WO2024055476A1 - 温度传感器及电芯组件 - Google Patents

温度传感器及电芯组件 Download PDF

Info

Publication number
WO2024055476A1
WO2024055476A1 PCT/CN2022/144097 CN2022144097W WO2024055476A1 WO 2024055476 A1 WO2024055476 A1 WO 2024055476A1 CN 2022144097 W CN2022144097 W CN 2022144097W WO 2024055476 A1 WO2024055476 A1 WO 2024055476A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
side wall
temperature sensor
sensing
side walls
Prior art date
Application number
PCT/CN2022/144097
Other languages
English (en)
French (fr)
Inventor
任朝举
张国江
陆君高
徐宇虹
江吉兵
Original Assignee
湖北亿纬动力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211124902.7A external-priority patent/CN115371833A/zh
Priority claimed from CN202222445841.6U external-priority patent/CN218297423U/zh
Application filed by 湖北亿纬动力有限公司 filed Critical 湖北亿纬动力有限公司
Publication of WO2024055476A1 publication Critical patent/WO2024055476A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, for example, to a temperature sensor and a battery cell assembly.
  • common temperature sensors are patch temperature sensors and dripper temperature sensors. These two temperature sensors can only collect the temperature of the battery core one by one. That is, one temperature sensor can only collect the temperature of one battery core. , This form not only results in a high cost of battery products, but also occupies a larger space in the battery box, which is not conducive to improving the energy density of the battery.
  • This application provides a temperature sensor that can achieve the effect of one temperature sensor collecting the temperatures of multiple battery cores.
  • This application provides a temperature sensor, which is configured to collect the temperature of the battery core, including:
  • the temperature-sensing part has multiple temperature-sensing side walls, and two adjacent temperature-sensing side walls are arranged at an angle, and the temperature-sensing side walls are made of thermally conductive material;
  • the multiple thermistor chips are respectively corresponding to and connected to the multiple temperature-sensing side walls;
  • the leads are fixed on the thermistor chip.
  • the number of leads is multiple groups, and the multiple groups of leads correspond to multiple thermistor chips one by one.
  • the present application provides a battery core assembly, including a plurality of battery cores and the above-mentioned temperature sensor.
  • the temperature sensor is disposed in the gap between two or more adjacent battery cores, and the outer surface of each temperature-sensing side wall They are all attached to or in contact with a battery cell.
  • the temperature-sensing part has multiple temperature-sensing side walls, and two adjacent temperature-sensing side walls are arranged at an angle. Multiple thermistor chips are respectively connected with the multiple temperature-sensing side walls. Correspond and connect, and set the temperature sensor in the gap between multiple adjacent cells or two adjacent cells in the cell group, and use different temperature-sensing side walls of the temperature-sensing portion to separate different cells.
  • the heat is transferred to the corresponding thermistor chip, and then different cell temperature signals are transmitted through the leads corresponding to each thermistor chip, thus achieving the effect of one temperature sensor collecting the temperatures of multiple cells, and then Reducing the number of temperature sensors installed in a battery box can not only reduce the production cost of battery products, but also improve the utilization of space inside the battery box, thereby increasing the energy density of battery products.
  • the battery core assembly uses the above-mentioned temperature sensor, and the above-mentioned temperature sensor is arranged in the gap between two or more adjacent battery cores, and each thermistor chip corresponds to one battery core. , which greatly reduces the number of temperature sensors required for the entire battery assembly, thereby reducing the production cost and overall volume of the battery assembly.
  • Figure 1 is a schematic structural diagram of a temperature sensor provided in Embodiment 1;
  • FIG. 2 is a schematic structural diagram 2 of the temperature sensor provided in Embodiment 1;
  • FIG. 3 is a schematic cross-sectional structural diagram of the temperature sensor provided in Embodiment 1 without showing the leads;
  • Figure 4 is a schematic diagram of the assembly structure of the temperature sensor and the battery core provided in the first embodiment
  • FIG. 5 is a schematic diagram 2 of the assembly structure of the temperature sensor and battery core provided in Embodiment 1;
  • Figure 6 is a schematic diagram 3 of the assembly structure of the temperature sensor and battery core provided in Embodiment 1;
  • Figure 7 is a schematic diagram of the assembly structure of the temperature sensor and battery core provided in Embodiment 2;
  • Figure 8 is a schematic structural diagram of the inner surface of the temperature-sensing side wall provided in Embodiment 2;
  • Figure 9 is a schematic diagram of the assembly structure of the temperature sensor and battery core provided in the third embodiment.
  • Figure 10 is a schematic cross-sectional structural diagram of the temperature sensor provided in Embodiment 3 without showing the leads;
  • FIG 11 is a schematic structural diagram of the temperature sensor provided in Embodiment 4.
  • Temperature sensor 20. Battery core; 100. Temperature-sensing part; 110. Cavity; 111. Temperature-sensing side wall; 1111. Sub-side wall; 1112. Insulation part; 1113. Installation slot; 112. Connection side wall ; 200, thermistor chip; 300, lead.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral body.
  • It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the specific meanings of the above terms in this application may be understood based on specific circumstances.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • This embodiment provides a temperature sensor configured to collect the temperature of a battery core.
  • the temperature sensor can achieve the effect of one temperature sensor collecting the temperatures of multiple battery cores.
  • the temperature sensor 10 includes a temperature sensing part 100, a plurality of thermistor chips 200 and leads 300.
  • the temperature sensing part 100 has a plurality of temperature sensing side walls 111, and adjacent The two temperature-sensing side walls 111 are arranged at an angle.
  • the temperature-sensing side walls 111 are made of thermally conductive material.
  • a plurality of thermistor chips 200 correspond to and are connected to the multiple temperature-sensing side walls 111 one by one.
  • the leads 300 are fixed on the thermal conductor.
  • the number of leads 300 on the thermistor chip 200 is multiple groups, and the multiple groups of leads 300 correspond to the multiple thermistor chips 200 one-to-one.
  • the temperature sensing part of the temperature sensor 10 has a plurality of temperature sensing side walls 111, and two adjacent temperature sensing side walls 111 are arranged at an included angle.
  • the plurality of thermistor chips 200 are respectively connected with the plurality of temperature sensing side walls. 111 corresponding and connected one by one, the temperature sensor 10 is arranged in the gap between multiple adjacent battery cores 20 or two adjacent battery cores 20 in the battery core group, and uses the different temperature sensing of the temperature sensing part 100
  • the side wall 111 transfers the heat of different battery cores 20 to the thermistor chip 200 corresponding to the temperature-sensitive side wall 111, and then realizes the transmission of temperature signals of the different battery cores 20 through the leads 300 corresponding to each thermistor chip 200.
  • each group of leads 300 includes a positive lead and a negative lead, and each thermistor chip 200 is fixed with a positive lead and a negative lead.
  • multiple positive leads are arranged on one lead.
  • multiple negative electrode leads are arranged in another lead sleeve to improve the overall structural consistency of the temperature sensor 10 .
  • the lead 300 can be a vehicle-grade special cable with high temperature resistance. Of course, other cables can also be selected according to different usage environments.
  • the lead 300 can be directly connected to the collection line of the battery module or transferred through a connector to realize the transmission of collection data.
  • the thermistor chip 200 is disposed on the inner surface of the temperature-sensing side wall 111 to protect the thermistor chip 200 from external environmental factors such as bumps or scratches. Damage caused by the sensitive resistor chip 200.
  • the temperature-sensitive side wall 111 may be made of thermally conductive glue or resin, so that the temperature-sensitive side wall 111 has thermal conductive properties.
  • the thermistor chip 200 is an NTC thermistor chip, that is, the resistance value of the thermistor chip 200 increases as the temperature rises.
  • NTC thermistor chips are relatively common in the market and are easy to purchase.
  • the thermistor chip 200 is sintered using oxides of Mn (manganese), Ni (nickel), and Co (cobalt) as raw materials. It has the characteristics of small size, good stability, and high responsiveness. It should be noted that , the specific components and preparation process of the thermistor chip 200 are relatively common technologies in this field, and will not be described again here.
  • a thermistor chip 200 is provided on each temperature-sensing side wall 111 to fully utilize each temperature-sensing side wall 111 of the temperature sensor 10. , increase the number of battery cores 20 whose temperatures can be collected by one temperature sensor 10 as much as possible.
  • the thermistor chip 200 may also be provided on part of the temperature-sensing sidewalls 111 of the plurality of temperature-sensing sidewalls 111 , depending on actual application conditions.
  • the temperature sensing portion 100 is in a prismatic shape, and the outer surface of each temperature sensing side wall 111 can fit with the side wall of the battery core 20.
  • the temperature sensing part 100 For cylindrical battery cells and square battery cells, it is more suitable to design the temperature sensing part 100 into a prism type. Of course, in other embodiments, the temperature sensing part 100 may also have a polyhedral structure. In this case, the temperature sensor 10 is more suitable for button type batteries 20 ; In addition, the outer surface of the temperature-sensing side wall 111 and the side wall of the battery core 20 are made to fit together, so that the heat transfer area between the temperature-sensing side wall 111 and the battery core 20 can be expanded as much as possible, thereby improving the temperature collected by the temperature sensor 10 The accuracy of The heat emitted by 20 is transferred to the thermistor chip 200.
  • the temperature-sensing side wall 111 is also made of a flexible material.
  • the temperature-sensing side wall 111 can be made of thermal conductive glue or silicone modified epoxy resin, so that the temperature-sensing side wall 111 has both thermal conductivity and thermal conductivity. With softness or elasticity, when the temperature sensor 10 and multiple battery cores 20 are assembled, the temperature sensor 10 can be directly sandwiched between multiple adjacent battery cores 20 or two adjacent battery cores 20 At the gap, at this time, the flexible nature of the temperature-sensitive side wall 111 can make it fit well with the side wall of the battery core 20, eliminating the need to use thermal conductive glue to bond the temperature sensor 10 to the battery core 20. And the thermal conductive glue structure is omitted.
  • the thermal conductive components between the chips 200 have the effect of improving temperature collection accuracy and sensitivity.
  • the area of the thermistor chip 200 may be equal to or smaller than the area of the temperature-sensing side wall 111.
  • the contact area between the two is smaller. Therefore, the thermistor chip 200 can collect the temperature transmitted by the temperature-sensitive side wall 111 more sensitively, thereby improving the sensitivity of the temperature sensor 10 in collecting temperature.
  • the thermistor chip 200 and the temperature-sensitive side wall 111 are arranged in close contact to expand the contact area between them, thereby improving the sensitivity of the thermistor chip 200 in collecting temperature.
  • the temperature sensor 10 in collecting temperature.
  • the battery core 20 is a cylindrical battery core
  • the outer surface of the temperature-sensitive side wall 111 is a curved surface.
  • each temperature-sensing side wall 111 is set as a curved surface, and the outer surface of each temperature-sensing side wall 111 can fit with the side wall of a battery core 20, and the temperature sensor 10 is arranged
  • the space volume in the gap can be effectively utilized, effectively reducing the overall volume of the cylindrical battery pack, and avoiding the problem of wasting space in the battery module.
  • This structural arrangement is suitable for the current cylindrical battery pack. Battery modules composed of type cells are particularly suitable.
  • the temperature sensor 10 can be used to selectively collect the temperature of the battery cores 20 , that is, the temperature sensor 10 can be used to collect the temperatures of several adjacent battery cores 20 at the same time, or only the temperatures of adjacent batteries can be collected.
  • the temperature of individual battery cores 20 among the several battery cores 20 can be determined according to actual usage requirements.
  • the inner surface of the temperature-sensing side wall 111 is a curved surface, and the curvature of the outer surface of the temperature-sensing side wall 111 is the same as the curvature of the inner surface of the temperature-sensing side wall 111, so as to reduce
  • the thickness of the temperature-sensing side wall 111 further improves the accuracy and rate of heat transfer by the temperature-sensing side wall 111, thereby improving the accuracy and sensitivity of the temperature sensor 10 in collecting temperature.
  • the number of temperature-sensing side walls 111 is three, that is, three battery cores 20 are used as a group, and one temperature sensor 10 is disposed on three batteries. at the gaps between the cores 20 to achieve the effect of using one temperature sensor 10 to collect the temperatures of three battery cores 20 .
  • the number of temperature-sensing side walls 111 can also be four, five, or six, etc. In this case, the number of battery cores 20 is equal to the number of temperature-sensing side walls 111 .
  • the number of temperature-sensitive side walls 111 is five, then five battery cells 20 are taken as a group, and one temperature sensor 10 is arranged in the gap between the five battery cells 20 to achieve the goal of using one temperature sensor. 10 collects the effect of temperature of five batteries at 20.
  • the number of temperature-sensing side walls 111 is set to three. The structure can make the temperature sensor 10 more suitable for actual assembly process requirements.
  • the temperature sensing part 100 also has a connecting side wall 112.
  • the outer surface of the connecting side wall 112 is a plane.
  • Two adjacent temperature sensing side walls 111 are connected through the connecting side wall 112. Since the outer surface of the temperature-sensing side wall 111 is a curved surface, a connecting side wall 112 with a flat outer surface is provided between two adjacent temperature-sensing side walls 111 to avoid the problem of two adjacent temperature-sensing side walls 111
  • the concentrated stress formed due to direct contact further achieves the effect of improving the overall structural strength of the temperature sensing portion 100 .
  • the connecting side wall 112 can be made of thermally conductive material and integrally formed with the temperature-sensing side wall 111 to reduce the production difficulty of the temperature-sensing part 100 and improve production efficiency; the connecting side wall 112 can also be made of a heat-insulating material to achieve thermal insulation.
  • the heat insulation effect of the two adjacent temperature-sensing side walls 111 prevents heat transfer between the two adjacent temperature-sensing side walls 111 , thereby improving the accuracy of temperature collection by the temperature sensor 10 .
  • the temperature sensing part 100 is provided with a cavity 110.
  • the connecting side walls 112 and the temperature sensing side walls 111 are staggered and surround the cavity 110.
  • the leads 300 are passed through the cavity 110 to improve the overall structure of the temperature sensor 10. consistency.
  • the temperature sensor 10 provided in this embodiment is very suitable for cylindrical battery cores.
  • the temperature of cylindrical battery cores is often collected through chip temperature sensors or water dropper temperature sensors.
  • the contact positions of these two temperature sensors 10 with the cylindrical core are very limited, and it is difficult to collect the temperature of the side wall or end face of the cylindrical core.
  • thermally conductive adhesive to bond the chip temperature sensor or water dropper temperature sensor to the side wall of the cylindrical cell. This not only makes the assembly of the cell 20 and the temperature sensor 10 more cumbersome and time-consuming, but also increases the number of cells.
  • the temperature sensor 10 provided in this embodiment directly fixes the thermistor chip 200 on the temperature-sensing side wall 111.
  • the outer surface of the temperature-sensing side wall 111 is a curved surface and can fit with the side wall of the cylindrical battery core.
  • the temperature-sensing side wall 111 is made of a material with thermal conductivity and softness (such as thermal conductive glue or silicone modified epoxy resin, etc.), so that the temperature-sensing side wall 111 of the temperature sensor 10 can be well connected with the cylinder.
  • the side walls of the cylindrical battery cores fit together, and the temperature sensor 10 is sandwiched in the gaps between multiple cylindrical battery cores, so that the outer surface of each temperature-sensing side wall 111 can be in contact with the cylindrical battery core.
  • the side walls fit together.
  • the thermal conductive glue used for bonding is eliminated, allowing the temperature sensor 10 to be in direct contact with the cylindrical battery core.
  • the temperature sensor 10 is able to collect the temperature of the side wall of the cylindrical battery core. , and the contact between the temperature sensor 10 and the side wall of the cylindrical battery core is surface contact, which effectively increases the contact area between the two.
  • the temperature sensor 10 also realizes the simultaneous collection of temperatures of multiple cylindrical battery cores.
  • the temperature sensor 10 effectively utilizes the adjacent cylindrical cells after assembling a plurality of cylindrical cells into a battery module.
  • the gaps between several cylindrical cells reduce the overall volume of the battery module, providing a strong guarantee for increasing the energy density of the battery.
  • This embodiment also provides a battery core assembly, which includes a plurality of battery cores 20 and the above-mentioned temperature sensor 10.
  • the temperature sensor 10 is disposed in the gap between two or more adjacent battery cores 20. And the outer surface of each temperature-sensitive side wall 111 is attached to or in contact with a battery core 20.
  • the battery core assembly adopts the above-mentioned temperature sensor 10, and the above-mentioned temperature sensor 10 is arranged on two or more adjacent cells. at the gap between the cores 20, and each thermistor chip 200 corresponds to one battery core 20, which greatly reduces the number of temperature sensors 10 required for the entire battery core assembly, thereby reducing the production of the battery core assembly. cost and overall volume.
  • This embodiment provides a temperature sensor 10.
  • the temperature sensor 10 is different from the temperature sensor 10 provided in the previous embodiment in that:
  • the temperature-sensing side wall 111 is provided with a heat insulation portion 1112.
  • the heat insulation portion 1112 divides the temperature-sensing side wall 111 into at least two sub-side walls 1111, and each sub-side wall 1111 is provided with a
  • the thermistor chip 200, and each thermistor chip 200 can correspond to one battery core 20, and the heat insulation part 1112 is made of heat insulation material, thereby achieving the effect of one temperature-sensitive side wall 111 collecting the temperatures of multiple battery cores 20,
  • This structural arrangement is particularly suitable for the structural design of multi-layer battery modules.
  • the heat insulation part 1112 separates the temperature-sensitive side wall 111 into two sub-side walls 1111, that is, each temperature-sensing side wall 1111 is divided into two sub-side walls 1111.
  • the side walls 111 each have two sub-side walls 1111, and a thermistor chip 200 is provided on the inner surface of each sub-side wall 1111, thereby achieving the effect of a temperature-sensitive side wall 111 collecting the temperature of the upper and lower battery cores 20.
  • each temperature-sensing side wall 111 can also have three, four or five sub-side walls. 1111, it depends on the actual application.
  • the outer surface of the heat insulation part 1112 is flush with the outer surface of the sub-side wall 1111 to ensure that the sub-side wall 1111 can fit well with the battery core 20 and also to improve the consistency of the overall structure of the temperature sensor.
  • the inner surface of the heat insulation part 1112 is flush with the inner surface of the sub-side wall 1111 .
  • the above-mentioned thermal insulation material can be made of materials such as fiberglass or asbestos.
  • This embodiment provides a temperature sensor 10.
  • the temperature sensor 10 is different from the temperature sensor 10 provided in the previous embodiment in that:
  • the battery core 20 is a square battery core, and the number of temperature-sensing side walls 111 is two, and the two temperature-sensing side walls 111 are arranged oppositely, and each temperature-sensing side wall 111 is provided with There is a heat insulation part 1112.
  • the heat insulation part 1112 divides the temperature-sensitive side wall 111 into a plurality of sub-side walls 1111.
  • Each sub-side wall 1111 is provided with a thermistor chip 200, and each thermistor chip 200 can correspond to One battery cell 20.
  • the multiple square battery cells are often arranged in rows. In this case, the temperature sensor 10 is sandwiched between two adjacent rows of square battery cells.
  • each thermistor chip 200 is corresponding to one battery core 20, so as to achieve the use of one temperature sensor. 10 Collect the effect of temperature of two rows of square cells.
  • the heat insulation part 1112 can also be omitted, and only one thermistor chip 200 is provided on the inner surface of the two opposite temperature-sensitive side walls 111, and then a temperature sensor 10 is sandwiched Between the two battery cores 20, two opposite temperature-sensing side walls 111 are respectively attached to the two battery cores 20, so as to achieve the effect of using one temperature sensor 10 to collect the temperatures of the two square battery cores.
  • This embodiment provides a temperature sensor 10.
  • the temperature sensor 10 is different from the temperature sensor 10 provided in the previous embodiment in that:
  • the temperature-sensitive side wall 111 is provided with a mounting slot 1113, and the thermistor chip 200 is fixed in the mounting slot 1113.
  • the thermistor chip 200 can be fixed in the mounting slot 1113 by snapping or bonding.
  • the installation groove 1113 the assembly process of the thermistor chip 200 and the temperature-sensing side wall 111 is simplified, the production efficiency of the temperature sensor 10 is improved, and the stability of the connection between the thermistor chip 200 and the temperature-sensing side wall 111 is improved.
  • the installation groove 1113 can be opened on the inner surface of the temperature-sensing side wall 111 or can be opened on the outer surface of the temperature-sensing side wall 111.
  • the installation slot 1113 is opened on the temperature-sensing side wall 111.
  • a through hole needs to be opened at the bottom of the mounting groove 1113 for the lead wire 300 to pass through.
  • the mounting groove 1113 is opened on the outer surface of the temperature-sensing side wall 111, and the mounting groove 1113 is close to the top of the temperature-sensing side wall 111, thereby simplifying the assembly operation of the thermistor chip 200 and the temperature-sensing side wall 111. This further improves the production efficiency of the temperature sensor 10 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种温度传感器(10)及电芯组件,电芯组件包括温度传感器(10),温度传感器(10)包括感温部(100) 、多个热敏电阻芯片(200)和多组引线(300),感温部(100)具有多个感温侧壁(111),相邻两个感温侧壁(111)之间呈夹角设置,感温侧壁(111) 为导热材质,多个热敏电阻芯片(200)分别与多个感温侧壁 (111) 一一对应并连接,多组引线(300)固定在热敏电阻芯片(200)上并与多个热敏电阻芯片(200) 一一对应。

Description

温度传感器及电芯组件
本申请要求在2022年9月15日提交中国专利局、申请号分别为202211124902.7的中国专利申请以及202222445841.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如涉及一种温度传感器及电芯组件。
背景技术
在电池技术领域,常需要使用温度传感器来采集电芯温度,以确保电池的使用安全。
相关技术中,常见的温度传感器是贴片式温度传感器和水滴头式温度传感器,这两种温度传感器只能对电芯温度进行一一采集,即,一个温度传感器只能采集一个电芯的温度,这种形式不仅导致电池产品的成本偏高,而且占用了电池箱体内较大的空间,不利于提高电池的能量密度。
因此,亟需提出一种温度传感器及电芯组件,来解决上述技术问题。
技术问题
本申请提供一种温度传感器,能够达到一个温度传感器采集多个电芯温度的效果。
技术解决方案
本申请提供一种温度传感器,设置为采集电芯的温度,包括:
感温部,感温部具有多个感温侧壁,且相邻的两个感温侧壁之间呈夹角设置,感温侧壁为导热材质;
多个热敏电阻芯片,多个热敏电阻芯片分别与多个感温侧壁一一对应并连接;以及
引线,引线固定于热敏电阻芯片上,引线的数量为多组,多组引线与多个热敏电阻芯片一一对应。
本申请提供一种电芯组件,包括多个电芯以及上述的温度传感器,温度传感器设置于相邻的两个或多个电芯之间的间隙处,且每个感温侧壁的外表面均与一个电芯相贴合或接触。
有益效果
本申请提供的温度传感器,感温部具有多个感温侧壁,且相邻的两个感温侧壁之间呈夹角设置,多个热敏电阻芯片分别与多个感温侧壁一一对应并连接,将该温度传感器设置在电芯组中相邻的多个电芯或者相邻的两个电芯之间的间隙处,利用感温部不同的感温侧壁将不同电芯的热量传递给相对应的热敏电阻芯片,再通过每个热敏电阻芯片所对应的引线实现不同电芯温度信号的传递,由此达到了一个温度传感器采集多个电芯温度的效果,进而减少了一个电池箱内设置的温度传感器的数量,不仅能够降低电池产品的生产成本,还能够提高电池箱体内部空间利用率,进而提高电池产品的能量密度。
本申请提供的电芯组件,采用上述的温度传感器,将上述温度传感器设置在相邻的两个或多个电芯之间的间隙处,且每个热敏电阻芯片均与一个电芯相对应,大幅度减少了电芯组件整体所需的温度传感器的数量,进而降低了电芯组件的生产成本和整体体积。
附图说明
图1是实施例一提供的温度传感器的结构示意图一;
图2是实施例一提供的温度传感器的结构示意图二;
图3是实施例一提供的温度传感器未显示引线的剖面结构示意图;
图4是实施例一提供的温度传感器与电芯的组装结构示意图一;
图5是实施例一提供的温度传感器与电芯的组装结构示意图二;
图6是实施例一提供的温度传感器与电芯的组装结构示意图三;
图7是实施例二提供的温度传感器与电芯的组装结构示意图;
图8是实施例二提供的感温侧壁的内表面的结构示意图;
图9是实施例三提供的温度传感器与电芯的组装结构示意图;
图10是实施例三提供的温度传感器未显示引线的剖面结构示意图;
图11是实施例四提供的温度传感器的结构示意图。
图中:
10、温度传感器;20、电芯;100、感温部;110、空腔;111、感温侧壁;1111、子侧壁;1112、隔热部;1113、安装槽;112、连接侧壁;200、热敏电阻芯片;300、引线。
本发明的实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本实施例提供一种温度传感器,设置为采集电芯的温度,该温度传感器能够达到一个温度传感器采集多个电芯温度的效果。
示例性地,如图1-6所示,该温度传感器10包括感温部100、多个热敏电阻芯片200以及引线300,感温部100具有多个感温侧壁111,且相邻的两个感温侧壁111之间呈夹角设置,感温侧壁111为导热材质,多个热敏电阻芯片200分别与多个感温侧壁111一一对应并连接,引线300固定于热敏电阻芯片200上,引线300的数量为多组,多组引线300与多个热敏电阻芯片200一一对应。
该温度传感器10的感温部具有多个感温侧壁111,且相邻的两个感温侧壁111之间呈夹角设置,多个热敏电阻芯片200分别与多个感温侧壁111一一对应并连接,将该温度传感器10设置在电芯组中相邻的多个电芯20或者相邻的两个电芯20之间的间隙处,利用感温部100不同的感温侧壁111将不同电芯20的热量传递给与感温侧壁111相对应的热敏电阻芯片200,再通过每个热敏电阻芯片200所对应的引线300实现不同电芯20温度信号的传递,由此达到了一个温度传感器10采集多个电芯20温度的效果,进而减少了一个电池箱内设置的温度传感器10的数量,不仅能够降低电池产品的生产成本,还能够提高电池箱体内部空间利用率,进而提高电池产品的能量密度。
示例性地,每一组引线300均包括正极引线和负极引线,每个热敏电阻芯片200均固定有一个正极引线和一个负极引线,本实施例中,将多个正极引线设置在了一个引线套中,将多个负极引线设置在了另一个引线套中,以提高温度传感器10的整体结构一致性。可选地,引线300可选用具有耐高温特性的车规级专用线缆,当然,也可以根据不同使用环境选用其他线缆。可选地,引线300可以直接与电池模组的采集线路进行连接或者通过连接器进行转接,以实现采集数据的传输。
示例性地,如图1-6所示,热敏电阻芯片200设置在感温侧壁111的内表面上,以实现对热敏电阻芯片200的保护,避免磕碰或剐蹭等外部环境因素对热敏电阻芯片200造成的损坏。
示例性地,上述感温侧壁111可以采用导热胶或者树脂制成,以使感温侧壁111具有导热特性。
示例性地,热敏电阻芯片200为NTC热敏电阻芯片,即,热敏电阻芯片200的电阻值随着温度的上升而升高,NTC热敏电阻芯片在市场上较为常见,便于采购。
示例性地,热敏电阻芯片200采用Mn(锰)、Ni(镍)、Co(钴)的氧化物为原料烧结而成,具有体积小,稳定性好且响应性高等特点,需要说明的是,热敏电阻芯片200的具体组分及制备工艺均为本领域较为常见的技术,此处不再赘述。
示例性地,如图1-6所示,本实施例中,在每个感温侧壁111上均设有一个热敏电阻芯片200,以充分利用温度传感器10的每一个感温侧壁111,尽可能增加可被一个温度传感器10采集温度的电芯20的数量。当然,在其他实施方案中,也可以是在多个感温侧壁111中的部分感温侧壁111上设有热敏电阻芯片200,根据实际应用情况而定即可。示例性地,如图1-6所示,感温部100为棱柱型,每个感温侧壁111的外表面均能够与电芯20的侧壁相贴合,对于圆柱型电芯和方型电芯而言,将感温部100设计为棱柱型更为适用,当然,在其他实施方案中,感温部100也可以是多面体结构,此时温度传感器10更加适用于扣式电芯20;另外,使感温侧壁111的外表面与电芯20的侧壁相贴合,能够尽量扩大感温侧壁111与电芯20之间的传热面积,进而提高了温度传感器10采集温度的精度,当然,在其他实施方案中,感温侧壁111的外表面也可以是与电芯20的侧壁相接触或者稍微隔开一小段间距,只要是感温侧壁111能够将电芯20发出的热量传递给热敏电阻芯片200即可。
示例性地,感温侧壁111还为柔性材质,示例性地,感温侧壁111可以选用导热胶或有机硅改性环氧树脂等制成,使得感温侧壁111既具有导热特性又具有柔软特性或弹性,当对温度传感器10和多个电芯20进行组装时,可以直接将温度传感器10夹设在相邻的多个电芯20或者相邻的两个电芯20之间的间隙处,此时,感温侧壁111的柔性特质能够使其很好地与电芯20侧壁相贴合,省去了采用导热胶将温度传感器10粘接到电芯20上的工序,以及省去了导热胶结构,一方面,能够简化温度传感器10与电芯20的组装工序,并且节省了等待导热胶晾干的时间,具有简化生产工序和提高生产效率的效果,另一方面,电芯20产生的热量能够直接通过感温侧壁111传递给热敏电阻芯片200,省去了温度传感器10与电芯20之间粘接的导热胶,进而减少了电芯20与热敏电阻芯片200之间的导热部件,具有提高温度采集精度和灵敏度的效果。
示例性地,热敏电阻芯片200的面积可以等于或者小于感温侧壁111的面积,当热敏电阻芯片200的面积等于感温侧壁111的面积时,由于其二者之间接触面积较大,因此热敏电阻芯片200能够更为灵敏地采集到感温侧壁111传递的温度,进而提高了温度传感器10采集温度的灵敏性。
示例性地,如图1-6所示,热敏电阻芯片200与感温侧壁111贴合设置,以扩大其二者之间的接触面积,进而提高热敏电阻芯片200采集温度的灵敏度,以提高温度传感器10采集温度的灵敏性。
示例性地,如图1-6所示,电芯20为圆柱型电芯,感温侧壁111的外表面为曲面,当将多个圆柱型电芯组装成电池模组时,相邻的几个电芯20之间不可避免地会存在间隙,而相关技术中的电池模组并未对该间隙加以利用,导致电池模组由于存在多个上述间隙而出现空间浪费的问题,本实施例中,将每个感温侧壁111的外表面均设置为曲面,并使每个感温侧壁111的外表面均能够与一个电芯20的侧壁相贴合,将该温度传感器10设置在上述电芯20之间的间隙处,能够有效利用间隙处的空间体积,有效减小了圆柱型电芯组的整体体积,避免了电池模组空间浪费的问题,该结构设置对于目前由圆柱型电芯组成的电池模组尤为适用。当然,在实际应用中,可以使用该温度传感器10选择性地采集电芯20温度,即,可以使用该温度传感器10同时采集相邻的几个电芯20各自的温度,也可以只采集相邻的几个电芯20中的个别电芯20的温度,根据实际使用需求而定即可。
示例性地,如图1-6所示,感温侧壁111的内表面为曲面,且感温侧壁111的外表面的曲率与感温侧壁111的内表面的曲率相同,以减小感温侧壁111的厚度,进而提高感温侧壁111传递热量的精度和速率,达到提高温度传感器10采集温度精度和灵敏度的效果。
示例性地,如图1-6所示,本实施例中,感温侧壁111的数量为三个,即,以三个电芯20为一组,将一个温度传感器10设置在三个电芯20之间的间隙处,以达到使用一个温度传感器10采集三个电芯20温度的效果。可以理解的是,在其他实施方案中,感温侧壁111的数量也可以是四个、五个或六个等,此时,使电芯20的数量与感温侧壁111的数量相等即可,例如,感温侧壁111的数量为五个,那么以五个电芯20为一组,将一个温度传感器10设置在五个电芯20之间的间隙处,以达到用一个温度传感器10采集五个电芯20温度的效果。当然,在实际的组装工艺中,往往需要将多个圆柱型电芯组装成矩形模组,此时以三个电芯20为一组,并将感温侧壁111的数量设置为三个的结构能够使得该温度传感器10更加适用于实际组装工艺的需求。
示例性地,如图1-6所示,感温部100还具有连接侧壁112,连接侧壁112的外表面为平面,相邻的两个感温侧壁111通过连接侧壁112连接,由于感温侧壁111的外表面为曲面,因此,在相邻的两个感温侧壁111之间设置外表面为平面的连接侧壁112,能够避免相邻的两个感温侧壁111因直接接触而形成的集中应力,进而达到了提高感温部100整体结构强度的效果。
示例性地,连接侧壁112可以是导热材质并与感温侧壁111一体成型,以降低感温部100的生产难度,提高生产效率;连接侧壁112也可以是隔热材质,以达到对相邻的两个感温侧壁111进行隔热的效果,避免相邻的两个感温侧壁111之间发生热量传递,进而能够达到提高温度传感器10采集温度的准确性。
示例性地,感温部100设有空腔110,连接侧壁112与感温侧壁111交错设置并围成空腔110,引线300穿设于空腔110,以提高温度传感器10整体结构的一致性。
本实施例提供的温度传感器10十分适用于圆柱型电芯,目前相关技术中,对圆柱型电芯温度的采集往往是通过片式温度传感器或者水滴头式温度传感器实现的,然而对于圆柱型电芯而言,这两种温度传感器10与圆柱型电芯的接触位置十分受限,很难采集到圆柱型电芯侧壁或者端面的温度,另外,若要采集圆柱型电芯侧壁上的温度,需要使用导热胶将片式温度传感器或者水滴头式温度传感器粘接到圆柱型电芯的侧壁上,这不仅使得电芯20与温度传感器10的组装较为繁琐费时,还增加了电芯20与温度传感器10之间的传热部件(导热胶),进而降低了温度传感器10采集温度的准确性和灵敏度。本实施例提供的温度传感器10,直接将热敏电阻芯片200固定在感温侧壁111上,感温侧壁111的外表面为曲面并能够与圆柱型电芯的侧壁相贴合,加之感温侧壁111采用具有导热特性和柔软特性的材料制成(例如导热胶或有机硅改性环氧树脂等),进而可以使该温度传感器10的感温侧壁111能够很好地与圆柱型电芯的侧壁相贴合,将该温度传感器10夹设在多个圆柱型电芯之间的间隙中,使每个感温侧壁111的外表面都能够与一个圆柱型电芯的侧壁相贴合,一方面省去了粘接使用的导热胶,使温度传感器10与圆柱型电芯能够直接接触,另一方面达到了温度传感器10能够采集圆柱型电芯侧壁温度的效果,并且温度传感器10与圆柱型电芯侧壁的接触为面接触,有效提高了其二者之间的接触面积,再一方面,该温度传感器10还实现了同时采集多个圆柱型电芯温度的效果,有效降低了电池模组的成本并且减小了电池模组的整体体积,又一方面,该温度传感器10有效利用了将多个圆柱型电芯组装成电池模组后,相邻的几个圆柱型电芯之间的间隙,减小了电池模组的整体体积,为提高电池的能量密度提供了有力保障。
本实施例还提供一种电芯组件,该电芯组件包括多个电芯20以及上述的温度传感器10,温度传感器10设置于相邻的两个或多个电芯20之间的间隙处,且每个感温侧壁111的外表面均与一个电芯20相贴合或接触,该电芯组件采用上述的温度传感器10,将上述温度传感器10设置在相邻的两个或多个电芯20之间的间隙处,且每个热敏电阻芯片200均与一个电芯20相对应,大幅度减少了电芯组件整体所需的温度传感器10的数量,进而降低了电芯组件的生产成本和整体体积。
本实施例提供一种温度传感器10,该温度传感器10与前述实施例提供的温度传感器10的不同之处在于:
如图7和图8所示,感温侧壁111上设有隔热部1112,隔热部1112将感温侧壁111分隔成至少两个子侧壁1111,每个子侧壁1111均设有一个热敏电阻芯片200,且每个热敏电阻芯片200均能够对应一个电芯20,隔热部1112为隔热材质,由此实现一个感温侧壁111采集多个电芯20温度的效果,该结构设置尤其适用于多层电池模组的结构设计,示例性地,在本实施例中,隔热部1112将感温侧壁111分隔成了两个子侧壁1111,即,每个感温侧壁111均具有两个子侧壁1111,每个子侧壁1111的内表面上均设有一个热敏电阻芯片200,由此实现一个感温侧壁111采集上下两个电芯20温度的效果,使得该温度传感器10能够适用于双层电池模组的结构设计,当然,在其他实施例中,也可以是每个感温侧壁111均具有三个、四个或五个等的子侧壁1111,根据实际应用情况而定即可。
示例性地,隔热部1112的外表面与子侧壁1111的外表面平齐,以确保子侧壁1111能够很好地与电芯20贴合,并且还能够提高温度传感器整体结构的一致性。可选地,为提高温度传感器整体结构的一致性,隔热部1112的内表面与子侧壁1111的内表面平齐。
可选地,上述隔热材质可以由玻璃纤维或石棉等材料制成。
本实施例提供的温度传感器10的其余结构与前述实施例均相同,不再赘述。
本实施例提供一种温度传感器10,该温度传感器10与前述实施例提供的温度传感器10的不同之处在于:
如图9和图10所示,电芯20为方型电芯,感温侧壁111的数量为两个,且两个感温侧壁111相对设置,每个感温侧壁111上均设有隔热部1112,隔热部1112将感温侧壁111分隔成多个子侧壁1111,每个子侧壁1111均设有一个热敏电阻芯片200,且每个热敏电阻芯片200均能够对应一个电芯20,将多个方型电芯组装成电池模组时,多个方型电芯往往是成列排布的,此时将温度传感器10夹设在相邻的两列方型电芯之间,使相对设置的两个感温侧壁111分别与两列电芯20相贴合,并使每个热敏电阻芯片200分别与一个电芯20相对应,以达到使用一个温度传感器10采集两列方型电芯温度的效果。
当然,在其他实施例中,也可以省去隔热部1112,只在相对设置的两个感温侧壁111的内表面上分别设置一个热敏电阻芯片200,然后将一个温度传感器10夹设在两个电芯20之间,使相对设置的两个感温侧壁111分别与两个电芯20相贴合,以达到使用一个温度传感器10采集两个方型电芯温度的效果。
本实施例提供的温度传感器10的其余结构与前述实施例均相同,不再赘述。
本实施例提供一种温度传感器10,该温度传感器10与前述实施例提供的温度传感器10的不同之处在于:
如图11所示,感温侧壁111上设有安装槽1113,热敏电阻芯片200固定于安装槽1113内,示例性地,热敏电阻芯片200可以通过卡接或粘接等方式固定在安装槽1113内,以简化热敏电阻芯片200与感温侧壁111的组装工序,提高温度传感器10的生产效率,并且还能提高热敏电阻芯片200与感温侧壁111连接的稳定性。
可选地,安装槽1113可以开设在感温侧壁111的内表面,也可以开设在感温侧壁111的外表面,图11中显示的是将安装槽1113开设在了感温侧壁111的外表面,此时,需要在安装槽1113的槽底开设通孔,供引线300穿设。
示例性地,安装槽1113开设于感温侧壁111的外表面,且安装槽1113靠近于感温侧壁111的顶部,达到简化热敏电阻芯片200与感温侧壁111组装操作的效果,进而提高温度传感器10的生产效率。
本实施例提供的温度传感器10的其余结构与前述实施例均相同,不再赘述。
显然,本申请的上述实施例仅仅是为了清楚说明本申请所作的举例,而并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。这里无需也无法对所有的实施方式予以穷举。凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请权利要求的保护范围之内。

Claims (15)

  1. 温度传感器,设置为采集电芯(20)的温度,包括:
    感温部(100),所述感温部(100)具有多个感温侧壁(111),且相邻的两个所述感温侧壁(111)之间呈夹角设置,所述感温侧壁(111)为导热材质;
    多个热敏电阻芯片(200),多个所述热敏电阻芯片(200)分别与多个所述感温侧壁(111)一一对应并连接;以及
    引线(300),所述引线(300)固定于所述热敏电阻芯片(200)上,所述引线(300)的数量为多组,多组所述引线(300)与多个所述热敏电阻芯片(200)一一对应。
  2. 根据权利要求1所述的温度传感器,其特征在于,所述感温部(100)为棱柱型,每个所述感温侧壁(111)的外表面均能够与所述电芯(20)的侧壁相贴合。
  3. 根据权利要求2所述的温度传感器,其中,所述感温侧壁(111)上设有隔热部(1112),所述隔热部(1112)将所述感温侧壁(111)分隔成至少两个子侧壁(1111),每个所述子侧壁(1111)均设有一个所述热敏电阻芯片(200),且每个所述热敏电阻芯片(200)均能够对应一个所述电芯(20),所述隔热部(1112)为隔热材质。
  4. 根据权利要求3所述的温度传感器,其中,所述隔热部(1112)的外表面与所述子侧壁(1111)的外表面平齐,所述隔热部(1112)的内表面与所述子侧壁(1111)的内表面平齐。
  5. 根据权利要求2所述的温度传感器,其中,所述电芯(20)为圆柱型电芯,所述感温侧壁(111)的外表面为曲面。
  6. 根据权利要求5所述的温度传感器,其中,所述感温部(100)还具有连接侧壁(112),所述连接侧壁(112)的外表面为平面,相邻的两个所述感温侧壁(111)通过所述连接侧壁(112)连接。
  7. 根据权利要求6所述的温度传感器,其中,所述感温部(100)设有空腔(110),所述连接侧壁(112)与所述感温侧壁(111)交错设置并围成所述空腔(110),所述引线(300)穿设于所述空腔(110)。
  8. 根据权利要求5所述的温度传感器,其中,所述感温侧壁(111)的内表面为曲面,且所述感温侧壁(111)的外表面的曲率与所述感温侧壁(111)的内表面的曲率相同。
  9. 根据权利要求2所述的温度传感器,其中,所述电芯(20)为方型电芯,所述感温侧壁(111)的数量为两个,且两个所述感温侧壁(111)相对设置。
  10. 根据权利要求1-9任一项所述的温度传感器,其中,所述感温侧壁(111)还为柔性材质。
  11. 根据权利要求1-9任一项所述的温度传感器,其中,所述热敏电阻芯片(200)设置于所述感温侧壁(111)的内表面上。
  12. 根据权利要求1-9任一项所述的温度传感器,其中,所述感温侧壁(111)上设有安装槽(1113),所述热敏电阻芯片(200)固定于所述安装槽(1113)内。
  13. 根据权利要求12所述的温度传感器,其中,所述安装槽(1113)开设于所述感温侧壁(111)的外表面,且所述安装槽(1113)靠近于所述感温侧壁(111)的顶部。
  14. 根据权利要求13所述的温度传感器,其中,所述安装槽(1113)的槽底开设通孔,所述引线(300)穿设于所述通孔。
  15. 一种电芯组件,包括多个电芯(20)以及如权利要求1-14任一项所述的温度传感器(10),所述温度传感器(10)设置于相邻的两个或多个所述电芯(20)之间的间隙处,且每个所述感温侧壁(111)的外表面均与一个所述电芯(20)相贴合或接触。
PCT/CN2022/144097 2022-09-15 2022-12-30 温度传感器及电芯组件 WO2024055476A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222445841.6 2022-09-15
CN202211124902.7 2022-09-15
CN202211124902.7A CN115371833A (zh) 2022-09-15 2022-09-15 温度传感器及电芯组件
CN202222445841.6U CN218297423U (zh) 2022-09-15 2022-09-15 温度传感器及电芯组件

Publications (1)

Publication Number Publication Date
WO2024055476A1 true WO2024055476A1 (zh) 2024-03-21

Family

ID=90274173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144097 WO2024055476A1 (zh) 2022-09-15 2022-12-30 温度传感器及电芯组件

Country Status (1)

Country Link
WO (1) WO2024055476A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205280235U (zh) * 2015-12-21 2016-06-01 江苏奥新新能源汽车有限公司 一种锂电池温度传感器检测机构
CN205491236U (zh) * 2016-02-03 2016-08-17 苏州新业电子股份有限公司 一种液体加热用ptc加热器
US20170199084A1 (en) * 2014-09-16 2017-07-13 Panasonic Intellectual Property Management Co., Ltd. Battery sensor device
CN206742445U (zh) * 2017-05-18 2017-12-12 东莞市沃泰通新能源有限公司 一种电池模组温度检测结构
CN209804836U (zh) * 2019-04-03 2019-12-17 苏州安靠电源有限公司 电池模组
CN216698508U (zh) * 2021-12-09 2022-06-07 华霆(合肥)动力技术有限公司 一种电池模组及电池包
CN115371833A (zh) * 2022-09-15 2022-11-22 湖北亿纬动力有限公司 温度传感器及电芯组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170199084A1 (en) * 2014-09-16 2017-07-13 Panasonic Intellectual Property Management Co., Ltd. Battery sensor device
CN205280235U (zh) * 2015-12-21 2016-06-01 江苏奥新新能源汽车有限公司 一种锂电池温度传感器检测机构
CN205491236U (zh) * 2016-02-03 2016-08-17 苏州新业电子股份有限公司 一种液体加热用ptc加热器
CN206742445U (zh) * 2017-05-18 2017-12-12 东莞市沃泰通新能源有限公司 一种电池模组温度检测结构
CN209804836U (zh) * 2019-04-03 2019-12-17 苏州安靠电源有限公司 电池模组
CN216698508U (zh) * 2021-12-09 2022-06-07 华霆(合肥)动力技术有限公司 一种电池模组及电池包
CN115371833A (zh) * 2022-09-15 2022-11-22 湖北亿纬动力有限公司 温度传感器及电芯组件

Similar Documents

Publication Publication Date Title
CN108180927B (zh) 一种全柔性自供能传感器及其制作方法
CN105895843B (zh) 一种智能锂离子电池模组
TWI481098B (zh) 保護電路模組及二次電池組
CN210110988U (zh) 一种动力电池热管理系统
CN102095888B (zh) 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN104167572A (zh) 电池组
US20220238962A1 (en) Battery module, power battery pack and vehicle
WO2023078035A1 (zh) 一种电池包和车辆
CN212848495U (zh) 可实时监测内部温度的储能设备集流体、电芯、叠层电芯和复合动力电芯
CN115371833A (zh) 温度传感器及电芯组件
WO2024093009A1 (zh) 采集组件及电池模组
WO2024055476A1 (zh) 温度传感器及电芯组件
WO2024198930A1 (zh) 采样组件、电池包及用电装置
CN216085095U (zh) 电池外壳、电池模组及电池包
CN214043766U (zh) 一种软包电池
CN218297423U (zh) 温度传感器及电芯组件
CN210863783U (zh) 压电式加速计
CN110071255A (zh) 电芯及电池
CN115235682B (zh) Mems压力传感器的封装结构及方法
CN208655773U (zh) 一种电池模组结构及电池包
CN211740432U (zh) 一种适合于高压防水微型免维护的无线测温模块
CN114744375B (zh) 电池及电池包
CN112510277A (zh) 一种软包电池及其制作方法
CN218827369U (zh) 电池包及车辆
CN218513532U (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958663

Country of ref document: EP

Kind code of ref document: A1