WO2024055649A1 - 一种终端定位与感知方法、电子设备和存储介质 - Google Patents

一种终端定位与感知方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2024055649A1
WO2024055649A1 PCT/CN2023/099928 CN2023099928W WO2024055649A1 WO 2024055649 A1 WO2024055649 A1 WO 2024055649A1 CN 2023099928 W CN2023099928 W CN 2023099928W WO 2024055649 A1 WO2024055649 A1 WO 2024055649A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
parameters
sight
information
measurement
Prior art date
Application number
PCT/CN2023/099928
Other languages
English (en)
French (fr)
Inventor
王钟斌
夏树强
陈诗军
郁光辉
胡留军
金石
杨杰
黄艺璇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024055649A1 publication Critical patent/WO2024055649A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a terminal positioning and sensing method, electronic equipment and storage media.
  • next-generation wireless communication network As the fifth generation mobile communication technology (5G) is widely promoted around the world, the large bandwidth provided by millimeter wave spectrum, the high directional transmission provided by massive antenna technology (Massive MIMO) and the densely deployed Base stations provide users with communication networks with high data transmission rates and wide coverage. For the upcoming next-generation wireless communication network, it has gradually become a trend to realize environmental awareness by sharing the software and hardware resources of the cellular network. More reliable communication capabilities can provide more accurate measurement information required for sensing. Communication and sensing complement each other in next-generation wireless communication networks, providing users with faster and more reliable services. There has been a lot of research on the positioning of terminal equipment (User Equipment, UE). The positioning of UE can usually be achieved through system-based Line of Sight (LOS) path measurement.
  • LOS Line of Sight
  • NLOS path measurement In the next generation wireless communication network
  • NLOS path measurement needs to be used at the same time to achieve positioning of the UE, and environment awareness needs to be achieved based on the included NLOS path measurement information.
  • the NLOS path can capture certain environmental information during the propagation process. This environmental information can be used for the perception of actions and postures and the positioning of scatterers in the environment.
  • the resolution of the channel in the angle and delay domain by the base station (BS) in the millimeter-wave wireless communication system will be greatly enhanced, which will provide a way for simultaneous positioning and Environmental awareness provides the basis.
  • BS base station
  • fifth-generation communication technology mainly focuses on the positioning of UE, and does not pay much attention to the positioning of scatterers, for example.
  • the main purpose of the embodiments of this application is to propose a terminal positioning and sensing method, electronic device and storage medium to simultaneously realize the determination of terminal device location information and environmental information through line-of-sight measurement information and non-line-of-sight measurement information. Perception can improve positioning accuracy, enhance the richness of communication information, and improve user experience.
  • Embodiments of the present application provide a terminal positioning and sensing method, wherein the method includes:
  • Positioning information and environment sensing information are determined based on the correlation matrix.
  • An embodiment of the present application also provides an electronic device, wherein the electronic device includes: one or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the terminal positioning and sensing method as described in any one of the embodiments of this application.
  • Embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium stores one or more programs, and the one or more programs are executed by the one or more processors to Implement the terminal positioning and sensing method described in any one of the embodiments of this application.
  • Figure 1 is a schematic diagram of a terminal positioning and sensing scenario provided by an embodiment of the present application
  • Figure 2 is a flow chart of a terminal positioning and sensing method provided by an embodiment of the present application.
  • Figure 3 is a flow chart of another terminal positioning and sensing method provided by an embodiment of the present application.
  • Figure 4 is an example diagram of a terminal positioning and sensing method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal positioning and sensing device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of a terminal positioning and sensing scenario provided by an embodiment of the present application.
  • the base station and the terminal perform uplink communication.
  • the scatterers may include buildings, trees, moving targets, etc.
  • the path loss is serious.
  • the path loss is serious.
  • the LOS path and the NLOS path of single reflection are considered.
  • Part of the signal sent by the terminal equipment directly reaches the base station to form a LOS path, and part of it reaches the base station after being reflected by the scatterer to form a single NLOS path.
  • the base station can perform channel estimation based on the echo signal to obtain the uplink channel LOS path from the terminal to the base station and NLOS path parameter information can be used to construct the matrix of the uplink channel space through the obtained parameter information.
  • represents the position of UE, represents the speed of the UE.
  • the position of the l-th scatterer between the n-th BS and the UE is There are scatterers, where L n represents the number of scatterers corresponding to the n-th BS.
  • the multipath channel can be modeled as:
  • v n, l and ⁇ n, l respectively represent the gain, Doppler frequency and delay of the l-th path, are the azimuth AOA, pitch AOA, azimuth AOD and pitch AOD of the l-th path, respectively. and Corresponding to the steering vectors received and sent respectively.
  • Figure 2 is a flow chart of a terminal positioning and sensing method provided by an embodiment of the present application.
  • the embodiment of the present application can be used for determining terminal position information and sensing environmental information.
  • This method can be executed by a terminal positioning and sensing device.
  • the device can be implemented by software and/or hardware.
  • the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 110 Perform channel estimation based on the received echo signal, and obtain channel parameters for the channel estimation.
  • the echo signal may be a signal that reaches the base station through different transmission paths.
  • the echo signal may include a signal sent by the terminal that directly reaches the base station and a signal sent by the terminal that is only reflected by a scatterer and reaches the base station.
  • Channel parameters can be information that reflects the signal transmission status, and can include path gain, Doppler frequency, delay, angle, etc.
  • the echo signal can be received, and channel estimation can be performed on the echo signal to determine channel parameters such as path gain, Doppler frequency, delay, and angle.
  • Step 120 Determine line-of-sight measurement parameters and non-line-of-sight measurement parameters based on the channel parameters.
  • the line-of-sight path measurement parameters and the non-line-of-sight path measurement parameters can be determined according to the determined channel.
  • the uplink channel space can be determined according to the determined channel parameters.
  • the line-of-sight path measurement parameters and the non-line-of-sight path measurement parameters are determined through the acquired channel parameters.
  • the line-of-sight measurement parameters can be determined through the signal arrival time and Doppler frequency at the base station.
  • Step 130 Determine the correlation matrix between the line-of-sight diameter measurement parameters and the non-line-of-sight diameter measurement parameters according to the preset echo geometric model.
  • the preset echo geometric model may be a model of the spatial geometric relationship of the uplink, and the preset echo geometric model may be determined by the positional relationship of the base station, the scatterer, and the UE in space.
  • the correlation matrix may include information identifying the correlation between line-of-sight diameter measurement parameters and non-line-of-sight diameter measurement parameters. Elements in the correlation matrix may include line-of-sight diameter measurement parameters, non-line-of-sight diameter measurement parameters, Positioning information and environmental perception information, etc.
  • the corresponding relationship between the line-of-sight measurement parameters and the non-line-of-sight measurement parameters can be determined according to the spatial geometric relationship of the preset echo geometric model, and the corresponding relationship can be expressed as an association matrix.
  • Step 140 Determine positioning information and environment awareness information based on the correlation matrix.
  • the positioning information and the environment sensing information can be determined by processing the correlation matrix.
  • the positioning information can identify the location of the terminal device, the moving speed of the terminal device, and the sense of environment.
  • the known information may include scatterer position information.
  • the method of determining the positioning information and the environmental awareness information through the correlation matrix may include solving the correlation matrix through the weighted least squares method, or may also be determined through the gradient descent method or other methods.
  • channel estimation is performed based on the received echo signal to determine the channel parameters.
  • Line-of-sight path measurement parameters and non-line-of-sight path measurement parameters are determined according to the channel parameters.
  • Line-of-sight path measurement parameters are determined according to the echo geometric model.
  • the correlation matrix of the diameter measurement parameters and the non-line-of-sight diameter measurement parameters is determined by solving the correlation matrix to determine the positioning information and the environment sensing information.
  • the embodiment of the present application uses the line-of-sight diameter measurement information and the non-line-of-sight diameter measurement information At the same time, it can determine the location information of the terminal device and perceive the environmental information, which can improve the positioning accuracy, enhance the richness of communication information, and improve the user experience.
  • the channel parameters include at least one of the following: path gain, Doppler frequency, delay, and angle.
  • the line-of-sight measurement parameters include at least one of the following: arrival time difference parameters, arrival frequency difference parameters, and arrival angle parameters.
  • the non-line-of-sight diameter measurement parameters include at least one of the following: angle of arrival parameters and angle of departure parameters.
  • the positioning information includes terminal position information and speed information
  • the environment sensing information includes scatterer position information
  • the preset echo geometric model includes at least one of the following:
  • Line-of-sight diameter arrival time difference measurement parameter equation Line-of-sight diameter arrival frequency difference measurement parameter equation; Line-of-sight diameter arrival angle measurement parameter equation; Non-line-of-sight diameter arrival angle measurement parameter equation; Non-line-of-sight diameter Departure angle measurement parameter equation.
  • Figure 3 is a flow chart of another terminal positioning and sensing method provided by an embodiment of the present application.
  • the embodiment of the present application is a concrete implementation based on the above-mentioned embodiment of the application. Referring to Figure 3, the method provided by the embodiment of the present application specifically includes follow these steps:
  • Step 210 Perform channel estimation based on the received echo signal, and obtain channel parameters for the channel estimation.
  • Step 220 Determine line-of-sight measurement parameters and non-line-of-sight measurement parameters based on the channel parameters.
  • Step 230 Determine the correlation matrix between the line-of-sight diameter measurement parameters and the non-line-of-sight diameter measurement parameters according to the preset echo geometric model.
  • Step 240 Add an error vector to the correlation matrix according to the preset measurement noise model.
  • the error vector may include errors caused by the communication model being affected by noise.
  • the preset measurement noise model may be a model used to add noise effects to the preset echo geometric model.
  • the preset measurement noise model may be composed of Gaussian white. Noise OK.
  • Gaussian white noise with covariance Q can be used as the preset measurement noise model, and the determined measurement noise model can be used according to the preset measurement noise model.
  • connection relation An error vector is added to the matrix so that the correlation matrix between line-of-sight measurement parameters and non-line-of-sight measurement parameters can be affected by noise.
  • Step 250 Analyze the correlation matrix according to the weighted least squares estimator to determine positioning information and environment sensing information.
  • the weighted least squares (WLS) estimator can have a built-in weighted least squares method.
  • the estimator can weight the model to be solved to make it a new model without heteroskedasticity, and then use Least squares estimation estimation solution.
  • a preset weighted least squares estimator can be called to solve the correlation matrix, thereby determining the positioning information and environment sensing information.
  • positioning and environment sensing can be performed only through NLOS path measurement information.
  • the number of NLOS paths is required to be greater than or equal to 3, and the NLOS paths are measured by at least two base stations.
  • UE positioning and environment awareness are achieved through known base station locations.
  • FIG. 4 is an example diagram of a terminal positioning and sensing method provided by an embodiment of the present application.
  • the specific process of terminal positioning and sensing may include the following steps:
  • Step 1 Perform channel estimation based on the echo signal received by the BS, use the channel parameters to obtain the LOS path measurement parameters, and use the arrival time and Doppler frequency at the first BS as reference to obtain the Time Difference Of Arrival respectively.
  • v represents the propagation speed of wireless signals
  • Represents the LOS path delay of the nth base station represents the distance between the UE and the nth base station
  • represents the clock deviation between the base station and the UE
  • represents the wavelength of the wireless signal
  • Represents the Doppler frequency shift of the nth base station Indicates the relative speed between the nth base station and the UE.
  • the position coordinates of the UE are (x°, y°, z°), and the position coordinates of the nth base station are
  • the Angle of Departure (AOD) parameter of the LOS path is equivalent to the AOA parameter and will not be described here.
  • Step 2 Use channel parameters to obtain NLOS path measurement parameters, mainly including AOA and AOD parameters:
  • Step 3 Establish the channel LOS path TDOA measurement parameter equation, which is known Square both sides of the equation simultaneously to get And because of get:
  • N-1 TDOA measurement equations can be established.
  • Step 4 Establish the channel LOS path FDOA measurement parameter equation to obtain:
  • N-1 FDOA measurement equations can be established.
  • Step 5 Establish the channel LOS path AOA measurement parameter equation to obtain:
  • Step 6 Establish the channel NLOS path AOA measurement parameter equation to obtain:
  • Step 7 Establish the channel NLOS path AOD measurement parameter equation to obtain:
  • h is the term that does not contain p° in the above pseudo-linear equation
  • G is the coefficient matrix of p°.
  • Step 9 In the above situation, the number of pseudo-linear equations is 4(N+N s )-2, and the number of parameters to be estimated is 6+3N s . Usually, the number of equations is greater than the number of parameters to be estimated, and different channel parameters have different estimation variances. Therefore, the WLS estimator is used to solve the above overdetermined problem.
  • Step 11 Use the WLS estimator to obtain the solution of the parameters to be estimated as:
  • the matrix B can obtain the analytical solution through Taylor expansion of the error vector e.
  • the weight matrix W cannot be obtained directly.
  • Figure 5 is a schematic structural diagram of a terminal positioning and sensing device provided by an embodiment of this application.
  • the device can execute the terminal positioning and sensing method provided by any embodiment of this application, and has functional modules and beneficial effects corresponding to the execution method.
  • the device may be implemented by software and/or hardware.
  • the device provided by the embodiment of the present application specifically includes: a channel estimation module 301, a path measurement module 302, a relationship establishment module 303, and an information determination module 304.
  • the channel estimation module 301 is configured to perform channel estimation based on the received echo signal and obtain channel parameters of the channel estimation.
  • the path measurement module 302 is configured to determine line-of-sight path measurement parameters and non-line-of-sight path measurement parameters based on the channel parameters.
  • the relationship establishment module 303 is configured to determine the correlation matrix between the line-of-sight measurement parameters and the non-line-of-sight measurement parameters according to the preset echo geometric model.
  • the information determination module 304 is configured to determine positioning information and environment awareness information based on the correlation matrix.
  • the channel estimation module performs channel estimation based on the received echo signal to determine the channel parameters.
  • the path measurement module determines the line-of-sight path measurement parameters and the non-line-of-sight path measurement parameters according to the channel parameters. The relationship is established.
  • the module determines the correlation matrix of the line-of-sight diameter measurement parameters and the non-line-of-sight diameter measurement parameters according to the echo geometric model.
  • the information determination module determines the positioning information and environmental perception information based on solving the correlation matrix.
  • the line-of-sight measurement parameters are determined by the line-of-sight measurement parameters.
  • Path measurement information and non-line-of-sight path measurement information simultaneously enable terminal device position information determination and environmental information perception, which can improve positioning accuracy, enhance the richness of communication information, and improve user experience.
  • an error module is further included, configured to add an error vector in the correlation matrix according to a preset measurement noise model.
  • the channel parameters include at least one of the following: path gain, Doppler frequency, delay, and angle.
  • the line-of-sight measurement parameters include at least one of the following: arrival time difference parameters, arrival frequency difference parameters, and arrival angle parameters.
  • the non-line-of-sight diameter measurement parameters include at least one of the following: angle of arrival parameters and angle of departure parameters.
  • the positioning information includes terminal position information and speed information
  • the environment sensing information includes scatterer position information
  • the information determination module 304 is specifically configured to parse the correlation matrix according to a weighted least squares estimator to determine the positioning information and the environment awareness information.
  • the terminal positioning and sensing device provided by the embodiments of this application can execute the terminal positioning and sensing method provided by any embodiment of this application, and has functional modules and beneficial effects corresponding to the execution method.
  • Figure 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a processor 60 and a memory 61; the number of processors 60 in the electronic device may be one or more.
  • one processor is used. Take 60 as an example; the processor 60 and the memory 61 in the electronic device can be connected through a bus or other means. In Figure 6, the connection through the bus is example.
  • the memory 61 can be used to store software programs, computer executable programs and modules, such as the program corresponding to the terminal positioning and sensing method in the embodiment of the present application, and the transmission device in the embodiment of the present application. modules (channel estimation module 301, path measurement module 302, relationship establishment module 303 and information determination module 304).
  • the processor 60 executes software programs, instructions and modules stored in the memory 61 to perform various functions and data processing of the electronic device, that is, to implement the above terminal positioning and sensing method.
  • the memory 61 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and a program required for at least one function; the stored data area may store data created according to the use of the electronic device, etc.
  • the memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 61 may further include memory located remotely relative to processor 60, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the electronic device is specifically a base station or a base station cluster, and the base station or base station cluster may be located at different locations in space.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions, which, when executed by a computer processor, are used to perform a terminal positioning and sensing method.
  • the signal generation method includes:
  • Positioning information and environment sensing information are determined based on the correlation matrix.
  • the present application can be implemented with the help of software and necessary general hardware, and of course can also be implemented with hardware. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to related technologies.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), FLASH, hard disk or optical disk, etc., including a number of instructions to make a computer device (which can be a personal computer, Server, or network device, etc.) executes the signal generation method described in various embodiments of this application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit . Corresponding software can be distributed on computer-readable media, which can include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种终端定位与感知方法、电子设备和存储介质,其中,该方法包括:根据接收到的回波信号进行信道估计,并获取所述信道估计的信道参数;基于所述信道参数确定视距径量测参数以及非视距径量测参数;根据预设回波几何模型确定所述视距径量测参数和所述非视距径量测参数的关联关系矩阵;基于所述关联关系矩阵确定定位信息和环境感知信息。本申请实施例通过视距径量测信息以及非视距径量测信息同时实现终端设备位置信息确定以及环境信息的感知,可提高定位精度,增强通信信息的丰富程度,可提高用户的使用体验。

Description

一种终端定位与感知方法、电子设备和存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种终端定位与感知方法、电子设备和存储介质。
背景技术
随着第五代通信技术(5th Generation Mobile Communication Technology,5G)在全球范围内得到广泛推广,毫米波频谱提供的大带宽,大规模天线技术(Massive MIMO)提供的高方向性传输以及密集部署的基站为用户提供了较高数据传输速率以及广阔覆盖范围的通信网络。对于即将到来的下一代无线通信网络,通过共享蜂窝网络的软硬件资源以实现对环境的感知逐渐成为一个趋势。更加可靠的通信能力能够为感知提供其所需要的更加精确的测量信息,下一代无线通信网络中通信和感知相辅相成,为用户提供更快速可靠的服务。对于终端设备(User Equipment,UE)的定位,目前已经有较多的研究,通常可以通过基于系统的视距(Line of Sight,LOS)径量测实现对UE的定位,在下一代无线通信网络中需要同时利用非视距(Non Line of Sight,NLOS)径量测,进而实现对UE的定位,并且需要根据纳入的NLOS径量测信息实现环境感知。目前NLOS径在传播过程中可捕获一定的环境信息,该环境信息可用于动作、姿态的感知以及环境中散射体的定位等。此外,随着大规模天线阵列部署和高频段频谱的分配,在毫米波无线通信系统中基站(Base Station,BS)对信道在角度和时延域的分辨率将大大增强,为同时实现定位和环境感知提供了基础。然而,目前第五代通信技术的研究主要集中于UE的定位,对诸如散射体的定位并未过多关注。
发明内容
本申请实施例的主要目的在于提出一种终端定位与感知方法、电子设备和存储介质,以通过视距径量测信息以及非视距径量测信息同时实现终端设备位置信息确定以及环境信息的感知,可提高定位精度,增强通信信息的丰富程度,可提高用户的使用体验。
本申请实施例提供了一种终端定位与感知方法,其中,该方法包括:
根据接收到的回波信号进行信道估计,并获取所述信道估计的信道参数;
基于所述信道参数确定视距径量测参数以及非视距径量测参数;
根据预设回波几何模型确定所述视距径量测参数和所述非视距径量测参数的关联关系矩阵;
基于所述关联关系矩阵确定定位信息和环境感知信息。
本申请实施例还提供了一种电子设备,其中,该电子设备包括:一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器质性,使得所述一个或多个处理器实现如本申请实施例中任一所述的终端定位与感知方法。
本申请实施例还提供了一种计算机可读存储介质,其中,该计算机可读存储介质存储有一个或多个程序,所述一个或多个程序被所述一个或多个处理器执行,以实现如本申请实施例中任一所述的终端定位与感知方法。
附图说明
图1是本申请实施例提供的一种终端定位与感知的场景示意图;
图2是本申请实施例提供的一种终端定位与感知方法的流程图;
图3是本申请实施例提供的另一种终端定位与感知方法的流程图;
图4是本申请实施例提供的一种终端定位与感知方法的示例图;
图5是本申请实施例提供的一种终端定位与感知装置的结构示意图;
图6是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”后缀仅为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
图1是本申请实施例提供的一种终端定位与感知的场景示意图,基站与终端进行上行通信,整个传输环境中存在多个散射体,该散射体可以包括建筑物、树木以及移动目标等,在毫米波通信系统中,路径损耗较严重,在该场景下仅考虑LOS径和单次反射的NLOS径。终端设备发送的信号一部分直接到达基站形成LOS径,一部分经过散射体反射后到达基站形成单次NLOS径,基站可以基于回波信号进行信道估计,从而获得终端到基站的上行链路信道LOS径和NLOS径参数信息,通过获取到的参数信息可以用于上行链路信道空间的矩阵构建。具体的,可以定义基站坐标为bn,n=1,2,...,N,并且假设N个BS的时钟完全同步。u°表示UE的位置,表示UE的速度,假设介于第n个BS和UE之间的第l个散射体的位置为总共有个散射体,其中Ln表示第n个BS对应的散射体的个数。则多径信道可建模为:
其中,vn,l、τn,l分别表示第l条路径的增益、多普勒频率以及时延, 分别为第l条路径的方位AOA、俯仰AOA、方位AOD和俯仰AOD,分别对应接收和发送的导向矢量。在公式(1)中,当l=0时,表示LOS径模型;当l=1,2,...,Ln时,表示NLOS径模型。
图2是本申请实施例提供的一种终端定位与感知方法的流程图,本申请实施例可以是用于终端位置信息确定以及环境信息感知的情况,该方法可以由终端定位与感知装置来执行,该装置可以通过软件和/或硬件来实现,参见图2,本申请实施例提供的方法具体包括如下步骤:
步骤110、根据接收到的回波信号进行信道估计,并获取信道估计的信道参数。
其中,回波信号可以是通过不同传输路径到达基站的信号,回波信号可以包括终端发送的直接到达基站的信号以及终端发送的且仅经过一个散射体反射到达基站的信号。信道参数可以是反映信号传输状态的信息,可以包括路径增益、多普勒频率、时延以及角度等。
在本申请实施例中,可以接收回波信号,并对回波信号进行信道估计从而确定出路径增益、多普勒频率、时延以及角度等信道参数。
步骤120、基于信道参数确定视距径量测参数以及非视距径量测参数。
在本申请实施例中,可以按照确定出的信道确定视距径量测参数以及非视距径量测参数,在一个实施例中,可以按照确定出的信道参数确定上行链路信道空间,可以在上行链路信道空间内通过已获取的信道参数确定视距径量测参数以及非视距径量测参数。例如,可以通过基站处信号到达时间以及多普勒频率确定视距径量测参数。
步骤130、根据预设回波几何模型确定视距径量测参数和非视距径量测参数的关联关系矩阵。
其中,预设回波几何模型可以为上行链路的空间几何关系的模型,预设回波几何模型可以由空间内基站、散射体、UE的位置关系确定。关联关系矩阵可以包括标识视距径量测参数和非视距径量测参数之间的关联关系的信息,关联关系矩阵内元素可以包括视距径量测参数、非视距径量测参数、定位信息以及环境感知信息等。
在本申请实施例,可以按照预设回波几何模型的空间几何关系确定视距径量测参数以及非视距径量测参数之间的对应关系,可以将该对应关系表示为关联关系矩阵。
步骤140、基于关联关系矩阵确定定位信息和环境感知信息。
在本申请实施例中,可以通过对关联关系矩阵进行处理,从而确定出定位信息以及环境感知信息,其中,定位信息可以标识终端设备所处的位置以及终端设备的移动速度,环境感 知信息可以包括散射体位置信息。在一个示例性的实施方式中,通过关联关系矩阵确定定位信息和环境感知信息的方式可以包括通过加权最小二乘法求解关联关系矩阵,还可以通过梯度下降法等方式确定。
在本申请实施例中,根据接收到的回波信号进行信道估计,从而确定信道参数,按照信道参数确定视距径量测参数以及非视距径量测参数,按照回波几何模型确定视距径量测参数以及非视距径量测参数的关联关系矩阵,根据求解关联关系矩阵确定出定位信息以及环境感知信息,本申请实施例通过视距径量测信息以及非视距径量测信息同时实现终端设备位置信息确定以及环境信息的感知,可提高定位精度,增强通信信息的丰富程度,可提高用户的使用体验。
在一个示例性的实施方式中,信道参数包括以下至少之一:路径增益、多普勒频率、时延、角度。
在一些实施例中,视距径量测参数包括以下至少之一:到达时间差参数、到达频率差参数、到达角参数。
在一些实施例中,非视距径量测参数包括以下至少之一:到达角参数、离去角参数。
在一些实施例中,定位信息包括终端位置信息、速度信息,所述环境感知信息包括散射体位置信息。
在一些实施例中,预设回波几何模型包括以下至少之一:
视距径到达时间差量测参数等式;视距径到达频率差量测参数等式;视距径到达角量测参数等式;非视距径到达角量测参数等式;非视距径离去角量测参数等式。
图3是本申请实施例提供的另一种终端定位与感知方法的流程图,本申请实施例是在上述申请实施例基础上的具体化,参见图3,本申请实施例提供的方法具体包括如下步骤:
步骤210、根据接收到的回波信号进行信道估计,并获取信道估计的信道参数。
步骤220、基于信道参数确定视距径量测参数以及非视距径量测参数。
步骤230、根据预设回波几何模型确定视距径量测参数和非视距径量测参数的关联关系矩阵。
步骤240、按照预设量测噪声模型在关联关系矩阵内增加误差向量。
其中,误差向量可以包括通信模型受到噪声影响而产生的误差,预设量测噪声模型可以是用于在预设回波几何模型内添加噪声影响的模型,预设量测噪声模型可以由高斯白噪声确定。
在本申请实施例中,由于实际通信环境中信号传输的信道存在噪声,可以通过协方差为Q的高斯白噪声作为预设量测噪声模型,可以按照该预设量测噪声模型在确定出的关联关系 矩阵内添加误差向量,使得视距径量测参数和非视距径量测参数的关联关系矩阵可以受到噪声的影响。
步骤250、按照加权最小二乘估计器解析关联关系矩阵以确定定位信息和环境感知信息。
其中,加权最小二乘(Weighted Least Squares,WLS)估计器可以内置有加权最小二乘方法,该估计器可以通过对待求解模型进行加权使之成为一个新的不存在异方差性的模型,然后采用最小二乘估计估算求解。
在本申请实施例中,可以调用预先设置的加权最小二乘估计器对关联关系矩阵进行求解,从而确定出定位信息和环境感知信息。
进一步的,在一些实施例中,可以仅通过NLOS径量测信息定位与环境感知,在这种情况下,要求NLOS径的数量大于或等于3,且NLOS径由至少两个基站测取,可以通过已知的基站位置实现UE定位以及环境感知。
图4是本申请实施例提供的一种终端定位与感知方法的示例图,参见图4,终端定位与感知的具体过程可以包括如下步骤:
步骤1:根据BS接收到的回波信号进行信道估计,利用信道参数获取LOS径量测参数,以第一个BS处的到达时间、多普勒频率为参考,分别获取到达时间差(Time Difference Of Arrival,TDOA),到达频率差(Frequency Difference Of Arrival,FDOA)参数:

其中,v表示无线信号的传播速度,表示第n个基站的LOS径时延,表示UE和第n个基站之间的距离,ω表示基站与UE之间的时钟偏差;λ表示无线信号的波长,表示第n个基站的多普勒频移,表示第n个基站与UE的相对速度。
然后根据角度关系,获取LOS径的到达角(Angle of Arrival,AOA)参数:
其中,UE的位置坐标为(x°,y°,z°),第n个基站的位置坐标为
在本申请实施例中,LOS径的离去角(Angle of Departure,AOD)参数与AOA参数等价,在此处不作描述。
步骤2:利用信道参数获取NLOS径量测参数,主要包括AOA和AOD参数:

其中,表示与第n个BS关联的第l个散射体的位置坐标,同样,表示与第n个BS关联的第l个散射体的位置矢量。
由于NLOS径的AOA和AOD参数对应的传输路径不同,几何关系也相应的不同。
步骤3:建立信道LOS径TDOA量测参数等式,已知等式两边同时平方,得到又由于得到:
引入角度向量等式两边同乘得到:
由于TDOA量测以第一个BS为参考,则可以建立N-1个TDOA量测等式。
步骤4:建立信道LOS径FDOA量测参数等式,得到:
同样,由于FDOA量测以第一个BS为参考,则可以建立N-1个FDOA量测等式。
步骤5:建立信道LOS径AOA量测参数等式,得到:
其中,
由于获得了N个BS的俯仰和方位角的AOA量测信息,则可以建立2N个AOA量测等式。
步骤6:建立信道NLOS径AOA量测参数等式,得到:
其中, 由于共获取了Ns个NLOS径的AOA量测信息,则可以建立2Ns个NLOS径的AOA量测等式。
步骤7:建立信道NLOS径AOD量测参数等式,得到:
其中,

由于共获取了Ns个NLOS径的AOD量测信息,则可以建立2Ns个NLOS径的AOD量测等式。
步骤8:将上述伪线性等式(8)、(9)、(10)、(11)和(12)整理成矩阵形式:
h=Gp°     (13)
其中,h为上述伪线性等式中不含有p°的项,G为p°的系数矩阵。
步骤9:上述情形下,伪线性等式个数为4(N+Ns)-2,待估计参数为6+3Ns个。通常情况下,等式个数大于待估计参数个数,且不同的信道参数有着不同的估计方差。因此使用WLS估计器求解上述超定问题。
步骤10:在实际环境下,信道不可能是无噪的。假定量测噪声建模为m=m°+Δm,其中Δm是均值为零,协方差矩阵为Q的高斯白噪声,使用含噪声量测替换线性等式h=Gp°,得到误差向量:
其中表示含有量测噪声。
步骤11:利用WLS估计器得到待估计参数的解为:
其中,为加权矩阵。忽略e的二次项和高阶项后,e可近似为:
e≈BΔm      (16)
其中,矩阵B可通过对误差向量e的泰勒展开获得解析解。最终加权矩阵表示为W=(BQBT)-1
实际求解过程中,由于矩阵B与待求解参数有关,无法直接获得权重矩阵W。首先初始化加权矩阵W(0)=Q-1,利用WLS估计器获得UE和散射体的初步估计,再根据初步估计结果获取矩阵B,然后根据矩阵B更新加权矩阵W,将上述迭代过程进行1到2次便可以获得较为准确的解。
在本申请实施例中,通过联合LOS径和NLOS径量测信息,仅利用一步WLS估计器可实现对UE和散射体的同时定位,从而简化了信息估计流程,可降低系统处理开销。由于联合LOS径和NLOS径的量测信息,使用NLOS径量测信息的辅助定位,可提升UE的定位精度。
图5是本申请实施例提供的一种终端定位与感知装置的结构示意图,该装置可执行本申请任意实施例提供的终端定位与感知方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现。本申请实施例提供的装置具体包括:信道估计模块301、径量测模块302、关系建立模块303和信息确定模块304。
信道估计模块301,用于根据接收到的回波信号进行信道估计,并获取所述信道估计的信道参数。
径量测模块302,用于基于所述信道参数确定视距径量测参数以及非视距径量测参数。
关系建立模块303,用于根据预设回波几何模型确定所述视距径量测参数和所述非视距径量测参数的关联关系矩阵。
信息确定模块304,用于基于所述关联关系矩阵确定定位信息和环境感知信息。
本申请实施例,通过信道估计模块根据接收到的回波信号进行信道估计,从而确定信道参数,径量测模块按照信道参数确定视距径量测参数以及非视距径量测参数,关系建立模块按照回波几何模型确定视距径量测参数以及非视距径量测参数的关联关系矩阵,信息确定模块根据求解关联关系矩阵确定出定位信息以及环境感知信息,本申请实施例通过视距径量测信息以及非视距径量测信息同时实现终端设备位置信息确定以及环境信息的感知,可提高定位精度,增强通信信息的丰富程度,可提高用户的使用体验。
在一些实施例中,还包括:误差模块,用于按照预设量测噪声模型在所述关联关系矩阵内增加误差向量。
在一些实施例中,信道参数包括以下至少之一:路径增益、多普勒频率、时延、角度。
在一些实施例中,视距径量测参数包括以下至少之一:到达时间差参数、到达频率差参数、到达角参数。
在一些实施例中,非视距径量测参数包括以下至少之一:到达角参数、离去角参数。
在一些实施例中,定位信息包括终端位置信息、速度信息,所述环境感知信息包括散射体位置信息。
在一些实施例中,信息确定模块304具体用于:按照加权最小二乘估计器解析所述关联关系矩阵以确定所述定位信息和所述环境感知信息。
本申请实施例所提供的终端定位与感知装置可执行本申请任意实施例所提供的终端定位与感知方法,具备执行方法相应的功能模块和有益效果。
图6是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器60、存储器61;电子设备中处理器60的数量可以是一个或多个,图6中以一个处理器60为例;电子设备中处理器60、存储器61可以通过总线或其他方式连接,图6中以通过总线连接为 例。
存储器61作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的终端定位与感知方法对应的程序、本申请实施例中的传输装置对应的模块(信道估计模块301、径量测模块302、关系建立模块303和信息确定模块304)。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行电子设备的各种功能以及数据处理,即实现上述的终端定位与感知方法。
存储器61可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可进一步包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在一些实施例中,电子设备具体为基站或基站集群,基站或基站集群可以位于空间内不同位置。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种终端定位与感知方法。
在一种实施方式中,所述信号生成方法包括:
根据接收到的回波信号进行信道估计,并获取所述信道估计的信道参数;
基于所述信道参数确定视距径量测参数以及非视距径量测参数;
根据预设回波几何模型确定所述视距径量测参数和所述非视距径量测参数的关联关系矩阵;
基于所述关联关系矩阵确定定位信息和环境感知信息。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的信号生成方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具 体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。相应的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (10)

  1. 一种终端定位与感知方法,包括:
    根据接收到的回波信号进行信道估计,并获取所述信道估计的信道参数;
    基于所述信道参数确定视距径量测参数以及非视距径量测参数;
    根据预设回波几何模型确定所述视距径量测参数和所述非视距径量测参数的关联关系矩阵;
    基于所述关联关系矩阵确定定位信息和环境感知信息。
  2. 根据权利要求1所述方法,还包括:
    按照预设量测噪声模型在所述关联关系矩阵内增加误差向量。
  3. 根据权利要求1所述方法,其中,所述信道参数包括以下至少之一:路径增益、多普勒频率、时延、角度。
  4. 根据权利要求1所述方法,其中,所述视距径量测参数包括以下至少之一:到达时间差参数、到达频率差参数、到达角参数。
  5. 根据权利要求1所述方法,其中,所述非视距径量测参数包括以下至少之一:到达角参数、离去角参数。
  6. 根据权利要求1所述方法,其中,所述定位信息包括终端位置信息、速度信息,所述环境感知信息包括散射体位置信息。
  7. 根据权利要求1所述方法,其中,所述基于所述关联关系矩阵确定定位信息和环境感知信息,包括:
    按照加权最小二乘估计器解析所述关联关系矩阵以确定所述定位信息和所述环境感知信息。
  8. 根据权利要求1所述方法,其中,所述预设回波几何模型包括以下至少之一:
    视距径到达时间差量测参数等式;
    视距径到达频率差量测参数等式;
    视距径到达角量测参数等式;
    非视距径到达角量测参数等式;以及
    非视距径离去角量测参数等式。
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-8中任一所述方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行 时实现如权利要求1-8中任一所述方法。
PCT/CN2023/099928 2022-09-14 2023-06-13 一种终端定位与感知方法、电子设备和存储介质 WO2024055649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117732.XA CN117750308A (zh) 2022-09-14 2022-09-14 一种终端定位与感知方法、电子设备和存储介质
CN202211117732.X 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055649A1 true WO2024055649A1 (zh) 2024-03-21

Family

ID=90251340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099928 WO2024055649A1 (zh) 2022-09-14 2023-06-13 一种终端定位与感知方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN117750308A (zh)
WO (1) WO2024055649A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986903A (zh) * 2021-04-29 2021-06-18 香港中文大学(深圳) 一种智能反射平面辅助的无线感知方法及装置
WO2022022534A1 (en) * 2020-07-27 2022-02-03 Huawei Technologies Co., Ltd. Sensing-assisted positioning of mobile devices
CN114114150A (zh) * 2021-11-26 2022-03-01 东南大学 一种面向通信感知一体化的无线定位方法
US20220107384A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Slot format for reference radar signal and at least one target radar signal between base stations
US20220113400A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Transmission configurations for reference radar signal and at least one target radar signal
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022534A1 (en) * 2020-07-27 2022-02-03 Huawei Technologies Co., Ltd. Sensing-assisted positioning of mobile devices
US20220107384A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Slot format for reference radar signal and at least one target radar signal between base stations
US20220113400A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Transmission configurations for reference radar signal and at least one target radar signal
CN112986903A (zh) * 2021-04-29 2021-06-18 香港中文大学(深圳) 一种智能反射平面辅助的无线感知方法及装置
CN114114150A (zh) * 2021-11-26 2022-03-01 东南大学 一种面向通信感知一体化的无线定位方法
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统

Also Published As

Publication number Publication date
CN117750308A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US10813170B2 (en) Locating method, system, and related device
RU2632475C1 (ru) Инициированное точкой доступа позиционирование по времени распространения
US8837316B2 (en) RTT based ranging system and method
US9398412B2 (en) Indoor position location using docked mobile devices
US20220271818A1 (en) Non-Line-of-Sight Path Detection for User Equipment Positioning in Wireless Networks
CN110857973A (zh) 一种到达角估计方法及设备
KR20160121160A (ko) 무선 통신 시스템에서 위치 측정을 위한 장치 및 방법
US10499363B1 (en) Methods and apparatus for improved accuracy and positioning estimates
US20230180040A1 (en) Information reporting method, apparatus and device, and readable storage medium
CN114007183B (zh) 定位方式的触发方法及通信装置
US11960017B2 (en) Uplink beam configuration
CN115103442A (zh) 目标终端设备的定位方法和装置、设备及存储介质
CN109196926B (zh) 用于估计周转校准因子的方法和设备
WO2024055649A1 (zh) 一种终端定位与感知方法、电子设备和存储介质
CN116033339A (zh) 一种信息上报方法、装置、设备及可读存储介质
US11758508B2 (en) Access Point (AP) placement using Fine Time Measurement (FTM)
WO2023029899A1 (zh) 一种定位方法及装置
Cipov et al. Cooperative trilateration-based positioning algorithm for wlan nodes using round trip time estimation
WO2023178569A1 (zh) 位置确定方法、装置、设备、介质、芯片、产品及程序
WO2023185407A1 (zh) 一种通信方法及装置
WO2023193684A1 (zh) 验证终端位置的方法、终端及网络侧设备
WO2023098810A1 (zh) 定位方法、装置、终端及通信设备
CN112235757B (zh) 用于定位的方法、设备、装置和计算机可读存储介质
KR102610912B1 (ko) 영상과 무선 전파를 이용하는 측위 방법 및 장치
WO2024032538A1 (zh) 校准方法、信息传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864388

Country of ref document: EP

Kind code of ref document: A1