述氢氧分离器之间的压差;所述控制器用于控制调节阀的开启或者关闭,所述装置包括:
获取模块,用于获取制氢控制参数,所述制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,所述制氢电流为电解水的工作电流;
控制模块,用于根据所述制氢控制参数控制所述多个调节阀开启或者关闭,以调节所述制氢控制系统中氢氧分离器的压差。
可选的,所述制氢控制参数包括制氢电流,所述控制模块,用于获取所述制氢电流和所述制氢控制系统的额定电流的电流比例,以及所述多个调节阀的调节阀数量;根据所述调节阀数量确定一个或者多个预设比例阈值;根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭。
可选的,所述控制模块,用于在所述多个调节阀对应的最大调节流量相同的情况下,将所述调节阀数量与预设数量的差值作为所述预设比例阈值的阈值数量;根据所述调节阀数量和所述阈值数量,确定所述一个或者多个预设比例阈值,每个预设比例阈值对应一个调节阀。
可选的,所述控制模块,用于根据所述预设比例阈值从小到大的顺序,在所述电流比例大于所述预设比例阈值的情况下,开启所述预设比例阈值对应的调节阀。
可选的,所述控制模块,用于在所述多个调节阀对应的最大调节流量不同的情况下,若所述电流比例大于所述预设比例阈值,确定指定调节阀是否开启;在所述指定调节阀开启的情况下,按照预设调节阀开启顺序,开启其他调节阀,并关闭所述指定调节阀;所述其他调节阀为所述多个调节阀中除所述指定调节阀外的调节阀;在所述指定调节阀关闭的情况下,开启所述指定调节阀。
可选的,所述制氢控制参数包括最近时刻开启的调节阀开度,所述控制模块,用于获取所述最近时刻开启的调节阀的开度;在所述多个调节阀对应的最大调节流量相同的情况下,根据所述最近时刻开启的调节阀开度和预设调节阀开启顺序,开启调节阀;在所述多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的所述调节阀的开度和指定调节阀的状态,控制所述调节阀开启或者关闭;所述指定调节阀的状态包括开启或者关闭。
可选的,所述控制模块,用于在最近时刻开启的所述调节阀的开度大于第一预设开度阈值的情况下,确定所述指定调节阀的状态;在所述指定调节阀的状态为开启的情况下,按照预设调节阀开启顺序,开启其它调节阀,并关闭所述指定调节阀;所述其它调节阀包括所述多个调节阀中除所述指定调节阀之外的调节阀;在所述指定调节阀的状态为关闭的情况下,开启所述指定调节阀。
可选的,所述控制模块,用于在所述调节阀的开度小于或者等于第二预设开度阈值的情况下,关闭所述调节阀;所述第二预设开度阈值小于所述第一预设开度阈值。
第三方面,本申请提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。
第四方面,本申请提供了一种控制器,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现上述方法的 步骤。
采用上述技术方案,通过获取制氢控制参数,所述制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,所述制氢电流为电解水的工作电流;根据所述制氢控制参数控制所述多个调节阀开启或者关闭,以调节所述制氢控制系统中氢氧分离器的压差。这样,通过制氢参数控制调节阀的开启或者关闭,有利于优化控制信号,减小氢氧分离器之间的压差,保障生产安全,提高制氢系统的工作效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本申请根据一示例性实施例示出的一种制氢控制的系统示意图;
图2是本申请根据一示例性实施例示出的一种制氢控制的方法流程图;
图3是本申请根据一示例性实施例示出的一种制氢控制的装置框图;
图4是本申请根据一示例性实施例示出的一种控制器的框图。
附图标记:
1-氧分离器 2-氢分离器 3-氧侧差压变送器 4-氢侧差压变送器 5-控制器 6-定位器 7-定位器 8-调节阀 9-调节阀。
具体实施例
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要说明的是,本公开中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
首先对本公开的应用场景进行说明,本公开应用于制氢控制的场景下,在该场景下,如图1所示,图1是本申请根据一示例性实施例示出的一种制 氢控制的系统,包括:氧分离器1、氢分离器2、氧侧差压变送器3、氢侧差压变送器4、控制器5、定位器6、定位器7、调节阀8和调节阀9;其中,氧分离器1和氢分离器2分别用于获取氧气和氢气,并将获取的氧气和氢气分别存储在对应的存储设备;氧侧差压变送器3和氢侧差压变送器4分别用于获取氧分离器1的压强差和氢分离器2的压强差;控制器5用于通过该氧侧差压变送器3和氢侧差压变送器4获取该氧分离器1的压强差和该氢分离器2的压强差,并通过该两个压强差,根据以下公式分别确定氧分离器1和氢分离器2中电解液的液位:
△P=ρg△h
其中,△P表征压强差,ρ表征电解液的密度,g表征重力加速度,△h表征液位;
根据上述公式分别确定该氧分离器1和该氢分离器2的液位高度,再向该定位器5和定位器6发送控制信号,该定位器5和该定位器6用于接收该控制器5的控制信号,并将该控制信号转换为机械动作,用于控制该调节阀8和调节阀9的阀门。在相关技术中,为了调整氢氧分离器之间的压差,需要通过调节阀的定位器需要指定的输入信号类型,定位器接受不同大小电压信号,根据信号的大小不同,定位器输出调节阀的阀门开度。但是现有的相关技术中,对调节阀的控制需要多种指定的输入信号类型,控制信号复杂,导致可能出现信号偏差的概率较大,且控制信号过于复杂,不利于对氢氧分离器之间差压调节的快速反应。
为了解决上述问题,本申请提供了一种制氢控制的方法、装置、存储介质和控制器,应用于制氢控制系统中的控制器,该制氢控制系统包括控制器,以及与该控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,该调节阀位于该制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节该氢氧分离器之间的压差;该控制器用于控制调节阀的开启或者关闭,该方法包括:获取制氢控制参数,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流;根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。这样, 通过制氢参数控制调节阀的开启或者关闭,有利于优化控制信号,减小氢氧分离器之间的压差,保障生产安全,提高制氢系统的工作效率。
下面结合具体地实施例对本申请进行说明。
图2是本申请根据一示例性实施例示出的一种制氢控制的方法,如图2所示,该方法应用于制氢控制系统中的控制器,该制氢控制系统包括控制器,以及与该控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,该调节阀位于该制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节该氢氧分离器之间的压差;该控制器用于控制调节阀的开启或者关闭,该方法包括:
S101、获取制氢控制参数。
其中,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流。
示例地,该制氢控制电流可以是通过预设的电流获取设备获取的该制氢控制系统的当前工作电流,该电流获取设备可以是电流传感器等设备,该调节阀的开度可以根据该调节阀对应的定位器确定。
S102、根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。
在一种可能的实现方式中,由于该系统中氢分离器和氧分离器的气压取决于电解水的产气量,因此可以通过该系统电解水的制氢电流控制调节阀;则该制氢控制参数包括制氢电流,通过该制氢电流控制该多个调节阀的开启或者关闭。
示例地,获取该制氢电流和该制氢控制系统的额定电流的电流比例,以及该多个调节阀的调节阀数量;根据该调节阀数量确定一个或者多个预设比例阈值;根据该电流比例和该预设比例阈值,控制该调节阀开启或者关闭。
例如,该系统可以包括3个调节阀,在该系统开始进行制氢工作的情况下,会至少开启1个调节阀,而该系统以额定电流进行制氢工作的情况下,该3个调节阀的阀门会完全开启,在该系统以不同的实际制氢电流工作的情况下,所需要开启的阀门可能也会不同,因此,将该第一个开启的调节阀作为指定调节阀,然后可以根据该调节阀的数量设置2个预设比例阈值,分别 对应该指定调节阀外的2个调节阀,根据该系统的实际制氢电流和该额定电流的电流比例,控制该制定调节阀外的2个调节阀开启或者关闭。
在一些实施例中,在该多个调节阀对应的最大调节流量相同的情况下,将该调节阀数量与预设数量的差值作为该预设比例阈值的阈值数量;根据该调节阀数量和该阈值数量,确定该一个或者多个预设比例阈值,每个预设比例阈值对应一个调节阀。根据该预设比例阈值从小到大的顺序,在该电流比例大于该预设比例阈值的情况下,开启该预设比例阈值对应的调节阀。
如上述示例,该系统存在3个调节阀,记为调节阀1,调节阀2以及调节阀3,在设置该调节阀1为指定调节阀的情况下,在该系统开始进行制氢工作的情况下开启调节阀1,由于该指定调节阀为1个,因此该预设数量为1,可以确定该2个预设比例阈值,且该3个调节阀对应的最大调节流量相同,因此,可以确定该2个预设比例阈值分别为33%和67%,该调节阀2对应预设比例阈值为33%,该调节阀3对应预设比例阈值为67%,,在该电流比例小于或等于33%的情况下,只开启调节阀1,在该电流比例大于33%,且小于或等于67%的情况下,开启调节阀1和调节阀2,该电流比例大于67%的情况下,开启3个调节阀。在设置该调节阀1和调节阀2为指定调节阀的情况下,该指定调节阀为2个,即该调节阀1和该调节阀2在该系统开始进行制氢工作的情况下同时开启,则预设数量为2,可以确定1个预设比例阈值,且该3个调节阀对应的最大调节流量相同,则可以确定该调节阀3对应的预设比例阈值为67%,在该电流比例小于67%的情况下,开启该调节阀1和调节阀2,电流比例大于或等于67%的情况下,开启3个调节阀。
需要说明的是,实际生产中该指定调节阀一般情况下为1个,因此本申请后续实施例以1个指定调节阀为例,多个指定调节阀的情况参照上述示例简单变型,本申请不在赘述。另外,由于实际生产中存在参数跳变的情况,为了防止控制调节阀的制氢参数不稳定,因此可以采用预设比例阈值偏大的策略,以上述存在3个调节阀,1个指定调节阀为例,预设比例阈值可以将该2个比例阈值分别设置为35%和68%,以避免参数跳变导致的调节阀的频繁开启关闭。
这样通过电流比例控制调节阀的开启或关闭,减少了控制信号的数量, 有利于保障生产安全,提高制氢系统的工作效率。
在另一些实施例中,在该多个调节阀对应的最大调节流量不同的情况下,若该电流比例大于该预设比例阈值,确定指定调节阀是否开启;在该指定调节阀开启的情况下,按照预设调节阀开启顺序,开启其他调节阀,并关闭该指定调节阀;该其他调节阀为该多个调节阀中除该指定调节阀外的调节阀;在该指定调节阀关闭的情况下,开启该指定调节阀。
例如,该系统存在1个小调节阀和2个大调节阀,该大调节阀的最大调节流量是小调节阀的2倍,将该小调节阀作为指定调节阀,2个大调节阀分别为第一个开启的第一调节阀和第二个开启的第二调节阀;在该系统开始制氢的情况下,开启该小调节阀,并在电流比例达到第一个预设比例阈值的情况下,关闭小调节阀,开启第一调节阀;在该电流比例达到第二个预设比例阈值的情况下,开启小调节阀;在该电流比例达到第三个预设比例阈值的情况下,关闭小调节阀,开启第二调节阀;在电流比例达到第四个预设比例阈值的情况下,开启小调节阀。根据本示例调节阀的控制模式,可以得到该预设比例阈值的数量为调节阀数量减去指定调节阀数量之差的两倍,即4个,采用预设比例阈值偏大的策略,该预设比例阈值分别为22%、42%、62%和82%。
这样,通过设置小调节阀作为指定调节阀,通过开启或者关闭该小调节阀,提高该系统调节压差的精度,有利于提高生产效率。
在另一种可能的实现方式中,由于该系统中氢分离器和氧分离器的气压也取决于调节阀的阀门开度,因此,可以通过该调节阀开度控制调节阀的开启或者关闭。
示例地,该制氢控制参数包括最近时刻开启的调节阀开度,可以获取该最近时刻开启的调节阀的开度,通过最近开启的调节阀的开度控制该系统中调节阀的开启或者关闭。
在一些实施例中,在该多个调节阀对应的最大调节流量相同的情况下,根据该最近时刻开启的调节阀开度和预设调节阀开启顺序,开启调节阀。
示例地,在该最近时刻开启的调节阀的开度大于第一预设开度的情况下,按照预设调节阀开启顺序开启下一个调节阀。
例如,该第一预设开度可以是90%,在最近时刻开启的调节阀开度大于 90%的情况下,可以按照预设调节阀开启顺序,开启下一个调节阀。
这样,通过调节阀开度控制调节阀,控制逻辑简单明确,有利于保障系统的稳定性和安全性。
在另一些实施例中,在该多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的该调节阀的开度和指定调节阀的状态,控制该调节阀开启或者关闭;该指定调节阀的状态包括开启或者关闭。
示例地,在最近时刻开启的该调节阀的开度大于第一预设开度阈值的情况下,确定该指定调节阀的状态;在该指定调节阀的状态为开启的情况下,按照预设调节阀开启顺序,开启其它调节阀,并关闭该指定调节阀;该其它调节阀包括该多个调节阀中除该指定调节阀之外的调节阀;在该指定调节阀的状态为关闭的情况下,开启该指定调节阀。
例如,存在两种最大调节流量不同的调节阀,将小调节阀作为指定调节阀,小调节阀的最大调节流量可以是大调节阀的1/4至1/2之间,以确保小调节阀可以达到目标控制精度的情况下,避免频繁开启关闭。在该制氢系统开始制氢的情况下,开启指定调节阀,在该指定调节阀的开度大于第一预设开度阈值的情况下,按照预设调节阀开启顺序,开启第一顺序调节阀,并关闭指定调节阀,在该第一顺序调节阀的开度大于第一预设开度阈值的情况下,开启指定调节阀,并在该指定调节阀的开度再次大于第一预设开度的情况下,开启第二顺序调节阀,关闭该指定调节阀。依次类图,直到开启全部调节阀。
这样,通过多个最大调节流量不同的调节阀进行流量调节,在保障系统安全的情况下,提升了控制精度,有利于提高生产效率。
此外,在该调节阀的开度小于或者等于第二预设开度阈值的情况下,关闭该调节阀;该第二预设开度阈值小于该第一预设开度阈值。
例如,该第二预设开度阈值可以在10%—20%之间,如10%、13%、15%、17%或者20%,此处不作限制,在该最近时刻的调节阀小于或者等于该第二预设开度阈值的情况下,关闭该调节阀。在存在两种最大调节流量不同的调节阀的情况下,在该小调节阀的开度小于或等于第二预设开度阈值的情况下,关闭该小调节阀;在该大调节阀开度小于或等于第二预设开度阈值的情况下,关闭该大调节阀,并开启作为指定调节阀的小调节阀。
采用上述方法,通过获取制氢控制参数,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流;根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。这样,通过制氢参数控制调节阀的开启或者关闭,有利于优化控制信号,减小氢氧分离器之间的压差,保障生产安全,提高制氢系统的工作效率。
图3是本申请根据一示例性实施例示出的一种制氢控制的装置,如图3所示,该装置应用于制氢控制系统中的控制器,该制氢控制系统包括控制器,以及与该控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,该调节阀位于该制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节该氢氧分离器之间的压差;该控制器用于控制调节阀的开启或者关闭,该装置包括:
获取模块301,用于获取制氢控制参数,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流;
控制模块302,用于根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。
可选的,该制氢控制参数包括制氢电流,该控制模块302,用于获取该制氢电流和该制氢控制系统的额定电流的电流比例,以及该多个调节阀的调节阀数量;根据该调节阀数量确定一个或者多个预设比例阈值;根据该电流比例和该预设比例阈值,控制该调节阀开启或者关闭。
可选的,该控制模块302,用于在该多个调节阀对应的最大调节流量相同的情况下,将该调节阀数量与预设数量的差值作为该预设比例阈值的阈值数量;根据该调节阀数量和该阈值数量,确定该一个或者多个预设比例阈值,每个预设比例阈值对应一个调节阀。
可选的,该控制模块302,用于根据该预设比例阈值从小到大的顺序,在该电流比例大于该预设比例阈值的情况下,开启该预设比例阈值对应的调节阀。
可选的,该控制模块302,用于在该多个调节阀对应的最大调节流量不同的情况下,若该电流比例大于该预设比例阈值,确定指定调节阀是否开启; 在该指定调节阀开启的情况下,按照预设调节阀开启顺序,开启其他调节阀,并关闭该指定调节阀;该其他调节阀为该多个调节阀中除该指定调节阀外的调节阀;在该指定调节阀关闭的情况下,开启该指定调节阀。
可选的,该制氢控制参数包括最近时刻开启的调节阀开度,该控制模块302,用于获取该最近时刻开启的调节阀的开度;在该多个调节阀对应的最大调节流量相同的情况下,根据该最近时刻开启的调节阀开度和预设调节阀开启顺序,开启调节阀;在该多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的该调节阀的开度和指定调节阀的状态,控制该调节阀开启或者关闭;该指定调节阀的状态包括开启或者关闭。
可选的,该控制模块302,用于在最近时刻开启的该调节阀的开度大于第一预设开度阈值的情况下,确定该指定调节阀的状态;在该指定调节阀的状态为开启的情况下,按照预设调节阀开启顺序,开启其它调节阀,并关闭该指定调节阀;该其它调节阀包括该多个调节阀中除该指定调节阀之外的调节阀;在该指定调节阀的状态为关闭的情况下,开启该指定调节阀。
可选的,该控制模块302,用于在该调节阀的开度小于或者等于第二预设开度阈值的情况下,关闭该调节阀;该第二预设开度阈值小于该第一预设开度阈值。
采用上述装置,通过获取制氢控制参数,该制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,该制氢电流为电解水的工作电流;根据该制氢控制参数控制该多个调节阀开启或者关闭,以调节该制氢控制系统中氢氧分离器的压差。这样,通过制氢参数控制调节阀的开启或者关闭,有利于优化控制信号,减小氢氧分离器之间的压差,保障生产安全,提高制氢系统的工作效率。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图4是根据一示例性实施例示出的一种控制器400的框图。如图4所示,该控制器400可以包括:处理器401,存储器402。该控制器400还可以包括多媒体组件403,输入/输出(I/O)接口404,以及通信组件405中的一者或多者。
其中,处理器401用于控制该控制器400的整体操作,以完成上述的制氢控制的方法中的全部或部分步骤。存储器402用于存储各种类型的数据以支持在该控制器400的操作,这些数据例如可以包括用于在该控制器400上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器402可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件403可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器402或通过通信组件405发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口404为处理器401和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件405用于该控制器400与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件405可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,控制器400可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的制氢控制的方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的制氢控制的方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器402,上述程序指令可由控制器400的处理器401执行以完成上述的制氢控制的方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的制氢控制的方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (11)

  1. 一种制氢控制的方法,其特征在于,应用于制氢控制系统中的控制器,所述制氢控制系统包括控制器,以及与所述控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,所述调节阀位于所述制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节所述氢氧分离器之间的压差;所述控制器用于控制调节阀的开启或者关闭,所述方法包括:
    获取制氢控制参数,所述制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,所述制氢电流为电解水的工作电流;
    根据所述制氢控制参数控制所述多个调节阀开启或者关闭,以调节所述制氢控制系统中氢氧分离器的压差。
  2. 根据权利要求1所述的方法,其特征在于,所述制氢控制参数包括制氢电流,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:
    获取所述制氢电流和所述制氢控制系统的额定电流的电流比例,以及所述多个调节阀的调节阀数量;
    根据所述调节阀数量确定一个或者多个预设比例阈值;
    根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述调节阀数量确定一个或者多个预设比例阈值包括:
    在所述多个调节阀对应的最大调节流量相同的情况下,将所述调节阀数量与预设数量的差值作为所述预设比例阈值的阈值数量;
    根据所述调节阀数量和所述阈值数量,确定所述一个或者多个预设比例阈值,每个预设比例阈值对应一个调节阀。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭包括:
    根据所述预设比例阈值从小到大的顺序,在所述电流比例大于所述预设比例阈值的情况下,开启所述预设比例阈值对应的调节阀。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述电流比例和所述预设比例阈值,控制所述调节阀开启或者关闭包括:
    在所述多个调节阀对应的最大调节流量不同的情况下,若所述电流比例大于所述预设比例阈值,确定指定调节阀是否开启;
    在所述指定调节阀开启的情况下,按照预设调节阀开启顺序,开启其他调节阀,并关闭所述指定调节阀;所述其他调节阀为所述多个调节阀中除所述指定调节阀外的调节阀;
    在所述指定调节阀关闭的情况下,开启所述指定调节阀。
  6. 根据权利要求1所述的方法,其特征在于,所述制氢控制参数包括最近时刻开启的调节阀开度,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:
    获取所述最近时刻开启的调节阀的开度;
    在所述多个调节阀对应的最大调节流量相同的情况下,根据所述最近时刻开启的调节阀开度和预设调节阀开启顺序,开启调节阀;
    在所述多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的所述调节阀的开度和指定调节阀的状态,控制所述调节阀开启或者关闭;所述指定调节阀的状态包括开启或者关闭。
  7. 根据权利要求6所述的方法,其特征在于,所述在所述多个调节阀对应的最大调节流量不同的情况下,根据最近时刻开启的所述调节阀的开度和指定调节阀的状态,控制所述调节阀开启或者关闭包括:
    在最近时刻开启的所述调节阀的开度大于第一预设开度阈值的情况下,确定所述指定调节阀的状态;
    在所述指定调节阀的状态为开启的情况下,按照预设调节阀开启顺序,开启其它调节阀,并关闭所述指定调节阀;所述其它调节阀包括所述多个调节阀中除所述指定调节阀之外的调节阀;
    在所述指定调节阀的状态为关闭的情况下,开启所述指定调节阀。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述制氢控制参数控制所述调节阀开启或者关闭包括:
    在所述调节阀的开度小于或者等于第二预设开度阈值的情况下,关闭所述调节阀;所述第二预设开度阈值小于所述第一预设开度阈值。
  9. 一种制氢控制的装置,其特征在于,应用于制氢控制系统中的控制器,所述制氢控制系统包括控制器,以及与所述控制器连接的多个定位器,所述多个定位器与多个调节阀对应连接,用于根据所述控制器的控制信号控制所述调节阀,所述调节阀位于所述制氢控制系统中的氢氧分离器和储气装置之间的气体输送管道上,用于调节所述氢氧分离器之间的压差;所述控制器用于控制调节阀的开启或者关闭,所述装置包括:
    获取模块,用于获取制氢控制参数,所述制氢控制参数包括制氢电流和最近时刻开启的调节阀的开度,所述制氢电流为电解水的工作电流;
    控制模块,用于根据所述制氢控制参数控制所述多个调节阀开启或者关闭,以调节所述制氢控制系统中氢氧分离器的压差。
  10. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-8中任一项所述方法的步骤。
  11. 一种控制器,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-8中任一项所述方法的步骤。
PCT/CN2023/107013 2022-09-14 2023-07-12 制氢控制的方法、装置、存储介质和控制器 WO2024055736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117622.3A CN115505938A (zh) 2022-09-14 2022-09-14 制氢控制的方法、装置、存储介质和控制器
CN202211117622.3 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055736A1 true WO2024055736A1 (zh) 2024-03-21

Family

ID=84503290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107013 WO2024055736A1 (zh) 2022-09-14 2023-07-12 制氢控制的方法、装置、存储介质和控制器

Country Status (2)

Country Link
CN (1) CN115505938A (zh)
WO (1) WO2024055736A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505938A (zh) * 2022-09-14 2022-12-23 无锡隆基氢能科技有限公司 制氢控制的方法、装置、存储介质和控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760679A (zh) * 2021-01-27 2021-05-07 苏州竞立制氢设备有限公司 一种压差调节方法及装置
CN113549953A (zh) * 2021-08-16 2021-10-26 阳光电源股份有限公司 一种制氢系统的液位平衡控制方法及制氢系统
CN115505938A (zh) * 2022-09-14 2022-12-23 无锡隆基氢能科技有限公司 制氢控制的方法、装置、存储介质和控制器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760679A (zh) * 2021-01-27 2021-05-07 苏州竞立制氢设备有限公司 一种压差调节方法及装置
CN113549953A (zh) * 2021-08-16 2021-10-26 阳光电源股份有限公司 一种制氢系统的液位平衡控制方法及制氢系统
CN115505938A (zh) * 2022-09-14 2022-12-23 无锡隆基氢能科技有限公司 制氢控制的方法、装置、存储介质和控制器

Also Published As

Publication number Publication date
CN115505938A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024055736A1 (zh) 制氢控制的方法、装置、存储介质和控制器
WO2023020265A1 (zh) 一种制氢系统的液位平衡控制方法及制氢系统
CN105137831B (zh) 节电模式开启方法及装置
CN103167144B (zh) 一种手机智能播放系统及方法
WO2017148270A1 (zh) 一种音量控制方法和装置、及终端
CN103248077B (zh) 电池均衡电路
CN108365657A (zh) 充电电流的控制方法、装置和存储介质
US11881737B2 (en) Battery module, charging control method, and storage medium
CN113005470A (zh) 制氢控制方法及装置、电子设备和存储介质
WO2023103422A1 (zh) 用于调节培养箱内气体浓度的方法及装置、培养箱
CN102739510B (zh) 一种流控方法和装置
JP4593978B2 (ja) 車載用燃料電池システムの排出水素ガス希釈装置
CN101742181A (zh) 一种声音调节的方法及装置
WO2024082956A1 (zh) 制氢控制系统、方法及存储介质
JP7038301B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
JP6294494B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
CN113451669A (zh) 充电方法及装置、电子设备、存储介质
WO2023004938A1 (zh) 前开式晶圆传送盒内氧气含量的调节系统及方法
WO2023197495A1 (zh) 一种基于步进电机的控制方法、装置及电子设备
Li et al. Control of nonlinear systems with full state constraints using integral Barrier Lyapunov Functionals
CN106486111B (zh) 基于智能机器人的多tts引擎输出语速调节方法及系统
CN109582114A (zh) 一种移动终端及其开机控制方法
CN206249112U (zh) 一种大型制氧设备缩短启动时间装置
CN112947613A (zh) 压力调节系统、方法和设备
CN206096985U (zh) 用于便携式发电机输出电压的闭环控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864472

Country of ref document: EP

Kind code of ref document: A1