WO2024055403A1 - 一种封装胶膜及光伏组件 - Google Patents

一种封装胶膜及光伏组件 Download PDF

Info

Publication number
WO2024055403A1
WO2024055403A1 PCT/CN2022/130783 CN2022130783W WO2024055403A1 WO 2024055403 A1 WO2024055403 A1 WO 2024055403A1 CN 2022130783 W CN2022130783 W CN 2022130783W WO 2024055403 A1 WO2024055403 A1 WO 2024055403A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cell
lamination
film
adhesive film
Prior art date
Application number
PCT/CN2022/130783
Other languages
English (en)
French (fr)
Inventor
郑炯洲
魏梦娟
侯宏兵
Original Assignee
杭州福斯特应用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州福斯特应用材料股份有限公司 filed Critical 杭州福斯特应用材料股份有限公司
Publication of WO2024055403A1 publication Critical patent/WO2024055403A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/10Homopolymers or copolymers of propene
    • C09J123/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/04Presence of homo or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/16Presence of ethen-propene or ethene-propene-diene copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of photovoltaic technology, and in particular to a packaging film and a photovoltaic module.
  • the main component of the photovoltaic cell module is photovoltaic cells, and photovoltaic cells cannot be directly exposed to natural conditions such as sunlight and rain. Photovoltaic cells need to be packaged before they can be put into actual use. Encapsulation film is an important packaging material in photovoltaic packaging. The packaging film bonds photovoltaic cells to photovoltaic glass or photovoltaic backsheets.
  • the encapsulation film after foaming treatment has lower hardness and storage modulus, which can reduce the crack rate of the battery cells during the lamination process, due to the large number of cells in it, the mechanical properties of the encapsulation film There is also a large decline, which reduces the qualification rate of the encapsulation film, and the encapsulation film is prone to breakage during use. At the same time, the mechanical properties of photovoltaic modules made of foamed encapsulation film are reduced.
  • the embodiments of the present application solve the problem in the prior art that the mechanical properties of the encapsulating adhesive film after foaming treatment are poor and cannot meet the actual use requirements by providing an encapsulating adhesive film, thereby ensuring the mechanical properties of the encapsulating adhesive film and ensuring that the foaming adhesive film is Mechanical properties of photovoltaic modules made of bubble encapsulation film.
  • One aspect of the embodiment of the present application provides an encapsulating adhesive film, which includes a cell layer with a cell ratio of S1; the encapsulating adhesive film is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes. , the cell ratio after lamination is S2, and the ratio S2/S1 of the cell ratio after lamination S2 and the cell ratio before lamination S1 is 0.1%-90%.
  • the ratio S2/S1 of the cell ratio S2 after lamination and the cell ratio S1 before lamination is 10%-80%.
  • the cell ratio S1 of the cell layer is 0.01%-80%; the cell ratio S2 after lamination is 0.008%-72%.
  • the cell ratio S1 of the cell layer is 30%-60%.
  • the cell layer includes cells, which are ellipsoidal cells.
  • the ellipsoidal cells include a long axis and a short axis.
  • the length L1 of the long axis is 1-300 ⁇ m
  • the length W1 of the short axis is 0.5-250 ⁇ m.
  • the median length of the major axis is 5-30 ⁇ m, and the median length of the minor axis is 3-25 ⁇ m.
  • the encapsulation film is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes; the length L2 of the long axis after lamination is 4-240 ⁇ m, and the length W2 of the short axis after lamination is 0.4-200 ⁇ m.
  • the length L2 of the long axis after lamination is 4-16 ⁇ m
  • the length W2 of the short axis after lamination is 0.8-10 ⁇ m.
  • the encapsulation film is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes; the ratio L2/L1 of the length L2 of the long axis to the length L1 of the long axis after lamination is 30%-95%, and the layer The ratio W2/W1 of the length W2 of the short axis to the length W1 of the short axis after pressing is 40%-95%.
  • the thickness of the cell layer is 10%-100% of the thickness of the encapsulating film.
  • the thickness of the cell layer is 40%-70% of the thickness of the encapsulating film.
  • the cell layer includes main resin, fillers, foaming agents and auxiliaries.
  • the content of the main resin in the foaming layer is 70wt%-80wt%
  • the content of the filler is 0-20wt%
  • the content of the foaming agent is 0.0001wt%-1wt%
  • the content of the auxiliary agent is 0.1-9wt%.
  • the main resin includes at least one of EVA resin, POE resin, PE resin, PP resin, EPDM resin or POP resin.
  • the fillers include titanium dioxide, barium sulfate, bentonite, white carbon black, clay, glass microspheres, silicone microspheres, PA microspheres, PS microspheres, PMMA microspheres, wollastonite, whisker silicon, and talc powder. , at least one of magnesium hydroxide, magnesium oxide, aluminum hydroxide or aluminum oxide.
  • the foaming agent includes at least one of a physical foaming agent or a chemical foaming agent.
  • the auxiliary agent includes at least one of a cross-linking agent, a co-cross-linking agent, a heat stabilizer, a light stabilizer, an antioxidant, an ultraviolet absorber or a coupling agent.
  • a photovoltaic module which includes a front substrate, a first encapsulating adhesive film layer, a battery string, a second encapsulating adhesive film layer, and a rear substrate; the first encapsulating adhesive film layer or At least one layer of the second encapsulating adhesive film layer is selected from the aforementioned encapsulating adhesive films.
  • the crack rate of photovoltaic modules under EL test conditions is less than 20%.
  • the mechanical properties of the packaging film are ensured while reducing the hardness of the packaging film and the crack rate of the cells during the lamination process. There will be no degradation in performance and the qualification rate of the packaging film will be guaranteed;
  • Figure 1 is a schematic structural diagram of the packaging film in an implementation manner of the present application.
  • Figure 2 is a schematic structural diagram of the packaging film in another implementation of the present application.
  • Figure 3 is a schematic structural diagram of the packaging film in another implementation of the present application.
  • FIG. 4 is a schematic structural diagram of the photovoltaic module in this application.
  • FIG. 5 is another structural schematic diagram of the photovoltaic module in this application.
  • FIG. 6 is another structural schematic diagram of the photovoltaic module in this application.
  • FIG. 7 is another structural schematic diagram of the photovoltaic module in this application.
  • FIG. 8 is a schematic structural diagram of the conventional encapsulating adhesive film used in Comparative Example 1.
  • encapsulating film 100 cell layer 11, cells 111, functional layer 12; photovoltaic module 200, front substrate 21, first encapsulating film layer 22, battery string 23, second encapsulating film layer 24, Back-layer substrate 25; conventional single-layer encapsulation film 300.
  • embodiments of the present application introduce a cell layer into the structure of the packaging film to reduce the hardness of the packaging film, reduce the probability of cracks in the photovoltaic cells during the packaging process, and improve Photovoltaic module power generation efficiency and impact resistance.
  • one aspect of the present application provides an encapsulating adhesive film 100, which includes a cell layer 11.
  • the cell ratio of the cell layer 11 (referring to the volume of the cells in the cell layer 11 accounting for the cell layer 11% of the volume) is S1; the encapsulating film 100 is laminated at a temperature of 120-160°C, a pressure of 101kPa, and lamination for 10-20 minutes.
  • the cell ratio after lamination is S2.
  • the cell ratio after lamination S2 is the same as the cell volume before lamination.
  • the ratio S2/S1 of the porosity S1 is 0.1%-90%.
  • the cells 111 in the packaging film 100 of the present application have a certain strength. After the packaging film 100 is laminated, the number and size of the cells 111 will be reduced accordingly.
  • the number of cells 111 is relatively small, and the porosity is only slightly reduced. Most of the cells 111 will not disappear completely due to the lamination process, but are mostly retained. Continue to maintain the cell structure. That is to say, the cells 111 in the cell layer 11 of the encapsulating adhesive film 100 of the present application have a certain cell retention rate.
  • the encapsulating adhesive film 100 in this application is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes, and the ratio S2/S1 of the cell ratio before and after lamination is 0.1%-90%.
  • the packaging film can not only solve the problem of photovoltaic cell cracks caused by the high hardness of the packaging film during the packaging process of the photovoltaic module 200, but also enable the packaging film to have certain elasticity and buffering properties after the photovoltaic module 200 is packaged.
  • the photovoltaic module 200 When the photovoltaic module 200 is impacted, it can act as a buffer to protect the cells and improve the overall impact resistance of the photovoltaic module 200 .
  • the cell retention rate S2/S1 of the packaging film before and after lamination is controlled within the range of 0.1%-90% to ensure that the packaging film still maintains high mechanical properties and mechanical strength after lamination and ensures the adhesion of the packaging film. Junction performance, thereby ensuring the qualification rate of photovoltaic modules. If the cell retention ratio S2/S1 of the encapsulating film before and after lamination is higher than 90%, the tensile strength and cohesion of the resulting encapsulating film will be low.
  • the cell ratio S1 of the cell layer 11 is 0.01%-80%; the cell ratio S2 after lamination is 0.008%-72%; preferably, the cell ratio S1 of the cell layer 11 is 30 %-60%.
  • the packaging film 100 before lamination it is most appropriate to control the cell ratio of the cell layer 11 to no more than 80%.
  • the cell ratio is higher than 80%, the mechanical properties of the entire packaging film 100 will be reduced. , which will also cause the cells 111 generated therein to have thinner walls and lower strength, and the disappearance rate of the cells 111 after the lamination process will be greater.
  • the cell ratio in the encapsulating adhesive film 100 is too high, the mechanical properties of the encapsulating adhesive film are not ideal and the cell retention rate after lamination is low, which affects the overall performance of the finally produced photovoltaic module 200 .
  • the porosity of the cell layer 11 in the encapsulating film 100 at 80% or less can ensure that there are a sufficient number of cells 111 in the encapsulating film 100 and give the encapsulating film 100 a smaller hardness and appropriate strength.
  • Elasticity can also ensure the cell retention rate and mechanical properties of the encapsulating film before and after lamination, so that the cell ratio S2 can still be maintained in the range of 0.008%-72% after lamination, while ensuring the encapsulation after lamination. membrane strength.
  • the cell ratio of the cell layer 11 in the encapsulating adhesive film 100 is maintained in the range of 30%-60%, which can ensure that the encapsulating adhesive film 100 can meet the requirements of this application whether before lamination or after lamination. technical issues that need to be resolved. That is to say, it can not only solve the problem of photovoltaic cell cracks caused by the high hardness of the encapsulating film 100 during the packaging process of the photovoltaic module 200, but also provide the photovoltaic module 200 produced after packaging with good impact resistance.
  • the cell layer 11 includes cells 111.
  • the cells 111 are ellipsoidal cells.
  • the ellipsoidal cells include a long axis and a short axis.
  • the length L1 of the long axis is 1-300 ⁇ m, and the length of the short axis is 1-300 ⁇ m.
  • W1 is 0.5-250 ⁇ m.
  • the cells 111 obtained by foaming in the cell layer 11 are basically ellipsoidal cells.
  • the ellipsoidal cells include a long axis and a short axis.
  • the length L1 of the long axis is 1-300 ⁇ m
  • the length L1 of the short axis is 1-300 ⁇ m.
  • the length W1 is 0.5-250 ⁇ m.
  • the cell layer 11 is mainly made by foaming the main resin. After foaming, the cells 111 are formed inside the main resin to form the cell layer 11. At the same time, the formed cells 111 are basically evenly distributed in the cell layer 11. . Since the cell layer 11 formed after foaming contains more cells 111, it has lower hardness than the traditional encapsulating film, and its elasticity is also better, which can play a buffering role.
  • the packaging film 100 can absorb the instantaneous pressure generated by the packaging, thereby reducing the instantaneous pressure on the cells, reducing the probability of cell cracks, ensuring the integrity of the cells in the photovoltaic module 200, and improving The packaging quality of the photovoltaic module 200.
  • the cells 111 are ellipsoidal, have greater curvature in the short axis direction, and have better pressure-bearing capacity, ensuring that the cells 111 will not be completely eliminated during the lamination process, so that they still maintain a certain size and shape after lamination.
  • the number of cells is 111.
  • the size of the cells in the cell layer is controlled so that the long axis length L1 is 1-300 ⁇ m and the short axis length W1 is 0.5-250 ⁇ m, which can ensure that the encapsulation film has good mechanical properties and is relatively stable during the lamination process of the photovoltaic module. Low crack rate.
  • the median length of the major axis is 5-30 ⁇ m and the median length of the minor axis is 3-25 ⁇ m.
  • the size of the ellipsoidal cells is related to the mechanical properties of the cells 111 and the laminated structure. Cell retention rate. When the size of the cells 111 is too small, the cells 111 are prone to disappear and merge with each other after lamination, which reduces the porosity of the photovoltaic module 200 after lamination.
  • the size of the cells 111 is too large, because the walls of the cells 111 are thin, rupture may easily occur during lamination, causing the death of the cells 111. At the same time, the larger size of the cells 111 will affect the cell layer 11. Important properties such as light transmittance will also reduce the power generation efficiency of the photovoltaic module 200.
  • the encapsulation film 100 is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes; the length L2 of the long axis after lamination is 4-240 ⁇ m, and the length W2 of the short axis after lamination is 0.4 -200 ⁇ m; preferably, the length L2 of the long axis after lamination is 4-16 ⁇ m, and the length W2 of the short axis after lamination is 0.8-10 ⁇ m.
  • the cells 111 in the packaging film 100 of this application have a certain strength. After the packaging film 100 is laminated, the size of the cells 111 will only be reduced to a certain extent. Generally speaking, the number of cells 111 is small.
  • the amplitude is small, and the cells 111 will not completely disappear due to the lamination process, but are mostly retained to maintain the cell structure.
  • the encapsulating adhesive film 100 in this application is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes.
  • the length L2 of the long axis after lamination is maintained in the range of 4-240 ⁇ m, and the length W2 of the short axis after lamination is maintained at Within the range of 0.4-200 ⁇ m.
  • the encapsulating film 100 also has certain elasticity and buffering properties after the photovoltaic module 200 is encapsulated, and can play a buffering role to protect the cells when the photovoltaic module 200 is impacted. Improve the overall impact resistance of the photovoltaic module 200. Furthermore, the length L2 of the long axis after lamination is kept in the range of 4-16 ⁇ m, and the length W2 of the short axis after lamination is kept in the range of 0.8-10 ⁇ m, which can better solve the technical problems to be solved by this application and realize this application. The technical effects of the application.
  • the cell size of the encapsulating film after lamination is maintained at a length L2 of the long axis of 4-16 ⁇ m and a length W2 of the short axis of 0.8-10 ⁇ m, which ensures that the encapsulating film also has excellent mechanical properties after lamination and also ensures Mechanical strength of photovoltaic modules.
  • the encapsulation film 100 is laminated at a temperature of 120-160°C and a pressure of 101kPa for 10-20 minutes; the ratio of the length L2 of the long axis after lamination to the length L1 of the long axis before lamination is L2/L1: 30%-95%, the ratio W2/W1 of the length W2 of the short axis after lamination to the length W1 of the short axis before lamination is 40%-95%.
  • the cells 111 in the packaging film 100 of this application have a certain strength. After the packaging film 100 is laminated, the size of the cells 111 will only be reduced to a certain extent. Generally speaking, the number of cells is relatively small.
  • the ratio L2/L1 of the long axis length L2 after lamination to the long axis length L1 before lamination is controlled within the range of 30%-95%, and the short axis length W2 after lamination is equal to the short axis length W1 before lamination.
  • the ratio W2/W1 is controlled within the range of 40%-95%.
  • the change rate of cells 111 is maintained within the above range, ensuring the retention rate of the size of cells 111 in the cell layer 11 before and after lamination, and ensuring that a sufficient number and size of cells 111 can still be retained after lamination. , ensuring the performance of the encapsulation film 100 and the performance of the photovoltaic module 200 after lamination.
  • the encapsulating adhesive film 100 further includes a functional layer 12 , and the functional layer 12 is provided on at least one side of the cell layer 11 .
  • the functional layer 12 includes at least one of an adhesive layer, a support layer, an anti-corrosion layer, an acid-absorbing layer, a barrier layer, an anti-reflection layer or an anti-reflection layer.
  • the structure of the encapsulating adhesive film 100 can be adjusted according to the usage requirements and usage environment, and a functional layer 12 can be provided on at least one side of the cell layer 11 to achieve the desired effect.
  • the functional layer 12 may be a support layer that plays a supporting role, an anti-reflection layer that increases light transmittance, an anti-corrosion layer that improves the corrosion resistance of the packaging film 100 , or a layer that can reduce acidic substances in the packaging film 100
  • the acid-absorbing layer can be an adhesive layer to improve the bonding performance of the packaging film 100, or a barrier layer to better block harmful substances such as water vapor, or it can be used to increase the light transmittance according to the use requirements of the packaging film 100.
  • functional layers 12 with different functions can be provided on at least one side of the cell layer 11 according to specific usage requirements.
  • the encapsulating adhesive film 100 can be composed of only the cell layer 11 as shown in Figure 1; the encapsulating adhesive film 100 can also be composed of a layer of cell layer 11 and a layer of cells disposed on the cell layer as shown in Figure 2.
  • the encapsulating film 100 can also be composed of a layer of cells 11 and two layers of functional layers 12 respectively provided on both sides of the cell layer 11 as shown in FIG. 3 .
  • the thickness of the cell layer 11 is 10%-100% of the thickness of the encapsulation film 100 .
  • the encapsulating film 100 may only include the cell layer 11 , or other layer structures may be provided on at least one layer of the cell layer 11 .
  • the thickness of the cell layer 11 is not less than 10% of the thickness of the packaging film 100, it can solve the problem of cracks in the cells after lamination caused by the high hardness of the packaging film 100 in the prior art, and achieve The technical effect of reducing the cell crack rate and ensuring the 200-year service life of photovoltaic modules.
  • the thickness of the cell layer 11 is 40%-70% of the thickness of the encapsulating film 100 .
  • the thickness of the cell layer 11 is within the range of 40%-70% of the thickness of the packaging film 100, which can not only ensure the corresponding other functions and performance of the packaging film 100, but also solve the problem.
  • the higher hardness of the encapsulating film 100 causes cracks in the cells after lamination.
  • the cell layer 11 includes main resin, fillers, foaming agents and auxiliaries.
  • the content of the main resin in the cell layer 11 is 70wt%-80wt%
  • the content of the filler is 0-10wt%
  • the content of the foaming agent is 0.0001wt%-1wt%
  • the content of the auxiliary agent is 0.1 wt%-9wt%.
  • the main resin includes at least one of EVA resin, POE resin, PE resin, PP resin, EPDM resin or POP resin.
  • the cell layer 11 made of EVA resin has good buffering and shock-resistant properties, is non-water absorbent, moisture-proof and has good water resistance.
  • EVA resin has superior properties in terms of adhesion, durability and optical properties, and is an ideal encapsulation film 100 one of the main materials.
  • POE resin has the dual characteristics of plastic and rubber, and has excellent mechanical properties and low temperature performance.
  • the encapsulation film 100 made of POE resin has excellent water vapor barrier and ion barrier capabilities. The water vapor transmission rate is only about 1/8 of EVA. It performs well in environments with high humidity, and its molecular chain structure is stable.
  • POE resin has high tensile strength and tear strength, good elasticity and wear resistance, and can protect the battery cells well.
  • PE resin has excellent low temperature resistance, good chemical stability, and can resist the erosion of most acids and alkalis. After PE resin is foamed, it is light in weight and has good resilience. The hardness and thickness can be adjusted at will. It has excellent cushioning performance and does not lose its original performance even after strong impact.
  • PP resin has good chemical resistance, heat resistance and electrical insulation. At the same time, PP resin has the advantages of low water absorption.
  • EPDM resin When used as the main resin of the encapsulation film 100, it can better isolate the invasion of water vapor to the photovoltaic cells.
  • EPDM resin has excellent aging resistance, corrosion resistance, strong acid and alkali resistance, excellent insulation properties and a wide temperature range.
  • EPDM resin has softness and good resilience after foaming, giving the cell layer 11 better cushioning properties.
  • POP resin has excellent bonding properties, tear resistance and transparency, and can well meet various requirements of the photovoltaic encapsulation film 100. At the same time, the bubble stability of POP resin is good, and the cell retention rate in the cell layer 11 produced by using POP resin is high. According to different usage requirements or production needs of the packaging adhesive film 100 , the type of the base resin can be appropriately adjusted to meet the production and use requirements of the packaging adhesive film 100 .
  • the fillers include titanium dioxide, barium sulfate, bentonite, white carbon black, clay, glass microspheres, silicone microspheres, PA microspheres, PS microspheres, PMMA microspheres, wollastonite, and whisker silicon. , at least one of talc, magnesium hydroxide, magnesium oxide, aluminum hydroxide or aluminum oxide.
  • the encapsulation adhesive film 100 is used in the field of photovoltaic encapsulation technology, so when adding fillers to the cell layer 11 , white fillers are mainly used.
  • the embodiment of the present application is used to bond the cells and the photovoltaic substrate of the photovoltaic module 200.
  • the filler added in the embodiment of the present application needs to be appropriately controlled.
  • the filler added to the cell layer 11 can serve as a foam nucleating agent during foaming, enhance the mechanical properties of the cell layer 11 after foaming, and can also improve the fluidity during film formation to ensure uniform film formation of the cell layer 11.
  • the filler in the packaging film 100 can also increase the light reflectivity and improve the power generation efficiency of the photovoltaic module 200 .
  • the foaming agent includes at least one of a physical foaming agent or a chemical foaming agent.
  • the physical foaming agent is at least one of CO 2 , N 2 or foaming microspheres.
  • the chemical foaming agent It is at least one of OBSH, TSH, sodium bicarbonate or the like.
  • the cell layer 11 undergoes foaming treatment during preparation.
  • the foaming agent used in the foaming treatment can be a physical foaming agent, a chemical foaming agent, or a composite foaming agent including both a physical foaming agent and a chemical foaming agent.
  • the encapsulating film 100 produced perform an appropriate foaming process design for the cell layer 11 and select a suitable foaming agent to meet the different foaming needs of the cell layer 11 in different encapsulating films 100.
  • the encapsulating adhesive film 100 has good buffering performance.
  • the auxiliary agent includes at least one of a cross-linking agent, a co-cross-linking agent, a heat stabilizer, a light stabilizer, an antioxidant, a UV absorber or a coupling agent.
  • a cross-linking agent In order to ensure the performance of the cell layer 11, appropriate functional additives need to be added to the cell layer 11 according to usage requirements.
  • the cross-linking agent, co-cross-linking agent, and coupling agent are selected according to the selected matrix resin to help the matrix resin form a film, form a network structure, and improve the strength and elasticity of the cell layer 11.
  • Thermal stabilizers, light stabilizers and ultraviolet absorbers are used to improve the stability of the cell layer 11, enhance the weather resistance of the cell layer 11, and improve the environmental adaptability of the photovoltaic module 200 after encapsulation.
  • FIG. 4 Another aspect of the application also provides a photovoltaic module 200 as shown in Figure 4, including a front substrate 21, a first encapsulating film layer 22, a battery string 23, a second encapsulating film layer 24 and a rear substrate. 25. At least one of the first encapsulating film layer 22 or the second encapsulating film layer 24 is selected from the aforementioned encapsulating film 100 including bubbles 111 . Specifically, as shown in FIG. 5 , the first encapsulating adhesive film layer 22 is selected from the aforementioned encapsulating adhesive film 100 including bubbles 111 , and the first encapsulating adhesive film layer 22 also includes bubbles 111 accordingly; as shown in FIG.
  • the second encapsulation film layer 24 is selected from the aforementioned encapsulation film 100 including bubbles 111, and the second encapsulation film layer 24 also includes bubbles 111 accordingly; it can also be shown in Figure 7 that the first encapsulation film 100 includes bubbles 111.
  • the adhesive film layer 22 and the second encapsulating adhesive film layer 24 are both selected from the aforementioned encapsulating adhesive film 100 including bubbles 111, and the first encapsulating adhesive film layer 22 and the second encapsulating adhesive film layer 24 also respectively include bubbles 111. .
  • the photovoltaic module 200 in this application at least one of the first encapsulating adhesive film layer 22 or the second encapsulating adhesive film layer 24 is selected from the aforementioned encapsulating adhesive film 100 including cells 111 .
  • the optimal situation is that both the first encapsulating film layer 22 and the second encapsulating film layer 24 are selected from the aforementioned encapsulating film 100 including bubbles 111 .
  • the aforementioned encapsulation film 100 including the cell layer 11 , has a relatively low hardness, which can reduce the probability of cell cracks due to thermal pressure when the photovoltaic module 200 is encapsulated.
  • most of the cells 111 in the encapsulation film layer can still be retained.
  • the encapsulation film layer has certain elasticity and buffering properties, and can play a buffering role to protect the cells when the photovoltaic module 200 is impacted, thereby improving the overall impact resistance of the photovoltaic module 200.
  • the crack rate of the photovoltaic module 200 under EL test conditions is less than 20%.
  • the crack rate refers to the percentage of the number of cells with cracks in the photovoltaic module to the total number of cells. Since at least one encapsulating film layer in the photovoltaic module 200 is selected from the aforementioned encapsulating adhesive film 100 including cells 111 , the probability of cell cracks during the lamination process of the photovoltaic module 200 is reduced.
  • the crack rate of the photovoltaic module 200 under EL test conditions can be reduced to 20% or less.
  • the photovoltaic module 200 shown in Figure 5 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first encapsulating film layer 21 is selected from the encapsulating adhesive film 100 shown in FIG. 1
  • the second adhesive film layer 22 is selected from the conventional single-layer EVA encapsulating adhesive film 300 shown in FIG. 8 .
  • the cell ratio S1 of the encapsulating adhesive film 100 is 60%
  • the length L1 of the long axis of the cells is 150-200 ⁇ m
  • the length W1 of the short axis is 130-170 ⁇ m.
  • Embodiment 1 What is different from Embodiment 1 is that the cell ratio S1 of the encapsulating adhesive film 100 used is 30%. Others are the same as Example 1.
  • Embodiment 1 What is different from Embodiment 1 is that the cell ratio S1 of the encapsulating adhesive film 100 used is 45%. Others are the same as Example 1.
  • Example 1 The difference from Example 1 is that the lamination treatment conditions adopted are: the lamination treatment temperature is 150°C, the pressure is 101 kPa, and the lamination treatment time is 20 minutes. Others are the same as Example 1.
  • Example 1 The difference from Example 1 is that the conditions for the lamination process used are: the temperature of the lamination process is 140°C, the pressure is 101 kPa, and the lamination process time is 12 minutes. Others are the same as Example 1.
  • the length L1 of the long axis of the cells of the encapsulating adhesive film 100 is 200-300 ⁇ m, and the length W1 of the short axis is 180-250 ⁇ m. Others are the same as Example 1.
  • the length L1 of the long axis of the cells of the encapsulating adhesive film 100 is 5-20 ⁇ m, and the length W1 of the short axis is 0.5-15 ⁇ m. Others are the same as Example 1.
  • the length L1 of the long axis of the cells of the encapsulating adhesive film 100 is 80-150 ⁇ m, and the length W1 of the short axis is 60-100 ⁇ m. Others are the same as Example 1.
  • the photovoltaic module 200 shown in Figure 6 is made by laminating a front substrate 21, a first encapsulating film layer 22, a battery string 23, a second encapsulating film layer 24 and a rear substrate 25.
  • the layers The temperature of the pressure treatment was 150°C, the pressure was 101kPa, and the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 is selected from the conventional single-layer EVA sealant film 300 as shown in FIG. 8
  • the second sealant film layer 22 is selected from the sealant film 100 as shown in FIG. 1 .
  • the cell ratio S1 of the encapsulating adhesive film 100 is 60%
  • the length L1 of the long axis of the cells is 20-30 ⁇ m
  • the length W1 of the short axis is 15-25 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 1 .
  • the cell ratio S1 of the encapsulating adhesive film 100 is 80%
  • the length L1 of the long axis of the cells is 5-10 ⁇ m
  • the length W1 of the short axis is 3-8 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 1 .
  • the cell ratio S1 of the encapsulating adhesive film 100 is 10%
  • the length L1 of the long axis of the cells is 50-80 ⁇ m
  • the length W1 of the short axis is 40-60 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 40% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 50%, the length L1 of the long axis in the cells is 100-120 ⁇ m, and the length W1 of the short axis is 80-100 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 70%, the length L1 of the long axis in the cells is 1-30 ⁇ m, and the length W1 of the short axis is 1-20 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 150°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first encapsulating film layer 21 and the second encapsulating film layer 22 are both selected from the encapsulating adhesive film 100 shown in Figure 3.
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 30%
  • the long axis length L1 of the cells is 250-300 ⁇ m
  • the short axis length W1 is 200-250 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 160°C
  • the pressure was 101kPa
  • the lamination treatment time was 20 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 30%
  • the long axis length L1 of the cells is 250-300 ⁇ m
  • the short axis length W1 is 200-250 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 160°C
  • the pressure was 101kPa
  • the lamination treatment time was 16 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 30%
  • the long axis length L1 of the cells is 250-300 ⁇ m
  • the short axis length W1 is 200-250 ⁇ m.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 160°C
  • the pressure was 101kPa
  • the lamination treatment time was 13 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 30%
  • the long axis length L1 of the cells is 250-300 ⁇ m
  • the short axis length W1 is 200-250 ⁇ m.
  • the photovoltaic module 200 shown in FIG. 4 is composed of a front substrate 21, a first adhesive layer, a battery string 23, a second adhesive layer and a rear substrate 25.
  • the photovoltaic module 200 is composed of a front substrate 21, a conventional single-layer EVA encapsulating film 100 as shown in Figure 8, a battery string 23, a conventional single-layer EVA encapsulating film 100 as shown in Figure 8, and a rear substrate 25. It is prepared after pressure treatment, in which the temperature of lamination treatment is 150°C and the time of lamination treatment is 16 minutes.
  • the length L1 of the long axis in the cells is 300-350 ⁇ m, and the length W1 of the short axis is 260-300 ⁇ m. Others are the same as Example 1.
  • Example 1 What is different from Example 1 is that the cell ratio S1 of the encapsulating adhesive film 100 is 90%, the temperature during the lamination process is 130°C, and the lamination process time is 10 minutes. Others are the same as Example 1.
  • the cell ratio S1 of the encapsulating adhesive film 100 is 90%, the temperature during the lamination process is 150° C., and the lamination process time is 13 minutes. Others are the same as Example 1.
  • the difference from the first embodiment is that the porosity S1 of the packaging film 100 is 90%, the temperature during the lamination process is 160° C., and the lamination process time is 16 minutes. The rest is the same as the first embodiment.
  • the cell ratio S1 of the encapsulating adhesive film 100 used is 0.01%.
  • the photovoltaic module 200 shown in Figure 7 is made by laminating a front substrate 21, a first encapsulating adhesive film layer 22, a battery string 23, a second encapsulating adhesive film layer 24 and a rear substrate 25.
  • the temperature of the pressure treatment was 160°C
  • the pressure was 101kPa
  • the lamination treatment time was 20 minutes.
  • the first sealant film layer 21 and the second sealant film layer 22 are both selected from the sealant sealant film 100 shown in FIG. 3 .
  • the packaging film 100 includes a cell layer 11 and an adhesive layer located on both sides of the cell layer 11.
  • the thickness of the cell layer is 70% of the thickness of the packaging film.
  • the cell ratio S1 of 11 is 80%, the length L1 of the long axis in the cells is 50-80 ⁇ m, and the length W1 of the short axis is 40-60 ⁇ m.
  • volume resistance test The test method refers to the standard GB/T 31034 "Insulating Backsheet for Crystalline Silicon Solar Cell Modules"; sample size: 100mm*100mm; test conditions: test voltage 1000V;
  • the test method refers to the spectrophotometer method with integrating sphere in the standard GB/T 29848 "Ethylene-vinyl acetate copolymer (EVA) film for photovoltaic module packaging".
  • Test instrument UV-visible spectrophotometer; test conditions: 400nm ⁇ 1200nm.
  • the cell ratio of the encapsulating film used in the embodiments of the present application is controlled in the range of 0.01%-80%, and the cell retention rate before and after lamination is also controlled in the range of 0.1%-90%.
  • the tensile strength and cohesion of the packaging film are ensured, the mechanical properties and mechanical strength of the packaging film are ensured, and the product qualification rate of the packaging film is ensured; at the same time
  • the cells maintained after lamination also give the encapsulating film better volume resistivity and reflectivity, which can improve the power generation efficiency of photovoltaic modules.
  • Comparative Example 2 and Comparative Example 3 can reduce the crack rate of cells during the lamination process, they also bring unacceptable defects in the mechanical properties of the encapsulating adhesive film and photovoltaic modules, reducing the its comprehensive performance.
  • the encapsulation film has a higher cell ratio, but the cell retention rate before and after lamination is low, that is, more cells disappear after lamination. In comparison, the volume resistivity is small, and it is impossible to Ensure good power generation efficiency.
  • Comparative Example 6 the encapsulating film has a low cell ratio, a high cell retention rate before and after lamination, and a low cell disappearance rate during the lamination process. It is difficult to reduce the cell crack rate during the lamination process.
  • the encapsulating adhesive film in Comparative Example 7 has a higher cell ratio, but its cell retention rate before and after lamination is low. Many cells disappear during the lamination process. The strength of the cells during the lamination process is poor and cannot withstand the load. Pressure, it is difficult to reduce the crack rate of cells during the lamination process, resulting in a low qualification rate of photovoltaic modules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请属于光伏技术领域。本申请公开了一种封装胶膜,包括泡孔层,泡孔层的泡孔率为S1;封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min,层压后泡孔率为S2,层压后泡孔率S2与层压前泡孔率S1的比值S2/S1为0.1%-90%。本申请还公开了一种光伏组件,包括前层基板、第一封装胶膜层、电池串、第二封装胶膜层和后层基板,第一封装胶膜层或第二封装胶膜层中的至少一层选自前述的封装胶膜。本申请通过控制封装胶膜的泡孔率、泡孔尺寸、泡孔保持率和泡孔尺寸保持率,在降低封装胶膜的硬度和电池片隐裂率的情况下,保证封装胶膜的力学性能和合格率,同时保证在层压处理后光伏组件整体的力学性能和封装合格率。

Description

一种封装胶膜及光伏组件 技术领域
本发明涉及光伏技术领域,尤其是涉及一种封装胶膜及光伏组件。
背景技术
光伏电池组件的主要部件是光伏电池片,而光伏电池片不能直接暴露在阳光、雨水等自然条件下,需要对光伏电池片进行封装后才能投入到实际使用中。封装胶膜是光伏封装中重要的封装材料,封装胶膜粘结光伏电池片与光伏玻璃或光伏背板。
常规的封装胶膜硬度和储能模量都相对较大,在层压过程中容易造成电池片的隐裂,影响光伏组件的发电效率。近来,出现了发泡封装胶膜,其具有硬度和储能模量低等优势,能够降低层压后光伏组件中电池片的隐裂率。
但本申请发明人在实现本申请实施例中技术方案的过程中,发现上述技术至少存在以下技术问题:
发泡处理后的封装胶膜,虽然具有较低的硬度和储能模量,能够降低层压处理中电池片的隐裂率,但是由于其中含有较多的泡孔,封装胶膜的力学性能也存在较大下降,降低了封装胶膜的合格率,使用过程中容易出现封装胶膜易破裂等问题,同时降低了由发泡封装胶膜制得的光伏组件的力学性能。
发明内容
本申请实施例通过提供一种封装胶膜,解决现有技术中发泡处理后的封装胶膜力学性能较差,无法满足实际使用要求的情况,保证封装胶膜的力学性能,同时保证由发泡封装胶膜制得的光伏组件的力学性能。
本申请实施例的一方面提供了一种封装胶膜,其包括泡孔层,泡孔层的泡孔率为S1;封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min,层压后泡孔率为S2,层压后泡孔率S2与层压前泡孔率S1的比值S2/S1为0.1%-90%。
进一步地,层压后泡孔率S2与层压前泡孔率S1的比值S2/S1为10%-80%。
进一步地,泡孔层的泡孔率S1为0.01%-80%;层压后泡孔率S2为0.008%-72%。
进一步地,泡孔层的泡孔率S1为30%-60%。
进一步地,泡孔层中包括泡孔,泡孔为椭球形泡孔,椭球形泡孔包括长轴和短轴,长轴的长度L1为1-300μm,短轴的长度W1为0.5-250μm。
进一步地,长轴的中值长度为5-30μm,短轴的中值长度为3-25μm。
进一步地,封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min;层压后长轴的长度L2为4-240μm,层压后短轴的长度W2为0.4-200μm。
进一步地,层压后长轴的长度L2为4-16μm,层压后短轴的长度W2为0.8-10μm。
进一步地,封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min;层压后长轴的长度L2与长轴的长度L1的比值L2/L1为30%-95%,层压后短轴的长度W2与短轴的长度W1的比值W2/W1为40%-95%。
进一步地,泡孔层的厚度为封装胶膜的厚度的10%-100%。
进一步地,泡孔层的厚度为封装胶膜的厚度的40%-70%。
进一步地,泡孔层包括主体树脂、填料、发泡剂和助剂。
进一步地,发泡层中主体树脂的含量为70wt%-80wt%,填料的含量为0-20wt%,发泡剂的含量的0.0001wt%-1wt%,助剂的含量为0.1-9wt%。
进一步地,主体树脂包括EVA树脂、POE树脂、PE树脂、PP树脂、EPDM树脂或POP树脂中的至少一种。
进一步地,填料包括钛白粉、硫酸钡、膨润土、白炭黑、黏土、玻璃微珠、有机硅微球、PA微球、PS微球、PMMA微球、硅灰石、晶须硅、滑石粉、氢氧化镁、氧化镁、氢氧化铝或氧化铝中的至少一种。
进一步地,发泡剂包括物理发泡剂或化学发泡剂中的至少一种。
进一步地,助剂包括交联剂、助交联剂、热稳定剂、光稳定剂、抗氧剂、紫外光吸收剂或偶联剂中的至少一种。
本申请实施例的另一方面还提供了一种光伏组件,其包括前层基板、第一封装胶膜层、电池串、第二封装胶膜层和后层基板;第一封装胶膜层或第二封装胶膜层中的至少一层选自前述的封装胶膜。
进一步地,光伏组件在EL测试条件下的隐裂率低于20%。
综上所述,本申请实施例至少具有以下有益效果:
1.本申请实施例中,通过控制封装胶膜的泡孔率和泡孔尺寸,在降低封装胶膜的硬度,降低层压过程中电池片隐裂率的情况下,保证封装胶膜的力学性能不发生下降,保证封装胶膜的合格率;
2.本申请实施例中,通过控制封装胶膜层压前后的泡孔保持率和泡孔尺寸保持率,保证在层压处理后光伏组件整体的力学性能,保证光伏组件的力学强度,也保证光伏组件的封装合格率。
附图说明
图1为本申请一种实现方式中封装胶膜的结构示意图;
图2为本申请另一种实现方式中封装胶膜的结构示意图;
图3为本申请另一种实现方式中封装胶膜的结构示意图;
图4为本申请中光伏组件的一种结构示意图;
图5为本申请中光伏组件的另一种结构示意图;
图6为本申请中光伏组件的另一种结构示意图;
图7为本申请中光伏组件的另一种结构示意图;
图8为对比例1中使用的常规封装胶膜的结构示意图。
图中:封装胶膜100,泡孔层11,泡孔111,功能层12;光伏组件200,前层基板21,第一封装胶膜层22,电池串23,第二封装胶膜层24,后层基板25;常规单层封装胶膜300。
具体实施方式
为了使本领域的人员更好地理解本发明方案,下面将结合本发明实施方式中的附图,对本发明具体实施方式中的技术方案进行清楚、完整地描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本申请。
为解决现有技术中封装胶膜硬度较大问题,本申请实施例在封装胶膜结构中引入泡孔层,降低封装胶膜硬度,减少封装过程中光伏电池片发生隐裂现象的概率,提升光伏组件发电效率与抗冲击性能。
如图1所示,本申请的一方面提供了一种封装胶膜100,其包括泡孔层11,泡孔层11的泡孔率(指泡孔层11中泡孔的体积占泡孔层11体积的百分比)为S1;封装胶膜100在120-160℃温度,101kPa压力,层压处理10-20min,层压后泡孔率为S2,层压后泡孔率S2与层压前泡孔率S1的比值S2/S1为0.1%-90%。本申请封装胶膜100中的泡孔111具有一定的强度,在封装胶膜100经过层压处理后,泡孔111数量和尺寸虽然都会相应减小。但是总体而言,其中泡孔111数量较少幅度较小,其泡孔率也只是稍有减少大部分的泡孔111并不会因层压处理而完全消失,而是被大部分保留下来,继 续保持泡孔结构。也即本申请封装胶膜100泡孔层11中的泡孔111具有一定的泡孔保持率。本申请中的封装胶膜100在120-160℃温度且101kPa压力下层压处理10-20min,层压前后泡孔率的比值S2/S1为0.1%-90%。这样不仅仅能够解决光伏组件200封装过程中因封装胶膜硬度较大导致的光伏电池片隐裂的问题,还能够使得封装胶膜在光伏组件200封装后也具有一定的弹性和缓冲性能,在光伏组件200受到冲击时能够起到缓冲作用保护电池片,提高光伏组件200整体的抗冲击性能。同时将封装胶膜层压前后的泡孔保持率S2/S1控制在0.1%-90%范围内,保证层压后封装胶膜仍保持较高的力学性能和机械强度,保证封装胶膜的粘结性能,进而保证光伏组件的合格率。如果封装胶膜层压前后的泡孔保持率S2/S1高于90%,所得封装胶膜的拉伸强度和内聚力均较低。
作为一种实现方式,泡孔层11的泡孔率S1为0.01%-80%;层压后泡孔率S2为0.008%-72%;优选地,泡孔层11的泡孔率S1为30%-60%。在层压前的封装胶膜100中,泡孔层11的泡孔率控制在不大于80%是最为合适的,当泡孔率高于80%时,整个封装胶膜100的力学性能会降低,这也会导致其中生成的泡孔111孔壁较薄,强度较低,在层压处理后泡孔111的消失率更大。也即,当封装胶膜100中泡孔率过高时,封装胶膜的力学性能不理想且层压后的泡孔保持率较低,影响最终制得的光伏组件200的综合性能。将封装胶膜100中泡孔层11的泡孔率保持在80%及以下,既能够使得封装胶膜100中具有足够数量的泡孔111,赋予封装胶膜100以较小的硬度和合适的弹性,也能保证封装胶膜层压处理前后的泡孔保持率和力学性能,使得经过层压处理后泡孔率S2仍能保持在0.008%-72%范围内,同时保证层压后封装胶膜的强度。更进一步地,封装胶膜100中泡孔层11的泡孔率保持在30%-60%范围内,能够保证封装胶膜100不论是在层压前还是在层压后,都能够满足本申请中需要解决的技术问题。也即,既能够解决光伏组件200封装过程中因封装胶膜100硬度较大导致的光伏电池片隐裂的问题,还能够赋予封装后制得的光伏组件200良好的抗冲击性能。
作为一种实现方式,泡孔层11中包括泡孔111,泡孔111为椭球形泡孔,椭球形泡孔包括长轴和短轴,长轴的长度L1为1-300μm,短轴的长度W1为0.5-250μm。本申请实现方式中,泡孔层11中经过发泡获得的泡孔111基本为椭球形泡孔,椭球形泡孔包括长轴和短轴,长轴的长度L1为1-300μm,短 轴的长度W1为0.5-250μm。泡孔层11主要由主体树脂经过发泡后制得,经过发泡后在主体树脂的内部形成泡孔111进而形成泡孔层11,同时形成的泡孔111基本均匀分布于泡孔层11中。发泡后形成的泡孔层11由于其中含有较多的泡孔111,其相对于传统封装胶膜具有更低的硬度,同时其弹性也更佳,能够起到缓冲的作用。在光伏组件200封装过程中,封装胶膜100能够吸收封装产生的瞬间压强,从而降低电池片受到的瞬间压力,降低电池片产生隐裂的概率,保证光伏组件200中电池片的完整性,提高光伏组件200的封装质量。泡孔111为椭球形,在短轴方向上具有更大的曲率,具有更好的承压能力,保证泡孔111不会在层压处理时被完全消除,使得层压后仍保持一定尺寸和数量的泡孔111。泡孔层中泡孔的尺寸控制在长轴的长度L1为1-300μm且短轴的长度W1为0.5-250μm,能够同时保证封装胶膜具有较好的力学性能和光伏组件层压过程中较低的隐裂率。
作为一种实现方式,长轴的中值长度为5-30μm,短轴的中值长度为3-25μm。虽然现在已经能够在一定程度上在封装胶膜100成型中通过控制发泡工艺控制产生泡孔111的形状和尺寸,但是椭球形泡孔的尺寸关系到泡孔111的力学性能和层压后的泡孔保持率。当泡孔111尺寸过小时,经过层压处理泡孔111容易发生消亡、相互合并等现象,降低层压后光伏组件200中的泡孔率。而泡孔111尺寸过大时,由于泡孔111孔壁较薄,在层压中也容易发生破裂灯情况,造成泡孔111消亡,同时较大的泡孔111尺寸又会影响泡孔层11的透光率等重要性能,也会降低光伏组件200的发电效率。
作为一种实现方式,封装胶膜100在120-160℃温度,101kPa压力,层压处理10-20min;层压后长轴的长度L2为4-240μm,层压后短轴的长度W2为0.4-200μm;优选地,层压后长轴的长度L2为4-16μm,层压后短轴的长度W2为0.8-10μm。本申请封装胶膜100中的泡孔111具有一定的强度,在封装胶膜100经过层压处理后,泡孔111尺寸仅会在一定程度程度上缩小,总体而言其中泡孔111数量较少幅度较小,泡孔111并不会因层压处理而完全消失,而是被大部分保留下来继续保持泡孔结构。本申请中的封装胶膜100在120-160℃温度且101kPa压力下层压处理10-20min,层压后长轴的长度L2保持在4-240μm范围内,层压后短轴的长度W2保持在0.4-200μm范围内。这样层压后泡孔结构仍被大部分保留,能够使得封装胶膜100在光伏组件200封装后也具有一定的弹性和缓冲性能,在光伏组件200受到冲击时能够起到 缓冲作用保护电池片,提高光伏组件200整体的抗冲击性能。进一步地,层压后长轴的长度L2保持在4-16μm范围内,层压后短轴的长度W2保持在0.8-10μm范围内,能够更好地解决本申请要解决的技术问题,实现本申请的技术效果。封装胶膜层压后的泡孔尺寸保持在长轴的长度L2为4-16μm且短轴的长度W2为0.8-10μm,能够保证封装胶膜在层压后也具有优异的力学性能,也保证光伏组件的机械强度。
作为一种实现方式,封装胶膜100在120-160℃温度,101kPa压力,层压处理10-20min;层压后长轴的长度L2与层压前长轴的长度L1的比值L2/L1为30%-95%,层压后短轴的长度W2与层压前短轴的长度W1的比值W2/W1为40%-95%。本申请封装胶膜100中的泡孔111具有一定的强度,在封装胶膜100经过层压处理后,泡孔111尺寸仅会在一定程度程度上缩小,总体而言其中泡孔数量较少幅度较小,泡孔111并不会因层压处理而完全消失,而是被大部分保留下来继续保持泡孔结构。层压后长轴的长度L2与层压前长轴的长度L1的比值L2/L1控制在30%-95%范围内,层压后短轴的长度W2与层压前短轴的长度W1的比值W2/W1控制40%-95%范围内。层压前后,泡孔111的改变率保持在上述范围内,保证泡孔层11中泡孔111在层压前后尺寸的保持率,保证在层压后仍能够保留足够数量和尺寸的泡孔111,保证层压后封装胶膜100的性能和光伏组件200的性能。
作为一种实现方式,封装胶膜100中还包括功能层12,功能层12设于泡孔层11的至少一侧。优选地,功能层12包括粘结层、支撑层、抗腐蚀层、吸酸层、阻隔层、增透层或增反层中的至少一种。本申请实施例中封装胶膜100可根据使用要求及使用环境对其结构进行调整,可以在泡孔层11至少一侧设置功能层12,以达到期望的效果。功能层12可以是起到支撑作用的支撑层,可以是增加透光率的增透层,可以是改善封装胶膜100抗腐蚀能力的抗腐蚀层,可以是能够降低封装胶膜100中酸性物质的吸酸层,可以是增进封装胶膜100粘结性能的粘结层,还可以是用于更好阻隔水汽等有害物质的阻隔层,也可以是根据封装胶膜100使用要求增加透光率的增透层或增加反光率的增反层。产品中可以根据具体使用要求在泡孔层11至少一侧设置具有不同功能的功能层12。具体而言,封装胶膜100可以如图1所示的,仅由泡孔层11构成;封装胶膜100也可以如图2所示的,由一层泡孔层11及设 置于泡孔层11一侧的一层功能层12构成;封装胶膜100也可以如图3所示的,由一层泡孔层11及分别设置于泡孔层11两侧的两层功能层12构成。
作为一种实现方式,泡孔层11的厚度为封装胶膜100的厚度的10%-100%。封装胶膜100中可以仅包含泡孔层11,也可以在泡孔层11的至少一层设置其他层结构。本申请中当泡孔层11的厚度不小于封装胶膜100厚度的10%时,其能够解决现有技术中因封装胶膜100硬度较大造成的层压后电池片隐裂的问题,实现降低电池片隐裂率保证光伏组件200使用寿命的技术效果。进一步地,泡孔层11的厚度为封装胶膜100的厚度的40%-70%。在设置其他功能层12的情况下,保证泡孔层11的厚度在封装胶膜100厚度40%-70%的范围内,既可以保证封装胶膜100的相应其他功能和性能,也能解决因封装胶膜100硬度较大造成的层压后电池片隐裂的问题。
作为一种实现方式,泡孔层11包括主体树脂、填料、发泡剂和助剂。
作为一种实现方式,泡孔层11中主体树脂的含量为70wt%-80wt%,填料的含量为0-10wt%,发泡剂的含量的0.0001wt%-1wt%,助剂的含量为0.1wt%-9wt%。
作为一种实现方式,主体树脂包括EVA树脂、POE树脂、PE树脂、PP树脂、EPDM树脂或POP树脂中的至少一种。EVA树脂制成的泡孔层11具有良好的缓冲及抗震性能,不吸水、防潮且耐水性能良好,EVA树脂在粘着力、耐久性和光学特性等方面都具有的优越性能,是封装胶膜100的主要材料之一。POE树脂兼具塑料和橡胶的双重特性,具有优异的机械性能和低温性能。POE树脂制成的封装胶膜100具有优异的水汽阻隔能力和离子阻隔能力,水汽透过率仅为EVA的1/8左右,在湿度较大的环境中表现突出,且其分子链结构稳定,老化过程不会分解产生酸性物质,具有优异的抗老化性能。POE树脂发泡后拉伸强度和撕裂强度高,弹性和耐磨性能好,能很好的保护电池片。PE树脂具有优良的耐低温性能,化学稳定性好,能耐大多数酸碱的侵蚀。PE树脂发泡后重量轻,回弹力好,可随意调整软硬度和厚度,并且缓冲性能优秀,受强冲击后也不失原性能。PP树脂具有良好的耐化学性、耐热性和电绝缘性,同时PP树脂具有吸水率低等有点,作为封装胶膜100的主体树脂使用时能够更好的隔绝水汽对光伏电池片的侵袭。EPDM树脂耐老化、抗侵蚀性能优秀,耐酸碱性能强,具有优良的绝缘性能与广泛的温度适用范围。EPDM树脂发泡后具有柔软性和良好的回弹性,使泡孔层11具有更优秀 的缓冲性能。POP树脂具有优异的粘结性能、抗撕裂形和透明性,其能够很好地满足光伏封装胶膜100的各项要求。同时POP树脂的膜泡稳定性较好,采用其制得的泡孔层11中泡孔保持率较高。根据封装胶膜100不同的使用要求或生产需要,可对基体树脂的种类进行适当调整,满足封装胶膜100的生产及使用需求。
作为一种实现方式,填料包括钛白粉、硫酸钡、膨润土、白炭黑、黏土、玻璃微珠、有机硅微球、PA微球、PS微球、PMMA微球、硅灰石、晶须硅、滑石粉、氢氧化镁、氧化镁、氢氧化铝或氧化铝中的至少一种。封装胶膜100应用于光伏封装技术领域,因此泡孔层11在添加填料时选用白色填料为主。本申请实施例用于粘结光伏组件200的电池片与光伏基板,根据应用的光伏组件200的种类,本申请实施例中添加的填料需要进行适当控制。泡孔层11中添加的填料,能够在发泡时作为发泡成核剂,发泡成型后增强泡孔层11机械性能,还能提高成膜时流动性保证泡孔层11均匀成膜。对于在光伏组件200封装后,封装胶膜100中的填料还能增加光反射率,改善光伏组件200发电效率。
作为一种实现方式,发泡剂包括物理发泡剂或化学发泡剂中的至少一种,物理发泡剂为CO 2、N 2或发泡微球中的至少一种,化学发泡剂为OBSH、TSH、碳酸氢钠或中的至少一种。泡孔层11制备时经过发泡处理。发泡处理时采用的发泡剂,可以为物理发泡剂,也可以为化学发泡剂,还可以为既包括物理发泡剂也包括化学发泡剂的复合发泡剂。根据生产的封装胶膜100的使用与生产需求,对泡孔层11进行适当的发泡工艺设计,选择合适的发泡剂以满足不同封装胶膜100中泡孔层11的不同发泡需求,使封装胶膜100具有良好的缓冲性能。
作为一种实现方式,助剂包括交联剂、助交联剂、热稳定剂、光稳定剂、抗氧剂、紫外光吸收剂或偶联剂中的至少一种。为保证泡孔层11的性能,根据使用需求,需要在泡孔层11中添加适当功能性助剂。根据选用基体树脂选择交联剂、助交联剂、偶联剂,帮助基体树脂成膜,形成网状结构,提高泡孔层11的强度和弹性。热稳定剂、光稳定剂和紫外吸收剂用于改善泡孔层11稳定性能,加强泡孔层11的耐候性,提高光伏组件200封装后的环境适应性。
本申请的另一方面还提供了一种如图4所示的光伏组件200,包括前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25。第一封装胶膜层22或第二封装胶膜层24中的至少一层选自包括泡孔111的前述的封装胶膜100。具体地,可以如图5所示,第一封装胶膜层22选自包括泡孔111的前述封装胶膜100,第一封装胶膜层22中也相应的包含泡孔111;可以如图6所示,第二封装胶膜层24选自包括泡孔111的前述封装胶膜100,第二封装胶膜层24中也相应的包含泡孔111;还可以如图7所示,第一封装胶膜层22和第二封装胶膜层24均选自包括泡孔111的前述封装胶膜100,第一封装胶膜层22和第二封装胶膜层24中也均相应的包含泡孔111。本申请中的光伏组件200中第一封装胶膜层22或第二封装胶膜层24中至少一层选自包括泡孔111的前述的封装胶膜100。当然最优的情况是,第一封装胶膜层22和第二封装胶膜层24都选自包括泡孔111的前述的封装胶膜100。前述的封装胶膜100,包括泡孔层11,具有较低的硬度,在光伏组件200封装时,能够降低电池片因热压而产生隐裂的概率。同时在经过层压处理后,封装胶膜层中绝大部分的泡孔111仍能被保留下来。在光伏组件200中,封装胶膜层具有一定的弹性和缓冲性能,在光伏组件200受到冲击时能够起到缓冲作用保护电池片,提高光伏组件200整体的抗冲击性能。
作为一种实现方式,光伏组件200在EL测试条件下的隐裂率低于20%。其中隐裂率指光伏组件中存在隐裂现象的电池片个数与电池片总个数的百分比。由于光伏组件200中的至少一个封装胶膜层选自前述的包括泡孔111的封装胶膜100,因此降低了光伏组件200层压过程中电池片发生隐裂的概率。能够将光伏组件200在EL测试条件下的隐裂率降低至20%及以下。
为了更好的理解上述技术方案,下面将结合具体的实施方式对上述技术方案进行详细的说明。
实施例1
如图5所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21选自如图1所示的封装胶膜100,第二胶膜层22选自如图8所示的常规单层EVA封装胶膜300。如图1所示封装胶膜100的泡孔率S1为60%,其泡孔中长轴的长度L1为150-200μm,短轴的长度W1为130-170μm。
实施例2
与实施例1不同的是,所采用封装胶膜100的泡孔率S1为30%。其他与实施例1相同。
实施例3
与实施例1不同的是,所采用封装胶膜100的泡孔率S1为45%。其他与实施例1相同。
实施例4
与实施例1不同的是,所采用层压处理的条件为,层压处理的温度为150℃,压力为101kPa,层压处理时间为20分钟。其他与实施例1相同。
实施例5
与实施例1不同的是,所采用的层压处理的条件为,层压处理的温度为140℃,压力为101kPa,层压处理时间为12分钟。其他与实施例1相同。
实施例6
与实施例1不同的是,所采用封装胶膜100的泡孔中长轴的长度L1为200-300μm,短轴的长度W1为180-250μm。其他与实施例1相同。
实施例7
与实施例1不同的是,所采用封装胶膜100的泡孔中长轴的长度L1为5-20μm,短轴的长度W1为0.5-15μm。其他与实施例1相同。
实施例8
与实施例1不同的是,所采用封装胶膜100的泡孔中长轴的长度L1为80-150μm,短轴的长度W1为60-100μm。其他与实施例1相同。
实施例9
如图6所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21选自如图8所示的常规单层EVA封装胶膜300,第二胶膜层22选自如图1所示的封装胶膜100。如图1所示封装胶膜100的泡孔率S1为60%,其泡孔中长轴的长度L1为20-30μm,短轴的长度W1为15-25μm。
实施例10
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的 温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图1所示的封装胶膜100。如图1所示封装胶膜100的泡孔率S1为80%,其泡孔中长轴的长度L1为5-10μm,短轴的长度W1为3-8μm。
实施例11
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图1所示的封装胶膜100。如图1所示封装胶膜100的泡孔率S1为10%,其泡孔中长轴的长度L1为50-80μm,短轴的长度W1为40-60μm。
实施例12
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的40%,泡孔层11的泡孔率S1为50%,其泡孔中长轴的长度L1为100-120μm,短轴的长度W1为80-100μm。
实施例13
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为70%,其泡孔中长轴的长度L1为1-30μm,短轴的长度W1为1-20μm。
实施例14
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为150℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶 膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为30%,其泡孔中长轴的长度L1为250-300μm,短轴的长度W1为200-250μm。
实施例15
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为160℃,压力为101kPa,层压处理时间为20分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为30%,其泡孔中长轴的长度L1为250-300μm,短轴的长度W1为200-250μm。
实施例16
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为160℃,压力为101kPa,层压处理时间为16分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为30%,其泡孔中长轴的长度L1为250-300μm,短轴的长度W1为200-250μm。
实施例17
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为160℃,压力为101kPa,层压处理时间为13分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为30%,其泡孔中长轴的长度L1为250-300μm,短轴的长度W1为200-250μm。
对比例1
如图4所示的光伏组件200,由前层基板21、第一粘结层、电池串23、第二粘结层和后层基板25组成。该光伏组件200由前层基板21、如图8所 示的常规单层EVA封装胶膜100、电池串23、如图8所示的常规单层EVA封装胶膜100和后层基板25经层压处理后制得,其中层压处理的温度为150℃,层压处理时间为16分钟。
对比例2
与实施例1不同的是,泡孔中长轴的长度L1为300-350μm,短轴的长度W1为260-300μm。其他与实施例1相同。
对比例3
与实施例1不同的是,封装胶膜100的泡孔率S1为90%,层压处理时温度为130℃,层压处理时间为10分钟。其他与实施例1相同。
对比例4
与实施例1不同的是,封装胶膜100的泡孔率S1为90%,层压处理时温度为150℃,层压处理时间为13分钟。其他与实施例1相同。
对比例5
与实施例1不同的是,封装胶膜100的泡孔率S1为90%,层压处理时温度为160℃,层压处理时间为16分钟。其他与实施例1相同。
对比例6
与实施例1不同的是,所采用封装胶膜100的泡孔率S1为0.01%。
其他与实施例1相同。
对比例7
如图7所示的光伏组件200,其由前层基板21、第一封装胶膜层22、电池串23、第二封装胶膜层24和后层基板25经层压处理后制得,层压处理的温度为160℃,压力为101kPa,层压处理时间为20分钟。其中,第一封装胶膜层21和第二胶膜层22均选自如图3所示的封装胶膜100。如图3所示封装胶膜100,封装胶膜100包括泡孔层11和设于泡孔层11两侧的粘结层,泡孔层的厚度为封装胶膜厚度的70%,泡孔层11的泡孔率S1为80%,其泡孔中长轴的长度L1为50-80μm,短轴的长度W1为40-60μm。
性能测试:
1.分别测试实施例1-16及对比例1-3中的封装胶膜的胶膜拉伸强度,拉伸强度测试标准GB/T1040-1992,哑铃型试样,拉伸速度500mm/min;
2.分别测试实施例1-16及对比例1-3中的封装胶膜的胶膜内聚力,内聚力测试方法:GBT 31034-2014;
3.分别测试实施例1-16与对比例1-3中光伏组件的第一封装胶膜层和/或第二封装胶膜层的泡孔率及泡孔尺寸;
4.分别在EL测试条件下测试实施例1-16与对比例1-3中光伏组件的隐裂率;
5.通过电子显微镜观察实施例1-16中封装胶膜中的泡孔,观察实施例1-15中光伏组件第一封装胶膜层或第二封装胶膜层中的泡孔;
6.体积电阻测试:测试方法参照标准GB/T 31034《晶体硅太阳电池组件用绝缘背板》;试样尺寸:100mm*100mm;测试条件:测试电压1000V;
7.反光率测试:测试方法参照标准GB/T 29848《光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜》中带积分球的有分光光度计方法。测试仪器:紫外可见光分光光度计;测试条件:400nm~1200nm。
注:上述测试中,实施例1-16的相关测试仅测试与涉及本申请封装胶膜相关的部分。
性能测试结果:如下表1和表2所示。
表1 实施例1-8中封装胶膜和光伏组件的性能测试结果
Figure PCTCN2022130783-appb-000001
表2 实施例9-17中封装胶膜和光伏组件的性能测试结果
Figure PCTCN2022130783-appb-000002
Figure PCTCN2022130783-appb-000003
表3 对比例1-7中封装胶膜和光伏组件的性能测试结果
Figure PCTCN2022130783-appb-000004
Figure PCTCN2022130783-appb-000005
由上表1、2和3可知,本申请实施例中采用的封装胶膜泡孔率控制在0.01%-80%范围内,层压前后的泡孔保持率也控制在0.1%-90%的范围内,在降低层压过程中电池隐裂率的前提下,保证了封装胶膜的拉伸强度和内聚力,保证封装胶膜的力学性能和机械强度,保证封装胶膜的产品合格率;同时层压后保持的泡孔也赋予了封装胶膜更好的体积电阻率和反光率,能够提高光伏组件的发电效率。由实施例1-17和对比例1相比可知,虽然本申请实施例中的封装胶膜经过发泡处理后,拉伸强度和内聚力都存在一定程度的下降,但下降幅度较小,仍能够满足封装胶膜的力学性能要求。而对比例2封装胶膜中泡孔尺寸较大,对比例3封装胶膜中泡孔率和层压前后泡孔保持率较高,对比例2和对比例3中封装胶膜的拉伸强度和内聚力都较差,无法满足封装胶膜的力学性能要求,在生产和使用过程中容易发生破碎等情况。对比例2和对比例3中的封装胶膜,在层压过程中虽然能够降低电池片的隐裂率,但是也带来了封装胶膜和光伏组件力学性能上的不可接收的缺陷,降低了其综合性能。对比例4和对比例5中封装胶膜泡孔率较高,但层压前后泡孔保持率较低,即在层压后泡孔消失比较多,相比而言体积电阻率较小,无法保证良好的发电效率。对比例6中封装胶膜泡孔率较低,同时其层压前后泡孔保持率较高,在层压过程中泡孔消失比率较低,在层压过程中难以降低电池片的隐裂率,使得光伏组件的合格率较低。对比例7中的封装胶膜泡孔率较高,但其层压前后泡孔保持率较低,在层压过程中泡孔消失较多,层压过程中泡孔的强度较差,无法承压,在层压过程中难以降低电池片的隐裂率,使得光伏组件的合格率较低。
应当理解的是,对于本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种封装胶膜,其特征在于,包括:
    泡孔层,所述泡孔层的泡孔率为S1;
    所述封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min,层压后泡孔率为S2,层压后泡孔率S2与层压前泡孔率S1的比值S2/S1为0.1%-90%。
  2. 根据权利要求1所述的封装胶膜,其特征在于:
    所述泡孔层的泡孔率S1为0.01%-80%;所述层压后泡孔率S2为0.008%-72%。
  3. 根据权利要求1所述的封装胶膜,其特征在于:
    所述泡孔层的泡孔率S1为30%-60%。
  4. 根据权利要求1所述的封装胶膜,其特征在于:
    所述泡孔层中包括泡孔,所述泡孔为椭球形泡孔,所述椭球形泡孔包括长轴和短轴,所述长轴的长度L1为1-300μm,所述短轴的长度W1为0.5-250μm。
  5. 根据权利要求4所述的封装胶膜,其特征在于:
    所述长轴的中值长度为5-30μm,所述短轴的中值长度为3-25μm。
  6. 根据权利要求4所述的封装胶膜,其特征在于:
    所述封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min;层压后长轴的长度L2为4-240μm,层压后短轴的长度W2为0.4-200μm。
  7. 根据权利要求4所述的封装胶膜,其特征在于:
    所述层压后长轴的长度L2为4-16μm,所述层压后短轴的长度W2为0.8-10μm。
  8. 根据权利要求6所述的封装胶膜,其特征在于:
    所述封装胶膜在120-160℃温度,101kPa压力,层压处理10-20min;所述层压后长轴的长度L2与所述长轴的长度L1的比值L2/L1为30%-95%,所述层压后短轴的长度W2与所述短轴的长度W1的比值W2/W1为40%-95%。
  9. 根据权利要求1所述的封装胶膜,其特征在于:
    所述泡孔层的厚度为所述封装胶膜的厚度的10%-100%。
  10. 根据权利要求1所述的封装胶膜,其特征在于:
    所述泡孔层包括主体树脂、填料、发泡剂和助剂;
    所述发泡层中所述主体树脂的含量为70wt%-80wt%,所述填料的含量为0-20wt%,所述发泡剂的含量的0.0001wt%-1wt%,所述助剂的含量为0.1wt%-9wt%。
  11. 一种光伏组件,包括前层基板、第一封装胶膜层、电池串、第二封装胶膜层和后层基板,其特征在于:
    所述第一封装胶膜层或所述第二封装胶膜层中的至少一层选自权利要求1-10任一项所述的封装胶膜。
  12. 根据权利要求11所述的光伏组件,其特征在于:
    所述光伏组件在EL测试条件下的隐裂率低于20%。
PCT/CN2022/130783 2022-09-14 2022-11-09 一种封装胶膜及光伏组件 WO2024055403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211116265.9A CN115181501B (zh) 2022-09-14 2022-09-14 一种封装胶膜及光伏组件
CN202211116265.9 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055403A1 true WO2024055403A1 (zh) 2024-03-21

Family

ID=83524670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130783 WO2024055403A1 (zh) 2022-09-14 2022-11-09 一种封装胶膜及光伏组件

Country Status (2)

Country Link
CN (1) CN115181501B (zh)
WO (1) WO2024055403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181501B (zh) * 2022-09-14 2022-11-22 杭州福斯特应用材料股份有限公司 一种封装胶膜及光伏组件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315488A (en) * 1969-08-29 1973-05-02 Fisons Ind Chemicals Ltd Process for the production of laminated films
EP0084220A1 (en) * 1982-01-15 1983-07-27 Minnesota Mining And Manufacturing Company Cellular pressure-sensitive adhesive product
JP2012020585A (ja) * 2005-04-08 2012-02-02 Nitto Denko Corp 発泡部材
CN107400471A (zh) * 2017-08-11 2017-11-28 杭州福斯特应用材料股份有限公司 一种多层结构光伏组件封装用胶膜及其制备方法
CN112778565A (zh) * 2020-12-30 2021-05-11 广德祥源新材科技有限公司 一种耐冲击的超薄型聚烯烃发泡片材及其制备方法和应用
CN114231202A (zh) * 2021-12-24 2022-03-25 常州丰锦塑胶科技有限公司 一种海绵胶带及其制备方法
CN114561166A (zh) * 2022-03-31 2022-05-31 杭州福斯特应用材料股份有限公司 一种封装胶膜
CN114566559A (zh) * 2022-03-31 2022-05-31 杭州福斯特应用材料股份有限公司 一种光伏组件
CN114621702A (zh) * 2022-03-31 2022-06-14 杭州福斯特应用材料股份有限公司 一种封装胶膜
CN114716923A (zh) * 2022-05-06 2022-07-08 杭州福斯特应用材料股份有限公司 一种光伏封装胶膜
CN115181501A (zh) * 2022-09-14 2022-10-14 杭州福斯特应用材料股份有限公司 一种封装胶膜及光伏组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047610A1 (ja) * 2014-09-24 2016-03-31 日東電工株式会社 積層体
CN106847967B (zh) * 2016-12-28 2018-08-10 珠海格力电器股份有限公司 光伏组件及该光伏组件的封装方法
JP2019167484A (ja) * 2018-03-26 2019-10-03 日東電工株式会社 発泡シート
CN212182345U (zh) * 2020-06-29 2020-12-18 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件
CN111682082B (zh) * 2020-07-17 2021-12-10 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件
CN114891450A (zh) * 2021-06-30 2022-08-12 福斯特(嘉兴)新材料有限公司 多层反射封装胶膜及光伏组件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315488A (en) * 1969-08-29 1973-05-02 Fisons Ind Chemicals Ltd Process for the production of laminated films
EP0084220A1 (en) * 1982-01-15 1983-07-27 Minnesota Mining And Manufacturing Company Cellular pressure-sensitive adhesive product
JP2012020585A (ja) * 2005-04-08 2012-02-02 Nitto Denko Corp 発泡部材
CN107400471A (zh) * 2017-08-11 2017-11-28 杭州福斯特应用材料股份有限公司 一种多层结构光伏组件封装用胶膜及其制备方法
CN112778565A (zh) * 2020-12-30 2021-05-11 广德祥源新材科技有限公司 一种耐冲击的超薄型聚烯烃发泡片材及其制备方法和应用
CN114231202A (zh) * 2021-12-24 2022-03-25 常州丰锦塑胶科技有限公司 一种海绵胶带及其制备方法
CN114561166A (zh) * 2022-03-31 2022-05-31 杭州福斯特应用材料股份有限公司 一种封装胶膜
CN114566559A (zh) * 2022-03-31 2022-05-31 杭州福斯特应用材料股份有限公司 一种光伏组件
CN114621702A (zh) * 2022-03-31 2022-06-14 杭州福斯特应用材料股份有限公司 一种封装胶膜
CN114716923A (zh) * 2022-05-06 2022-07-08 杭州福斯特应用材料股份有限公司 一种光伏封装胶膜
CN115181501A (zh) * 2022-09-14 2022-10-14 杭州福斯特应用材料股份有限公司 一种封装胶膜及光伏组件

Also Published As

Publication number Publication date
CN115181501A (zh) 2022-10-14
CN115181501B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107400471B (zh) 一种多层结构光伏组件封装用胶膜及其制备方法
WO2024055403A1 (zh) 一种封装胶膜及光伏组件
CN108198884B (zh) 耐湿热的太阳能电池背板及其制造方法
WO2019136823A1 (zh) 一种低水汽透过率聚烯烃弹性体胶膜及制备方法
JP6034756B2 (ja) 太陽電池封止用シートセットおよびそれを用いた太陽電池モジュール
CN108611025A (zh) 一种超快速固化太阳能封装胶膜及其制备方法
JPWO2013121746A1 (ja) 太陽電池封止材および太陽電池モジュール
CN114561166A (zh) 一种封装胶膜
KR101556445B1 (ko) 배리어 층을 사용한 태양전지용 봉지재 시트 및 그 제조 방법
JP2013229410A (ja) 太陽電池封止材および太陽電池モジュール
CN114921187A (zh) 一种封装胶膜及其制备方法和应用
WO2015053314A1 (ja) 太陽電池封止用シートセットおよび太陽電池モジュール
CN114621702B (zh) 一种封装胶膜
CN217781043U (zh) 一种封装胶膜及光伏组件
CN114566559A (zh) 一种光伏组件
JP6371403B2 (ja) 封止シート、太陽電池モジュールおよび封止シートの製造方法
CN115274901B (zh) 一种上转换光伏背板和双面光伏组件
CN110931585A (zh) 一种晶硅光伏组件背板及其制备方法
CN218333819U (zh) 三层复合型胶膜
CN115763581A (zh) 一种太阳能电池前板及其制备方法
WO2022134270A1 (zh) 一种氟碳涂层及一种氟碳涂布液,及一种透明太阳能背板
CN112266491B (zh) 一种单层胶膜、多层共挤胶膜及光伏电池组件
JP2022113709A (ja) 太陽電池モジュール用の封止材シート及びそれを用いた太陽電池モジュール
WO2023024267A1 (zh) 架桥剂、组合物、母料、封装胶膜及电子元器件
CN105576064A (zh) 一种无胶透明太阳能电池背板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958591

Country of ref document: EP

Kind code of ref document: A1