WO2024053466A1 - Semiconductor device and electronic equipment - Google Patents

Semiconductor device and electronic equipment Download PDF

Info

Publication number
WO2024053466A1
WO2024053466A1 PCT/JP2023/031052 JP2023031052W WO2024053466A1 WO 2024053466 A1 WO2024053466 A1 WO 2024053466A1 JP 2023031052 W JP2023031052 W JP 2023031052W WO 2024053466 A1 WO2024053466 A1 WO 2024053466A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
image sensor
semiconductor device
state imaging
solid
Prior art date
Application number
PCT/JP2023/031052
Other languages
French (fr)
Japanese (ja)
Inventor
文爽 董
裕人 田中
光人 金竹
直樹 栫山
耕佑 晴山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024053466A1 publication Critical patent/WO2024053466A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present disclosure relates to semiconductor devices and electronic equipment.
  • semiconductor devices equipped with semiconductor elements such as image pickup elements such as CMOS image sensors and light emitting elements such as semiconductor lasers have the following package structure.
  • semiconductor elements semiconductor elements
  • image pickup elements such as CMOS image sensors
  • light emitting elements such as semiconductor lasers
  • glass which is a transparent member, is supported on the upper side (front side) of the semiconductor chip mounted on the substrate via a resin rib part, and a sealing resin part is placed around the semiconductor chip and glass on the substrate. It has a hollow package structure with
  • Some of such package structures include a plurality of wires (bonding wires) as connection members that electrically connect the semiconductor chip to the substrate (see, for example, Patent Document 1).
  • the wire is provided with one end connected to a bonding pad formed on the top surface of the substrate and the other end connected to a connection pad formed on the top surface of the semiconductor chip.
  • the package structure includes a structure in which the entire wire is covered with a sealing resin, and a structure in which a rib portion is formed to cover the connection part of the wire to the connection pad of the semiconductor chip in order to reduce the size of the package.
  • a semiconductor device that employs such a package structure is a BGA (Ball Grid Array) package for image sensors in which multiple solder balls are arranged in a lattice pattern as external connection terminals on the back side of the substrate. .
  • the package structure as described above it is effective to increase the thickness of the semiconductor chip from the viewpoint of heat insulation and as a countermeasure against warpage of the pixel surface (imaging surface) of the semiconductor chip and the package.
  • the stress acting on the wires disposed between the substrate and the semiconductor chip increases.
  • the wire neck is a base portion of the wire body relative to a joint portion formed as an enlarged diameter portion to the wire body at both ends of the wire.
  • the protruding portion (fillet) of the die bonding material outward from the semiconductor chip on the surface of the substrate prevents wire connections.
  • the purpose of this technology is to provide semiconductor devices and electronic equipment that can reduce stress on connecting members that electrically connect a substrate and a semiconductor element to each other, and can also reduce the size of the package. do.
  • a semiconductor device includes a substrate, a semiconductor element provided on the substrate, and a connecting member that electrically connects the substrate and the semiconductor element, and the substrate is connected to the semiconductor element.
  • the device has a first surface portion that receives attachment, and a second surface portion that is located above the first surface portion in the vertical direction and has an electrode portion that receives the connection of the connection member.
  • the second surface portion is provided at a height position below an element-side electrode portion that is provided on the upper surface of the semiconductor element and receives connection with the connection member. It is located at a height.
  • the semiconductor device includes a cover member that covers the semiconductor element from above, and a cover member that is interposed between the semiconductor element and the cover member, and that and a support part that supports the member, and the support part is provided so as to cover a connection part of the connection member to the semiconductor element.
  • the substrate has a stepped surface portion formed between the first surface portion and the second surface portion, and the stepped surface portion is arranged in a vertical direction.
  • the semiconductor device has an inclined surface that is inclined in a direction that gradually widens the distance between the semiconductor element and the semiconductor element from the first surface side to the second surface side.
  • the second surface portion is formed of a member different from the member forming the first surface portion.
  • the substrate has a plurality of types of surface portions having different heights as the second surface portion.
  • the semiconductor device includes a sealing resin portion provided around the semiconductor element and the cover member on the substrate, and the cover member is arranged on at least an upper side of a side surface. A part thereof is an exposed surface portion that is not covered with the sealing resin portion.
  • the substrate has a convex portion protruding from the first surface portion as a portion forming the second surface portion, and in the convex portion , a reinforcing member having a wiring part for energizing the electrode part and having higher rigidity than the substrate is provided.
  • the base material of the reinforcing member is made of a material having a smaller coefficient of linear expansion than the base material of the substrate.
  • the wiring portion includes a through wiring portion forming a hole that penetrates a main body portion formed of a base material of the reinforcing member, and the hole portion is provided with a resin portion made of a resin material that fills the inside of the hole.
  • the substrate has a rectangular outer shape in plan view, and the reinforcing member extends along the longitudinal direction of the outer shape of the substrate in plan view. It is set up in the shape of
  • the substrate includes, as the reinforcing members, a plurality of types of reinforcing members formed from mutually different base materials.
  • An electronic device includes a substrate, a semiconductor element provided on the substrate, and a connecting member that electrically connects the substrate and the semiconductor element, and the substrate is connected to the semiconductor element.
  • the semiconductor device includes a first surface portion to which the semiconductor device is attached, and a second surface portion located above the first surface portion in the vertical direction and on which an electrode portion to which the connection member is connected is disposed.
  • FIG. 1 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a first embodiment of the present technology.
  • 2 is an enlarged view of part A in FIG. 1.
  • FIG. FIG. 1 is a plan view showing part of the configuration of a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 1 is a perspective view showing part of the configuration of a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 2 is a flow diagram illustrating an example of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 2 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 2 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology.
  • FIG. 2 is a partially enlarged side sectional view showing the configuration of a comparative example of the solid-state imaging device according to the first embodiment of the present technology.
  • FIG. 7 is a partially enlarged side cross-sectional view showing the configuration of a first modified example of the solid-state imaging device according to the first embodiment of the present technology.
  • FIG. 3 is a partially enlarged side cross-sectional view showing the configuration of a solid-state imaging device according to a second embodiment of the present technology.
  • FIG. 7 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 7 is a flow diagram illustrating an example of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 7 is a partially enlarged side cross-sectional view showing the configuration of a solid-state imaging device according to a fourth embodiment of the present technology.
  • FIG. 7 is a partial perspective view showing the configuration of a solid-state imaging device according to a fourth embodiment of the present technology.
  • FIG. 7 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a fifth embodiment of the present technology.
  • 19 is an enlarged view of part D in FIG. 18.
  • FIG. It is a top view showing a part of composition of a solid-state imaging device concerning a 5th embodiment of this art.
  • FIG. 7 is a perspective cross-sectional view showing the configuration of a reinforcing member according to a fifth embodiment of the present technology.
  • FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a fifth embodiment of the present technology.
  • FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a fifth embodiment of the present technology.
  • FIG. 1 is a block diagram illustrating a configuration example of an electronic device including a solid-state imaging device according to an embodiment of the present technology.
  • connection member alleviates stress on the connection member and packages the structure by devising the structure of the board that receives the connection member in a configuration that includes a connection member such as a wire that electrically connects the board and the semiconductor element to each other.
  • the aim is to reduce the size of the device.
  • an imaging device including a solid-state imaging device, which is an example of a semiconductor device, will be described as an example of a semiconductor device.
  • the embodiments will be described in the following order. 1. Configuration example of solid-state imaging device according to first embodiment 2. Manufacturing method of solid-state imaging device according to first embodiment 3. Modification of the solid-state imaging device according to the first embodiment 4.
  • Configuration example of solid-state imaging device according to second embodiment 5.
  • Configuration example of solid-state imaging device according to third embodiment 6.
  • Manufacturing method of solid-state imaging device according to third embodiment 7.
  • Configuration example of solid-state imaging device according to fourth embodiment 8.
  • Configuration example of solid-state imaging device according to fifth embodiment 9.
  • Manufacturing method of solid-state imaging device according to fifth embodiment 10.
  • Modification of solid-state imaging device according to fifth embodiment 11.
  • Configuration example of solid-state imaging device according to first embodiment> A configuration example of a solid-state imaging device according to a first embodiment of the present technology will be described with reference to FIGS. 1 to 4. Note that the upper and lower sides in FIG. 1 are the upper and lower sides of the solid-state imaging device 1. Further, the side sectional view shown in FIG. 1 corresponds to the sectional view taken along the line BB in FIG.
  • the solid-state imaging device 1 includes a substrate 2, an image sensor 3 as a solid-state imaging element provided on the substrate 2, and wires (bonding wires) 4 as a plurality of connection members.
  • the solid-state imaging device 1 also includes a transparent glass 5 as a cover member that covers the image sensor 3 from above, a rib portion 6 as a support portion that supports the glass 5 with respect to the image sensor 3, and a solid state on the substrate 2.
  • the imaging device 1 includes a sealing resin portion 7 provided at a peripheral portion of the imaging device 1.
  • the solid-state imaging device 1 has a package structure in which a glass 5 is mounted on the image sensor 3 via a rib portion 6, and a cavity 8 is formed between the image sensor 3 and the glass 5. That is, in the solid-state imaging device 1, the glass 5 is supported by the rib portion 6 provided on the surface 3a, which is the light-receiving side (upper side) surface of the image sensor 3, so as to face the surface 3a side of the image sensor 3. At the same time, the periphery between the image sensor 3 and the glass 5 is sealed to form a cavity 8 as a hollow part.
  • the substrate 2 is an interposer substrate, and is a flat member having a rectangular plate-like outer shape.
  • the substrate 2 has a front surface 2a that is one board surface on which the image sensor 3 is mounted, a back surface 2b that is the other board surface opposite to the front surface 2a, and four side surfaces 2c.
  • the thickness direction of the substrate 2 is the vertical direction in the solid-state imaging device 1, with the front surface 2a side being the upper side and the back surface 2b side being the lower side.
  • An image sensor 3 is die-bonded to the surface 2a of the substrate 2.
  • the image sensor 3 is bonded to the surface 2a of the substrate 2 with a die bonding material 9 made of an insulating or conductive adhesive or the like.
  • the substrate 2 is an organic substrate made of an organic material such as glass epoxy resin, which is a type of fiber-reinforced plastic, and is a circuit board on which wiring layers, electrodes, and a predetermined circuit pattern are formed from a metal material.
  • the substrate 2 may be a ceramic substrate made of ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or a glass substrate made of glass. It may be a type of substrate.
  • a plurality of bonding pads 11 are formed on the surface 2a of the substrate 2, which are electrode portions for receiving electrical connection to the image sensor 3.
  • the plurality of bonding pads 11 are formed in a predetermined array on the front surface 2a side of the substrate 2, outside the mounting portion of the image sensor 3.
  • the plurality of bonding pads 11 are provided along four sides of the substrate 2 at the peripheral edge of the front surface 2a of the substrate 2.
  • the manner in which the bonding pads 11 are arranged is not particularly limited.
  • a plurality of bonding pads 11 may be provided on a pair of mutually opposing sides of the substrate 2.
  • the image sensor 3 is a semiconductor element including a semiconductor substrate made of silicon (Si), which is an example of a semiconductor.
  • the image sensor 3 is a rectangular plate-shaped semiconductor chip, with one plate surface, ie, a front surface 3a, serving as a light-receiving surface, and the other plate surface on the opposite side serving as a back surface 3b.
  • the image sensor 3 has four side surfaces 3c.
  • a plurality of light receiving elements are formed on the surface 3a side of the image sensor 3.
  • the image sensor 3 is a CMOS (Complementary Metal Oxide Semiconductor) type image sensor.
  • the image sensor 3 may be another image sensor such as a CCD (Charge Coupled Device) type image sensor.
  • the image sensor 3 has, on the front surface 3a side, a pixel region 12 which is a light receiving region in which a large number of pixels are formed, and a peripheral region 13 which is a region around the pixel region 12.
  • a large number of pixels are formed in a predetermined arrangement, such as a Bayer arrangement, and constitute a light receiving section in the image sensor 3.
  • a pixel in the pixel region 12 includes a photodiode as a photoelectric conversion unit having a photoelectric conversion function and a plurality of pixel transistors.
  • a predetermined peripheral circuit is formed in the peripheral region 13. Signals processed by the peripheral circuits are output via wire 4.
  • a color filter and an on-chip lens are attached to each pixel through an antireflection film made of an oxide film or the like, a flattening film made of an organic material, etc., on the semiconductor substrate. are formed accordingly.
  • Light incident on the on-chip lens is received by a photodiode via a color filter, a flattening film, etc.
  • connection pads 15 are formed on the surface 3a of the image sensor 3 as electrode portions for receiving electrical connection to the substrate 2.
  • the connection pad 15 is an element-side electrode portion provided on the surface 3a of the image sensor 3 and to which the wire 4 is connected.
  • the connection pad 15 is formed so as to face the surface 3a and be exposed.
  • connection pads 15 are formed in a predetermined array in a peripheral region 13 on the surface 3a of the image sensor 3.
  • the plurality of connection pads 15 are provided along four sides of the image sensor 3 at the peripheral edge of the surface 3a of the image sensor 3.
  • the manner in which the connection pads 15 are arranged is not particularly limited, and for example, a plurality of connection pads 15 may be provided on a pair of opposing sides of the image sensor 3.
  • the configuration of the image sensor 3 is not particularly limited.
  • the configuration of the image sensor 3 is, for example, a front side illumination type in which the pixel area 12 is formed on the front side of the semiconductor substrate, or a type in which a photodiode, etc. is arranged in reverse to improve light transmittance.
  • the wire 4 is a conductive wire that electrically connects the substrate 2 and the image sensor 3 to each other.
  • the wire 4 is a thin metal wire made of, for example, Au (gold), Cu (copper), Al (aluminum), or the like.
  • the wire 4 has one end connected to the bonding pad 11 of the substrate 2 and the other end connected to the connection pad 15 of the image sensor 3, electrically connecting these electrode pads to each other.
  • a plurality of wires 4 are provided according to the number of bonding pads 11.
  • the wire 4 has bonding portions 4b and 4c formed at both ends of a linear wire body portion 4a as connecting portions to each electrode pad of the bonding pad 11 and the connection pad 15, and as an enlarged diameter portion to the wire body portion 4a.
  • the bonding pads 11 and the connection pads 15 are formed using a nickel (Ni) plating layer and a gold (Au) plating layer on a layer portion of copper (Cu), tungsten (W), titanium (Ti), etc. It is coated with a plating layer.
  • the bonding pads 11 and the connection pads 15 are formed by appropriately using plating, sputtering, printing, or other film forming methods.
  • a plurality of bonding pads 11 on the substrate 2 are electrically connected to a plurality of terminal electrodes formed on the back surface 2b side of the substrate 2 via predetermined wiring portions formed within the substrate 2.
  • Each terminal electrode is provided with, for example, a solder ball (not shown) as a connection terminal.
  • the solder balls are formed two-dimensionally in a grid point arrangement along the rectangular outer shape of the image sensor 3, and constitute a BGA (Ball Grid Array).
  • the solid-state imaging device 1 is reflow-mounted on a set board, which is a circuit board having a predetermined circuit, using a group of solder balls.
  • the glass 5 is an example of a transparent member or a translucent member, and is provided on the surface 3a side of the image sensor 3, parallel to the image sensor 3 and at a predetermined interval.
  • the glass 5 has a rectangular plate-like outer shape, and has a front surface 5a that is an upper plate surface, a back surface 5b that is the opposite plate surface and faces the image sensor 3, and four side surfaces 5c.
  • the glass 5 is provided to the image sensor 3 via a rib portion 6 and is located above the image sensor 3.
  • the glass 5 is fixedly supported by the rib portion 6 on the surface 3a of the image sensor 3.
  • the glass 5 has an outer dimension larger than the image sensor 3, and is provided so that the entire image sensor 3 is located within the range of the outer shape when viewed from above. Therefore, the four side surfaces 5c of the glass 5 are located outside the four side surfaces 3c of the image sensor 3, respectively.
  • the four edges of the glass 5 are protruding portions 5d that protrude outward from the outline of the image sensor 3 in a plan view.
  • the glass 5 is adhered by the sealing resin portion 7 at the protruding portion 5d.
  • the glass 5 has an outer dimension smaller than that of the substrate 2, and is entirely located within the range of the outer shape of the substrate 2 in plan view. Therefore, the four side surfaces 5c of the glass 5 are located inside the four side surfaces 2c of the substrate 2, respectively.
  • the glass 5 transmits various types of light incident from the surface 5a side through an optical system such as a lens located above it.
  • the light transmitted through the glass 5 reaches the light receiving surface of the image sensor 3 via the cavity 8.
  • the glass 5 has a function of protecting the light receiving surface side of the image sensor 3.
  • a plastic plate, a silicon plate, or the like can be used instead of the glass 5.
  • the rib portion 6 is an adhesive portion that is interposed between the image sensor 3 and the glass 5 and adheres them while keeping them spaced apart from each other.
  • the rib portion 6 forms a bonding layer between the image sensor 3 and the glass 5, and defines a space between the image sensor 3 and the glass 5 as a cavity 8, which is a sealed space.
  • the lower side of the rib portion 6 is adhered to the front surface 3a of the image sensor 3, and the upper side is adhered to the back surface 5b of the glass 5.
  • the rib portion 6 is provided in the peripheral region 13 on the surface 3a of the image sensor 3 so as to surround the pixel region 12.
  • the rib portion 6 functions as a sealing portion that hermetically seals the periphery between the image sensor 3 and the glass 5, and together with the glass 5, blocks moisture (steam), dust, etc. from entering the cavity 8 from the outside.
  • the rib portion 6 is provided along the entire circumference of the image sensor 3 and the glass 5 in a plan view, and is formed endlessly so as to form a rectangular frame shape in a plan view. Therefore, the rib portion 6 has four straight portions 6a along the outline of the image sensor 3 in plan view. In the illustrated example, each straight portion 6a has a rectangular cross-sectional shape.
  • the rib portion 6 has an inner surface 6b and an outer surface 6c in each straight portion 6a (see FIG. 2).
  • the rib portion 6 is provided at a position within the outer shape of the glass 5 so as to follow the outer edge of the glass 5 in plan view.
  • the rib portion 6 is provided at a position inside the side surface 5c of the glass 5.
  • the rib portion 6 may be provided, for example, so that the outer surface 6c is flush with the side surface 5c of the glass 5.
  • the rib portion 6 is provided at the peripheral portion on the surface 3a of the image sensor 3.
  • the rib portion 6 is formed so that its outer side surface 6c is flush with the side surface 3c of the image sensor 3.
  • the rib portion 6 may be formed, for example, so that the outer surface 6c is located inside the side surface 3c of the image sensor 3.
  • the rib portion 6 is formed of an insulating material.
  • the material of the rib portion 6 is, for example, a photosensitive adhesive such as a UV (ultraviolet) curable resin that is an acrylic resin, a thermosetting resin such as an epoxy resin, or a mixture thereof. be.
  • the material of the rib portion 6 is not particularly limited as long as it is a resin material that functions as an adhesive.
  • the rib portion 6 is formed on the surface 3a of the image sensor 3 by coating with a dispenser, patterning using photolithography, or the like.
  • the support unit according to the present technology is not limited to one made of resin; for example, a frame-shaped structure made of ceramic such as glass, or inorganic material such as metal or silicon is attached to the image sensor 3 and the glass 5 with adhesive or the like. A structure provided by pasting may also be used.
  • the rib portion 6 is provided to cover the connection portion of the wire 4 to the image sensor 3. That is, the rib portion 6 is formed at the peripheral edge of the surface 3a of the image sensor 3 so as to include a formation region of the connection pad 15 that receives the connection portion 4c of the wire 4 to the image sensor 3. , the joint portion 4c of the wire 4, and the portion of the wire main body portion 4a on the joint portion 4c side are buried. However, the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be located inside the region where the connection pad 15 is formed.
  • the sealing resin portion 7 is provided around the image sensor 3 and the glass 5 on the substrate 2.
  • the sealing resin portion 7 covers most of the wire main body portion 4a of the wire 4 and the connection portion of the wire 4 to the substrate 2. That is, the sealing resin portion 7 is formed so as to embed the bonding pad 11, the bonding portion 4b of the wire 4, and the portion extending outward from the rib portion 6 of the wire main body portion 4a.
  • the sealing resin part 7 covers and seals the entire circumference of the image sensor 3 and the glass 5 on the substrate 2. Specifically, the sealing resin portion 7 fills the portion of the wire 4 extending outward from the rib portion 6, and fills the peripheral portion of the substrate 2 on which the bonding pad 11 is formed, and the side surface 3c of the image sensor 3. , covers the outer surface 6c of the rib portion 6, the back surface 5b of the protruding portion 5d of the glass 5, and the lower part of the side surface 5c.
  • the sealing resin part 7 is formed in a frame shape along the rectangular outer shape of the substrate 2 in plan view, and has four side parts along each side of the rectangular outer shape of the substrate 2. Furthermore, the sealing resin portion 7 has a side surface portion 7a that is flush with and continuous with the side surface 2c of the substrate 2, and an upper surface portion 7b that is located at a lower position than the surface 5a of the glass 5 (see FIG. 2). . In the illustrated example, the upper surface portion 7b of the sealing resin portion 7 is a sloped surface portion that gradually becomes lower from the inside (glass 5 side) to the outside.
  • the sealing resin part 7 is different from the configuration in which the image sensor 3 is mounted on the substrate 2 and these are connected by wires 4, and the glass 5 is mounted on the image sensor 3 via the rib part 6. It is formed by curing a resin material around the image sensor 3 and the glass 5.
  • the sealing resin portion 7 is formed into a predetermined shape by, for example, injection molding using a mold, potting processing using a dispenser, or the like.
  • the material of the sealing resin portion 7 is, for example, a thermosetting resin containing silicon oxide as a main component or alumina as a filler.
  • the resin material forming the sealing resin part 7 include thermosetting resins such as phenolic resins, silicone resins, acrylic resins, epoxy resins, urethane resins, silicone resins, and polyetheramide resins; Thermoplastic resins such as polyamideimide, polypropylene, and liquid crystal polymers, photosensitive resins such as UV curable resins that are acrylic resins, rubber, and other known resin materials may be used singly or in combination. Note that the sealing resin portion 7 has insulation properties.
  • the sealing resin portion 7 may be formed of a material having light-shielding properties, such as a black resin material containing a black pigment such as carbon black or titanium black. Thereby, the sealing resin part 7 becomes a black part, and the sealing resin part 7 can function as a light shielding part.
  • the glass 5 has at least a part of the upper side of the side surface 5c as an exposed surface part 5e that is not covered with the sealing resin part 7 (see FIG. 2).
  • the sealing resin part 7 covers most of the lower part of the side surface 5c of the glass 5, and exposes the upper part to form an exposed surface part 5e.
  • the sealing resin portion 7 is formed so that exposed surface portions 5e exist all around the four side surfaces 5c of the glass 5.
  • the sealing resin portion 7 in the thickness direction of the glass 5, which is the vertical direction.
  • approximately 1/4 of the upper side of the side surface 5c of the glass 5 is not covered with the sealing resin portion 7 and is an exposed surface portion 5e.
  • the vertical range of the exposed surface portion 5e on the side surface 5c of the glass 5 is not particularly limited.
  • the sealing resin portion 7 may be formed to cover the entire side surface 5c of the glass 5, or may be formed to expose the entire side surface 5c.
  • the solid-state imaging device 1 having the above configuration has the following configuration regarding the substrate 2 to which one end of the wire 4 is connected. That is, the surface portion of the substrate 2 to which one end of the wire 4 is connected is positioned above the surface 2a to which the image sensor 3 is fixed.
  • the substrate 2 has a surface 2a as a first surface portion to which the image sensor 3 is attached, and a second surface portion as a second surface portion on which a bonding pad 11, which is located above the surface 2a in the vertical direction and receives the connection of the wire 4, is disposed. It has an upper stage surface part 22. In this way, the substrate 2 has the surface 2a to which the image sensor 3 is die-bonded as the lower surface, and the upper surface 22 located around the surface 2a at a higher position than the surface 2a. It has the structure of
  • the substrate 2 has four protruding edges 23 formed at the peripheral edge of the substrate 2 along the outer shape of the substrate 2 in a plan view, as the upper surface portion 22 . That is, the substrate 2 has a substrate body 20 which is a rectangular plate-like flat plate portion forming the front surface 2a, and a peripheral wall portion 21 formed in a frame shape by four projecting edges 23 on the upper side of the substrate body 20. .
  • the four protruding edges 23 forming the peripheral wall portion 21 are convex portions that protrude from the surface 2a of the substrate 2.
  • the substrate 2 is formed into a flat box shape with the upper side open, by the substrate main body 20 and the peripheral wall 21.
  • the substrate 2 is a cavity substrate in which a concave portion 25 is formed on the upper side of the substrate main body portion 20 by the four projecting edges 23 .
  • the image sensor 3 is arranged within the recess 25 .
  • the recess 25 is a space with an open upper side, has a rectangular opening shape corresponding to the outer shape of the image sensor 3, and is formed in a range that occupies most of the substrate 2 in a plan view. In the example shown in FIG. 3, the recess 25 is formed in the center of the substrate 2 in plan view.
  • the four projecting edges 23 forming the recess 25 together with the board body 20 have an inner surface 26 formed perpendicular to the surface 2a and forming the side surface of the recess 25, and an outer surface 27 that is the opposite surface.
  • the inner surface 26 is a stepped surface portion formed between the surface 2 a and the upper step surface portion 22 .
  • the protruding edge portion 23 is provided so that the outer surface 27 is continuous with the side surface 2c of the substrate 2 and is flush with the surface.
  • the projecting edge portion 23 may be provided so that the outer surface 27 is located inside or outside of the side surface 2c of the substrate 2.
  • the protruding edge portion 23 is formed so that the inner surface 26 is located inside the side surface 5c of the glass 5. That is, the upper stage surface portion 22 has an inner peripheral edge located below an outer peripheral edge of the protruding portion 5d of the glass 5. However, the projecting edge portion 23 may be provided so that the entire portion is located outside the range of the outer shape of the glass 5 in plan view.
  • the recess 25 is a rectangular hole in plan view formed by the four inner surfaces 26 and the surface 2a.
  • the portion where the recess 25 is formed is a portion where the plate thickness is thinner than the peripheral portion where the recess 25 is not formed by the depth of the recess 25.
  • the recess 25 has an opening dimension larger than the external dimension of the image sensor 3, and is formed so that the entire image sensor 3 is accommodated within the recess 25 when viewed from above.
  • a plurality of bonding pads 11 are formed on the upper surface portion 22 of each projecting edge portion 23. That is, the bonding pad 11 is formed so as to be exposed facing the upper surface portion 22.
  • the upper surface portions 22 of the four projecting edges 23 are located on a common virtual plane.
  • the upper surface portion 22 is located at a height that is equal to or lower than the height of the connection pad 15 of the image sensor 3.
  • the height position of the connection pad 15 is the same or approximately the same as the height position H1 of the surface 3a of the image sensor 3.
  • the height position H2 of the upper stage surface portion 22 is located below the height position H1 of the connection pad 15 by a dimension ⁇ H. Note that the height position H2 of the upper stage surface portion 22 is the same or approximately the same as the height position of the bonding pad 11.
  • the size of the dimension ⁇ H depends on the thickness C1 of the image sensor 3 (thickness of the chip), but is, for example, a value within the range of 180 to 480 ⁇ m.
  • the thickness C1 of the image sensor 3 is, for example, a value within the range of 400 to 600 ⁇ m.
  • the projecting edge portion 23 may be formed so that the upper surface portion 22 is located at the same height position or approximately the same height position as the surface 3a of the image sensor 3.
  • the height B1 of the protruding edge portion 23 forming the upper surface portion 22 is, for example, a value within the range of 100 to 400 ⁇ m.
  • the height B1 of the projecting edge portion 23 is the height of the projecting edge portion 23 with respect to the surface 2a of the substrate 2, and is the difference in height between the surface 2a and the upper surface portion 22.
  • the height B1 of the projecting edge 23 corresponds to the depth of the recess 25 in the substrate 2.
  • the height B1 of the protruding edge portion 23 is defined as a value within the range of, for example, the thickness C1 of the image sensor 3 to the thickness C1+thickness C2 of the die bonding material 9.
  • the thickness C2 of the die-bonding material 9 is, for example, about 100 ⁇ m.
  • the height B1 of the projecting edge portion 23 is the same as the thickness C1 of the image sensor 3 + the thickness C2 of the die-bonding material 9
  • the height position of the upper surface portion 22 is the same as that of the surface 3a of the image sensor 3. The height position will be the same.
  • the four side surfaces 3c of the image sensor 3 are opposed to the inner surfaces 26 of the four projecting edges 23.
  • a gap 28 is formed between the side surface 3c and the inner surface 26 (see FIG. 2).
  • the dimension D1 of the gap 28 is desirably at least about 50 ⁇ m from the viewpoint of ensuring the width of the fillet 9a of the die-bonding material 9 and the chip mounting accuracy of the image sensor 3.
  • the fillet 9a is a protruding portion of the die-bonding material 9 from the outer shape of the image sensor 3 in a plan view.
  • the fillet 9a increases in volume within the gap 28 by using the protruding edge 23 as a stopper against outward spread, and forms a part of the side surface 3c of the image sensor 3. It is formed to cover the lower part.
  • the wire 4 is gently moved toward the connection pad 15 while raising the wire main body part 4a from the joint part 4b with respect to the bonding pad 11. It is arranged in a downward sloping shape.
  • the wire 4 has a curved portion 4d that forms a corner between the rising portion from the bonding portion 4b and the downwardly sloping portion toward the connection pad 15, at a portion of the wire body portion 4a located above the bonding portion 4b.
  • the wire 4 has the curved portion 4d of the wire main body 4a as the upper end of the wire 4, and is arranged so that the curved portion 4d does not come into contact with the glass 5. That is, the entire wire 4 is located below the height of the back surface 5b of the glass 5.
  • the portion (convex portion) forming the upper stage surface portion 22 may be formed as a portion having an appropriate shape at one or more locations depending on the arrangement of the bonding pads 11 and the like.
  • the protruding edges are arranged along two sides of the substrate 2 according to the arrangement area of the plurality of bonding pads 11.
  • a structure in which the portion 23 is formed may also be used.
  • the portion forming the upper stage surface portion 22 may be formed so as to partially form a convex portion on each side of the substrate 2 depending on the location where the bonding pad 11 is formed. Further, when forming the upper stage surface portions 22 at a plurality of locations according to the plurality of bonding pads 11, the plurality of upper stage surface portions 22 may be formed at different height positions.
  • the protruding edges 23 provided along the four sides of the substrate 2 have a common width dimension, but for example, the protruding edges 23 provided on each side of the substrate 2 may have different widths. Alternatively, the projecting edge portions 23 on each side may have partially different widths.
  • a step of preparing a substrate is performed (S10).
  • a substrate member 10 is prepared, which is a collective substrate in which a plurality of substrate portions 2A, which serve as the substrate 2 in the solid-state imaging device 1, are two-dimensionally connected.
  • a portion of the substrate 2 that will become the peripheral wall portion 21 forming the upper surface portion 22 is formed as a lattice-shaped protrusion portion 31.
  • a recess 25 is formed in each substrate portion 2A.
  • a plurality of bonding pads 11 are formed at predetermined portions on the upper surface 31a of the protrusion portion 31 that forms the upper surface portion 22 of the substrate 2.
  • the substrate member 10 is a ceramic substrate with a multilayer structure in which sheet-like members made of ceramic materials or the like are laminated
  • the following manufacturing method can be used. After forming a penetrating opening in each of the sheet-like members to be laminated as a portion for forming the recesses 25, the sheet-like members are laminated to form the substrate member 10 having a plurality of recesses 25.
  • the substrate member 10 having the recesses 25 can be obtained by forming the portions that will become the recesses 25 using a processing device such as a drill in a state in which sheet-like members are stacked.
  • multilayer ceramic substrates include low-temperature fired laminated ceramic substrates called LTCC (Low Temperature Co-fired Ceramics) substrates.
  • LTCC Low Temperature Co-fired Ceramics
  • the substrate member 10 having a plurality of recesses 25 can be formed by using the same manufacturing method as in the case of a multilayer ceramic substrate. Obtainable.
  • a die bonding process is performed (S20).
  • a step of providing the image sensor 3 on the substrate 2 is performed. That is, die bonding is performed to die bond the image sensor 3 to each substrate portion 2A of the substrate member 10.
  • the image sensor 3 is bonded to a predetermined mounting portion on the surface 2a within the recess 25 using a die bonding material 9 such as an insulating or conductive resin paste.
  • a wire bonding process is performed (S30).
  • a step of providing a wire 4 for electrically connecting the substrate 2 and the image sensor 3 is performed. That is, wire bonding is performed in which the bonding pad 11 and the connection pad 15 of the image sensor 3 are electrically connected by connecting with the wire 4.
  • wire bonding for example, reverse bonding is performed in which the bonding pad 11 side is the first bond and the connection pad 15 side is the second bond.
  • a glass mounting process is performed (S40).
  • a step of providing glass 5 on image sensor 3 via rib portion 6 is performed.
  • rib resin which is a resin material that will become the rib portion 6, is applied to a predetermined portion of the surface 3a of the image sensor 3 in a rectangular frame shape along the outer shape of the image sensor 3 in plan view using a dispenser or the like.
  • Ru is applied so as to cover the connection portion of the wire 4 to the connection pad 15.
  • the rib resin may be formed by patterning using photolithography or the like.
  • a step of mounting the glass 5 on the rib resin is performed.
  • the glass 5 is mounted on the image sensor 3 so as to close the upper opening of the rib resin coated in a frame shape.
  • a step of curing the rib resin is performed.
  • a heating step is performed to harden the rib resin.
  • the glass 5 is adhesively fixed on the image sensor 3 via the rib portion 6 formed of the rib resin, and a cavity 8, which is a sealed space, is formed.
  • a step of forming a sealing resin portion is performed (S50).
  • the solid-state imaging is performed so as to cover the portions around each image sensor 3 and the glass 5 on the substrate member 10, as well as the portion of the wire 4 extending outward from the rib portion 6.
  • a sealing resin 37 that becomes the sealing resin portion 7 is formed.
  • the sealing resin 37 is formed from a predetermined resin material into a predetermined shape by, for example, injection molding using a mold for molding the resin portion, potting processing using a dispenser, or the like.
  • a singulation process is performed as shown in FIG. 5 (S60).
  • dicing is performed in which the structure provided on the substrate member 10 and each substrate portion 2A is divided into individual pieces by device. Specifically, as shown in FIG. 7B, the dicing blade 29 separates the sealing resin 37 and the substrate member 10 so that the substrate member 10 is separated into individual substrate portions 2A. be exposed.
  • the method for manufacturing the solid-state imaging device 1 includes first manufacturing a plurality of substrates 2 by cutting the substrate member 10 into pieces, and then subjecting the substrates 2 to each process such as steps S20 to S50 described above. You may also use the method of
  • the solid-state imaging device 1 has an upper surface portion 22 provided on the substrate 2 at a higher position relative to the surface 2a, which is the fixed surface of the image sensor 3, as a surface portion on which the bonding pad 11 to which one end of the wire 4 is connected is arranged. has. According to this configuration, it is possible to reduce the level difference between the surface 3a of the image sensor 3 on which the connection pad 15 that receives the connection to the other end of the wire 4 is arranged and the surface of the substrate 2 on which the bonding pad 11 is disposed. can. As a result, even if the thickness of the image sensor 3 is increased to prevent warpage of the image sensor 3, for example, the difference in level between the surfaces on which the bonding pads 11 and the connection pads 15 are disposed can be suppressed from increasing. Therefore, the stress acting on the wire 4 can be reduced.
  • the bonding pad 11 is arranged on the same plane as the surface 2a on which the image sensor 3 is attached on the substrate 2.
  • the height difference between the surface on which the pads 11 are provided and the surface on which the connection pads 15 are provided becomes large. For this reason, when the thickness of the image sensor 3 is increased, stress on the wire 4 increases. In particular, the stress on the wire neck 4e on the side where the wire 4 connects to the image sensor 3 increases. Deterioration of stress on the wire neck 4e may cause problems such as wire breakage of the wire 4.
  • the upper surface portion 22 of the substrate 2 is provided at a height that is equal to or lower than the height of the connection pad 15 of the image sensor 3. According to such a configuration, the connection portion of the wire 4 to the bonding pad 11 can be made to have a height equivalent to or lower than the connection portion of the wire 4 to the connection pad 15. Thereby, stress on the wire 4 can be effectively reduced.
  • the upper surface portion 22 is formed as the upper surface portion of the four projecting edges 23 forming the recess 25 in which the image sensor 3 is disposed.
  • the four projecting edges 23 can act as stoppers for the die bonding material 9 that tends to protrude and spread outward from the outline of the image sensor 3 in plan view.
  • the fillet 9a of the die-bonding material 9 can be accommodated within the gap 28, so that the package can be made smaller.
  • the protruding edge portion 23 forming the upper surface portion 22 on the substrate 2 it is possible to restrict the protrusion of the die bonding material 9 to the outside, and it is possible to reduce the fillet width of the die bonding material 9. .
  • the distance between the image sensor 3 and the bonding pad 11 can be reduced by about 300 to 400 ⁇ m, for example, in comparison with the configuration shown in FIG. It becomes possible.
  • the wiring shape of the wire 4 must be formed in a predetermined form. In order to obtain this, it is necessary to provide the bonding pad 11 at a position separated from the image sensor 3 by a certain distance. For this reason, there is a problem in that it is difficult to miniaturize the package from the viewpoint of securing a location for the bonding pad 11 on the outer peripheral side of the substrate 2.
  • the substrate 2 has the upper surface portion 22 on which the bonding pads 11 are arranged as described above, the height difference between the bonding pads 11 and the connection pads 15 can be reduced.
  • the area of the substrate 2 required to obtain a predetermined wiring shape of the wire 4, that is, the distance of the bonding pad 11 to the image sensor 3, can be reduced, and the package can be made smaller. can. Furthermore, even when reverse bonding is performed, it is possible to prevent the wire 4 from interfering with the components on the collective board.
  • the bonding pad 11 can be brought closer to the image sensor 3, so that the length of the wire 4 can be reduced in comparison with the configuration shown in FIG. 8, for example. Can be shortened. Thereby, the reliability of the connection configuration of the wires 4 can be improved.
  • the electrical resistance caused by the wire 4 can be reduced, so that it is possible to increase the speed of signal transmission between the substrate 2 and the image sensor 3. Furthermore, by shortening the wire 4, the distance between the wires can be shortened, for example, in a configuration in which an MLCC (Multi-Layer Ceramic Capacitor) is embedded in the protrusion 23 of the substrate 2, so solid-state imaging A decoupling effect such as suppression of electrical noise generated by the device 1 can be effectively obtained.
  • MLCC Multi-Layer Ceramic Capacitor
  • the outer peripheral side portion of the substrate 2 can be narrowed compared to the configuration shown in FIG. 8, for example, so that the sealing The amount of resin forming the resin portion 7 can be reduced.
  • the stress (side stress) acting on the glass 5 due to expansion and contraction of the sealing resin portion 7 due to temperature changes etc. can be reduced, and the risk of cracks occurring in the glass 5 can be reduced.
  • the stress acting on the glass 5 is reduced, peeling of the rib portion 6 from the glass 5 can be suppressed.
  • the sealing resin portion 7 is formed so that an exposed surface portion 5e is formed on the side surface 5c of the glass 5. According to such a configuration, the stress acting on the glass 5 from the sealing resin portion 7 can be effectively reduced, and cracks in the glass 5 and peeling of the rib portion 6 can be effectively suppressed.
  • the solid-state imaging device 1 As described above, according to the solid-state imaging device 1 according to the present embodiment, it is possible to reduce the package size, reduce the stress on the wire 4, and reduce the stress on the glass 5.
  • the amount of resin forming the sealing resin part 7 can be reduced, so that it can be used as a heat conductive member near the wire 4 in comparison with the structure shown in FIG. 8, for example.
  • a part of the sealing resin part 7 can be replaced with a protruding edge part 23 of the substrate 2 including a bonding pad 11 and a wiring part made of copper or the like.
  • the projecting edge portion 23 acts as a heat dissipation portion, and the heat dissipation performance of the solid-state imaging device 1 can be improved.
  • the rib portion 6 is provided on the connection portion of the wire 4 to the connection pad 15 of the image sensor 3.
  • the space on the surface 3a of the image sensor 3 can be used effectively compared to a configuration in which the rib portion 6 is provided inside the connection portion of the wire 4 to the connection pad 15. This allows the package to be made more compact.
  • the circumferential edge portion of the substrate 2 is partially thickened by the protruding edge portion 23, and a reinforcing effect can be obtained.
  • the rigidity of the substrate 2 can be improved, so that warpage of the substrate 2 can be reduced.
  • warpage of the pixel surface of the image sensor 3 mounted on the substrate 2 and warpage of the entire package can be reduced, and high reliability in the performance of the solid-state imaging device 1 can be obtained.
  • the plurality of connection pads 15 are located in an area outside the rib portion 6 on the surface 3a of the image sensor 3. Further, the sealing resin portion 7 is formed to cover the entire wire 4 , the connection portions of the wire 4 to each of the substrate 2 and the image sensor 3 , and the bonding pad 11 and the connection pad 15 .
  • the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be an area inside the connection pad 15. According to such a configuration, for example, normal wire bonding in which the connection pad 15 side is the first bond and the bonding pad 11 side is the second bond can be performed relatively easily. Note that the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be, for example, an area outside (on the outer peripheral side) of the area where the connection pad 15 is formed.
  • Configuration example of solid-state imaging device according to second embodiment> A configuration example of a solid-state imaging device 50 according to a second embodiment of the present technology will be described with reference to FIG. 10. In each embodiment described below, the same name or the same reference numeral will be used for the same or corresponding configuration as in the first embodiment, and the explanation of the overlapping content will be omitted as appropriate.
  • the four inner surfaces 26 forming the recess 25 of the substrate 2 are sloped surfaces that descend from the outside to the inside. That is, the inner surface 26 that the substrate 2 has as a step surface is inclined in the vertical direction from the surface 2a side (lower side) to the upper step surface section 22 side (upper side) so that the distance between the inner surface 26 and the image sensor 3 is gradually widened. making a face.
  • the inner surface 26 gradually increases the size of the gap 28 (see FIG. 2, dimension D1) between the inner surface 26 and the side surface 3c of the image sensor 3, which is a surface perpendicular to the surface 2a, from the lower side to the upper side.
  • the slope is slanted in the direction of widening.
  • the recess 25 formed by the surface 2a and the four inner surfaces 26 becomes a part forming a space along the shape of an inverted quadrangular truncated pyramid. That is, the recess 25 having a rectangular opening shape in plan view has an opening area in a planar cross section that gradually increases from the bottom to the top.
  • the protruding edge portion 23 has a trapezoidal cross-sectional shape.
  • the inclination angle ⁇ 1 of the inner surface 26 with respect to the vertical plane F1 along the up-down direction is about 15°.
  • the magnitude of the inclination angle ⁇ 1 is not limited.
  • the substrate 2 has a surface 2a as a first surface portion to which the image sensor 3 is attached, and a bonding pad 11 which is located above the surface 2a in the vertical direction and receives the connection of the wire 4. It has an inner surface 26 as a second surface portion.
  • the upper surface portion 22 is located at a height above the height position of the connection pad 15 of the image sensor 3, and the bonding pad 11 is located at the upper part of the inner surface 26. It is provided. Further, the bonding pad 11 has its upper end located above the height position of the connection pad 15 and its lower end located below the height position of the connection pad 15. That is, the connection pad 15 is located within the formation range of the bonding pad 11 in the vertical direction. Note that the upper stage surface portion 22 may be located at a height that is equal to or lower than the height of the connection pad 15.
  • the wire 4 extends laterally from the joint 4b to the bonding pad 11 with the wire main body 4a facing inward, and the wire main body 4a
  • the joint portion 4c is connected to the connection pad 15 in a gentle mountain shape.
  • the wire 4 is provided so that the entire wire 4 is located below the back surface 5b of the glass 5.
  • the inner surface 26 forming the recess 25 in the substrate 2 is formed as an inclined surface that slopes downward from the outside to the inside. According to such a configuration, the size of the gap 28 between the image sensor 3 and each of the projecting edges 23 can be gradually widened from the lower side to the upper side. Thereby, regarding the die bonding material 9 forming the fillet 9a so as to fill the lower part of the gap 28, the amount of resin forming the die bonding material 9 can be easily controlled.
  • the size of the gap 28 increases from the bottom to the top, making it easier to secure the volume of the space in the gap 28, and reducing the allowable amount of resin forming the fillet 9a. Since the capacity can be increased, the amount of resin can be easily controlled.
  • the bonding pad 11 to which the wire 4 is connected is provided on the inner surface 26 of the protrusion 23 .
  • the bonding pad 11 can be brought closer to the image sensor 3 more easily than, for example, a configuration in which the bonding pad 11 is provided on the upper surface portion 22.
  • the length of the wire 4 can be shortened, the reliability of the connection configuration of the wire 4 can be improved, and the speed of signal transmission by the wire 4 can be increased.
  • Configuration example of solid-state imaging device according to third embodiment> A configuration example of a solid-state imaging device 60 according to a third embodiment of the present technology will be described with reference to FIGS. 11 and 12.
  • the solid-state imaging device 60 according to this embodiment differs from the above-described embodiments in that the portion of the substrate 2 that forms the upper surface portion 22 is formed of a member different from the member that forms the substrate body portion 20.
  • the upper surface section 22 on which the bonding pad 11 is arranged is formed of a frame 62, which is a different member from the member forming the surface 2a. That is, the board 2 is composed of a rectangular plate-shaped main board 61, which is a member forming the board main body 20 with the upper surface as the surface 2a, and a rectangular frame-shaped frame 62 provided on the main board 61. ing.
  • the frame 62 constitutes a peripheral wall portion 21 that forms projecting edges 23 on all sides.
  • the frame 62 forms a frame-shaped portion provided on the main body substrate 61 so as to surround the image sensor 3, and constitutes the peripheral wall portion 21 on the main body substrate 61.
  • the frame 62 has four linear sides 63 so as to form a rectangular shape (including a square shape) in a plan view corresponding to the shape of the main body substrate 61 in a plan view, and these sides 63 form a frame shape. It is composed of Each side portion 63 has a rectangular cross-sectional shape.
  • the inner surface 26 of the projecting edge 23 is formed by the inner side (inner peripheral side) of the side 63, and the outer surface 27 of the projecting edge 23 is formed by the outer (outer peripheral) surface of the side 63. .
  • each side portion 63 forms an upper surface portion 22 on which the bonding pad 11 is arranged.
  • the frame 62 has a lower surface 64 that is a surface opposite to the surface forming the upper stage section 22 .
  • the configuration in which the frame 62 is provided on the main body substrate 61 forms a recess 25 in which the image sensor 3 is placed.
  • the recess 25 is formed by a surface 2 a formed by the upper surface of the main body substrate 61 and an inner surface 26 formed by the inner surfaces of the four sides 63 of the frame 62 .
  • the frame 62 is a ceramic frame made of ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ) as a base material.
  • the frame 62 is a circuit frame in which a wiring layer, electrodes, and a predetermined circuit pattern are formed using a metal material.
  • the frame 62 may be made of, for example, an organic material such as glass epoxy resin, which is a type of fiber-reinforced plastic, or glass.
  • a plurality of bonding pads 11 are formed on the upper surface of the frame 62.
  • the plurality of bonding pads 11 are electrically connected to a plurality of terminal electrodes formed on the lower surface 64 side of the frame 62 via predetermined wiring portions formed within the frame 62.
  • Each terminal electrode is provided with a solder ball 65 as a connection terminal.
  • the solder balls 65 are formed, for example, in a two-dimensional lattice-like arrangement.
  • the frame 62 is fixed to the main body board 61 by reflow mounting with a group of solder balls 65.
  • Each terminal electrode formed on the lower surface 64 of the frame 62 is electrically connected via a solder ball 65 to an electrode portion formed so as to face and be exposed on the upper surface of the main body substrate 61.
  • An underfill portion 66 that covers the plurality of solder balls 65 is provided between the main substrate 61 and the frame 62.
  • the underfill portion 66 is formed to fill the gap between adjacent solder balls 65, and seals the gap between the main body substrate 61 and the frame 62.
  • the underfill portion 66 is formed to enclose a plurality of solder balls 65 interposed between the main body substrate 61 and the frame 62. That is, the underfill portion 66 has an inner side surface portion 66a located inside the area where the solder balls 65 group is arranged, and an outer side surface portion 66b located outside the same area.
  • the inner surface portion 66a of the underfill portion 66 forms an interface with the fillet 9a of the die bonding material 9.
  • the outer side surface portion 66b of the underfill portion 66 forms the side surface portion of the substrate 2 together with the side surface 2c and the like.
  • the underfill portion 66 is a liquid curable resin portion formed by curing paste or liquid resin.
  • the underfill portion 66 is, for example, a capillary flow type (capillary underfill) formed by flowing a liquid resin with relatively low viscosity using capillary phenomenon.
  • a thermosetting resin such as an epoxy resin, or a thermosetting resin in which a filler containing silicon oxide as a main component is dispersed is used.
  • a step of preparing a substrate is performed (S110). Specifically, as shown in FIG. 14A, a substrate member 70 is prepared, which is a collective substrate in which a plurality of substrate parts 61A, which become the main body substrate 61 forming the substrate main body 20 in the solid-state imaging device 60, are two-dimensionally connected. Ru.
  • a frame joining process is performed (S120).
  • a frame member 72 in which a plurality of frame portions 62A, which become the frame 62 forming the peripheral wall portion 21 of the solid-state imaging device 60 are two-dimensionally connected is bonded to a substrate member by a group of solder balls 65. Reflow mounting is performed on the surface 70a of 70. A plurality of bonding pads 11 are formed at predetermined locations on the upper surface 72a of the frame member 72.
  • a step of forming an underfill portion is performed (S130).
  • an underfill portion 66 is formed at the joint between the substrate member 70 and the frame member 72 by the solder balls 65.
  • a liquid resin material e.g., thermosetting resin
  • a liquid resin material that will become the underfill portion 66 is supplied to the gap between the substrate member 70 and the frame member 72 while being discharged from, for example, a nozzle of a dispenser. Ru.
  • the liquid resin material flows into the gap between the substrate member 70 and the frame member 72 due to capillary action, and diffuses to fill the gap between the plurality of solder balls 65.
  • the underfill portion 66 is formed by hardening the resin material by baking or the like.
  • a recess 25 is formed on each substrate portion 61A.
  • S150 wire bonding process
  • S160 glass mounting process
  • S170 a process of forming the sealing resin part 7
  • a singulation process is performed as shown in FIG. 13 (S180).
  • dicing is performed in which the structure provided on the substrate member 70 and each substrate portion 61A is divided into individual pieces by device. Specifically, as shown in FIG. 15B, the sealing resin 37 portion, the frame member 72, and the substrate member 70 are separated by a dicing blade 79 so that the substrate member 70 is separated into individual substrate portions 61A. Fragmentation is performed.
  • the method for manufacturing the solid-state imaging device 60 includes first manufacturing the substrate 2 composed of the main body substrate 61 and the frame 62 by dividing the structure in which the frame member 72 is provided on the substrate member 70 into pieces, and then A method may be used in which the substrate 2 is subjected to the steps S140 to S170 described above.
  • the solid-state imaging device 60 by using a member having higher rigidity than the main body substrate 61 as the frame 62, the reinforcing effect of the substrate 2 by the protruding edge portion 23 can be effectively obtained. Thereby, warpage of the substrate 2 can be suppressed, and warpage of the pixel surface of the image sensor 3 and warpage of the entire package can be effectively reduced. Moreover, by using a member with higher heat dissipation properties as the frame 62 than the main body substrate 61, the heat dissipation properties around the wires 4 can be improved, and the heat dissipation properties of the solid-state imaging device 60 can be improved.
  • the frame 62 may be made of the same material as the main body substrate 61, for example, by using the same base material as the main body substrate 61.
  • Configuration example of solid-state imaging device according to fourth embodiment> A configuration example of a solid-state imaging device 80 according to a fourth embodiment of the present technology will be described with reference to FIGS. 16 and 17.
  • the solid-state imaging device 80 according to the present embodiment differs from the solid-state imaging device 1 according to the first embodiment in the manner in which the portion forming the upper surface portion 22 of the substrate 2 is formed.
  • the substrate 2 has multiple types of surface portions having different heights as the upper surface portion 22 on which the bonding pads 11 are positioned.
  • the substrate 2 includes, as the upper surface portion 22, a first upper surface portion 91 located at a first height position, and a second upper surface portion 91 located at a second height position lower than the first height position. It has an upper stage surface part 92.
  • the plurality of first upper surface portions 91 are located on a common virtual horizontal plane and have a common height.
  • the plurality of second upper surface portions 92 have a common height.
  • the first upper step surface part 91 and the second upper step surface part 92 are provided by forming a step part on the upper side of the peripheral wall part 21.
  • the first upper surface portion 91 and the second upper surface portion 92 are both rectangular surface portions, and are alternately formed along the edge of the substrate 2.
  • the first upper step surface part 91 and the second upper step surface part 92 are formed by making the upper part of each projecting edge part 23 of the peripheral wall part 21 of the substrate 2 into an uneven shape forming a step part.
  • convex portions 93 whose upper surface portions are the first upper surface portions 91 are formed at predetermined intervals, including the four corners of the peripheral wall portion 21 in a plan view.
  • a recess 94 is formed between adjacent protrusions 93 in the extending direction of the projecting edge 23 , that is, in the side direction of the substrate 2 , and the bottom surface of the recess 94 becomes the second upper surface portion 92 .
  • each convex portion 93 is formed over the entire length of each projecting edge portion 23 in the width direction, and the recessed portion 94 opens both sides of the projecting edge portion 23 in the width direction.
  • the convex portion 93 has side surfaces 95, which are surfaces between the first upper surface portion 91 and the second upper surface portion 92, on both sides of the projecting edge portion 23 in the extending direction.
  • the recessed portion 94 is formed by the upper surface portion 22 and side surfaces 95 facing each other. Note that the convex portions 93 formed at the four corners of the peripheral wall portion 21 connect a pair of side surfaces forming the inner corners of the convex portions 93 (center side of the image sensor 3) in a plan view to the side surfaces 95 of the adjacent convex portions 93. Together with this, a side surface 95 forms a recess 94.
  • the wire 4 is an upper wire whose one end side is connected to the bonding pad 11 of the first upper surface section 91. 4A, and a lower wire 4B whose one end side is connected to the bonding pad 11 of the second upper surface portion 92.
  • the other end of each wire 4 is connected to a connection pad 15 formed on the surface 3a of the image sensor 3, respectively.
  • connection portion of the lower wire 4B to the bonding pad 11 is located on the image sensor 3 side (inside) with respect to the connection portion of the upper wire 4A to the bonding pad 11. Note that, in FIG. 17, among the plurality of wires 4 included in the solid-state imaging device 80 and their connecting portions, only one wire 4 each of the upper wire 4A and the lower wire 4B is illustrated.
  • the substrate 2 has the first upper surface portion 91 and the second upper surface portion 92, it is possible to arrange the connecting portions of the wires 4 to the substrate 2 side at different levels. Become. This makes it possible to suppress interference between adjacent wires 4, thereby increasing the density of the wires 4 in the space in which the plurality of wires 4 are arranged. As a result, it is possible to effectively downsize the package.
  • two types of surface portions, the first upper surface portion 91 and the second upper surface portion 92 are provided as the upper surface portions 22 having different heights, but the structure of the substrate 2 is such that three types of surface portions having different heights are provided. A configuration having a type of upper surface portion 22 may also be used.
  • FIGS. 18 to 21 A configuration example of a solid-state imaging device 100 according to a fifth embodiment of the present technology will be described with reference to FIGS. 18 to 21. Note that the side sectional view shown in FIG. 18 corresponds to the sectional view taken along the line EE in FIG. Further, the plan view shown in FIG. 20 partially shows a cutaway cross section.
  • the solid-state imaging device 100 according to the present embodiment differs from the solid-state imaging device 1 according to the first embodiment in the structure of the portion forming the upper surface portion 22 of the substrate 2.
  • a reinforcing member 110 which is a structure having higher rigidity than the substrate 2, is provided within the protrusion 23, which is a convex portion, of the substrate 2. There is.
  • the reinforcing member 110 has a wiring section 120 for energizing the bonding pad 11 .
  • the reinforcing member 110 has a substantially square columnar outer shape and is provided along the edge of the substrate 2. As shown in FIG. 20, the substrate 2 according to this embodiment has a rectangular outer shape in plan view. For such a substrate 2, the reinforcing member 110 is provided to extend along the longitudinal direction of the substrate 2 in a plan view.
  • the reinforcing member 110 is provided in the projecting edges 23A on both sides along the long side of the substrate 2 (on both left and right sides in FIG. 20) among the four projecting edges 23 of the substrate 2. 2 along the longitudinal direction.
  • each reinforcing member 110 is continuously provided as an integral member over substantially the entire longitudinal direction of the substrate 2.
  • the reinforcing member 110 is not provided in the projecting edges 23B on both sides along the short side of the substrate 2 (on both the upper and lower sides in FIG. 20). .
  • the reinforcing member 110 may be provided within the projecting edge portion 23B.
  • the reinforcing member 110 has a reinforcing member main body part 130 that forms almost the entirety of the reinforcing member main body part 110, and a wiring part 120 is provided to the reinforcing member main body part 130.
  • the reinforcing member main body portion 130 is constituted by a quadrangular prism-shaped member having a rectangular cross-sectional shape.
  • the reinforcing member main body portion 130 has an upper surface 131, a lower surface 132, and left and right side surfaces 133.
  • the reinforcing member 110 uses the material of the reinforcing member main body portion 130 as a base material, and has higher rigidity than the substrate 2 as a whole because the reinforcing member main body portion 130 has higher rigidity than the substrate 2. Further, the base material of the reinforcing member 110 is preferably a material having a smaller coefficient of linear expansion than the base material of the substrate 2.
  • the base material of the reinforcing member 110 is glass.
  • the reinforcing member 110 is configured as a glass structure made of glass as a base material.
  • the reinforcing member 110 made of glass as a base material for example, when the substrate 2 is a general organic substrate whose base material is an organic material such as an epoxy resin, the reinforcing member 110 can have higher rigidity than the substrate 2, The coefficient of linear expansion can be made smaller than that of the base material of the substrate 2.
  • the base material of the reinforcing member 110 is not limited to glass, and may be any material such as a resin material or ceramics that can provide higher rigidity in the reinforcing member 110 than the substrate 2 in relation to the base material of the substrate 2.
  • the wiring portion 120 includes a through wiring portion 121 that forms a hole 122 that penetrates the reinforcing member main body portion 130 formed of the base material of the reinforcing member 110.
  • the through wiring portion 121 is a wiring portion formed to cover the entire inner peripheral surface of a through hole 135 formed to penetrate the reinforcing member main body portion 130 in the vertical direction (thickness direction).
  • the through wiring portion 121 is a cylindrical wiring portion formed with a predetermined thickness (film thickness) on the inner peripheral surface of the through hole 135. Therefore, the hole 122 formed by the through wiring portion 121 has a shape corresponding to the shape of the through hole 135.
  • the through hole 135 is a linear hole portion having a hole shape such as a circular shape or a rectangular shape when viewed from above. In the illustrated example, the through hole 135 has a circular hole shape.
  • the through wiring portion 121 is provided at a position corresponding to the arrangement of the plurality of bonding pads 11, and is located below each bonding pad 11.
  • the through wiring portions 121 are provided at predetermined intervals along the longitudinal direction of the reinforcing member main body portion 130, corresponding to the arrangement of the plurality of bonding pads 11.
  • the upper side of the through wiring portion 121 is continuous with the upper surface wiring portion 123 formed along the upper surface 131 of the reinforcing member main body portion 130.
  • the through wiring section 121 is electrically connected to the bonding pad 11 via the upper surface wiring section 123.
  • the upper surface wiring portion 123 is a circular portion with the through wiring portion 121 at the center when viewed from above (see FIG. 21), the shape of the upper surface wiring portion 123 is not particularly limited.
  • the upper surface wiring portion 123 may be, for example, a rectangular portion.
  • the through wiring portion 121 has a lower side continuous with a lower surface wiring portion 124 formed along the lower surface 132 of the reinforcing member main body portion 130.
  • the through wiring section 121 is electrically connected to the built-in pad 125 via the lower surface wiring section 124.
  • the built-in pads 125 are electrically connected to a plurality of terminal electrodes formed on the back surface 2b of the substrate 2 via a predetermined wiring section formed in the substrate main body 20 of the substrate 2.
  • the lower surface wiring section 124 is a circular portion like the upper surface wiring section 123, but its shape is not limited.
  • the lower surface wiring portion 124 and the built-in pad 125 are formed, for example, as wiring portions that are vertically symmetrical with respect to the upper surface wiring portion 123 and the bonding pad 11, respectively.
  • the wiring portions and electrode portions provided to the reinforcing member main body portion 130 are plated with a predetermined metal material, for example. or sputtering.
  • metal materials used for these wiring portions and electrode portions include silver (Ag), aluminum (Al), platinum (Pt), copper (Cu), and nickel (Ni).
  • a wiring portion provided to the reinforcing member main body portion 130 and electrically connected to the wire 4 is configured.
  • the shape of the wiring portion provided to the reinforcing member main body portion 130, the forming manner of the forming portion, etc. are not particularly limited.
  • the hole 122 of the reinforcing member 110 is provided with a resin portion 140 formed of a resin material that fills the inside of the hole 122. That is, in the reinforcing member 110, the inside of the hole 122 formed by the through-wiring portion 121 is completely filled with the resin portion 140.
  • the resin portion 140 is a linear portion having a cross-sectional shape such as a circular shape or a rectangular shape depending on the shape of the through hole 135.
  • the resin part 140 is made of an insulating material.
  • the resin material forming the resin part 140 is not particularly limited, but includes, for example, thermosetting resins such as acrylic resins, epoxy resins, and urethane resins, photosensitive resins such as UV curable resins, etc. It is.
  • the configuration of the through wiring portion 121 may be such that the through hole 135 of the reinforcing member main body portion 130 is filled with the metal material forming the through wiring portion 121 instead of having the hole portion 122. good.
  • Manufacturing method of solid-state imaging device according to fifth embodiment> An example of a method for manufacturing the solid-state imaging device 100 according to the fifth embodiment of the present technology will be described with reference to FIGS. 22 and 23. Here, a method for manufacturing the substrate 2 having the reinforcing member 110 will be described.
  • a via opening step is performed to form a through hole 135, which is a via, in a square columnar glass plate 150 forming the reinforcing member main body portion 130.
  • the through hole 135 is formed, for example, by etching using a chemical solution or processing using a laser.
  • a step of forming a through wiring portion 121, an upper surface wiring portion 123, and a lower surface wiring portion 124 is performed on the glass plate 150 in which the through hole 135 has been formed.
  • a metal material such as copper is used, and by plating the inner circumferential surface of the through hole 135 and the peripheral areas of the through hole 135 on the upper surface 131 and the lower surface 132 of the glass plate 150, the through wiring portion is formed.
  • 121, an upper surface wiring section 123, and a lower surface wiring section 124 are formed. Note that other methods such as sputtering and printing may be used to form these wiring portions.
  • the resin portion 140 is formed, for example, by the following method.
  • a substrate 155 having a recess 156 into which the reinforcing member 110 is placed is prepared.
  • the substrate 155 has a rectangular outer shape in plan view, and has recesses 156 along the long sides at both edges in the short direction.
  • the recess 156 is a groove-shaped portion that opens the upper surface 155a side of the substrate 155 and has a shape and size corresponding to the outer shape of the reinforcing member 110.
  • the recess 156 has a depth greater than the height (vertical dimension) of the reinforcing member 110. Further, the recess 156 has a width slightly larger than the width of the reinforcing member 110.
  • the reinforcing member 110 is inserted into the recess 156 of the substrate 155.
  • the reinforcing member 110 brings the lower wiring part 124 into contact with the bottom surface 156a of the recess 156, positions the upper wiring part 123 below the upper surface 155a, and makes the upper part of the recess 156 a space.
  • the reinforcing member 110 is in a state where the upper side of the hole 122 is open facing the space above the recess 156.
  • a resin forming the resin part 140 is poured into the reinforcing member 110 in the recess 156 from above, and the resin material is hardened by a process depending on the resin material, such as heating or UV irradiation. things are done.
  • the hole 122 of the through wiring portion 121 is sealed with resin, and a resin portion 140 filling the hole 122 is formed. Note that the resin material 157 protruding from the hole 122 exists on the upper surface wiring portion 123 within the recess 156 .
  • the center portion of the substrate 155 is shaped according to the chip size of the image sensor 3 so that a frame-shaped portion including the housing portion of the reinforcing member 110 and the peripheral edge of the substrate 155 remains. removed within the specified range. Further, regarding the substrate 155, in order to expose the lower wiring portion 124, a portion forming the bottom of the recess 156 is removed, and a via for forming the built-in pad 125 is formed. Further, in order to expose the upper surface wiring section 123, the resin material 157 on the upper surface wiring section 123 is removed. Partial removal of the substrate 155 and removal of the resin material 157 are performed by an appropriate method such as etching.
  • a step of forming bonding pads 11 and built-in pads 125 is performed for upper surface wiring section 123 and lower surface wiring section 124, respectively.
  • These electrode pads are formed by plating, sputtering, or the like.
  • the interposer substrate 165 is a member forming the substrate main body portion 20 on the substrate 2 to which the image sensor 3 is attached.
  • the built-in pads 125 on the frame-shaped substrate 160 side are electrically connected to predetermined wiring portions within the interposer substrate 165.
  • a collective substrate having a plurality of portions that will become the substrate main body portion 20 may be used. In this case, a configuration in which a plurality of frame-shaped substrates 160 are bonded to a collective substrate is separated into pieces in a predetermined process.
  • the peripheral wall part 21 is made up of four projecting edges 23, the reinforcing member 110 is built into the projecting edges 23 on the long side, and the image sensor 3 A substrate 2 is obtained, which is a cavity substrate forming a recess 25 in which the .
  • steps S20 to S50 in the method for manufacturing the solid-state imaging device 1 according to the first embodiment are performed on the substrate 2, thereby producing the solid-state imaging device according to the present embodiment. 100 is obtained.
  • the reinforcing member 110 can be embedded by appropriately using a known manufacturing technology for a component-embedded board (a multilayer board in which electronic components etc. are embedded).
  • a substrate 2 can be obtained.
  • the reinforcing member 110 is provided in the protruding edge portion 23 forming the upper surface portion 22, the rigidity of the substrate 2 can be improved, and the image sensor 3 and package deformation such as warpage can be suppressed.
  • the substrate 2 increases in volume by having the protruding edge portion 23, the substrate 2 is more likely to warp, and the image sensor 3 and the package are more likely to be warped. Warpage of the image sensor 3 or the package is undesirable in ensuring the functionality of the image sensor 3. Therefore, by providing a reinforcing member 110 having higher rigidity than the substrate 2 in the protrusion 23, the rigidity of the substrate 2 can be improved, and the warpage of the image sensor 3 and the package caused by the warpage of the substrate 2 can be prevented. Can be suppressed.
  • the base material of the reinforcing member 110 is made of a material having a smaller coefficient of linear expansion than the base material of the substrate 2.
  • glass forming the reinforcing member main body portion 130 is used as an example of the base material of the reinforcing member 110.
  • the physical properties such as the rigidity and coefficient of linear expansion of the reinforcing member 110 can be easily controlled by selecting the base material of the reinforcing member 110. becomes.
  • the reinforcing member 110 for improving the rigidity of the substrate 2 can be provided depending on the shape of the substrate 2, the arrangement of the wires 4, etc., so that warping of the substrate 2 can be effectively suppressed. can.
  • the reinforcing member 110 has a wiring portion 120 for supplying electricity to the bonding pad 11, the bonding pad 11 is placed on a member provided within the protruding edge portion 23 in order to reduce warping of the image sensor 3, etc. can be provided.
  • the configuration in which the reinforcing member 110 is provided within the protruding edge portion 23 increases the rigidity of the substrate 2 without interfering with the sensor surface (light-receiving surface) of the image sensor 3 or inhibiting bonding of the wire 4. warping of the image sensor 3 and the package can be suppressed.
  • the reinforcing member 110 has a through wiring portion 121 in the wiring portion 120, and a resin portion 140 is provided in the hole 122 of the through wiring portion 121. According to such a configuration, the rigidity of the reinforcing member main body portion 130 can be improved compared to a configuration in which the inside of the hole portion 122 is hollow. Thereby, warpage of the substrate 2 can be effectively suppressed.
  • the substrate 2 according to the present embodiment has a rectangular shape with one longitudinal direction in plan view (see FIG. 20), and the reinforcing member 110 extends along the protruding edges 23A of both long sides. It is set up in a shape. According to such a configuration, the reinforcing member 110 can increase the rigidity in the longitudinal direction where the substrate 2 is relatively prone to warpage, so that the warpage of the substrate 2 can be effectively suppressed.
  • the substrate 2 includes, as the reinforcing member 110, a plurality of types of reinforcing members (110A, 110B) made of different base materials. That is, as shown in FIG. 24, in the first modification, as the plurality of types of reinforcing members 110, two types of first reinforcing members 110A and second reinforcing members 110B having different base materials are provided.
  • the base material of the first reinforcing member 110A is a material with higher rigidity than the base material of the second reinforcing member 110B, and the first reinforcing member 110A has higher rigidity than the second reinforcing member 110B.
  • the base material of the second reinforcing member 110B is glass
  • a resin material having higher rigidity than glass is used as the base material of the first reinforcing member 110A.
  • the first reinforcing member 110A which has relatively high rigidity, is located on both sides along the long side of the board 2 (on both upper and lower sides in FIG. 24) among the four protruding edges 23 of the board 2. By being provided within the projecting edge portion 23A, it is provided along the longitudinal direction of the substrate 2.
  • the second reinforcing member 110B which has relatively low rigidity, is located inside the projecting edges 23B on both sides (on both left and right sides in FIG. 24) along the short side of the board 2 among the projecting edges 23 on the four sides of the board 2. By being provided in , it is provided along the lateral direction of the substrate 2 .
  • the reinforcing member 110 extending along the longitudinal direction of the substrate 2 is the first reinforcing member 110A having relatively high rigidity
  • the rigidity in the longitudinal direction where the substrate 2 is likely to warp is can be made higher than the rigidity in the lateral direction, so that warping of the substrate 2 as a whole can be effectively suppressed.
  • the width direction of the substrate 2 can also be suppressed by the rigidity improving effect of the second reinforcing member 110B.
  • reinforcing members 110 having a common base material may be provided for the protruding edges 23 on the four sides of the substrate 2.
  • four types of reinforcing members 110 may be provided on each of the four sides of the substrate 2 using different base materials. According to such a configuration, by adjusting the rigidity and coefficient of linear expansion of the reinforcing member 110 depending on the placement location of the reinforcing member 110, it is possible to give the substrate 2 more complex anisotropy as a characteristic. Become. As a result, it is possible to suppress warpage of the substrate 2 with high precision in accordance with the characteristics of the substrate 2, and it is possible to efficiently suppress warpage of the substrate 2.
  • the reinforcing member 110 may be provided within at least one of the four side projecting edges 23 of the substrate 2 . Further, as an example of a configuration in which the reinforcing member 110 is built in the projecting edge 23, the reinforcing member 110 is built into the projecting edge 23A on the long side of the board 2, and the projecting edge on the short side of the board 2 As for 23B, an example of a configuration is to make the width wider than the protrusion 23A and embed a capacitor such as MLCC for the purpose of noise removal.
  • the reinforcing member 110 is provided in a manner that is divided into a plurality of parts at each of the projecting edges 23. As shown in FIG. In the example shown in FIG. 25, the reinforcing member 110 is provided on the protruding edge 23A along the long side of the substrate 2 in a manner divided into three by three dividing elements of reinforcing members 110C, 110D, and 110E. A reinforcing member 110 is provided on the protruding edge 23B along the short side of the substrate 2 in a manner of being divided into two by two dividing elements, reinforcing members 110F and 110G.
  • the reinforcing member 110 may be provided in a discontinuous manner in which a plurality of members (dividing elements) are arranged at predetermined intervals in the stretching direction at each of the protruding edges 23 of the substrate 2.
  • the shapes, dimensions, and base materials of the plurality of reinforcing members 110 arranged on each of the projecting edges 23 are made different, so that the rigidity of the reinforcing members 110 can be adjusted depending on the location where the reinforcing members 110 are arranged. It is possible to adjust the coefficient of linear expansion and the coefficient of linear expansion, and it is possible to impart anisotropy to the characteristics of the substrate 2.
  • the convex portions forming the upper surface portion 22 of the substrate 2 are provided intermittently at the peripheral edge of the substrate 2, that is, a plurality of convex portions are partially provided in the extending direction of each side of the substrate 2.
  • a configuration may be provided.
  • the reinforcing member 110 is provided for all or a selected portion of the plurality of protrusions.
  • the third modification is a modification of the wiring section 120 included in the reinforcing member 110.
  • the reinforcing member 110 in the configuration of the third modification has a side wiring part 127 instead of the through wiring part 121 in the wiring part 120 provided to the reinforcing member main body part 130.
  • the side wiring section 127 is a wiring section arranged along the side surface 133 of the reinforcing member main body section 130, and is provided at a position corresponding to the arrangement of the plurality of bonding pads 11.
  • the side wiring part 127 has an upper side connected to the upper wiring part 123 and a lower side connected to the lower wiring part 124, thereby electrically connecting the upper wiring part 123 and the lower wiring part 124 to each other.
  • the bonding pad 11 within the protruding edge portion 23 of the substrate 2, the bonding pad 11, the wiring portion 120 including the upper wiring portion 123, the side wiring portion 127, and the lower wiring portion 124, and the built-in pad 125, A wiring portion provided to the reinforcing member main body portion 130 and electrically connected to the wire 4 is configured.
  • the side wiring portion 127 is formed on the inner side surface 133 of the two side surfaces 133 of the reinforcing member main body portion 130, but the side wiring portion 127 is formed on the outer side surface 133. may be formed.
  • the semiconductor device (solid-state imaging device) according to the present technology can be applied as various devices that sense light such as visible light, infrared light, ultraviolet light, and X-rays.
  • Solid-state imaging devices according to this technology include camera devices such as digital still cameras and video cameras, mobile terminal devices with an imaging function, copying machines that use solid-state imaging devices in the image reading section, the front, rear, surroundings, and inside of automobiles.
  • the present invention is applicable to all kinds of electronic devices that use a solid-state image sensor in an image capturing section (photoelectric conversion section), such as a vehicle-mounted sensor that takes pictures of objects, a distance measuring sensor that measures distances between vehicles, etc.
  • the solid-state imaging device may be formed as a single chip, or may be a module having an imaging function in which an imaging section and a signal processing section or an optical system are packaged together. It may be.
  • the camera device 200 as an electronic device includes an optical section 202, a solid-state imaging device 201, a DSP (Digital Signal Processor) circuit 203 which is a camera signal processing circuit, a frame memory 204, and a display section. 205, a recording section 206, an operation section 207, and a power supply section 208.
  • the DSP circuit 203, frame memory 204, display section 205, recording section 206, operation section 207, and power supply section 208 are appropriately connected via a connection line 209 such as a bus line.
  • the solid-state imaging device 201 is any of the solid-state imaging devices according to each of the embodiments described above.
  • the optical section 202 includes a plurality of lenses, takes in incident light (image light) from a subject, and forms an image on the imaging surface of the solid-state imaging device 201.
  • the solid-state imaging device 201 converts the amount of incident light that is imaged onto the imaging surface by the optical section 202 into an electrical signal for each pixel, and outputs the electric signal as a pixel signal.
  • the display unit 205 is comprised of a panel display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays moving images or still images captured by the solid-state imaging device 201.
  • the recording unit 206 records a moving image or a still image captured by the solid-state imaging device 201 on a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 207 issues operation commands regarding various functions of the camera device 200 under operation by the user.
  • the power supply unit 208 appropriately supplies various power supplies that serve as operating power for the DSP circuit 203, frame memory 204, display unit 205, recording unit 206, and operation unit 207 to these supply targets.
  • the camera device 200 As described above, stress on the wire 4 that electrically connects the substrate 2 and the image sensor 3 to each other can be reduced in the solid-state imaging device 201, and the package can be made smaller. be able to. Being able to reduce the stress on the wire 4 leads to ensuring the performance of the solid-state imaging device 201 and, by extension, the performance of the camera device 200. Furthermore, being able to downsize the package of the solid-state imaging device 201 is beneficial from the perspective of downsizing the camera device 200.
  • the semiconductor element is the image sensor 3 which is a light receiving element, but the semiconductor element according to the present technology is not limited to this.
  • the semiconductor device according to the present technology may be, for example, a light emitting device such as a VCSEL (Vertical Cavity Surface Emitting Laser), a laser diode, an LED (Light Emitting Diode), or the like.
  • the imaging device as a semiconductor device may have a configuration in which a single chip includes a plurality of semiconductor elements, or a configuration in which a plurality of semiconductor elements are provided as a plurality of chips.
  • the transparent glass 5 is exemplified as the cover member according to the present technology, but the cover member according to the present technology is not limited to a transparent member, and can be semi-transparent or opaque. It may be a cover body.
  • the present technology can have the following configuration.
  • the substrate is a first surface portion to which the semiconductor element is attached;
  • a semiconductor device comprising: a second surface portion located above the first surface portion in the vertical direction and having an electrode portion connected to the connection member disposed thereon.
  • the semiconductor device has a stepped surface portion formed between the first surface portion and the second surface portion, (1) to (3) above, wherein the stepped surface portion has an inclined surface that is inclined in a direction that gradually widens the distance between the step surface portion and the semiconductor element from the first surface portion side to the second surface portion side in the vertical direction.
  • the substrate has a plurality of types of surface portions having different heights as the second surface portion.
  • (7) comprising a sealing resin part provided around the semiconductor element and the cover member on the substrate,
  • the cover member has at least a portion of the upper side of the side surface as an exposed surface portion that is not covered with the sealing resin portion.
  • the substrate has a convex portion protruding from the first surface as a portion forming the second surface,
  • the semiconductor according to any one of (1) to (7) above, wherein a reinforcing member having a wiring portion for supplying electricity to the electrode portion and having higher rigidity than the substrate is provided in the convex portion.
  • Device (9) The semiconductor device according to (8), wherein the base material of the reinforcing member is a material having a smaller coefficient of linear expansion than the base material of the substrate.
  • the wiring portion includes a through wiring portion that is a hole that penetrates a main body portion formed by a base material of the reinforcing member, The semiconductor device according to (8) or (9), wherein the hole is provided with a resin part formed of a resin material that fills the inside of the hole.
  • the substrate has a rectangular outer shape in plan view, The semiconductor device according to any one of (8) to (10), wherein the reinforcing member is provided to extend along the longitudinal direction of the substrate in a plan view. (12) The semiconductor device according to any one of (8) to (11), wherein the substrate has a plurality of types of reinforcing members formed of different base materials as the reinforcing members.
  • the substrate is a first surface portion to which the semiconductor element is attached;
  • An electronic device comprising: a second surface portion located above the first surface portion in the vertical direction, and having an electrode portion connected to the connection member disposed thereon;
  • Solid-state imaging device (semiconductor device) 2 Substrate 2a Surface (first surface part) 3 Image sensor (semiconductor element) 3a Surface (upper surface) 4 Wire (connection member) 5 Glass (cover member) 5e Exposed surface portion 6 Rib portion (support portion) 7 Sealing resin part 9 Die bonding material 11 Bonding pad (electrode part) 15 Connection pad (element side electrode part) 22 Upper surface section (second surface section) 23 Projection (protrusion) 25 Recess 26 Inner surface (stepped surface) 50 Solid-state imaging device (semiconductor device) 60 Solid-state imaging device (semiconductor device) 62 Frame 80 Solid-state imaging device (semiconductor device) 91 First upper surface portion 92 Second upper surface portion 100 Solid-state imaging device (semiconductor device) 110 Reinforcing member 110A First reinforcing member 110B Second reinforcing member 120 Wiring portion 121 Penetrating wiring portion 122 Hole portion 130 Reinforcing member main body

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

This semiconductor device: enables a reduction in the stress on a connecting member that electrically connects a substrate and a semiconductor element to each other; and enables miniaturization of a package. This semiconductor device comprises: a substrate; a semiconductor element provided on the substrate; and a connecting member that electrically connects the substrate and the semiconductor element. The substrate has: a first surface to which the semiconductor element is attached; and a second surface that is positioned on the upper side of the first surface in the vertical direction, and that has disposed thereon an electrode to which the connecting member is connected.

Description

半導体装置および電子機器Semiconductor equipment and electronic equipment
 本開示は、半導体装置および電子機器に関する。 The present disclosure relates to semiconductor devices and electronic equipment.
 従来、CMOSイメージセンサ等の撮像素子や半導体レーザ等の発光素子といった半導体素子(半導体チップ)を備えた半導体装置として、次のようなパッケージ構造を備えたものがある。すなわち、基板上に実装された半導体チップの上側(表面側)に、樹脂製のリブ部を介して透明部材であるガラスを支持するとともに、基板上における半導体チップおよびガラスの周囲に封止樹脂部を設けた中空パッケージ構造である。 Conventionally, some semiconductor devices equipped with semiconductor elements (semiconductor chips) such as image pickup elements such as CMOS image sensors and light emitting elements such as semiconductor lasers have the following package structure. In other words, glass, which is a transparent member, is supported on the upper side (front side) of the semiconductor chip mounted on the substrate via a resin rib part, and a sealing resin part is placed around the semiconductor chip and glass on the substrate. It has a hollow package structure with
 このようなパッケージ構造において、半導体チップを基板に対して電気的に接続させる接続部材としての複数のワイヤ(ボンディングワイヤ)を備えたものがある(例えば、特許文献1参照。)。ワイヤは、一端側を基板の上面に形成されたボンディングパッドに接続させるとともに、他端側を半導体チップの上面に形成された接続パッドに接続させた状態で設けられる。 Some of such package structures include a plurality of wires (bonding wires) as connection members that electrically connect the semiconductor chip to the substrate (see, for example, Patent Document 1). The wire is provided with one end connected to a bonding pad formed on the top surface of the substrate and the other end connected to a connection pad formed on the top surface of the semiconductor chip.
 パッケージ構造の構成としては、ワイヤの全体を封止樹脂により被覆した構成や、パッケージの小型化を図るため半導体チップの接続パッドに対するワイヤの接続部を被覆するようにリブ部を形成した構成等がある。このような構成のパッケージ構造を採用した半導体装置の例としては、基板の裏面側に外部接続端子として複数の半田ボールを格子点状に配置したイメージセンサ用のBGA(Ball Grid Array)パッケージがある。 The package structure includes a structure in which the entire wire is covered with a sealing resin, and a structure in which a rib portion is formed to cover the connection part of the wire to the connection pad of the semiconductor chip in order to reduce the size of the package. be. An example of a semiconductor device that employs such a package structure is a BGA (Ball Grid Array) package for image sensors in which multiple solder balls are arranged in a lattice pattern as external connection terminals on the back side of the substrate. .
特開2018-6760号公報Unexamined Japanese Patent Publication No. 2018-6760
 上記のようなパッケージ構造においては、断熱の観点や、半導体チップの画素面(撮像面)やパッケージの反りの対策として、半導体チップの厚さを大きくすることが有効である。しかしながら、半導体チップの厚さが大きくなるほど、基板と半導体チップとの間に配されるワイヤに作用するストレスが大きくなる。 In the package structure as described above, it is effective to increase the thickness of the semiconductor chip from the viewpoint of heat insulation and as a countermeasure against warpage of the pixel surface (imaging surface) of the semiconductor chip and the package. However, as the thickness of the semiconductor chip increases, the stress acting on the wires disposed between the substrate and the semiconductor chip increases.
 ワイヤに作用するストレスが大きくなると、例えば、半導体装置をセット基板に実装する際のリフロー時やサーマルサイクル試験時におけるワイヤネックのストレスが悪化し、場合によってはワイヤの断線等の不具合が生じる可能性がある。ここで、ワイヤネックは、ワイヤの両端部においてワイヤ本体部に対する拡径部分として形成された接合部に対するワイヤ本体部の付け根部分である。 If the stress acting on the wire increases, for example, the stress on the wire neck during reflow or thermal cycle testing when mounting a semiconductor device on a set board will worsen, and in some cases, problems such as wire breakage may occur. There is. Here, the wire neck is a base portion of the wire body relative to a joint portion formed as an enlarged diameter portion to the wire body at both ends of the wire.
 また、上記のようなパッケージ構造においては、基板上に半導体チップを固定するためのダイボンド材に関し、基板の表面上における半導体チップから外側へのダイボンド材のはみ出し部分(フィレット)が、ワイヤの接続を受ける基板のボンディングパッドに干渉することを避ける観点から、半導体チップとボンディングパッドとの間の距離を確保する必要がある。このことは、パッケージの小型化を妨げる要因となる。 In addition, in the package structure described above, regarding the die bonding material for fixing the semiconductor chip on the substrate, the protruding portion (fillet) of the die bonding material outward from the semiconductor chip on the surface of the substrate prevents wire connections. In order to avoid interference with the bonding pads of the receiving substrate, it is necessary to ensure a distance between the semiconductor chip and the bonding pads. This becomes a factor that hinders miniaturization of the package.
 本技術は、基板と半導体素子とを互いに電気的に接続する接続部材へのストレスを低減することができるとともに、パッケージの小型化を図ることができる半導体装置および電子機器を提供することを目的とする。 The purpose of this technology is to provide semiconductor devices and electronic equipment that can reduce stress on connecting members that electrically connect a substrate and a semiconductor element to each other, and can also reduce the size of the package. do.
 本技術に係る半導体装置は、基板と、前記基板上に設けられた半導体素子と、前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、前記基板は、前記半導体素子の取付けを受ける第1面部と、上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有するものである。 A semiconductor device according to the present technology includes a substrate, a semiconductor element provided on the substrate, and a connecting member that electrically connects the substrate and the semiconductor element, and the substrate is connected to the semiconductor element. The device has a first surface portion that receives attachment, and a second surface portion that is located above the first surface portion in the vertical direction and has an electrode portion that receives the connection of the connection member.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記第2面部は、前記半導体素子の上側の面に設けられ前記接続部材の接続を受ける素子側電極部の高さ位置以下の高さに位置しているものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the second surface portion is provided at a height position below an element-side electrode portion that is provided on the upper surface of the semiconductor element and receives connection with the connection member. It is located at a height.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記半導体素子を上方から覆うカバー部材と、前記半導体素子と前記カバー部材との間に介在し、前記半導体素子に対して前記カバー部材を支持する支持部と、を備え、前記支持部は、前記半導体素子に対する前記接続部材の接続部を被覆するように設けられているものである。 Another aspect of the semiconductor device according to the present technology is that the semiconductor device includes a cover member that covers the semiconductor element from above, and a cover member that is interposed between the semiconductor element and the cover member, and that and a support part that supports the member, and the support part is provided so as to cover a connection part of the connection member to the semiconductor element.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板は、前記第1面部と前記第2面部との間に形成された段差面部を有し、前記段差面部は、上下方向について前記第1面部側から前記第2面部側にかけて徐々に前記半導体素子との間の間隔を広げる向きに傾斜した傾斜面をなしているものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the substrate has a stepped surface portion formed between the first surface portion and the second surface portion, and the stepped surface portion is arranged in a vertical direction. The semiconductor device has an inclined surface that is inclined in a direction that gradually widens the distance between the semiconductor element and the semiconductor element from the first surface side to the second surface side.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記第2面部は、前記第1面部を形成する部材とは異なる部材により形成されているものである。 Another aspect of the semiconductor device according to the present technology is that in the semiconductor device, the second surface portion is formed of a member different from the member forming the first surface portion.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板は、前記第2面部として、互いに高さが異なる複数種類の面部を有するものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the substrate has a plurality of types of surface portions having different heights as the second surface portion.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板上における前記半導体素子および前記カバー部材の周囲に設けられた封止樹脂部を備え、前記カバー部材は、側面の少なくとも上側の一部を前記封止樹脂部により被覆されていない露出面部としているものである。 Another aspect of the semiconductor device according to the present technology is that the semiconductor device includes a sealing resin portion provided around the semiconductor element and the cover member on the substrate, and the cover member is arranged on at least an upper side of a side surface. A part thereof is an exposed surface portion that is not covered with the sealing resin portion.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板は、前記第2面部をなす部分として、前記第1面部に対して突出した凸部を有し、前記凸部内には、前記電極部に通電させるための配線部を有するとともに前記基板より高い剛性を有する補強部材が設けられているものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the substrate has a convex portion protruding from the first surface portion as a portion forming the second surface portion, and in the convex portion , a reinforcing member having a wiring part for energizing the electrode part and having higher rigidity than the substrate is provided.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記補強部材の基材は、前記基板の基材より線膨張係数が小さい材料であるものである。 Another aspect of the semiconductor device according to the present technology is that in the semiconductor device, the base material of the reinforcing member is made of a material having a smaller coefficient of linear expansion than the base material of the substrate.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記配線部は、前記補強部材の基材により形成された本体部を貫通する孔部をなす貫通配線部を含み、前記孔部には、前記孔部内を充填する樹脂材料により形成された樹脂部が設けられているものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the wiring portion includes a through wiring portion forming a hole that penetrates a main body portion formed of a base material of the reinforcing member, and the hole portion is provided with a resin portion made of a resin material that fills the inside of the hole.
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板は、平面視で長方形状の外形を有し、前記補強部材は、前記基板の平面視外形における長手方向に沿って延伸状に設けられているものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the substrate has a rectangular outer shape in plan view, and the reinforcing member extends along the longitudinal direction of the outer shape of the substrate in plan view. It is set up in the shape of
 本技術に係る半導体装置の他の態様は、前記半導体装置において、前記基板は、前記補強部材として、互いに異なる基材により形成された複数種類の補強部材を有するものである。 In another aspect of the semiconductor device according to the present technology, in the semiconductor device, the substrate includes, as the reinforcing members, a plurality of types of reinforcing members formed from mutually different base materials.
 本技術に係る電子機器は、基板と、前記基板上に設けられた半導体素子と、前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、前記基板は、前記半導体素子の取付けを受ける第1面部と、上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有する半導体装置を備えものである。 An electronic device according to the present technology includes a substrate, a semiconductor element provided on the substrate, and a connecting member that electrically connects the substrate and the semiconductor element, and the substrate is connected to the semiconductor element. The semiconductor device includes a first surface portion to which the semiconductor device is attached, and a second surface portion located above the first surface portion in the vertical direction and on which an electrode portion to which the connection member is connected is disposed.
本技術の第1実施形態に係る固体撮像装置の構成を示す側面断面図である。1 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a first embodiment of the present technology. 図1におけるA部分拡大図である。2 is an enlarged view of part A in FIG. 1. FIG. 本技術の第1実施形態に係る固体撮像装置の構成の一部を示す平面図である。FIG. 1 is a plan view showing part of the configuration of a solid-state imaging device according to a first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の構成の一部を示す斜視図である。FIG. 1 is a perspective view showing part of the configuration of a solid-state imaging device according to a first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の製造方法の一例を示すフロー図である。FIG. 2 is a flow diagram illustrating an example of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 2 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 2 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置に対する比較例の構成を示す部分拡大側面断面図である。FIG. 2 is a partially enlarged side sectional view showing the configuration of a comparative example of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の第1の変形例の構成を示す部分拡大側面断面図である。FIG. 7 is a partially enlarged side cross-sectional view showing the configuration of a first modified example of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第2実施形態に係る固体撮像装置の構成を示す部分拡大側面断面図である。FIG. 3 is a partially enlarged side cross-sectional view showing the configuration of a solid-state imaging device according to a second embodiment of the present technology. 本技術の第3実施形態に係る固体撮像装置の構成を示す側面断面図である。FIG. 7 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a third embodiment of the present technology. 図11におけるC部分拡大図である。12 is an enlarged view of part C in FIG. 11. FIG. 本技術の第3実施形態に係る固体撮像装置の製造方法の一例を示すフロー図である。FIG. 7 is a flow diagram illustrating an example of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology. 本技術の第3実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology. 本技術の第3実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a third embodiment of the present technology. 本技術の第4実施形態に係る固体撮像装置の構成を示す部分拡大側面断面図である。FIG. 7 is a partially enlarged side cross-sectional view showing the configuration of a solid-state imaging device according to a fourth embodiment of the present technology. 本技術の第4実施形態に係る固体撮像装置の構成を示す部分斜視図である。FIG. 7 is a partial perspective view showing the configuration of a solid-state imaging device according to a fourth embodiment of the present technology. 本技術の第5実施形態に係る固体撮像装置の構成を示す側面断面図である。FIG. 7 is a side cross-sectional view showing the configuration of a solid-state imaging device according to a fifth embodiment of the present technology. 図18におけるD部分拡大図である。19 is an enlarged view of part D in FIG. 18. FIG. 本技術の第5実施形態に係る固体撮像装置の構成の一部を示す平面図である。It is a top view showing a part of composition of a solid-state imaging device concerning a 5th embodiment of this art. 本技術の第5実施形態に係る補強部材の構成を示す斜視断面図である。FIG. 7 is a perspective cross-sectional view showing the configuration of a reinforcing member according to a fifth embodiment of the present technology. 本技術の第5実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a fifth embodiment of the present technology. 本技術の第5実施形態に係る固体撮像装置の製造方法についての説明図である。FIG. 7 is an explanatory diagram of a method for manufacturing a solid-state imaging device according to a fifth embodiment of the present technology. 本技術の第5実施形態に係る固体撮像装置の第1の変形例の構成の一部を示す平面図である。It is a top view which shows a part of structure of the 1st modification of the solid-state imaging device based on 5th Embodiment of this technique. 本技術の第5実施形態に係る固体撮像装置の第2の変形例の構成の一部を示す平面図である。It is a top view showing a part of composition of a 2nd modification of a solid-state imaging device concerning a 5th embodiment of this art. 本技術の第5実施形態に係る固体撮像装置の第3の変形例の構成を示す部分拡大側面断面図である。FIG. 7 is a partially enlarged side cross-sectional view showing the configuration of a third modified example of the solid-state imaging device according to the fifth embodiment of the present technology. 本技術の実施形態に係る固体撮像装置を備えた電子機器の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an electronic device including a solid-state imaging device according to an embodiment of the present technology.
 本技術は、基板と半導体素子とを互いに電気的に接続するワイヤ等の接続部材を備えた構成において、接続部材の接続を受ける基板の構造を工夫することにより、接続部材に対するストレスの緩和とパッケージの小型化を図ろうとするものである。 This technology alleviates stress on the connection member and packages the structure by devising the structure of the board that receives the connection member in a configuration that includes a connection member such as a wire that electrically connects the board and the semiconductor element to each other. The aim is to reduce the size of the device.
 以下、図面を参照して、本技術を実施するための形態(以下「実施形態」と称する。)を説明する。なお、図面は模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。以下に説明する実施形態では、半導体装置として、半導体素子の一例である固体撮像素子を含む撮像装置(固体撮像装置)を例にとって説明する。実施形態の説明は以下の順序で行う。
 1.第1実施形態に係る固体撮像装置の構成例
 2.第1実施形態に係る固体撮像装置の製造方法
 3.第1実施形態に係る固体撮像装置の変形例
 4.第2実施形態に係る固体撮像装置の構成例
 5.第3実施形態に係る固体撮像装置の構成例
 6.第3実施形態に係る固体撮像装置の製造方法
 7.第4実施形態に係る固体撮像装置の構成例
 8.第5実施形態に係る固体撮像装置の構成例
 9.第5実施形態に係る固体撮像装置の製造方法
 10.第5実施形態に係る固体撮像装置の変形例
 11.電子機器の構成例
Hereinafter, a form for implementing the present technology (hereinafter referred to as an "embodiment") will be described with reference to the drawings. Note that the drawings are schematic and the proportions of dimensions of each part do not necessarily match the actual ones. Furthermore, it goes without saying that the drawings include portions with different dimensional relationships and ratios. In the embodiments described below, an imaging device (solid-state imaging device) including a solid-state imaging device, which is an example of a semiconductor device, will be described as an example of a semiconductor device. The embodiments will be described in the following order.
1. Configuration example of solid-state imaging device according to first embodiment 2. Manufacturing method of solid-state imaging device according to first embodiment 3. Modification of the solid-state imaging device according to the first embodiment 4. Configuration example of solid-state imaging device according to second embodiment 5. Configuration example of solid-state imaging device according to third embodiment 6. Manufacturing method of solid-state imaging device according to third embodiment 7. Configuration example of solid-state imaging device according to fourth embodiment 8. Configuration example of solid-state imaging device according to fifth embodiment 9. Manufacturing method of solid-state imaging device according to fifth embodiment 10. Modification of solid-state imaging device according to fifth embodiment 11. Configuration example of electronic equipment
 <1.第1実施形態に係る固体撮像装置の構成例>
 本技術の第1実施形態に係る固体撮像装置の構成例について、図1から図4を参照して説明する。なお、図1における上下を固体撮像装置1における上下とする。また、図1に示す側面断面図は、図3におけるB-B位置の断面図に相当する。
<1. Configuration example of solid-state imaging device according to first embodiment>
A configuration example of a solid-state imaging device according to a first embodiment of the present technology will be described with reference to FIGS. 1 to 4. Note that the upper and lower sides in FIG. 1 are the upper and lower sides of the solid-state imaging device 1. Further, the side sectional view shown in FIG. 1 corresponds to the sectional view taken along the line BB in FIG.
 図1に示すように、固体撮像装置1は、基板2と、基板2上に設けられた固体撮像素子としてのイメージセンサ3と、複数の接続部材としてのワイヤ(ボンディングワイヤ)4とを備える。また、固体撮像装置1は、イメージセンサ3を上方から覆うカバー部材としての透明なガラス5と、イメージセンサ3に対してガラス5を支持する支持部としてのリブ部6と、基板2上における固体撮像装置1の周縁部に設けられた封止樹脂部7とを備える。 As shown in FIG. 1, the solid-state imaging device 1 includes a substrate 2, an image sensor 3 as a solid-state imaging element provided on the substrate 2, and wires (bonding wires) 4 as a plurality of connection members. The solid-state imaging device 1 also includes a transparent glass 5 as a cover member that covers the image sensor 3 from above, a rib portion 6 as a support portion that supports the glass 5 with respect to the image sensor 3, and a solid state on the substrate 2. The imaging device 1 includes a sealing resin portion 7 provided at a peripheral portion of the imaging device 1.
 固体撮像装置1は、イメージセンサ3上にリブ部6を介してガラス5をマウントし、イメージセンサ3とガラス5との間にキャビティ8を形成したパッケージ構造を備えている。すなわち、固体撮像装置1においては、イメージセンサ3の受光側(上側)の面である表面3aに設けられたリブ部6により、イメージセンサ3の表面3a側に対向するようにガラス5が支持されるとともに、イメージセンサ3とガラス5との間の周囲が封止され、中空部としてのキャビティ8が形成されている。 The solid-state imaging device 1 has a package structure in which a glass 5 is mounted on the image sensor 3 via a rib portion 6, and a cavity 8 is formed between the image sensor 3 and the glass 5. That is, in the solid-state imaging device 1, the glass 5 is supported by the rib portion 6 provided on the surface 3a, which is the light-receiving side (upper side) surface of the image sensor 3, so as to face the surface 3a side of the image sensor 3. At the same time, the periphery between the image sensor 3 and the glass 5 is sealed to form a cavity 8 as a hollow part.
 基板2は、インターポーザ基板であり、矩形板状の外形を有する平板状の部材である。基板2は、イメージセンサ3の実装を受ける一方の板面である表面2aと、その反対側の他方の板面である裏面2bと、四方の側面2cとを有する。基板2の板厚方向が、固体撮像装置1における上下方向であり、表面2a側が上側、裏面2b側が下側となる。 The substrate 2 is an interposer substrate, and is a flat member having a rectangular plate-like outer shape. The substrate 2 has a front surface 2a that is one board surface on which the image sensor 3 is mounted, a back surface 2b that is the other board surface opposite to the front surface 2a, and four side surfaces 2c. The thickness direction of the substrate 2 is the vertical direction in the solid-state imaging device 1, with the front surface 2a side being the upper side and the back surface 2b side being the lower side.
 基板2の表面2a側には、イメージセンサ3がダイボンドされている。イメージセンサ3は、基板2の表面2aに対して、絶縁性または導電性の接着剤等からなるダイボンド材9によって接着されている。 An image sensor 3 is die-bonded to the surface 2a of the substrate 2. The image sensor 3 is bonded to the surface 2a of the substrate 2 with a die bonding material 9 made of an insulating or conductive adhesive or the like.
 基板2は、例えば繊維強化プラスチックの一種であるガラスエポキシ樹脂等の有機材料を基材とした有機基板であり、金属材料により配線層や電極や所定の回路パターンが形成された回路基板である。ただし、基板2は、例えばアルミナ(Al)や窒化アルミニウム(AlN)窒化ケイ素(Si)等のセラミックスを基材として形成されたセラミック基板やガラスを用いたガラス基板等の他の種類の基板であってもよい。 The substrate 2 is an organic substrate made of an organic material such as glass epoxy resin, which is a type of fiber-reinforced plastic, and is a circuit board on which wiring layers, electrodes, and a predetermined circuit pattern are formed from a metal material. However, the substrate 2 may be a ceramic substrate made of ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or a glass substrate made of glass. It may be a type of substrate.
 基板2の表面2aには、イメージセンサ3に対する電気的な接続を受けるための電極部である複数のボンディングパッド11が形成されている。複数のボンディングパッド11は、基板2の表面2a側において、イメージセンサ3の実装部の外側の部位に所定の配列で形成されている。図3に示す例では、複数のボンディングパッド11は、基板2の表面2aの周縁部において、基板2の4つの辺部に沿うように設けられている。ただし、ボンディングパッド11の配設態様は特に限定されるものではなく、例えば、複数のボンディングパッド11は、基板2の互いに対向する一対の辺部に対して設けられてもよい。 A plurality of bonding pads 11 are formed on the surface 2a of the substrate 2, which are electrode portions for receiving electrical connection to the image sensor 3. The plurality of bonding pads 11 are formed in a predetermined array on the front surface 2a side of the substrate 2, outside the mounting portion of the image sensor 3. In the example shown in FIG. 3, the plurality of bonding pads 11 are provided along four sides of the substrate 2 at the peripheral edge of the front surface 2a of the substrate 2. However, the manner in which the bonding pads 11 are arranged is not particularly limited. For example, a plurality of bonding pads 11 may be provided on a pair of mutually opposing sides of the substrate 2.
 イメージセンサ3は、半導体の一例であるシリコン(Si)により構成された半導体基板を含む半導体素子である。イメージセンサ3は、矩形板状の半導体チップであり、一方の板面である表面3a側を受光面側とし、その反対側の他方の板面を裏面3bとする。イメージセンサ3は、四方の側面3cを有する。 The image sensor 3 is a semiconductor element including a semiconductor substrate made of silicon (Si), which is an example of a semiconductor. The image sensor 3 is a rectangular plate-shaped semiconductor chip, with one plate surface, ie, a front surface 3a, serving as a light-receiving surface, and the other plate surface on the opposite side serving as a back surface 3b. The image sensor 3 has four side surfaces 3c.
 イメージセンサ3の表面3a側には、複数の受光素子(光電変換素子)が形成されている。イメージセンサ3は、CMOS(Complementary Metal Oxide Semiconductor)型のイメージセンサである。ただし、イメージセンサ3は、CCD(Charge Coupled Device)型のイメージセンサ等の他の撮像素子であってもよい。 A plurality of light receiving elements (photoelectric conversion elements) are formed on the surface 3a side of the image sensor 3. The image sensor 3 is a CMOS (Complementary Metal Oxide Semiconductor) type image sensor. However, the image sensor 3 may be another image sensor such as a CCD (Charge Coupled Device) type image sensor.
 イメージセンサ3は、表面3a側に、多数の画素が形成された受光領域である画素領域12、および画素領域12の周囲の領域である周辺領域13を有する。画素領域12において、多数の画素は、例えばベイヤ(Bayer)配列等の所定の配列で形成されており、イメージセンサ3における受光部を構成する。画素領域12の画素は、光電変換機能を有する光電変換部としてのフォトダイオードと、複数の画素トランジスタとを有する。周辺領域13には、所定の周辺回路が形成されている。周辺回路により処理された信号は、ワイヤ4を介して出力される。 The image sensor 3 has, on the front surface 3a side, a pixel region 12 which is a light receiving region in which a large number of pixels are formed, and a peripheral region 13 which is a region around the pixel region 12. In the pixel region 12, a large number of pixels are formed in a predetermined arrangement, such as a Bayer arrangement, and constitute a light receiving section in the image sensor 3. A pixel in the pixel region 12 includes a photodiode as a photoelectric conversion unit having a photoelectric conversion function and a plurality of pixel transistors. A predetermined peripheral circuit is formed in the peripheral region 13. Signals processed by the peripheral circuits are output via wire 4.
 イメージセンサ3の表面3a側においては、半導体基板に対して、酸化膜等からなる反射防止膜や、有機材料により形成された平坦化膜等を介して、カラーフィルタおよびオンチップレンズが各画素に対応して形成されている。オンチップレンズに入射した光が、カラーフィルタや平坦化膜等を介してフォトダイオードで受光される。 On the surface 3a side of the image sensor 3, a color filter and an on-chip lens are attached to each pixel through an antireflection film made of an oxide film or the like, a flattening film made of an organic material, etc., on the semiconductor substrate. are formed accordingly. Light incident on the on-chip lens is received by a photodiode via a color filter, a flattening film, etc.
 イメージセンサ3の表面3aには、基板2に対する電気的な接続を受けるための電極部である複数の接続パッド15が形成されている。接続パッド15は、イメージセンサ3の表面3aに設けられワイヤ4の接続を受ける素子側電極部である。接続パッド15は、表面3aに臨んで露出した状態となるように形成されている。 A plurality of connection pads 15 are formed on the surface 3a of the image sensor 3 as electrode portions for receiving electrical connection to the substrate 2. The connection pad 15 is an element-side electrode portion provided on the surface 3a of the image sensor 3 and to which the wire 4 is connected. The connection pad 15 is formed so as to face the surface 3a and be exposed.
 複数の接続パッド15は、イメージセンサ3の表面3aにおける周辺領域13に所定の配列で形成されている。図3に示す例では、複数の接続パッド15は、イメージセンサ3の表面3aの周縁部において、イメージセンサ3の4つの辺部に沿うように設けられている。ただし、接続パッド15の配設態様は特に限定されるものではなく、例えば、複数の接続パッド15は、イメージセンサ3の互いに対向する一対の辺部に対して設けられてもよい。 A plurality of connection pads 15 are formed in a predetermined array in a peripheral region 13 on the surface 3a of the image sensor 3. In the example shown in FIG. 3, the plurality of connection pads 15 are provided along four sides of the image sensor 3 at the peripheral edge of the surface 3a of the image sensor 3. However, the manner in which the connection pads 15 are arranged is not particularly limited, and for example, a plurality of connection pads 15 may be provided on a pair of opposing sides of the image sensor 3.
 なお、本技術に係るイメージセンサ3の構成は特に限定されない。イメージセンサ3の構成としては、例えば、半導体基板の表面側に画素領域12を形成した表面照射型(Front Side Illumination)のものや、光の透過率を向上させるためにフォトダイオード等を逆に配置し半導体基板の裏面側を受光面側とした裏面照射型(Back Side Illumination)のもの等がある。 Note that the configuration of the image sensor 3 according to the present technology is not particularly limited. The configuration of the image sensor 3 is, for example, a front side illumination type in which the pixel area 12 is formed on the front side of the semiconductor substrate, or a type in which a photodiode, etc. is arranged in reverse to improve light transmittance. There are also back-side illumination types in which the back side of the semiconductor substrate is the light-receiving surface.
 ワイヤ4は、基板2とイメージセンサ3とを互いに電気的に接続する導電ワイヤである。ワイヤ4は、例えばAu(金)やCu(銅)やAl(アルミニウム)等からなる金属細線である。 The wire 4 is a conductive wire that electrically connects the substrate 2 and the image sensor 3 to each other. The wire 4 is a thin metal wire made of, for example, Au (gold), Cu (copper), Al (aluminum), or the like.
 ワイヤ4は、一端側を、基板2のボンディングパッド11に接続させるとともに、他端側を、イメージセンサ3の接続パッド15に接続させており、これらの電極パッド同士を電気的に接続する。ワイヤ4は、ボンディングパッド11の数に応じて複数設けられている。ワイヤ4は、線状のワイヤ本体部4aの両端側に、ボンディングパッド11および接続パッド15の各電極パッドに対する接続部として、ワイヤ本体部4aに対する拡径部分として形成された接合部4b,4cを有する。 The wire 4 has one end connected to the bonding pad 11 of the substrate 2 and the other end connected to the connection pad 15 of the image sensor 3, electrically connecting these electrode pads to each other. A plurality of wires 4 are provided according to the number of bonding pads 11. The wire 4 has bonding portions 4b and 4c formed at both ends of a linear wire body portion 4a as connecting portions to each electrode pad of the bonding pad 11 and the connection pad 15, and as an enlarged diameter portion to the wire body portion 4a. have
 ボンディングパッド11および接続パッド15の材料としては、例えばアルミニウム材料等が用いられる。具体的には、ボンディングパッド11および接続パッド15は、例えば、銅(Cu)、タングステン(W)、チタン(Ti)等の層部分に対してニッケル(Ni)のめっき層および金(Au)のめっき層を被膜させたものである。ボンディングパッド11および接続パッド15は、めっき、スパッタリング、印刷その他の膜形成方法が適宜用いられて形成される。 As the material for the bonding pad 11 and the connection pad 15, for example, aluminum material is used. Specifically, the bonding pads 11 and the connection pads 15 are formed using a nickel (Ni) plating layer and a gold (Au) plating layer on a layer portion of copper (Cu), tungsten (W), titanium (Ti), etc. It is coated with a plating layer. The bonding pads 11 and the connection pads 15 are formed by appropriately using plating, sputtering, printing, or other film forming methods.
 基板2の複数のボンディングパッド11は、基板2内に形成された所定の配線部を介して、基板2の裏面2b側に形成された複数の端子電極に電気的に接続されている。各端子電極には、接続端子として例えば半田ボール(図示略)が設けられる。半田ボールは、例えば、イメージセンサ3の矩形状の外形に沿うように2次元的に格子点状の配置で形成され、BGA(Ball Grid Array)を構成する。半田ボール群により、固体撮像装置1が所定の回路を有する回路基板であるセット基板に対してリフロー実装される。 A plurality of bonding pads 11 on the substrate 2 are electrically connected to a plurality of terminal electrodes formed on the back surface 2b side of the substrate 2 via predetermined wiring portions formed within the substrate 2. Each terminal electrode is provided with, for example, a solder ball (not shown) as a connection terminal. For example, the solder balls are formed two-dimensionally in a grid point arrangement along the rectangular outer shape of the image sensor 3, and constitute a BGA (Ball Grid Array). The solid-state imaging device 1 is reflow-mounted on a set board, which is a circuit board having a predetermined circuit, using a group of solder balls.
 ガラス5は、透明部材または透光性部材の一例であり、イメージセンサ3の表面3a側に、イメージセンサ3に対して平行状にかつ所定の間隔をあけて設けられている。ガラス5は、矩形板状の外形を有し、上側の板面である表面5aと、その反対側の板面であってイメージセンサ3に対向する裏面5bと、四方の側面5cとを有する。 The glass 5 is an example of a transparent member or a translucent member, and is provided on the surface 3a side of the image sensor 3, parallel to the image sensor 3 and at a predetermined interval. The glass 5 has a rectangular plate-like outer shape, and has a front surface 5a that is an upper plate surface, a back surface 5b that is the opposite plate surface and faces the image sensor 3, and four side surfaces 5c.
 ガラス5は、イメージセンサ3に対してリブ部6を介して設けられており、イメージセンサ3の上方に位置している。ガラス5は、イメージセンサ3の表面3aに対してリブ部6により固定状態で支持されている。 The glass 5 is provided to the image sensor 3 via a rib portion 6 and is located above the image sensor 3. The glass 5 is fixedly supported by the rib portion 6 on the surface 3a of the image sensor 3.
 ガラス5は、イメージセンサ3よりも大きい外形寸法を有し、平面視で外形の範囲内にイメージセンサ3の全体を位置させるように設けられている。したがって、ガラス5の四方の側面5cは、それぞれイメージセンサ3の四方の側面3cの外側に位置している。ガラス5は、四方の縁部を、イメージセンサ3の平面視外形から外側にはみ出したはみ出し部5dとしている。ガラス5は、はみ出し部5dにおいて封止樹脂部7の接着を受ける。 The glass 5 has an outer dimension larger than the image sensor 3, and is provided so that the entire image sensor 3 is located within the range of the outer shape when viewed from above. Therefore, the four side surfaces 5c of the glass 5 are located outside the four side surfaces 3c of the image sensor 3, respectively. The four edges of the glass 5 are protruding portions 5d that protrude outward from the outline of the image sensor 3 in a plan view. The glass 5 is adhered by the sealing resin portion 7 at the protruding portion 5d.
 また、ガラス5は、基板2よりも小さい外形寸法を有し、平面視で基板2の外形の範囲内に全体を位置させている。したがって、ガラス5の四方の側面5cは、それぞれ基板2の四方の側面2cの内側に位置している。 Further, the glass 5 has an outer dimension smaller than that of the substrate 2, and is entirely located within the range of the outer shape of the substrate 2 in plan view. Therefore, the four side surfaces 5c of the glass 5 are located inside the four side surfaces 2c of the substrate 2, respectively.
 ガラス5は、その上方に位置するレンズ等の光学系を経て表面5a側から入射する各種光を透過させる。ガラス5を透過した光は、キャビティ8を介してイメージセンサ3の受光面に到達する。ガラス5は、イメージセンサ3の受光面側を保護する機能を有する。なお、本技術に係る透明部材または透光性部材としては、ガラス5の代わりに、例えば、プラスチック板やシリコン板等を用いることができる。 The glass 5 transmits various types of light incident from the surface 5a side through an optical system such as a lens located above it. The light transmitted through the glass 5 reaches the light receiving surface of the image sensor 3 via the cavity 8. The glass 5 has a function of protecting the light receiving surface side of the image sensor 3. Note that as the transparent member or translucent member according to the present technology, for example, a plastic plate, a silicon plate, or the like can be used instead of the glass 5.
 リブ部6は、イメージセンサ3とガラス5との間に介在し、これらを互いに離間させた状態で接着させる接着部である。リブ部6は、イメージセンサ3とガラス5との間の接合層をなし、イメージセンサ3とガラス5との間の空間を密閉状の空間であるキャビティ8としている。リブ部6は、下側をイメージセンサ3の表面3aに接着させ、上側をガラス5の裏面5bに接着させている。 The rib portion 6 is an adhesive portion that is interposed between the image sensor 3 and the glass 5 and adheres them while keeping them spaced apart from each other. The rib portion 6 forms a bonding layer between the image sensor 3 and the glass 5, and defines a space between the image sensor 3 and the glass 5 as a cavity 8, which is a sealed space. The lower side of the rib portion 6 is adhered to the front surface 3a of the image sensor 3, and the upper side is adhered to the back surface 5b of the glass 5.
 リブ部6は、イメージセンサ3の表面3a上において画素領域12を囲むように周辺領域13に設けられている。リブ部6は、イメージセンサ3とガラス5の間の周囲を気密封止する封止部として機能し、ガラス5とともに、キャビティ8に対する外部からの水分(水蒸気)やダスト等の侵入を遮断する。 The rib portion 6 is provided in the peripheral region 13 on the surface 3a of the image sensor 3 so as to surround the pixel region 12. The rib portion 6 functions as a sealing portion that hermetically seals the periphery between the image sensor 3 and the glass 5, and together with the glass 5, blocks moisture (steam), dust, etc. from entering the cavity 8 from the outside.
 リブ部6は、イメージセンサ3およびガラス5の平面視外形に沿って全周にわたって設けられており、平面視で矩形枠状をなすように無端状に形成されている。したがって、リブ部6は、イメージセンサ3の平面視外形に沿うように四方の直線部6aを有する。図示の例では、各直線部6aは、矩形状の横断面形状を有する。リブ部6は、各直線部6aにおいて内側面6bおよび外側面6cを有する(図2参照)。 The rib portion 6 is provided along the entire circumference of the image sensor 3 and the glass 5 in a plan view, and is formed endlessly so as to form a rectangular frame shape in a plan view. Therefore, the rib portion 6 has four straight portions 6a along the outline of the image sensor 3 in plan view. In the illustrated example, each straight portion 6a has a rectangular cross-sectional shape. The rib portion 6 has an inner surface 6b and an outer surface 6c in each straight portion 6a (see FIG. 2).
 リブ部6は、平面視でガラス5の外縁に沿うようにガラス5の外形の範囲内の位置に設けられている。リブ部6は、ガラス5の側面5cに対して内側の位置に設けられている。ただし、リブ部6は、例えば外側面6cをガラス5の側面5cと面一状とするように設けられてもよい。 The rib portion 6 is provided at a position within the outer shape of the glass 5 so as to follow the outer edge of the glass 5 in plan view. The rib portion 6 is provided at a position inside the side surface 5c of the glass 5. However, the rib portion 6 may be provided, for example, so that the outer surface 6c is flush with the side surface 5c of the glass 5.
 また、リブ部6は、イメージセンサ3の表面3a上の周縁部に設けられている。図示の例では、リブ部6は、外側面6cをイメージセンサ3の側面3cと面一状とするように形成されている。ただし、リブ部6は、例えば外側面6cをイメージセンサ3の側面3cに対して内側に位置させるように形成されてもよい。 Furthermore, the rib portion 6 is provided at the peripheral portion on the surface 3a of the image sensor 3. In the illustrated example, the rib portion 6 is formed so that its outer side surface 6c is flush with the side surface 3c of the image sensor 3. However, the rib portion 6 may be formed, for example, so that the outer surface 6c is located inside the side surface 3c of the image sensor 3.
 リブ部6は、絶縁材料により形成されている。具体的には、リブ部6の材料は、例えば、アクリル系樹脂であるUV(紫外線)硬化性樹脂等の感光性接着剤や、エポキシ系樹脂等の熱硬化性樹脂、あるいはこれらの混合剤である。ただし、リブ部6の材料は、接着剤として機能する樹脂材料であれば特に限定されるものではない。 The rib portion 6 is formed of an insulating material. Specifically, the material of the rib portion 6 is, for example, a photosensitive adhesive such as a UV (ultraviolet) curable resin that is an acrylic resin, a thermosetting resin such as an epoxy resin, or a mixture thereof. be. However, the material of the rib portion 6 is not particularly limited as long as it is a resin material that functions as an adhesive.
 リブ部6は、イメージセンサ3の表面3aに対して、ディスペンサによる塗布や、フォトリソグラフィを用いたパターニング等により形成される。なお、本技術に係る支持部は、樹脂製のものに限らず、例えばガラス等のセラミックスや金属やシリコン等の無機材料からなる枠状の構造体を接着剤等でイメージセンサ3及びガラス5に貼り付けることで設けられた構成であってもよい。 The rib portion 6 is formed on the surface 3a of the image sensor 3 by coating with a dispenser, patterning using photolithography, or the like. Note that the support unit according to the present technology is not limited to one made of resin; for example, a frame-shaped structure made of ceramic such as glass, or inorganic material such as metal or silicon is attached to the image sensor 3 and the glass 5 with adhesive or the like. A structure provided by pasting may also be used.
 リブ部6は、イメージセンサ3に対するワイヤ4の接続部を被覆するように設けられている。すなわち、リブ部6は、イメージセンサ3の表面3aの周縁部において、イメージセンサ3に対するワイヤ4の接合部4cの接合を受ける接続パッド15の形成部位を含むように形成されており、接続パッド15、ワイヤ4の接合部4c、およびワイヤ本体部4aの接合部4c側の部分を埋設させるように形成されている。ただし、イメージセンサ3の表面3aにおけるリブ部6の形成部位は、接続パッド15の形成領域よりも内側の部分であってもよい。 The rib portion 6 is provided to cover the connection portion of the wire 4 to the image sensor 3. That is, the rib portion 6 is formed at the peripheral edge of the surface 3a of the image sensor 3 so as to include a formation region of the connection pad 15 that receives the connection portion 4c of the wire 4 to the image sensor 3. , the joint portion 4c of the wire 4, and the portion of the wire main body portion 4a on the joint portion 4c side are buried. However, the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be located inside the region where the connection pad 15 is formed.
 封止樹脂部7は、基板2上におけるイメージセンサ3およびガラス5の周囲に設けられている。封止樹脂部7は、ワイヤ4のワイヤ本体部4aの大部分およびワイヤ4の基板2に対する接続部を被覆している。すなわち、封止樹脂部7は、ボンディングパッド11、ワイヤ4の接合部4b、およびワイヤ本体部4aのリブ部6から外側への延出部分を埋設させるように形成されている。 The sealing resin portion 7 is provided around the image sensor 3 and the glass 5 on the substrate 2. The sealing resin portion 7 covers most of the wire main body portion 4a of the wire 4 and the connection portion of the wire 4 to the substrate 2. That is, the sealing resin portion 7 is formed so as to embed the bonding pad 11, the bonding portion 4b of the wire 4, and the portion extending outward from the rib portion 6 of the wire main body portion 4a.
 封止樹脂部7は、基板2上におけるイメージセンサ3およびガラス5の周囲を全周にわたって覆って封止している。具体的には、封止樹脂部7は、ワイヤ4のリブ部6から外側への延出部分を埋めた状態で、ボンディングパッド11が形成された基板2の周縁部、イメージセンサ3の側面3c、リブ部6の外側面6c、並びにガラス5のはみ出し部5dの裏面5bおよび側面5cの下部を覆っている。 The sealing resin part 7 covers and seals the entire circumference of the image sensor 3 and the glass 5 on the substrate 2. Specifically, the sealing resin portion 7 fills the portion of the wire 4 extending outward from the rib portion 6, and fills the peripheral portion of the substrate 2 on which the bonding pad 11 is formed, and the side surface 3c of the image sensor 3. , covers the outer surface 6c of the rib portion 6, the back surface 5b of the protruding portion 5d of the glass 5, and the lower part of the side surface 5c.
 封止樹脂部7は、平面視において、基板2の矩形状の外形に沿って枠状に形成されており、基板2の矩形状の外形の各辺に沿う四方の辺部を有する。また、封止樹脂部7は、基板2の側面2cに対して面一状に連続する側面部7aと、ガラス5の表面5aよりも低い位置にある上面部7bとを有する(図2参照)。図示の例では、封止樹脂部7の上面部7bは、内側(ガラス5側)から外側にかけてなだらかに低くなる傾斜状の面部となっている。 The sealing resin part 7 is formed in a frame shape along the rectangular outer shape of the substrate 2 in plan view, and has four side parts along each side of the rectangular outer shape of the substrate 2. Furthermore, the sealing resin portion 7 has a side surface portion 7a that is flush with and continuous with the side surface 2c of the substrate 2, and an upper surface portion 7b that is located at a lower position than the surface 5a of the glass 5 (see FIG. 2). . In the illustrated example, the upper surface portion 7b of the sealing resin portion 7 is a sloped surface portion that gradually becomes lower from the inside (glass 5 side) to the outside.
 封止樹脂部7は、基板2上にイメージセンサ3を実装してこれらをワイヤ4により接続するとともにイメージセンサ3上にリブ部6を介してガラス5をマウントした構成に対して、基板2上におけるイメージセンサ3およびガラス5の周囲で樹脂材料を硬化させることにより形成される。封止樹脂部7は、例えばモールド金型を用いた射出成形や、ディスペンサを用いたポッティング加工等によって所定の形状に形成される。 The sealing resin part 7 is different from the configuration in which the image sensor 3 is mounted on the substrate 2 and these are connected by wires 4, and the glass 5 is mounted on the image sensor 3 via the rib part 6. It is formed by curing a resin material around the image sensor 3 and the glass 5. The sealing resin portion 7 is formed into a predetermined shape by, for example, injection molding using a mold, potting processing using a dispenser, or the like.
 封止樹脂部7の材料は、例えば、ケイ素酸化物を主成分としたものやアルミナ等をフィラーとして含有した熱硬化性樹脂である。封止樹脂部7を形成する樹脂材料としては、例えば、フェノール系樹脂,シリコーン系樹脂、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ケイ素樹脂、ポリエーテルアミド系樹脂等の熱硬化性樹脂、ポリアミドイミド、ポリプロピレン、液晶ポリマー等の熱可塑性樹脂、アクリル系樹脂であるUV硬化性樹脂等の感光性樹脂、ゴム、その他の公知の樹脂材料が単独であるいは複数組み合わせて用いられる。なお、封止樹脂部7は、絶縁性を有する。 The material of the sealing resin portion 7 is, for example, a thermosetting resin containing silicon oxide as a main component or alumina as a filler. Examples of the resin material forming the sealing resin part 7 include thermosetting resins such as phenolic resins, silicone resins, acrylic resins, epoxy resins, urethane resins, silicone resins, and polyetheramide resins; Thermoplastic resins such as polyamideimide, polypropylene, and liquid crystal polymers, photosensitive resins such as UV curable resins that are acrylic resins, rubber, and other known resin materials may be used singly or in combination. Note that the sealing resin portion 7 has insulation properties.
 また、封止樹脂部7は、例えばカーボンブラックやチタンブラック等の黒色顔料を含有させた黒色樹脂材料等、遮光性を有する材料により形成されてもよい。これにより、封止樹脂部7が黒色の部分となり、封止樹脂部7を遮光部として機能させることができる。 Furthermore, the sealing resin portion 7 may be formed of a material having light-shielding properties, such as a black resin material containing a black pigment such as carbon black or titanium black. Thereby, the sealing resin part 7 becomes a black part, and the sealing resin part 7 can function as a light shielding part.
 また、封止樹脂部7とガラス5との関係に関し、ガラス5は、側面5cの少なくとも上側の一部を封止樹脂部7により被覆されていない露出面部5eとしている(図2参照)。図2に示す例では、封止樹脂部7は、ガラス5に対して、側面5cのうち下側の大部分を被覆するとともに上側の部分を露出させて露出面部5eとしている。なお、封止樹脂部7は、ガラス5の四方の側面5cにおいて全周にわたって露出面部5eが存在するように形成されている。 Regarding the relationship between the sealing resin part 7 and the glass 5, the glass 5 has at least a part of the upper side of the side surface 5c as an exposed surface part 5e that is not covered with the sealing resin part 7 (see FIG. 2). In the example shown in FIG. 2, the sealing resin part 7 covers most of the lower part of the side surface 5c of the glass 5, and exposes the upper part to form an exposed surface part 5e. Note that the sealing resin portion 7 is formed so that exposed surface portions 5e exist all around the four side surfaces 5c of the glass 5.
 図2に示す例では、上下方向となるガラス5の厚さ方向について、側面5cの下側の略3/4の範囲の部分が、封止樹脂部7により被覆されている。つまり、ガラス5の側面5cの上側の略1/4の範囲の部分(符号A1参照)が、封止樹脂部7により被覆されておらずに露出した状態の露出面部5eとなっている。なお、ガラス5の側面5cにおける露出面部5eの上下方向の範囲は、特に限定されるものではない。また、封止樹脂部7は、ガラス5の側面5cの全体を被覆するように形成されてもよく、逆に側面5cの全体を露出させるように形成されてもよい。 In the example shown in FIG. 2, approximately 3/4 of the lower side of the side surface 5c is covered with the sealing resin portion 7 in the thickness direction of the glass 5, which is the vertical direction. In other words, approximately 1/4 of the upper side of the side surface 5c of the glass 5 (see reference numeral A1) is not covered with the sealing resin portion 7 and is an exposed surface portion 5e. Note that the vertical range of the exposed surface portion 5e on the side surface 5c of the glass 5 is not particularly limited. Further, the sealing resin portion 7 may be formed to cover the entire side surface 5c of the glass 5, or may be formed to expose the entire side surface 5c.
 以上のような構成を備えた固体撮像装置1においては、ガラス5を透過した光が、キャビティ8内を通って、イメージセンサ3の画素領域12に配された各画素を構成する受光素子により受光されて検出される。 In the solid-state imaging device 1 having the above configuration, light transmitted through the glass 5 passes through the cavity 8 and is received by the light receiving element constituting each pixel arranged in the pixel area 12 of the image sensor 3. detected.
 以上のような構成を備えた固体撮像装置1は、ワイヤ4の一端側の接続を受ける基板2に関して次のような構成を備えている。すなわち、基板2は、ワイヤ4の一端側の接続を受ける面部を、イメージセンサ3が固定される表面2aに対して上方に位置させている。 The solid-state imaging device 1 having the above configuration has the following configuration regarding the substrate 2 to which one end of the wire 4 is connected. That is, the surface portion of the substrate 2 to which one end of the wire 4 is connected is positioned above the surface 2a to which the image sensor 3 is fixed.
 基板2は、イメージセンサ3の取付けを受ける第1面部としての表面2aと、上下方向について表面2aに対して上側に位置し、ワイヤ4の接続を受けるボンディングパッド11を配置した第2面部としての上段面部22とを有する。このように、基板2は、イメージセンサ3がダイボンドされた表面2aを下段面部とし、表面2aの周囲に、表面2aよりも高い位置にある上段面部22を有し、上側の面部について上下二段の構造を有する。 The substrate 2 has a surface 2a as a first surface portion to which the image sensor 3 is attached, and a second surface portion as a second surface portion on which a bonding pad 11, which is located above the surface 2a in the vertical direction and receives the connection of the wire 4, is disposed. It has an upper stage surface part 22. In this way, the substrate 2 has the surface 2a to which the image sensor 3 is die-bonded as the lower surface, and the upper surface 22 located around the surface 2a at a higher position than the surface 2a. It has the structure of
 基板2は、上段面部22をなす部分として、基板2の平面視外形に沿って基板2の周縁部に形成された四方の突縁部23を有する。すなわち、基板2は、表面2aをなす矩形板状の平板部である基板本体部20と、基板本体部20の上側に四方の突縁部23により枠状に形成された周壁部21とを有する。周壁部21をなす四方の突縁部23は、基板2において表面2aに対して突出した凸部である。 The substrate 2 has four protruding edges 23 formed at the peripheral edge of the substrate 2 along the outer shape of the substrate 2 in a plan view, as the upper surface portion 22 . That is, the substrate 2 has a substrate body 20 which is a rectangular plate-like flat plate portion forming the front surface 2a, and a peripheral wall portion 21 formed in a frame shape by four projecting edges 23 on the upper side of the substrate body 20. . The four protruding edges 23 forming the peripheral wall portion 21 are convex portions that protrude from the surface 2a of the substrate 2.
 基板2は、基板本体部20および周壁部21により、上側を開放側とした扁平な箱状に構成されている。つまり、基板2は、四方の突縁部23により基板本体部20の上側に凹部25を形成したキャビティ基板となっている。凹部25内に、イメージセンサ3が配置されている。凹部25は、上側を開口させた空間部をなし、イメージセンサ3の外形に対応して矩形状の開口形状を有し、平面視で基板2の大部分を占める範囲に形成されている。図3に示す例では、凹部25は、平面視で基板2の中央部に形成されている。 The substrate 2 is formed into a flat box shape with the upper side open, by the substrate main body 20 and the peripheral wall 21. In other words, the substrate 2 is a cavity substrate in which a concave portion 25 is formed on the upper side of the substrate main body portion 20 by the four projecting edges 23 . The image sensor 3 is arranged within the recess 25 . The recess 25 is a space with an open upper side, has a rectangular opening shape corresponding to the outer shape of the image sensor 3, and is formed in a range that occupies most of the substrate 2 in a plan view. In the example shown in FIG. 3, the recess 25 is formed in the center of the substrate 2 in plan view.
 基板本体部20とともに凹部25をなす四方の突縁部23は、表面2aに対して垂直状に形成され凹部25の側面をなす内側面26と、その反対側の面である外側面27とを有する。内側面26は、表面2aと上段面部22との間に形成された段差面部である。突縁部23は、外側面27を基板2の側面2cと連続した面一状の面とするように設けられている。ただし、突縁部23は、外側面27を基板2の側面2cに対して内側または外側に位置させるように設けられてもよい。 The four projecting edges 23 forming the recess 25 together with the board body 20 have an inner surface 26 formed perpendicular to the surface 2a and forming the side surface of the recess 25, and an outer surface 27 that is the opposite surface. have The inner surface 26 is a stepped surface portion formed between the surface 2 a and the upper step surface portion 22 . The protruding edge portion 23 is provided so that the outer surface 27 is continuous with the side surface 2c of the substrate 2 and is flush with the surface. However, the projecting edge portion 23 may be provided so that the outer surface 27 is located inside or outside of the side surface 2c of the substrate 2.
 突縁部23は、内側面26を、ガラス5の側面5cよりも内側に位置させるように形成されている。つまり、上段面部22は、内周側の縁部を、ガラス5のはみ出し部5dの外周側の縁部の下方に位置させている。ただし、突縁部23は、平面視で全体をガラス5の外形の範囲の外側に位置させるように設けられてもよい。 The protruding edge portion 23 is formed so that the inner surface 26 is located inside the side surface 5c of the glass 5. That is, the upper stage surface portion 22 has an inner peripheral edge located below an outer peripheral edge of the protruding portion 5d of the glass 5. However, the projecting edge portion 23 may be provided so that the entire portion is located outside the range of the outer shape of the glass 5 in plan view.
 凹部25は、四方の内側面26と表面2aとにより形成された平面視矩形状の穴部である。基板2において、凹部25の形成部位は、凹部25の非形成部位である周縁部に対して凹部25の深さ分、板厚が薄い部分となっている。凹部25は、イメージセンサ3の外形寸法より大きい開口寸法を有し、平面視でイメージセンサ3の全体が凹部25内に納まるように形成されている。 The recess 25 is a rectangular hole in plan view formed by the four inner surfaces 26 and the surface 2a. In the substrate 2, the portion where the recess 25 is formed is a portion where the plate thickness is thinner than the peripheral portion where the recess 25 is not formed by the depth of the recess 25. The recess 25 has an opening dimension larger than the external dimension of the image sensor 3, and is formed so that the entire image sensor 3 is accommodated within the recess 25 when viewed from above.
 以上のような基板2において、各突縁部23の上段面部22に、複数のボンディングパッド11が形成されている。つまり、ボンディングパッド11は、上段面部22に臨んで露出した状態となるように形成されている。本実施形態では、四方の突縁部23の上段面部22は、共通の仮想平面上に位置している。 In the substrate 2 as described above, a plurality of bonding pads 11 are formed on the upper surface portion 22 of each projecting edge portion 23. That is, the bonding pad 11 is formed so as to be exposed facing the upper surface portion 22. In this embodiment, the upper surface portions 22 of the four projecting edges 23 are located on a common virtual plane.
 本実施形態に係る固体撮像装置1において、上段面部22は、イメージセンサ3の接続パッド15の高さ位置以下の高さに位置している。図2に示すように、接続パッド15の高さ位置は、イメージセンサ3の表面3aの高さ位置H1と同一または略同一である。図2に示す例では、上段面部22の高さ位置H2は、接続パッド15の高さ位置H1に対して、寸法ΔH下方に位置している。なお、上段面部22の高さ位置H2は、ボンディングパッド11の高さ位置と同一または略同一である。 In the solid-state imaging device 1 according to the present embodiment, the upper surface portion 22 is located at a height that is equal to or lower than the height of the connection pad 15 of the image sensor 3. As shown in FIG. 2, the height position of the connection pad 15 is the same or approximately the same as the height position H1 of the surface 3a of the image sensor 3. In the example shown in FIG. 2, the height position H2 of the upper stage surface portion 22 is located below the height position H1 of the connection pad 15 by a dimension ΔH. Note that the height position H2 of the upper stage surface portion 22 is the same or approximately the same as the height position of the bonding pad 11.
 寸法ΔHの大きさは、イメージセンサ3の厚さ(チップの厚さ)C1にもよるが、例えば180~480μmの範囲内の値である。イメージセンサ3の厚さC1は、例えば400~600μmの範囲内の値である。なお、突縁部23は、上段面部22をイメージセンサ3の表面3aと同じ高さ位置または略同じ高さ位置に位置させるように形成されてもよい。 The size of the dimension ΔH depends on the thickness C1 of the image sensor 3 (thickness of the chip), but is, for example, a value within the range of 180 to 480 μm. The thickness C1 of the image sensor 3 is, for example, a value within the range of 400 to 600 μm. Note that the projecting edge portion 23 may be formed so that the upper surface portion 22 is located at the same height position or approximately the same height position as the surface 3a of the image sensor 3.
 また、図2に示すように、上段面部22をなす突縁部23の高さB1は、例えば100~400μmの範囲内の値である。ここで、突縁部23の高さB1は、基板2における表面2aに対する突縁部23の高さであり、表面2aと上段面部22との高さの差である。突縁部23の高さB1は、基板2における凹部25の深さに相当する。 Further, as shown in FIG. 2, the height B1 of the protruding edge portion 23 forming the upper surface portion 22 is, for example, a value within the range of 100 to 400 μm. Here, the height B1 of the projecting edge portion 23 is the height of the projecting edge portion 23 with respect to the surface 2a of the substrate 2, and is the difference in height between the surface 2a and the upper surface portion 22. The height B1 of the projecting edge 23 corresponds to the depth of the recess 25 in the substrate 2.
 突縁部23の高さB1の大きさは、例えば、イメージセンサ3の厚さC1~厚さC1+ダイボンド材9の厚さC2の範囲内の値として規定される。ダイボンド材9の厚さC2は、例えば100μm程度である。突縁部23の高さB1の大きさがイメージセンサ3の厚さC1と同じである場合、上段面部22の高さ位置は、イメージセンサ3の表面3aに対してダイボンド材9の厚さC2分低くなる。また、突縁部23の高さB1の大きさがイメージセンサ3の厚さC1+ダイボンド材9の厚さC2と同じである場合、上段面部22の高さ位置は、イメージセンサ3の表面3aの高さ位置と同じとなる。 The height B1 of the protruding edge portion 23 is defined as a value within the range of, for example, the thickness C1 of the image sensor 3 to the thickness C1+thickness C2 of the die bonding material 9. The thickness C2 of the die-bonding material 9 is, for example, about 100 μm. When the height B1 of the projecting edge portion 23 is the same as the thickness C1 of the image sensor 3, the height position of the upper surface portion 22 is the same as the thickness C2 of the die bonding material 9 with respect to the surface 3a of the image sensor 3. minute lower. Further, when the height B1 of the projecting edge portion 23 is the same as the thickness C1 of the image sensor 3 + the thickness C2 of the die-bonding material 9, the height position of the upper surface portion 22 is the same as that of the surface 3a of the image sensor 3. The height position will be the same.
 また、基板2において周壁部21により形成された凹部25内にイメージセンサ3を設けた構成において、イメージセンサ3の四方の側面3cは、四方の突縁部23の内側面26に対向しており、側面3cと内側面26との間に隙間28が形成されている(図2参照)。隙間28の寸法D1については、ダイボンド材9のフィレット9aの幅を確保する観点やイメージセンサ3のチップ搭載精度の観点等から、少なくとも50μm程度の大きさであることが望ましい。フィレット9aは、イメージセンサ3の平面視外形からのダイボンド材9のはみ出し部分であり、突縁部23を外側への広がりに対するストッパとして、隙間28内において嵩を増し、イメージセンサ3の側面3cの下部を被覆するように形成される。 Furthermore, in the configuration in which the image sensor 3 is provided in the recess 25 formed by the peripheral wall 21 in the substrate 2, the four side surfaces 3c of the image sensor 3 are opposed to the inner surfaces 26 of the four projecting edges 23. , a gap 28 is formed between the side surface 3c and the inner surface 26 (see FIG. 2). The dimension D1 of the gap 28 is desirably at least about 50 μm from the viewpoint of ensuring the width of the fillet 9a of the die-bonding material 9 and the chip mounting accuracy of the image sensor 3. The fillet 9a is a protruding portion of the die-bonding material 9 from the outer shape of the image sensor 3 in a plan view.The fillet 9a increases in volume within the gap 28 by using the protruding edge 23 as a stopper against outward spread, and forms a part of the side surface 3c of the image sensor 3. It is formed to cover the lower part.
 以上のように基板2においてボンディングパッド11を配置させた上段面部22を有する構成において、ワイヤ4は、ボンディングパッド11に対する接合部4bからワイヤ本体部4aを立ち上げつつ接続パッド15に向けてなだらかに下り傾斜させた形状で配されている。ワイヤ4は、ワイヤ本体部4aの接合部4bの上方に位置する部分を、接合部4bからの立上り部分と接続パッド15に向かう下り傾斜部分との間の角部をなす湾曲部4dとしている。 In the configuration in which the substrate 2 has the upper surface part 22 on which the bonding pad 11 is arranged as described above, the wire 4 is gently moved toward the connection pad 15 while raising the wire main body part 4a from the joint part 4b with respect to the bonding pad 11. It is arranged in a downward sloping shape. The wire 4 has a curved portion 4d that forms a corner between the rising portion from the bonding portion 4b and the downwardly sloping portion toward the connection pad 15, at a portion of the wire body portion 4a located above the bonding portion 4b.
 ワイヤ4は、ワイヤ本体部4aの湾曲部4dをワイヤ4の上端部としており、湾曲部4dをガラス5に接触させないように配されている。つまり、ワイヤ4の全体は、ガラス5の裏面5bの高さ位置よりも下方に位置している。 The wire 4 has the curved portion 4d of the wire main body 4a as the upper end of the wire 4, and is arranged so that the curved portion 4d does not come into contact with the glass 5. That is, the entire wire 4 is located below the height of the back surface 5b of the glass 5.
 なお、基板2において上段面部22をなす部分の形状は特に限定されるものではない。上段面部22をなす部分(凸部)は、ボンディングパッド11の配設態様等に応じて、一または複数箇所に適宜の形状を有する部分として形成されればよい。 Note that the shape of the portion of the substrate 2 that forms the upper surface portion 22 is not particularly limited. The portion (convex portion) forming the upper stage surface portion 22 may be formed as a portion having an appropriate shape at one or more locations depending on the arrangement of the bonding pads 11 and the like.
 例えば、複数のボンディングパッド11が基板2の互いに対向する一対の辺部に配設される構成においては、複数のボンディングパッド11の配設領域に応じて基板2の2辺に沿うように突縁部23を形成した構成であってもよい。また、上段面部22をなす部分としては、基板2の各辺部において、ボンディングパッド11の形成部位に応じて部分的に凸部をなすように形成されてもよい。また、複数のボンディングパッド11に応じて複数箇所に上段面部22を形成する場合、高さ位置を異ならせた複数の上段面部22が形成されてもよい。また、本実施形態では、基板2の四辺に沿って設けられた突縁部23は、共通の幅寸法を有するが、例えば基板2の各辺に設けられた突縁部23ごとに幅を異ならせたり、各辺の突縁部23において部分的に幅を異ならせたりした構成であってもよい。 For example, in a configuration in which a plurality of bonding pads 11 are arranged on a pair of mutually opposing sides of the substrate 2, the protruding edges are arranged along two sides of the substrate 2 according to the arrangement area of the plurality of bonding pads 11. A structure in which the portion 23 is formed may also be used. Further, the portion forming the upper stage surface portion 22 may be formed so as to partially form a convex portion on each side of the substrate 2 depending on the location where the bonding pad 11 is formed. Further, when forming the upper stage surface portions 22 at a plurality of locations according to the plurality of bonding pads 11, the plurality of upper stage surface portions 22 may be formed at different height positions. Further, in this embodiment, the protruding edges 23 provided along the four sides of the substrate 2 have a common width dimension, but for example, the protruding edges 23 provided on each side of the substrate 2 may have different widths. Alternatively, the projecting edge portions 23 on each side may have partially different widths.
 <2.第1実施形態に係る固体撮像装置の製造方法>
 本技術の第1実施形態に係る固体撮像装置1の製造方法の一例について、図5から図7を参照して説明する。
<2. Manufacturing method of solid-state imaging device according to first embodiment>
An example of a method for manufacturing the solid-state imaging device 1 according to the first embodiment of the present technology will be described with reference to FIGS. 5 to 7.
 図5に示すように、固体撮像装置1の製造方法においては、まず、基板(キャビティ基板)の準備の工程が行われる(S10)。具体的には、図6Aに示すように、固体撮像装置1における基板2となる複数の基板部分2Aが2次元的に連なった集合基板である基板部材10が準備される。 As shown in FIG. 5, in the method for manufacturing the solid-state imaging device 1, first, a step of preparing a substrate (cavity substrate) is performed (S10). Specifically, as shown in FIG. 6A, a substrate member 10 is prepared, which is a collective substrate in which a plurality of substrate portions 2A, which serve as the substrate 2 in the solid-state imaging device 1, are two-dimensionally connected.
 基板部材10の表面側には、基板2において上段面部22をなす周壁部21となる部分が、格子状の突条部31として形成されている。これにより、各基板部分2Aには、凹部25が形成されている。基板2において上段面部22となる突条部31の上面31aにおける所定の部位には、複数のボンディングパッド11が形成されている。 On the front side of the substrate member 10, a portion of the substrate 2 that will become the peripheral wall portion 21 forming the upper surface portion 22 is formed as a lattice-shaped protrusion portion 31. As a result, a recess 25 is formed in each substrate portion 2A. A plurality of bonding pads 11 are formed at predetermined portions on the upper surface 31a of the protrusion portion 31 that forms the upper surface portion 22 of the substrate 2.
 例えば、基板部材10が、セラミック材料等により形成されたシート状の部材を積層した多層構造のセラミック基板である場合、次のような製法を用いることができる。積層される各シート状の部材に、凹部25を形成する部分として貫通状の開口部を形成した後、シート状の部材を積層することで、複数の凹部25を有する基板部材10が形成される。また、他の方法としては、シート状の部材を積層した状態において、凹部25となる部分をドリル等の加工装置により形成することで、凹部25を有する基板部材10が得られる。 For example, if the substrate member 10 is a ceramic substrate with a multilayer structure in which sheet-like members made of ceramic materials or the like are laminated, the following manufacturing method can be used. After forming a penetrating opening in each of the sheet-like members to be laminated as a portion for forming the recesses 25, the sheet-like members are laminated to form the substrate member 10 having a plurality of recesses 25. . In addition, as another method, the substrate member 10 having the recesses 25 can be obtained by forming the portions that will become the recesses 25 using a processing device such as a drill in a state in which sheet-like members are stacked.
 多層構造のセラミック基板としては、例えば、LTCC(Low Temperature Co-fired Ceramics)基板と言われる低温焼成積層セラミックス基板がある。なお、基板部材10が樹脂製のシート状部材を積層した多層構造の樹脂基板である場合、多層構造のセラミック基板の場合と同様の製法を用いることで、複数の凹部25を有する基板部材10を得ることができる。 Examples of multilayer ceramic substrates include low-temperature fired laminated ceramic substrates called LTCC (Low Temperature Co-fired Ceramics) substrates. In addition, when the substrate member 10 is a resin substrate with a multilayer structure in which resin sheet-like members are laminated, the substrate member 10 having a plurality of recesses 25 can be formed by using the same manufacturing method as in the case of a multilayer ceramic substrate. Obtainable.
 次に、図5に示すように、ダイボンドの工程が行われる(S20)。この工程では、図6Bに示すように、基板2上にイメージセンサ3を設ける工程が行われる。すなわち、基板部材10の各基板部分2Aに対し、イメージセンサ3をダイボンドするダイボンディングが行われる。イメージセンサ3は、凹部25内の表面2aにおける所定の実装部位に、絶縁性または導電性の樹脂ペースト等のダイボンド材9によって接着される。 Next, as shown in FIG. 5, a die bonding process is performed (S20). In this step, as shown in FIG. 6B, a step of providing the image sensor 3 on the substrate 2 is performed. That is, die bonding is performed to die bond the image sensor 3 to each substrate portion 2A of the substrate member 10. The image sensor 3 is bonded to a predetermined mounting portion on the surface 2a within the recess 25 using a die bonding material 9 such as an insulating or conductive resin paste.
 次に、図5に示すように、ワイヤボンドの工程が行われる(S30)。この工程では、図6Cに示すように、基板2とイメージセンサ3とを電気的に接続するワイヤ4を設ける工程が行われる。すなわち、ボンディングパッド11とイメージセンサ3の接続パッド15とをワイヤ4により結線して電気的に接続するワイヤボンディングが行われる。ワイヤボンディングとしては、例えば、ボンディングパッド11側を第1ボンド、接続パッド15側を第2ボンドとするリバースボンディングが行われる。 Next, as shown in FIG. 5, a wire bonding process is performed (S30). In this step, as shown in FIG. 6C, a step of providing a wire 4 for electrically connecting the substrate 2 and the image sensor 3 is performed. That is, wire bonding is performed in which the bonding pad 11 and the connection pad 15 of the image sensor 3 are electrically connected by connecting with the wire 4. As the wire bonding, for example, reverse bonding is performed in which the bonding pad 11 side is the first bond and the connection pad 15 side is the second bond.
 次に、図5に示すように、ガラス搭載の工程が行われる(S40)。この工程では、図6Dに示すように、イメージセンサ3上にリブ部6を介してガラス5を設ける工程が行われる。具体的には、まず、イメージセンサ3の表面3aにおける所定の部位に、リブ部6となる樹脂材料であるリブ樹脂がディスペンサ等によりイメージセンサ3の平面視外形に沿って矩形枠状に塗布される。ここで、リブ樹脂は、接続パッド15に対するワイヤ4の接続部を被覆するように塗布される。なお、リブ樹脂は、フォトリソグラフィを用いたパターニング等により形成されてもよい。 Next, as shown in FIG. 5, a glass mounting process is performed (S40). In this step, as shown in FIG. 6D, a step of providing glass 5 on image sensor 3 via rib portion 6 is performed. Specifically, first, rib resin, which is a resin material that will become the rib portion 6, is applied to a predetermined portion of the surface 3a of the image sensor 3 in a rectangular frame shape along the outer shape of the image sensor 3 in plan view using a dispenser or the like. Ru. Here, the rib resin is applied so as to cover the connection portion of the wire 4 to the connection pad 15. Note that the rib resin may be formed by patterning using photolithography or the like.
 次に、リブ樹脂上にガラス5を搭載する工程が行われる。ガラス5は、枠状に塗布されたリブ樹脂の上側の開口部を塞ぐようにイメージセンサ3上にマウントされる。その後、リブ樹脂を硬化する工程が行われる。リブ樹脂が熱硬化性を有するものである場合、リブ樹脂を硬化させるための加熱工程(キュア)が行われる。リブ樹脂が硬化することにより、イメージセンサ3上にリブ樹脂により形成されたリブ部6を介してガラス5が接着固定され、密閉空間であるキャビティ8が形成された状態となる。 Next, a step of mounting the glass 5 on the rib resin is performed. The glass 5 is mounted on the image sensor 3 so as to close the upper opening of the rib resin coated in a frame shape. After that, a step of curing the rib resin is performed. When the rib resin has thermosetting properties, a heating step (curing) is performed to harden the rib resin. As the rib resin hardens, the glass 5 is adhesively fixed on the image sensor 3 via the rib portion 6 formed of the rib resin, and a cavity 8, which is a sealed space, is formed.
 続いて、図5に示すように、封止樹脂部形成の工程が行われる(S50)。この工程では、図7Aに示すように、基板部材10上における各イメージセンサ3およびガラス5の周囲の部分、ならびにワイヤ4のリブ部6から外側への延出部分を被覆するように、固体撮像装置1において封止樹脂部7となる封止樹脂37が形成される。封止樹脂37は、所定の樹脂材料により、例えば、モールド樹脂部成形用の金型を用いた射出成形や、ディスペンサを用いたポッティング加工等によって所定の形状に形成される。 Subsequently, as shown in FIG. 5, a step of forming a sealing resin portion is performed (S50). In this step, as shown in FIG. 7A, the solid-state imaging is performed so as to cover the portions around each image sensor 3 and the glass 5 on the substrate member 10, as well as the portion of the wire 4 extending outward from the rib portion 6. In the device 1, a sealing resin 37 that becomes the sealing resin portion 7 is formed. The sealing resin 37 is formed from a predetermined resin material into a predetermined shape by, for example, injection molding using a mold for molding the resin portion, potting processing using a dispenser, or the like.
 そして、基板部材10の裏面側において半田ボールを形成するボールマウントの工程等が行われた後、図5に示すように、個片化の工程が行われる(S60)。この工程では、基板部材10および各基板部分2A上に設けられた構成を装置単位で分割して個片化するダイシングが行われる。具体的には、図7Bに示すように、基板部材10が基板部分2A毎に分かれるように、封止樹脂37の部分および基板部材10をダイシングブレード29により分断することにより、個片化が行われる。 After a ball mounting process for forming solder balls on the back side of the substrate member 10 is performed, a singulation process is performed as shown in FIG. 5 (S60). In this step, dicing is performed in which the structure provided on the substrate member 10 and each substrate portion 2A is divided into individual pieces by device. Specifically, as shown in FIG. 7B, the dicing blade 29 separates the sealing resin 37 and the substrate member 10 so that the substrate member 10 is separated into individual substrate portions 2A. be exposed.
 以上のような製造工程により、図7Cに示すように、複数の固体撮像装置1が得られる。なお、固体撮像装置1の製造方法としては、先に基板部材10を個片化することで複数の基板2を製造した後、基板2に対して上述したステップS20~S50のような各工程を行う方法を用いてもよい。 Through the manufacturing process described above, a plurality of solid-state imaging devices 1 are obtained, as shown in FIG. 7C. Note that the method for manufacturing the solid-state imaging device 1 includes first manufacturing a plurality of substrates 2 by cutting the substrate member 10 into pieces, and then subjecting the substrates 2 to each process such as steps S20 to S50 described above. You may also use the method of
 以上のような本実施形態に係る固体撮像装置1によれば、基板2とイメージセンサ3とを互いに電気的に接続するワイヤ4へのストレスを低減することができるとともに、パッケージの小型化を図ることができる。 According to the solid-state imaging device 1 according to the present embodiment as described above, stress on the wire 4 that electrically connects the substrate 2 and the image sensor 3 to each other can be reduced, and the package can be made smaller. be able to.
 固体撮像装置1は、基板2において、ワイヤ4の一端側の接続を受けるボンディングパッド11を配置した面部として、イメージセンサ3の固定面である表面2aに対して高い位置に設けられた上段面部22を有する。このような構成によれば、ワイヤ4の他端側の接続を受ける接続パッド15を配置したイメージセンサ3の表面3aと、基板2におけるボンディングパッド11の配設面との段差を小さくすることができる。これにより、例えばイメージセンサ3の反りの対策等のためにイメージセンサ3の厚さを大きくした場合であっても、ボンディングパッド11および接続パッド15の配設面間の段差が大きくなることを抑制することができるので、ワイヤ4に作用するストレスを低減することができる。 The solid-state imaging device 1 has an upper surface portion 22 provided on the substrate 2 at a higher position relative to the surface 2a, which is the fixed surface of the image sensor 3, as a surface portion on which the bonding pad 11 to which one end of the wire 4 is connected is arranged. has. According to this configuration, it is possible to reduce the level difference between the surface 3a of the image sensor 3 on which the connection pad 15 that receives the connection to the other end of the wire 4 is arranged and the surface of the substrate 2 on which the bonding pad 11 is disposed. can. As a result, even if the thickness of the image sensor 3 is increased to prevent warpage of the image sensor 3, for example, the difference in level between the surfaces on which the bonding pads 11 and the connection pads 15 are disposed can be suppressed from increasing. Therefore, the stress acting on the wire 4 can be reduced.
 例えば、図8に示すように、基板2においてイメージセンサ3の取付けを受ける表面2aと同一平面上にボンディングパッド11を配置した構成によれば、イメージセンサ3の厚さが大きくなった分、ボンディングパッド11の配設面と接続パッド15の配設面との高低差が大きくなる。このため、イメージセンサ3の厚さを大きくした場合、ワイヤ4へのストレスが大きくなる。特に、ワイヤ4のイメージセンサ3に対する接続部側のワイヤネック4eの部分へのストレスが大きくなる。ワイヤネック4eへのストレスの悪化は、ワイヤ4の断線等の不具合を生じさせる原因となり得る。 For example, as shown in FIG. 8, according to a configuration in which the bonding pad 11 is arranged on the same plane as the surface 2a on which the image sensor 3 is attached on the substrate 2, the bonding pad 11 is arranged on the same plane as the surface 2a on which the image sensor 3 is attached. The height difference between the surface on which the pads 11 are provided and the surface on which the connection pads 15 are provided becomes large. For this reason, when the thickness of the image sensor 3 is increased, stress on the wire 4 increases. In particular, the stress on the wire neck 4e on the side where the wire 4 connects to the image sensor 3 increases. Deterioration of stress on the wire neck 4e may cause problems such as wire breakage of the wire 4.
 そこで、上述のとおり基板2においてボンディングパッド11を配置した上段面部22を有することにより、ワイヤ4の両端側の接続部間の高低差を最小化することが可能となり、ワイヤ4へのストレス、特にワイヤネックへのストレスを低減することができる。なお、図8において、本実施形態に係る固体撮像装置1の各構成と対応する構成については同一の符号を付している。 Therefore, by providing the upper surface portion 22 on which the bonding pads 11 are arranged on the substrate 2 as described above, it is possible to minimize the difference in height between the connection portions on both ends of the wire 4, thereby reducing stress on the wire 4, especially Stress on the wire neck can be reduced. Note that in FIG. 8, the same reference numerals are given to the components corresponding to the respective components of the solid-state imaging device 1 according to the present embodiment.
 本実施形態では、基板2において、上段面部22は、イメージセンサ3の接続パッド15の高さ以下の高さに位置するように設けられている。このような構成によれば、ボンディングパッド11に対するワイヤ4の接続部を、接続パッド15に対するワイヤ4の接続部と同等の高さまたはそれより低い高さとすることができる。これにより、ワイヤ4に対するストレスを効果的に低減することができる。 In the present embodiment, the upper surface portion 22 of the substrate 2 is provided at a height that is equal to or lower than the height of the connection pad 15 of the image sensor 3. According to such a configuration, the connection portion of the wire 4 to the bonding pad 11 can be made to have a height equivalent to or lower than the connection portion of the wire 4 to the connection pad 15. Thereby, stress on the wire 4 can be effectively reduced.
 また、基板2において、上段面部22は、イメージセンサ3を配置した凹部25をなす四方の突縁部23の上面部として形成されている。このような構成によれば、四方の突縁部23を、イメージセンサ3の平面視外形から外側にはみ出して広がろうとするダイボンド材9に対するストッパとして作用させることができる。これにより、ダイボンド材9のフィレット9aを隙間28内に納めることができるので、パッケージの小型化を図ることができる。 Furthermore, in the substrate 2, the upper surface portion 22 is formed as the upper surface portion of the four projecting edges 23 forming the recess 25 in which the image sensor 3 is disposed. According to such a configuration, the four projecting edges 23 can act as stoppers for the die bonding material 9 that tends to protrude and spread outward from the outline of the image sensor 3 in plan view. Thereby, the fillet 9a of the die-bonding material 9 can be accommodated within the gap 28, so that the package can be made smaller.
 すなわち、図8に示す構成によれば、ダイボンド材9のイメージセンサ3の平面視外形から外側へのはみ出し部分9bによりボンディングパッド11が汚染されることを防ぐ観点から、イメージセンサ3の側面3cとボンディングパッド11との間の距離E1を確保する必要がある。このことは、基板2のサイズを大きくし、パッケージの小型化を妨げる要因となる。 That is, according to the configuration shown in FIG. 8, from the viewpoint of preventing the bonding pad 11 from being contaminated by the protruding portion 9b of the die bonding material 9 from the outer shape of the image sensor 3 in plan view, the side surface 3c of the image sensor 3 and It is necessary to ensure a distance E1 between the bonding pad 11 and the bonding pad 11. This increases the size of the substrate 2 and becomes a factor that prevents miniaturization of the package.
 この点、上述のとおり基板2において上段面部22をなす突縁部23を有することにより、ダイボンド材9の外側へのはみ出しを規制することができ、ダイボンド材9のフィレット幅を低減することができる。これにより、ダイボンド材9のはみ出し部分による汚染を避けるためにイメージセンサ3からボンディングパッド11までの距離を確保することが不要となり、パッケージの小型化を図ることができる。具体的には、本実施形態に係る固体撮像装置1によれば、図8に示す構成との比較において、イメージセンサ3とボンディングパッド11との間の距離を例えば300~400μm程度短くすることが可能となる。 In this regard, as described above, by having the protruding edge portion 23 forming the upper surface portion 22 on the substrate 2, it is possible to restrict the protrusion of the die bonding material 9 to the outside, and it is possible to reduce the fillet width of the die bonding material 9. . This eliminates the need to ensure a distance from the image sensor 3 to the bonding pad 11 in order to avoid contamination due to the protruding portion of the die bonding material 9, and the package can be made smaller. Specifically, according to the solid-state imaging device 1 according to the present embodiment, the distance between the image sensor 3 and the bonding pad 11 can be reduced by about 300 to 400 μm, for example, in comparison with the configuration shown in FIG. It becomes possible.
 また、図8に示す構成によれば、ボンディングパッド11と接続パッド15の高低差が大きくなることから、例えばワイヤ4のボンディングとしてリバースボンディングが行われる場合、ワイヤ4の配線形状について所定の形態を得るため、ボンディングパッド11をイメージセンサ3からある程度の距離を隔てた位置に設ける必要がある。このため、基板2の外周側においてボンディングパッド11の配設部位を確保する観点から、パッケージの小型化が難しいという問題がある。また、リバースボンディングが行われる場合、製造プロセスにおいて集合基板上に隣接する部品にワイヤ4が接触しないように、設計クリアランスの観点から基板2におけるイメージセンサ3の外側にある程度のマージンを確保する必要があることからも、パッケージの小型化が難しい。 Further, according to the configuration shown in FIG. 8, since the difference in height between the bonding pad 11 and the connection pad 15 is large, when reverse bonding is performed as the bonding of the wire 4, for example, the wiring shape of the wire 4 must be formed in a predetermined form. In order to obtain this, it is necessary to provide the bonding pad 11 at a position separated from the image sensor 3 by a certain distance. For this reason, there is a problem in that it is difficult to miniaturize the package from the viewpoint of securing a location for the bonding pad 11 on the outer peripheral side of the substrate 2. In addition, when reverse bonding is performed, it is necessary to secure a certain amount of margin outside the image sensor 3 on the board 2 from the viewpoint of design clearance so that the wire 4 does not come into contact with adjacent components on the collective board during the manufacturing process. For this reason, it is difficult to miniaturize the package.
 そこで、上述のとおり基板2においてボンディングパッド11を配置した上段面部22を有する構成によれば、ボンディングパッド11と接続パッド15の高低差を小さくすることができる。これにより、ワイヤ4の配線形状について所定の形態を得るために必要とされる基板2の面積、つまりイメージセンサ3に対するボンディングパッド11の距離を小さくすることができ、パッケージの小型化を図ることができる。また、リバースボンディングが行われる場合においても、ワイヤ4が集合基板上の部品に干渉することを抑制することができる。 Therefore, according to the configuration in which the substrate 2 has the upper surface portion 22 on which the bonding pads 11 are arranged as described above, the height difference between the bonding pads 11 and the connection pads 15 can be reduced. As a result, the area of the substrate 2 required to obtain a predetermined wiring shape of the wire 4, that is, the distance of the bonding pad 11 to the image sensor 3, can be reduced, and the package can be made smaller. can. Furthermore, even when reverse bonding is performed, it is possible to prevent the wire 4 from interfering with the components on the collective board.
 また、ボンディングパッド11を配置した上段面部22を設けた構成によれば、ボンディングパッド11をイメージセンサ3に近付けることができることから、例えば図8に示す構成との比較において、ワイヤ4の長さを短くすることができる。これにより、ワイヤ4の接続構成についての信頼性を向上することができる。 Further, according to the configuration in which the upper surface portion 22 on which the bonding pad 11 is arranged, the bonding pad 11 can be brought closer to the image sensor 3, so that the length of the wire 4 can be reduced in comparison with the configuration shown in FIG. 8, for example. Can be shortened. Thereby, the reliability of the connection configuration of the wires 4 can be improved.
 また、ワイヤ4の短縮化により、ワイヤ4による電気抵抗を小さくすることができるので、基板2とイメージセンサ3との間の信号の伝送について伝送の高速化を図ることができる。さらに、ワイヤ4の短縮化により、例えば基板2の突縁部23内にMLCC(Multi-Layer Ceramic Capacitor 積層セラミックキャパシタ)を埋め込んだ構成においては、配線間距離を短くすることができるので、固体撮像装置1が生じる電気的なノイズの抑制といったデカップリングの作用を効果的に得ることができる。 Furthermore, by shortening the wire 4, the electrical resistance caused by the wire 4 can be reduced, so that it is possible to increase the speed of signal transmission between the substrate 2 and the image sensor 3. Furthermore, by shortening the wire 4, the distance between the wires can be shortened, for example, in a configuration in which an MLCC (Multi-Layer Ceramic Capacitor) is embedded in the protrusion 23 of the substrate 2, so solid-state imaging A decoupling effect such as suppression of electrical noise generated by the device 1 can be effectively obtained.
 また、基板2においてボンディングパッド11を配置した上段面部22を有する構成によれば、例えば図8に示す構成との比較において、基板2の外周側の部分を狭小化することができるため、封止樹脂部7をなす樹脂量を少なくすることができる。これにより、温度変化等にともなって封止樹脂部7が伸縮することによりガラス5に作用する応力(側面応力)を低減することができ、ガラス5のクラックが生じるリスクを低減することができる。また、ガラス5に作用する応力が低減することから、ガラス5に対するリブ部6の剥離を抑制することができる。 Further, according to the configuration in which the substrate 2 has the upper surface portion 22 on which the bonding pads 11 are arranged, the outer peripheral side portion of the substrate 2 can be narrowed compared to the configuration shown in FIG. 8, for example, so that the sealing The amount of resin forming the resin portion 7 can be reduced. Thereby, the stress (side stress) acting on the glass 5 due to expansion and contraction of the sealing resin portion 7 due to temperature changes etc. can be reduced, and the risk of cracks occurring in the glass 5 can be reduced. Furthermore, since the stress acting on the glass 5 is reduced, peeling of the rib portion 6 from the glass 5 can be suppressed.
 特に、本実施形態では、封止樹脂部7は、ガラス5の側面5cにおいて露出面部5eが生じるように形成されている。このような構成によれば、封止樹脂部7からガラス5に作用する応力を効果的に低減することができ、ガラス5のクラックやリブ部6の剥離を効果的に抑制することができる。 In particular, in this embodiment, the sealing resin portion 7 is formed so that an exposed surface portion 5e is formed on the side surface 5c of the glass 5. According to such a configuration, the stress acting on the glass 5 from the sealing resin portion 7 can be effectively reduced, and cracks in the glass 5 and peeling of the rib portion 6 can be effectively suppressed.
 以上のように、本実施形態に係る固体撮像装置1によれば、パッケージサイズの小型化、ワイヤ4に対する応力の低減、およびガラス5に対する応力の低減を達成することができる。 As described above, according to the solid-state imaging device 1 according to the present embodiment, it is possible to reduce the package size, reduce the stress on the wire 4, and reduce the stress on the glass 5.
 また、基板2において上段面部22を有することで、封止樹脂部7をなす樹脂量を少なくすることができることから、例えば図8に示す構成との比較において、ワイヤ4付近の熱伝導の部材としての封止樹脂部7の一部を、銅等により形成されたボンディングパッド11や配線部を含む基板2の突縁部23に置き換えることができる。これにより、突縁部23が放熱部として作用し、固体撮像装置1の放熱性を向上させることができる。 Further, by having the upper surface part 22 in the substrate 2, the amount of resin forming the sealing resin part 7 can be reduced, so that it can be used as a heat conductive member near the wire 4 in comparison with the structure shown in FIG. 8, for example. A part of the sealing resin part 7 can be replaced with a protruding edge part 23 of the substrate 2 including a bonding pad 11 and a wiring part made of copper or the like. Thereby, the projecting edge portion 23 acts as a heat dissipation portion, and the heat dissipation performance of the solid-state imaging device 1 can be improved.
 また、本実施形態に係る固体撮像装置1においては、リブ部6は、イメージセンサ3の接続パッド15に対するワイヤ4の接続部上に設けられている。このような構成によれば、例えば、ワイヤ4の接続パッド15に対する接続部の内側にリブ部6を設けた構成との比較において、イメージセンサ3の表面3a上のスペースを有効に利用することができ、パッケージのコンパクト化を図ることができる。 Furthermore, in the solid-state imaging device 1 according to the present embodiment, the rib portion 6 is provided on the connection portion of the wire 4 to the connection pad 15 of the image sensor 3. According to such a configuration, for example, the space on the surface 3a of the image sensor 3 can be used effectively compared to a configuration in which the rib portion 6 is provided inside the connection portion of the wire 4 to the connection pad 15. This allows the package to be made more compact.
 また、基板2において上段面部22をなす突縁部23を有する構成によれば、突縁部23により基板2の周縁部の厚さが部分的に厚くなり、補強作用を得ることができる。これにより、基板2の剛性を向上させることができるので、基板2の反りを低減することができる。結果として、基板2に実装されたイメージセンサ3の画素面の反りやパッケージ全体の反りを低減することができ、固体撮像装置1の性能について高い信頼性を得ることができる。 Furthermore, according to the configuration in which the substrate 2 has the protruding edge portion 23 forming the upper surface portion 22, the circumferential edge portion of the substrate 2 is partially thickened by the protruding edge portion 23, and a reinforcing effect can be obtained. Thereby, the rigidity of the substrate 2 can be improved, so that warpage of the substrate 2 can be reduced. As a result, warpage of the pixel surface of the image sensor 3 mounted on the substrate 2 and warpage of the entire package can be reduced, and high reliability in the performance of the solid-state imaging device 1 can be obtained.
 <3.第1実施形態に係る固体撮像装置の変形例>
 本技術の第1実施形態に係る固体撮像装置1の変形例について説明する。図9に示すように、この変形例では、イメージセンサ3とガラス5との間に介在するリブ部6が、イメージセンサ3の表面3aにおける接続パッド15の形成領域よりも内側(内周側)に設けられている。つまり、リブ部6が、外側面6cを接続パッド15よりも内側に位置させるように形成されている。
<3. Modification of the solid-state imaging device according to the first embodiment>
A modification of the solid-state imaging device 1 according to the first embodiment of the present technology will be described. As shown in FIG. 9, in this modification, the rib portion 6 interposed between the image sensor 3 and the glass 5 is located inside (on the inner peripheral side) of the area where the connection pad 15 is formed on the surface 3a of the image sensor 3. It is set in. In other words, the rib portion 6 is formed so that the outer surface 6c is located inside the connection pad 15.
 このような構成においては、複数の接続パッド15は、イメージセンサ3の表面3aにおいて、リブ部6の外側の領域に位置する。また、封止樹脂部7は、ワイヤ4の全体、基板2およびイメージセンサ3それぞれに対するワイヤ4の接続部、並びにボンディングパッド11および接続パッド15を被覆するように形成される。 In such a configuration, the plurality of connection pads 15 are located in an area outside the rib portion 6 on the surface 3a of the image sensor 3. Further, the sealing resin portion 7 is formed to cover the entire wire 4 , the connection portions of the wire 4 to each of the substrate 2 and the image sensor 3 , and the bonding pad 11 and the connection pad 15 .
 この変形例の構成のように、イメージセンサ3の表面3a上におけるリブ部6の形成部位は、接続パッド15より内側の領域であってもよい。このような構成によれば、例えば、ワイヤボンディングとして接続パッド15側を第1ボンド、ボンディングパッド11側を第2ボンドとする通常のボンディングを比較的容易に行うことができる。なお、イメージセンサ3の表面3a上におけるリブ部6の形成部位は、例えば、接続パッド15の形成領域よりも外側(外周側)の領域であってもよい。 As in the configuration of this modification, the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be an area inside the connection pad 15. According to such a configuration, for example, normal wire bonding in which the connection pad 15 side is the first bond and the bonding pad 11 side is the second bond can be performed relatively easily. Note that the region where the rib portion 6 is formed on the surface 3a of the image sensor 3 may be, for example, an area outside (on the outer peripheral side) of the area where the connection pad 15 is formed.
 <4.第2実施形態に係る固体撮像装置の構成例>
 本技術の第2実施形態に係る固体撮像装置50の構成例について、図10を参照して説明する。以下に説明する各実施形態では、第1実施形態と共通のまたは対応する構成については同一の名称または同一の符号を用い、重複する内容についての説明を適宜省略する。
<4. Configuration example of solid-state imaging device according to second embodiment>
A configuration example of a solid-state imaging device 50 according to a second embodiment of the present technology will be described with reference to FIG. 10. In each embodiment described below, the same name or the same reference numeral will be used for the same or corresponding configuration as in the first embodiment, and the explanation of the overlapping content will be omitted as appropriate.
 図10に示すように、本実施形態に係る固体撮像装置50は、基板2の凹部25を形成する四方の内側面26を、外側から内側にかけて下る傾斜面としている。すなわち、基板2が段差面部として有する内側面26は、上下方向について表面2a側(下側)から上段面部22側(上側)にかけて徐々にイメージセンサ3との間の間隔を広げる向きに傾斜した傾斜面をなしている。 As shown in FIG. 10, in the solid-state imaging device 50 according to this embodiment, the four inner surfaces 26 forming the recess 25 of the substrate 2 are sloped surfaces that descend from the outside to the inside. That is, the inner surface 26 that the substrate 2 has as a step surface is inclined in the vertical direction from the surface 2a side (lower side) to the upper step surface section 22 side (upper side) so that the distance between the inner surface 26 and the image sensor 3 is gradually widened. making a face.
 言い換えると、内側面26は、表面2aに対して垂直状の面であるイメージセンサ3の側面3cとの間の隙間28の大きさ(図2、寸法D1参照)を、下側から上側にかけて徐々に広くする向きに傾斜した傾斜面となっている。このような構成によれば、表面2aと四方の内側面26により形成される凹部25は、逆四角錐台形状に沿う空間部をなす部分となる。すなわち、平面視で矩形状の開口形状を有する凹部25は、平面断面における開口面積を下側から上側にかけて徐々に大きくしている。 In other words, the inner surface 26 gradually increases the size of the gap 28 (see FIG. 2, dimension D1) between the inner surface 26 and the side surface 3c of the image sensor 3, which is a surface perpendicular to the surface 2a, from the lower side to the upper side. The slope is slanted in the direction of widening. According to such a configuration, the recess 25 formed by the surface 2a and the four inner surfaces 26 becomes a part forming a space along the shape of an inverted quadrangular truncated pyramid. That is, the recess 25 having a rectangular opening shape in plan view has an opening area in a planar cross section that gradually increases from the bottom to the top.
 このように内側面26を傾斜面とした構成においては、突縁部23は台形状に沿った横断面形状をなす。図10に示す例では、上下方向に沿う鉛直面F1に対する内側面26の傾斜角度α1は、約15°である。ただし、傾斜角度α1の大きさは限定されるものではない。 In this configuration where the inner surface 26 is an inclined surface, the protruding edge portion 23 has a trapezoidal cross-sectional shape. In the example shown in FIG. 10, the inclination angle α1 of the inner surface 26 with respect to the vertical plane F1 along the up-down direction is about 15°. However, the magnitude of the inclination angle α1 is not limited.
 また、本実施形態では、内側面26に、各ワイヤ4の一端側の接続を受ける複数のボンディングパッド11が形成されている。つまり、ボンディングパッド11は、内側面26に臨んで露出した状態となるように形成されている。したがって、本実施形態では、基板2は、イメージセンサ3の取付けを受ける第1面部としての表面2aと、上下方向について表面2aに対して上側に位置し、ワイヤ4の接続を受けるボンディングパッド11を配置した第2面部としての内側面26とを有する。 Furthermore, in this embodiment, a plurality of bonding pads 11 are formed on the inner surface 26 to receive connection to one end of each wire 4. That is, the bonding pad 11 is formed so as to face the inner surface 26 and be exposed. Therefore, in the present embodiment, the substrate 2 has a surface 2a as a first surface portion to which the image sensor 3 is attached, and a bonding pad 11 which is located above the surface 2a in the vertical direction and receives the connection of the wire 4. It has an inner surface 26 as a second surface portion.
 本実施形態に係る固体撮像装置50において、上段面部22は、イメージセンサ3の接続パッド15の高さ位置よりも上方の高さに位置しており、内側面26の上部に、ボンディングパッド11が設けられている。また、ボンディングパッド11は、その上端を接続パッド15の高さ位置よりも上方に位置させるとともに、下端を接続パッド15の高さ位置よりも下方に位置させている。つまり、上下方向について、ボンディングパッド11の形成範囲内に、接続パッド15が位置している。なお、上段面部22は、接続パッド15の高さ位置以下の高さに位置してもよい。 In the solid-state imaging device 50 according to the present embodiment, the upper surface portion 22 is located at a height above the height position of the connection pad 15 of the image sensor 3, and the bonding pad 11 is located at the upper part of the inner surface 26. It is provided. Further, the bonding pad 11 has its upper end located above the height position of the connection pad 15 and its lower end located below the height position of the connection pad 15. That is, the connection pad 15 is located within the formation range of the bonding pad 11 in the vertical direction. Note that the upper stage surface portion 22 may be located at a height that is equal to or lower than the height of the connection pad 15.
 基板2において傾斜状の内側面26にボンディングパッド11を配置させた構成において、ワイヤ4は、ボンディングパッド11に対する接合部4bからワイヤ本体部4aを内側に向けて横方向に延ばし、ワイヤ本体部4aにおいてなだらかな山形状をなして接合部4cを接続パッド15に接続させている。ワイヤ4は、その全体をガラス5の裏面5bよりも下方に位置させるように設けられている。 In the configuration in which the bonding pad 11 is disposed on the inclined inner surface 26 of the substrate 2, the wire 4 extends laterally from the joint 4b to the bonding pad 11 with the wire main body 4a facing inward, and the wire main body 4a The joint portion 4c is connected to the connection pad 15 in a gentle mountain shape. The wire 4 is provided so that the entire wire 4 is located below the back surface 5b of the glass 5.
 本実施形態に係る固体撮像装置50においては、基板2において凹部25をなす内側面26が外側から内側にかけて下り傾斜した傾斜面として形成されている。このような構成によれば、イメージセンサ3と各突縁部23との間の隙間28の大きさを、下側から上側にかけて徐々に広げることができる。これにより、隙間28の下部を埋めるようにフィレット9aを形成するダイボンド材9について、ダイボンド材9をなす樹脂量をコントロールしやすくすることができる。すなわち、内側面26を傾斜面とした構成によれば、隙間28の大きさが下側から上側にかけて大きくなるため、隙間28の空間の容積が確保しやすくなり、フィレット9aをなす樹脂量の許容量を増やすことができるので、樹脂量のコントロールが容易となる。 In the solid-state imaging device 50 according to the present embodiment, the inner surface 26 forming the recess 25 in the substrate 2 is formed as an inclined surface that slopes downward from the outside to the inside. According to such a configuration, the size of the gap 28 between the image sensor 3 and each of the projecting edges 23 can be gradually widened from the lower side to the upper side. Thereby, regarding the die bonding material 9 forming the fillet 9a so as to fill the lower part of the gap 28, the amount of resin forming the die bonding material 9 can be easily controlled. That is, according to the configuration in which the inner surface 26 is an inclined surface, the size of the gap 28 increases from the bottom to the top, making it easier to secure the volume of the space in the gap 28, and reducing the allowable amount of resin forming the fillet 9a. Since the capacity can be increased, the amount of resin can be easily controlled.
 また、本実施形態に係る固体撮像装置50においては、突縁部23の内側面26に、ワイヤ4の接続を受けるボンディングパッド11が設けられている。このような構成によれば、例えば上段面部22にボンディングパッド11を設けた構成と比べて、ボンディングパッド11をイメージセンサ3に近付けやすくすることができる。これにより、ワイヤ4の長さを短くすることができ、ワイヤ4の接続構成についての信頼性の向上、およびワイヤ4による信号伝送の高速化を図ることができる。 Furthermore, in the solid-state imaging device 50 according to the present embodiment, the bonding pad 11 to which the wire 4 is connected is provided on the inner surface 26 of the protrusion 23 . According to such a configuration, the bonding pad 11 can be brought closer to the image sensor 3 more easily than, for example, a configuration in which the bonding pad 11 is provided on the upper surface portion 22. Thereby, the length of the wire 4 can be shortened, the reliability of the connection configuration of the wire 4 can be improved, and the speed of signal transmission by the wire 4 can be increased.
 <5.第3実施形態に係る固体撮像装置の構成例>
 本技術の第3実施形態に係る固体撮像装置60の構成例について、図11および図12を参照して説明する。本実施形態に係る固体撮像装置60は、基板2において上段面部22を形成する部分が基板本体部20をなす部材とは異なる部材により形成されている点で、上述した実施形態と異なる。
<5. Configuration example of solid-state imaging device according to third embodiment>
A configuration example of a solid-state imaging device 60 according to a third embodiment of the present technology will be described with reference to FIGS. 11 and 12. The solid-state imaging device 60 according to this embodiment differs from the above-described embodiments in that the portion of the substrate 2 that forms the upper surface portion 22 is formed of a member different from the member that forms the substrate body portion 20.
 図11および図12に示すように、固体撮像装置60において、ボンディングパッド11を配置させる上段面部22は、表面2aを形成する部材とは異なる部材であるフレーム62により形成されている。つまり、基板2は、上側の面を表面2aとする基板本体部20をなす部材である矩形板状の本体基板61と、本体基板61上に設けられた矩形枠状のフレーム62とにより構成されている。フレーム62により、四方の突縁部23をなす周壁部21が構成されている。 As shown in FIGS. 11 and 12, in the solid-state imaging device 60, the upper surface section 22 on which the bonding pad 11 is arranged is formed of a frame 62, which is a different member from the member forming the surface 2a. That is, the board 2 is composed of a rectangular plate-shaped main board 61, which is a member forming the board main body 20 with the upper surface as the surface 2a, and a rectangular frame-shaped frame 62 provided on the main board 61. ing. The frame 62 constitutes a peripheral wall portion 21 that forms projecting edges 23 on all sides.
 フレーム62は、本体基板61上においてイメージセンサ3を囲むように設けられた枠状の部分をなし、本体基板61上に周壁部21を構成している。フレーム62は、本体基板61の平面視形状に対応して平面視で矩形状(正方形状を含む)をなすように四方の直線状の辺部63を有し、これらの辺部63により枠状に構成されている。各辺部63は、矩形状の横断面形状を有する。辺部63の内側(内周側)の面により突縁部23の内側面26が形成され、辺部63の外側(外周側)の面により突縁部23の外側面27が形成されている。 The frame 62 forms a frame-shaped portion provided on the main body substrate 61 so as to surround the image sensor 3, and constitutes the peripheral wall portion 21 on the main body substrate 61. The frame 62 has four linear sides 63 so as to form a rectangular shape (including a square shape) in a plan view corresponding to the shape of the main body substrate 61 in a plan view, and these sides 63 form a frame shape. It is composed of Each side portion 63 has a rectangular cross-sectional shape. The inner surface 26 of the projecting edge 23 is formed by the inner side (inner peripheral side) of the side 63, and the outer surface 27 of the projecting edge 23 is formed by the outer (outer peripheral) surface of the side 63. .
 各辺部63の上側の面により、ボンディングパッド11を配置した上段面部22が形成されている。また、フレーム62は、上段面部22をなす面の反対側の面である下面64を有する。 The upper surface of each side portion 63 forms an upper surface portion 22 on which the bonding pad 11 is arranged. Further, the frame 62 has a lower surface 64 that is a surface opposite to the surface forming the upper stage section 22 .
 本体基板61上にフレーム62を設けた構成により、イメージセンサ3を配置させる凹部25が形成されている。凹部25は、本体基板61の上側の面により形成された表面2aと、フレーム62の四方の辺部63の内側の面により形成された内側面26とにより形成されている。 The configuration in which the frame 62 is provided on the main body substrate 61 forms a recess 25 in which the image sensor 3 is placed. The recess 25 is formed by a surface 2 a formed by the upper surface of the main body substrate 61 and an inner surface 26 formed by the inner surfaces of the four sides 63 of the frame 62 .
 フレーム62は、例えばアルミナ(Al)や窒化アルミニウム(AlN)窒化ケイ素(Si)等のセラミックスを基材として形成されたセラミックフレームである。フレーム62は、金属材料により配線層や電極や所定の回路パターンが形成された回路フレームである。なお、フレーム62は、例えば繊維強化プラスチックの一種であるガラスエポキシ樹脂等の有機材料を基材としたものやガラスを用いたもの等であってもよい。 The frame 62 is a ceramic frame made of ceramics such as alumina (Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ) as a base material. The frame 62 is a circuit frame in which a wiring layer, electrodes, and a predetermined circuit pattern are formed using a metal material. Note that the frame 62 may be made of, for example, an organic material such as glass epoxy resin, which is a type of fiber-reinforced plastic, or glass.
 フレーム62の上面に、複数のボンディングパッド11が形成されている。複数のボンディングパッド11は、フレーム62内に形成された所定の配線部を介して、フレーム62の下面64側に形成された複数の端子電極に電気的に接続されている。各端子電極には、接続端子として半田ボール65が設けられている。半田ボール65は、例えば2次元的に格子点状の配置で形成されている。 A plurality of bonding pads 11 are formed on the upper surface of the frame 62. The plurality of bonding pads 11 are electrically connected to a plurality of terminal electrodes formed on the lower surface 64 side of the frame 62 via predetermined wiring portions formed within the frame 62. Each terminal electrode is provided with a solder ball 65 as a connection terminal. The solder balls 65 are formed, for example, in a two-dimensional lattice-like arrangement.
 フレーム62は、半田ボール65群により、本体基板61に対してリフロー実装されることで固定されている。フレーム62の下面64に形成された各端子電極が、半田ボール65を介して、本体基板61の上面に臨んで露出するように形成された電極部に対して電気的に接続されている。 The frame 62 is fixed to the main body board 61 by reflow mounting with a group of solder balls 65. Each terminal electrode formed on the lower surface 64 of the frame 62 is electrically connected via a solder ball 65 to an electrode portion formed so as to face and be exposed on the upper surface of the main body substrate 61.
 本体基板61とフレーム62の間には、複数の半田ボール65を被覆するアンダーフィル部66が設けられている。アンダーフィル部66は、隣り合う半田ボール65間の隙間を埋めるように形成されており、本体基板61とフレーム62との隙間を封止している。 An underfill portion 66 that covers the plurality of solder balls 65 is provided between the main substrate 61 and the frame 62. The underfill portion 66 is formed to fill the gap between adjacent solder balls 65, and seals the gap between the main body substrate 61 and the frame 62.
 図12に示す例では、アンダーフィル部66は、本体基板61とフレーム62との間に介在する複数の半田ボール65を内包するように形成されている。つまり、アンダーフィル部66は、半田ボール65群の配置領域の内側に位置する内側面部66aと、同領域の外側に位置する外側面部66bとを有する。アンダーフィル部66の内側面部66aは、ダイボンド材9のフィレット9aとの界面をなしている。アンダーフィル部66の外側面部66bは、側面2c等とともに基板2の側面部を形成している。 In the example shown in FIG. 12, the underfill portion 66 is formed to enclose a plurality of solder balls 65 interposed between the main body substrate 61 and the frame 62. That is, the underfill portion 66 has an inner side surface portion 66a located inside the area where the solder balls 65 group is arranged, and an outer side surface portion 66b located outside the same area. The inner surface portion 66a of the underfill portion 66 forms an interface with the fillet 9a of the die bonding material 9. The outer side surface portion 66b of the underfill portion 66 forms the side surface portion of the substrate 2 together with the side surface 2c and the like.
 アンダーフィル部66は、ペースト状または液状の樹脂が硬化することで形成された液状硬化性樹脂部分である。アンダーフィル部66は、例えば、比較的粘度が低い液状の樹脂を、毛細管現象を用いて流動させて形成されたキャピラリーフロータイプのもの(キャピラリーアンダーフィル)である。アンダーフィル部66の材料としては、例えば、エポキシ系樹脂等の熱硬化性樹脂や、熱硬化性樹脂にケイ素酸化物を主成分としたフィラーを分散させたもの等が用いられる。 The underfill portion 66 is a liquid curable resin portion formed by curing paste or liquid resin. The underfill portion 66 is, for example, a capillary flow type (capillary underfill) formed by flowing a liquid resin with relatively low viscosity using capillary phenomenon. As the material for the underfill portion 66, for example, a thermosetting resin such as an epoxy resin, or a thermosetting resin in which a filler containing silicon oxide as a main component is dispersed is used.
 <6.第3実施形態に係る固体撮像装置の製造方法>
 本技術の第3実施形態に係る固体撮像装置60の製造方法の一例について、図13から図15を参照して説明する。
<6. Manufacturing method of solid-state imaging device according to third embodiment>
An example of a method for manufacturing a solid-state imaging device 60 according to a third embodiment of the present technology will be described with reference to FIGS. 13 to 15.
 図13に示すように、固体撮像装置60の製造方法においては、まず、基板(通常基板)の準備の工程が行われる(S110)。具体的には、図14Aに示すように、固体撮像装置60において基板本体部20をなす本体基板61となる複数の基板部分61Aが2次元的に連なった集合基板である基板部材70が準備される。 As shown in FIG. 13, in the method for manufacturing the solid-state imaging device 60, first, a step of preparing a substrate (normal substrate) is performed (S110). Specifically, as shown in FIG. 14A, a substrate member 70 is prepared, which is a collective substrate in which a plurality of substrate parts 61A, which become the main body substrate 61 forming the substrate main body 20 in the solid-state imaging device 60, are two-dimensionally connected. Ru.
 次に、図13に示すように、フレーム接合の工程が行われる(S120)。この工程では、図14Bに示すように、固体撮像装置60において周壁部21をなすフレーム62となる複数のフレーム部分62Aが2次元的に連なったフレーム部材72が、半田ボール65群により、基板部材70の表面70aに対してリフロー実装される。フレーム部材72の上面72aにおける所定の部位には、複数のボンディングパッド11が形成されている。 Next, as shown in FIG. 13, a frame joining process is performed (S120). In this step, as shown in FIG. 14B, a frame member 72 in which a plurality of frame portions 62A, which become the frame 62 forming the peripheral wall portion 21 of the solid-state imaging device 60 are two-dimensionally connected, is bonded to a substrate member by a group of solder balls 65. Reflow mounting is performed on the surface 70a of 70. A plurality of bonding pads 11 are formed at predetermined locations on the upper surface 72a of the frame member 72.
 次に、図13に示すように、アンダーフィル部形成の工程が行われる(S130)。この工程では、図14Cに示すように、基板部材70とフレーム部材72との間における半田ボール65による接合部に対して、アンダーフィル部66が形成される。 Next, as shown in FIG. 13, a step of forming an underfill portion is performed (S130). In this step, as shown in FIG. 14C, an underfill portion 66 is formed at the joint between the substrate member 70 and the frame member 72 by the solder balls 65.
 具体的には、アンダーフィル部66となる液状の樹脂材料(例えば、熱硬化性樹脂)が、例えば、ディスペンサのノズルから吐出されながら、基板部材70とフレーム部材72との間の隙間に供給される。液状の樹脂材料は、毛細管現象により基板部材70とフレーム部材72との間の隙間に浸透する態様で流入し、複数の半田ボール65の間の隙間を埋めるように拡散する。その後、樹脂材料をベーキング等により硬化させることで、アンダーフィル部66が形成される。アンダーフィル部66が形成されることにより、各基板部分61A上において凹部25が形成された状態となる。 Specifically, a liquid resin material (e.g., thermosetting resin) that will become the underfill portion 66 is supplied to the gap between the substrate member 70 and the frame member 72 while being discharged from, for example, a nozzle of a dispenser. Ru. The liquid resin material flows into the gap between the substrate member 70 and the frame member 72 due to capillary action, and diffuses to fill the gap between the plurality of solder balls 65. Thereafter, the underfill portion 66 is formed by hardening the resin material by baking or the like. By forming the underfill portion 66, a recess 25 is formed on each substrate portion 61A.
 その後、図13に示すように、第1実施形態に係る固体撮像装置1の製造方法と同様に、基板部材70上にイメージセンサ3を設けるダイボンドの工程(S140)、ボンディングパッド11と接続パッド15をワイヤ4により接続するワイヤボンドの工程(S150)、イメージセンサ3上にリブ部6を介してガラス5を設けるガラス搭載の工程(S160)、および封止樹脂部7を形成する工程(S170)の各工程が順に行われる。これにより、図15Aに示すように、固体撮像装置60となる構成が2次元的に連なった構成が得られる。 Thereafter, as shown in FIG. 13, similarly to the manufacturing method of the solid-state imaging device 1 according to the first embodiment, a die bonding step (S140) in which the image sensor 3 is provided on the substrate member 70, and the bonding pad 11 and the connection pad 15 are a wire bonding process (S150) to connect the images with the wire 4, a glass mounting process (S160) in which the glass 5 is provided on the image sensor 3 via the rib part 6, and a process of forming the sealing resin part 7 (S170). Each step is performed in order. As a result, as shown in FIG. 15A, a configuration in which the configuration of the solid-state imaging device 60 is two-dimensionally connected is obtained.
 そして、基板部材70の裏面側において半田ボールを形成するボールマウントの工程等が行われた後、図13に示すように、個片化の工程が行われる(S180)。この工程では、基板部材70および各基板部分61A上に設けられた構成を装置単位で分割して個片化するダイシングが行われる。具体的には、図15Bに示すように、基板部材70が基板部分61A毎に分かれるように、封止樹脂37の部分、フレーム部材72および基板部材70をダイシングブレード79により分断することにより、個片化が行われる。 After a ball mounting process for forming solder balls on the back side of the substrate member 70 is performed, a singulation process is performed as shown in FIG. 13 (S180). In this step, dicing is performed in which the structure provided on the substrate member 70 and each substrate portion 61A is divided into individual pieces by device. Specifically, as shown in FIG. 15B, the sealing resin 37 portion, the frame member 72, and the substrate member 70 are separated by a dicing blade 79 so that the substrate member 70 is separated into individual substrate portions 61A. Fragmentation is performed.
 以上のような製造工程により、図15Cに示すように、複数の固体撮像装置60が得られる。なお、固体撮像装置60の製造方法としては、先に基板部材70上にフレーム部材72を設けた構成を個片化することで本体基板61およびフレーム62により構成された基板2を製造した後、基板2に対して上述したステップS140~S170のような各工程を行う方法を用いてもよい。 Through the manufacturing process described above, a plurality of solid-state imaging devices 60 are obtained, as shown in FIG. 15C. Note that the method for manufacturing the solid-state imaging device 60 includes first manufacturing the substrate 2 composed of the main body substrate 61 and the frame 62 by dividing the structure in which the frame member 72 is provided on the substrate member 70 into pieces, and then A method may be used in which the substrate 2 is subjected to the steps S140 to S170 described above.
 本実施形態に係る固体撮像装置60によれば、フレーム62として本体基板61よりも剛性の高い部材を用いることで、突縁部23による基板2の補強作用を効果的に得ることができる。これにより、基板2の反りを抑制することができ、イメージセンサ3の画素面の反りやパッケージ全体の反りを効果的に低減することができる。また、フレーム62として本体基板61よりも放熱性の高い部材を用いることで、ワイヤ4の周囲の放熱性を向上させることができ、固体撮像装置60の放熱性を向上させることができる。なお、フレーム62は、例えば本体基板61と基材を共通とする等、本体基板61と同様の材料により構成されたものであってもよい。 According to the solid-state imaging device 60 according to the present embodiment, by using a member having higher rigidity than the main body substrate 61 as the frame 62, the reinforcing effect of the substrate 2 by the protruding edge portion 23 can be effectively obtained. Thereby, warpage of the substrate 2 can be suppressed, and warpage of the pixel surface of the image sensor 3 and warpage of the entire package can be effectively reduced. Moreover, by using a member with higher heat dissipation properties as the frame 62 than the main body substrate 61, the heat dissipation properties around the wires 4 can be improved, and the heat dissipation properties of the solid-state imaging device 60 can be improved. Note that the frame 62 may be made of the same material as the main body substrate 61, for example, by using the same base material as the main body substrate 61.
 <7.第4実施形態に係る固体撮像装置の構成例>
 本技術の第4実施形態に係る固体撮像装置80の構成例について、図16および図17を参照して説明する。本実施形態に係る固体撮像装置80は、第1実施形態に係る固体撮像装置1との比較において、基板2の上段面部22をなす部分の形成態様の点で異なる。
<7. Configuration example of solid-state imaging device according to fourth embodiment>
A configuration example of a solid-state imaging device 80 according to a fourth embodiment of the present technology will be described with reference to FIGS. 16 and 17. The solid-state imaging device 80 according to the present embodiment differs from the solid-state imaging device 1 according to the first embodiment in the manner in which the portion forming the upper surface portion 22 of the substrate 2 is formed.
 図16および図17に示すように、固体撮像装置80において、基板2は、ボンディングパッド11を位置させる上段面部22として、互いに高さが異なる複数種類の面部を有する。具体的には、基板2は、上段面部22として、第1の高さ位置に位置する第1上段面部91と、第1の高さ位置よりも低い第2の高さ位置に位置する第2上段面部92とを有する。図17に示す例では、複数の第1上段面部91は、共通の仮想水平面上に位置し、高さを共通としている。同様に、複数の第2上段面部92は、高さを共通としている。 As shown in FIGS. 16 and 17, in the solid-state imaging device 80, the substrate 2 has multiple types of surface portions having different heights as the upper surface portion 22 on which the bonding pads 11 are positioned. Specifically, the substrate 2 includes, as the upper surface portion 22, a first upper surface portion 91 located at a first height position, and a second upper surface portion 91 located at a second height position lower than the first height position. It has an upper stage surface part 92. In the example shown in FIG. 17, the plurality of first upper surface portions 91 are located on a common virtual horizontal plane and have a common height. Similarly, the plurality of second upper surface portions 92 have a common height.
 第1上段面部91および第2上段面部92は、周壁部21の上側に段差部を形成することにより設けられている。第1上段面部91および第2上段面部92は、いずれも矩形状の面部であり、基板2の縁部に沿って交互に形成されている。第1上段面部91および第2上段面部92は、基板2の周壁部21の各突縁部23の上部を、段差部をなす凹凸形状とすることにより形成されている。 The first upper step surface part 91 and the second upper step surface part 92 are provided by forming a step part on the upper side of the peripheral wall part 21. The first upper surface portion 91 and the second upper surface portion 92 are both rectangular surface portions, and are alternately formed along the edge of the substrate 2. The first upper step surface part 91 and the second upper step surface part 92 are formed by making the upper part of each projecting edge part 23 of the peripheral wall part 21 of the substrate 2 into an uneven shape forming a step part.
 基板2の周壁部21において、上面部を第1上段面部91とする凸部93が、周壁部21の平面視における四隅の部分を含み、所定の間隔で形成されている。突縁部23の延伸方向、つまり基板2の辺の方向に隣り合う凸部93間に凹部94が形成され、凹部94の底面部が第2上段面部92となる。図示の例では、各凸部93は、各突縁部23の幅方向の全体にわたって形成されており、凹部94は、突縁部23の幅方向の両側を開放させている。 In the peripheral wall portion 21 of the substrate 2, convex portions 93 whose upper surface portions are the first upper surface portions 91 are formed at predetermined intervals, including the four corners of the peripheral wall portion 21 in a plan view. A recess 94 is formed between adjacent protrusions 93 in the extending direction of the projecting edge 23 , that is, in the side direction of the substrate 2 , and the bottom surface of the recess 94 becomes the second upper surface portion 92 . In the illustrated example, each convex portion 93 is formed over the entire length of each projecting edge portion 23 in the width direction, and the recessed portion 94 opens both sides of the projecting edge portion 23 in the width direction.
 凸部93は、突縁部23の延伸方向の両側に、第1上段面部91と第2上段面部92との間の面となる側面95を有する。凹部94は、上段面部22と、互いに対向する側面95とにより形成されている。なお、周壁部21の四隅に形成された凸部93は、平面視で凸部93の内側(イメージセンサ3の中心側)の角部をなす一対の側面を、隣り合う凸部93の側面95とともに凹部94をなす側面95としている。 The convex portion 93 has side surfaces 95, which are surfaces between the first upper surface portion 91 and the second upper surface portion 92, on both sides of the projecting edge portion 23 in the extending direction. The recessed portion 94 is formed by the upper surface portion 22 and side surfaces 95 facing each other. Note that the convex portions 93 formed at the four corners of the peripheral wall portion 21 connect a pair of side surfaces forming the inner corners of the convex portions 93 (center side of the image sensor 3) in a plan view to the side surfaces 95 of the adjacent convex portions 93. Together with this, a side surface 95 forms a recess 94.
 このようにボンディングパッド11を配置した面部として第1上段面部91および第2上段面部92を有する構成においては、ワイヤ4として、一端側を第1上段面部91のボンディングパッド11に接続させた上段ワイヤ4Aと、一端側を第2上段面部92のボンディングパッド11に接続させた下段ワイヤ4Bとが存在する。各ワイヤ4の他端側は、それぞれイメージセンサ3の表面3aに形成された接続パッド15に接続されている。 In the configuration having the first upper surface section 91 and the second upper surface section 92 as the surface sections on which the bonding pads 11 are disposed, the wire 4 is an upper wire whose one end side is connected to the bonding pad 11 of the first upper surface section 91. 4A, and a lower wire 4B whose one end side is connected to the bonding pad 11 of the second upper surface portion 92. The other end of each wire 4 is connected to a connection pad 15 formed on the surface 3a of the image sensor 3, respectively.
 図16および図17に示す例では、上段ワイヤ4Aのボンディングパッド11に対する接続部に対して、下段ワイヤ4Bのボンディングパッド11に対する接続部は、イメージセンサ3側(内側)に位置している。なお、図17においては、固体撮像装置80が有する複数のワイヤ4およびその接続部について、上段ワイヤ4Aおよび下段ワイヤ4Bの各1本のワイヤ4についてのみ図示している。 In the example shown in FIGS. 16 and 17, the connection portion of the lower wire 4B to the bonding pad 11 is located on the image sensor 3 side (inside) with respect to the connection portion of the upper wire 4A to the bonding pad 11. Note that, in FIG. 17, among the plurality of wires 4 included in the solid-state imaging device 80 and their connecting portions, only one wire 4 each of the upper wire 4A and the lower wire 4B is illustrated.
 本実施形態に係る固体撮像装置80によれば、基板2が第1上段面部91および第2上段面部92を有することから、基板2側に対するワイヤ4の接続部を段違いに配置することが可能となる。これにより、隣り合うワイヤ4が干渉することを抑制することができるので、複数のワイヤ4の配設空間におけるワイヤ4の密度を上げることができる。結果として、効果的にパッケージの小型化を図ることができる。なお、本実施形態では、高さが異なる上段面部22として第1上段面部91および第2上段面部92の2種類の面部が設けられているが、基板2の構成としては、高さが異なる3種類の上段面部22を有する構成であってもよい。 According to the solid-state imaging device 80 according to the present embodiment, since the substrate 2 has the first upper surface portion 91 and the second upper surface portion 92, it is possible to arrange the connecting portions of the wires 4 to the substrate 2 side at different levels. Become. This makes it possible to suppress interference between adjacent wires 4, thereby increasing the density of the wires 4 in the space in which the plurality of wires 4 are arranged. As a result, it is possible to effectively downsize the package. Note that in the present embodiment, two types of surface portions, the first upper surface portion 91 and the second upper surface portion 92, are provided as the upper surface portions 22 having different heights, but the structure of the substrate 2 is such that three types of surface portions having different heights are provided. A configuration having a type of upper surface portion 22 may also be used.
 <8.第5実施形態に係る固体撮像装置の構成例>
 本技術の第5実施形態に係る固体撮像装置100の構成例について、図18から図21を参照して説明する。なお、図18に示す側面断面図は、図20におけるE-E位置の断面図に相当する。また、図20に示す平面図は、一部に切欠き断面を示している。本実施形態に係る固体撮像装置100は、第1実施形態に係る固体撮像装置1との比較において、基板2の上段面部22をなす部分の構造の点で異なる。
<8. Configuration example of solid-state imaging device according to fifth embodiment>
A configuration example of a solid-state imaging device 100 according to a fifth embodiment of the present technology will be described with reference to FIGS. 18 to 21. Note that the side sectional view shown in FIG. 18 corresponds to the sectional view taken along the line EE in FIG. Further, the plan view shown in FIG. 20 partially shows a cutaway cross section. The solid-state imaging device 100 according to the present embodiment differs from the solid-state imaging device 1 according to the first embodiment in the structure of the portion forming the upper surface portion 22 of the substrate 2.
 図18から図20に示すように、固体撮像装置100において、基板2が有する凸部としての突縁部23内には、基板2より高い剛性を有する構造物である補強部材110が設けられている。補強部材110は、ボンディングパッド11に通電させるための配線部120を有する。 As shown in FIGS. 18 to 20, in the solid-state imaging device 100, a reinforcing member 110, which is a structure having higher rigidity than the substrate 2, is provided within the protrusion 23, which is a convex portion, of the substrate 2. There is. The reinforcing member 110 has a wiring section 120 for energizing the bonding pad 11 .
 補強部材110は、略四角柱状の外形を有し、基板2の縁部に沿って設けられている。図20に示すように、本実施形態に係る基板2は、平面視で長方形状の外形を有する。このような基板2に対し、補強部材110は、基板2の平面視外形における長手方向に沿って延伸状に設けられている。 The reinforcing member 110 has a substantially square columnar outer shape and is provided along the edge of the substrate 2. As shown in FIG. 20, the substrate 2 according to this embodiment has a rectangular outer shape in plan view. For such a substrate 2, the reinforcing member 110 is provided to extend along the longitudinal direction of the substrate 2 in a plan view.
 すなわち、補強部材110は、基板2が有する四方の突縁部23のうち、基板2の長辺部に沿う両側の(図20において左右両側の)突縁部23A内に設けられることで、基板2の長手方向に沿って設けられている。図20に示す例では、各補強部材110は、一体の部材として、基板2の長手方向の略全体にわたる範囲に連続して設けられている。また、本実施形態では、四方の突縁部23のうち、基板2の短辺部に沿う両側の(図20において上下両側の)突縁部23B内には、補強部材110は設けられていない。ただし、突縁部23B内に補強部材110が設けられてもよい。 That is, the reinforcing member 110 is provided in the projecting edges 23A on both sides along the long side of the substrate 2 (on both left and right sides in FIG. 20) among the four projecting edges 23 of the substrate 2. 2 along the longitudinal direction. In the example shown in FIG. 20, each reinforcing member 110 is continuously provided as an integral member over substantially the entire longitudinal direction of the substrate 2. In the example shown in FIG. Further, in this embodiment, among the four projecting edges 23, the reinforcing member 110 is not provided in the projecting edges 23B on both sides along the short side of the substrate 2 (on both the upper and lower sides in FIG. 20). . However, the reinforcing member 110 may be provided within the projecting edge portion 23B.
 補強部材110は、本体部としてその略全体をなす補強部材本体部130を有し、補強部材本体部130に対して配線部120を設けている。補強部材本体部130は、矩形状の横断面形状を有する四角柱状の部材により構成されている。補強部材本体部130は、上面131、下面132および左右の側面133を有する。 The reinforcing member 110 has a reinforcing member main body part 130 that forms almost the entirety of the reinforcing member main body part 110, and a wiring part 120 is provided to the reinforcing member main body part 130. The reinforcing member main body portion 130 is constituted by a quadrangular prism-shaped member having a rectangular cross-sectional shape. The reinforcing member main body portion 130 has an upper surface 131, a lower surface 132, and left and right side surfaces 133.
 補強部材110は、補強部材本体部130の材料を基材とし、補強部材本体部130について基板2より高い剛性を有することで、全体として基板2より高い剛性を有する。また、補強部材110の基材は、好ましくは、基板2の基材より線膨張係数が小さい材料である。 The reinforcing member 110 uses the material of the reinforcing member main body portion 130 as a base material, and has higher rigidity than the substrate 2 as a whole because the reinforcing member main body portion 130 has higher rigidity than the substrate 2. Further, the base material of the reinforcing member 110 is preferably a material having a smaller coefficient of linear expansion than the base material of the substrate 2.
 本実施形態では、補強部材110の基材、つまり補強部材本体部130の材料は、ガラスである。つまり、補強部材110は、ガラスを基材としたガラス構造部として構成されている。ガラスを基材とした補強部材110によれば、例えば基板2が基材をエポキシ樹脂等の有機材料とした一般的な有機基板である場合、補強部材110において基板2より高い剛性が得られ、基板2の基材より線膨張係数を小さくすることができる。ただし、補強部材110の基材は、ガラスに限定されるものではなく、樹脂材料やセラミックス等、基板2の基材との関係において、補強部材110において基板2より高い剛性が得られるものであればよい。 In this embodiment, the base material of the reinforcing member 110, that is, the material of the reinforcing member main body portion 130, is glass. In other words, the reinforcing member 110 is configured as a glass structure made of glass as a base material. According to the reinforcing member 110 made of glass as a base material, for example, when the substrate 2 is a general organic substrate whose base material is an organic material such as an epoxy resin, the reinforcing member 110 can have higher rigidity than the substrate 2, The coefficient of linear expansion can be made smaller than that of the base material of the substrate 2. However, the base material of the reinforcing member 110 is not limited to glass, and may be any material such as a resin material or ceramics that can provide higher rigidity in the reinforcing member 110 than the substrate 2 in relation to the base material of the substrate 2. Bye.
 補強部材110において、配線部120は、補強部材110の基材により形成された補強部材本体部130を貫通する孔部122をなす貫通配線部121を含む。貫通配線部121は、補強部材本体部130を上下方向(厚さ方向)に貫通するように形成された貫通孔135の内周面の全体を被覆するように形成された配線部である。 In the reinforcing member 110, the wiring portion 120 includes a through wiring portion 121 that forms a hole 122 that penetrates the reinforcing member main body portion 130 formed of the base material of the reinforcing member 110. The through wiring portion 121 is a wiring portion formed to cover the entire inner peripheral surface of a through hole 135 formed to penetrate the reinforcing member main body portion 130 in the vertical direction (thickness direction).
 貫通配線部121は、貫通孔135の内周面に対して所定の厚さ(膜厚)で形成された筒状の配線部である。したがって、貫通配線部121により形成された孔部122は、貫通孔135の孔形状に対応した形状を有する。貫通孔135は、平面視で例えば円形状や矩形状等の孔形状を有する直線状の孔部である。図示の例では、貫通孔135は円形の孔形状を有する。 The through wiring portion 121 is a cylindrical wiring portion formed with a predetermined thickness (film thickness) on the inner peripheral surface of the through hole 135. Therefore, the hole 122 formed by the through wiring portion 121 has a shape corresponding to the shape of the through hole 135. The through hole 135 is a linear hole portion having a hole shape such as a circular shape or a rectangular shape when viewed from above. In the illustrated example, the through hole 135 has a circular hole shape.
 貫通配線部121は、複数のボンディングパッド11の配置に対応した位置に設けられ、各ボンディングパッド11の下側に位置している。本実施形態では、貫通配線部121は、複数のボンディングパッド11の配置に対応して、補強部材本体部130の長手方向に沿って所定の間隔を隔てて設けられている。 The through wiring portion 121 is provided at a position corresponding to the arrangement of the plurality of bonding pads 11, and is located below each bonding pad 11. In this embodiment, the through wiring portions 121 are provided at predetermined intervals along the longitudinal direction of the reinforcing member main body portion 130, corresponding to the arrangement of the plurality of bonding pads 11.
 貫通配線部121は、上側を、補強部材本体部130の上面131に沿って形成された上面配線部123に連続させている。貫通配線部121は、上面配線部123を介して、ボンディングパッド11に電気的に接続されている。上面配線部123は、上面視で貫通配線部121を中心部とした円形状の部分であるが(図21参照)、上面配線部123の形状は特に限定されない。上面配線部123は、例えば矩形状の部分であってもよい。 The upper side of the through wiring portion 121 is continuous with the upper surface wiring portion 123 formed along the upper surface 131 of the reinforcing member main body portion 130. The through wiring section 121 is electrically connected to the bonding pad 11 via the upper surface wiring section 123. Although the upper surface wiring portion 123 is a circular portion with the through wiring portion 121 at the center when viewed from above (see FIG. 21), the shape of the upper surface wiring portion 123 is not particularly limited. The upper surface wiring portion 123 may be, for example, a rectangular portion.
 貫通配線部121は、下側を、補強部材本体部130の下面132に沿って形成された下面配線部124に連続させている。貫通配線部121は、下面配線部124を介して、内蔵パッド125に電気的に接続されている。内蔵パッド125は、基板2の基板本体部20内に形成された所定の配線部を介して、基板2の裏面2b側に形成された複数の端子電極に電気的に接続されている。下面配線部124は、上面配線部123と同様に円形状の部分であるが、その形状は限定されない。下面配線部124および内蔵パッド125は、例えば、それぞれ上面配線部123およびボンディングパッド11に対して上下対称的な形状の配線部分として形成される。 The through wiring portion 121 has a lower side continuous with a lower surface wiring portion 124 formed along the lower surface 132 of the reinforcing member main body portion 130. The through wiring section 121 is electrically connected to the built-in pad 125 via the lower surface wiring section 124. The built-in pads 125 are electrically connected to a plurality of terminal electrodes formed on the back surface 2b of the substrate 2 via a predetermined wiring section formed in the substrate main body 20 of the substrate 2. The lower surface wiring section 124 is a circular portion like the upper surface wiring section 123, but its shape is not limited. The lower surface wiring portion 124 and the built-in pad 125 are formed, for example, as wiring portions that are vertically symmetrical with respect to the upper surface wiring portion 123 and the bonding pad 11, respectively.
 補強部材本体部130に対して設けられた配線部および電極部、すなわち貫通配線部121、上面配線部123、ボンディングパッド11、下面配線部124および内蔵パッド125は、例えば所定の金属材料により、めっきやスパッタリング等によって形成される。これらの配線部および電極部の金属材料としては、例えば、銀(Ag)、アルミニウム(Al)、プラチナ(Pt)、銅(Cu)、ニッケル(Ni)等が用いられる。 The wiring portions and electrode portions provided to the reinforcing member main body portion 130, that is, the through wiring portion 121, the upper surface wiring portion 123, the bonding pad 11, the lower surface wiring portion 124, and the built-in pad 125 are plated with a predetermined metal material, for example. or sputtering. Examples of metal materials used for these wiring portions and electrode portions include silver (Ag), aluminum (Al), platinum (Pt), copper (Cu), and nickel (Ni).
 以上のような構成によれば、基板2の突縁部23内において、ボンディングパッド11と、上面配線部123、貫通配線部121および下面配線部124を含む配線部120と、内蔵パッド125とにより、補強部材本体部130に対して設けられるとともにワイヤ4に対して電気的に接続された配線部分が構成されている。なお、補強部材本体部130に対して設けられる配線部分の形状や形成部位等の形成態様は、特に限定されるものではない。 According to the above configuration, within the protruding edge portion 23 of the substrate 2, the bonding pad 11, the wiring portion 120 including the upper surface wiring portion 123, the through wiring portion 121, and the lower surface wiring portion 124, and the built-in pad 125 , a wiring portion provided to the reinforcing member main body portion 130 and electrically connected to the wire 4 is configured. Note that the shape of the wiring portion provided to the reinforcing member main body portion 130, the forming manner of the forming portion, etc. are not particularly limited.
 また、補強部材110の孔部122には、孔部122内を充填する樹脂材料により形成された樹脂部140が設けられている。つまり、補強部材110において、貫通配線部121により形成された孔部122内は、樹脂部140によって全体的に埋められている。樹脂部140は、貫通孔135の孔形状に応じて円形状や矩形状等の横断面形状を有する直線状の部分である。 Further, the hole 122 of the reinforcing member 110 is provided with a resin portion 140 formed of a resin material that fills the inside of the hole 122. That is, in the reinforcing member 110, the inside of the hole 122 formed by the through-wiring portion 121 is completely filled with the resin portion 140. The resin portion 140 is a linear portion having a cross-sectional shape such as a circular shape or a rectangular shape depending on the shape of the through hole 135.
 樹脂部140は、絶縁材料により形成されている。樹脂部140を形成する樹脂材料は、特に限定されるものではないが、例えば、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂等の熱硬化性樹脂や、UV硬化性樹脂等の感光性樹脂等である。 The resin part 140 is made of an insulating material. The resin material forming the resin part 140 is not particularly limited, but includes, for example, thermosetting resins such as acrylic resins, epoxy resins, and urethane resins, photosensitive resins such as UV curable resins, etc. It is.
 なお、貫通配線部121の構成としては、孔部122を有するものではなく、補強部材本体部130の貫通孔135内に、貫通配線部121を形成する金属材料を充填させた構成であってもよい。 Note that the configuration of the through wiring portion 121 may be such that the through hole 135 of the reinforcing member main body portion 130 is filled with the metal material forming the through wiring portion 121 instead of having the hole portion 122. good.
 <9.第5実施形態に係る固体撮像装置の製造方法>
 本技術の第5実施形態に係る固体撮像装置100の製造方法の一例について、図22および図23を参照して説明する。ここでは、補強部材110を有する基板2の製造方法について説明する。
<9. Manufacturing method of solid-state imaging device according to fifth embodiment>
An example of a method for manufacturing the solid-state imaging device 100 according to the fifth embodiment of the present technology will be described with reference to FIGS. 22 and 23. Here, a method for manufacturing the substrate 2 having the reinforcing member 110 will be described.
 まず、図22Aに示すように、補強部材本体部130をなす四角柱状のガラス板150に、ビアである貫通孔135を形成するビア開口の工程が行われる。貫通孔135は、例えば薬液を用いたエッチングやレーザを用いた加工により形成される。 First, as shown in FIG. 22A, a via opening step is performed to form a through hole 135, which is a via, in a square columnar glass plate 150 forming the reinforcing member main body portion 130. The through hole 135 is formed, for example, by etching using a chemical solution or processing using a laser.
 次に、図22Bに示すように、貫通孔135を形成したガラス板150に対し、貫通配線部121、上面配線部123および下面配線部124を形成する工程が行われる。この工程では、銅等の金属材料が用いられ、ガラス板150に対し、貫通孔135の内周面、並びに上面131および下面132における貫通孔135の周辺部にめっきを施すことにより、貫通配線部121、上面配線部123および下面配線部124が形成される。なお、これらの配線部の形成には、スパッタリングや印刷等の他の方法が用いられてもよい。以上の工程により、補強部材本体部130および配線部120を有する補強部材110が得られる。 Next, as shown in FIG. 22B, a step of forming a through wiring portion 121, an upper surface wiring portion 123, and a lower surface wiring portion 124 is performed on the glass plate 150 in which the through hole 135 has been formed. In this step, a metal material such as copper is used, and by plating the inner circumferential surface of the through hole 135 and the peripheral areas of the through hole 135 on the upper surface 131 and the lower surface 132 of the glass plate 150, the through wiring portion is formed. 121, an upper surface wiring section 123, and a lower surface wiring section 124 are formed. Note that other methods such as sputtering and printing may be used to form these wiring portions. Through the above steps, the reinforcing member 110 having the reinforcing member main body part 130 and the wiring part 120 is obtained.
 続いて、貫通配線部121内に樹脂部140を形成する工程が行われる。樹脂部140は、例えば次のような方法により形成される。図22Cに示すように、補強部材110を入れる凹部156を有する基板155が準備される。基板155は、平面視で矩形状の外形を有し、短手方向の両側の縁部に長辺部に沿った凹部156を有する。凹部156は、基板155の上面155a側を開放させ補強部材110の外形に対応した形状・寸法を有する溝状の部分である。凹部156は、補強部材110の高さ(上下方向の寸法)よりも大きい深さを有する。また、凹部156は、補強部材110の幅よりもわずかに大きい幅寸法を有する。 Subsequently, a step of forming the resin portion 140 within the through wiring portion 121 is performed. The resin portion 140 is formed, for example, by the following method. As shown in FIG. 22C, a substrate 155 having a recess 156 into which the reinforcing member 110 is placed is prepared. The substrate 155 has a rectangular outer shape in plan view, and has recesses 156 along the long sides at both edges in the short direction. The recess 156 is a groove-shaped portion that opens the upper surface 155a side of the substrate 155 and has a shape and size corresponding to the outer shape of the reinforcing member 110. The recess 156 has a depth greater than the height (vertical dimension) of the reinforcing member 110. Further, the recess 156 has a width slightly larger than the width of the reinforcing member 110.
 図22Dに示すように、基板155の凹部156内に補強部材110が入れられる。補強部材110は、凹部156内に入れられることで、下面配線部124を凹部156の底面156aに接触させるとともに上面配線部123を上面155aより下方に位置させ、凹部156の上部を空間部とする。これにより、補強部材110は、孔部122の上側を凹部156の上部の空間部に臨んで開口させた状態となる。 As shown in FIG. 22D, the reinforcing member 110 is inserted into the recess 156 of the substrate 155. By being inserted into the recess 156, the reinforcing member 110 brings the lower wiring part 124 into contact with the bottom surface 156a of the recess 156, positions the upper wiring part 123 below the upper surface 155a, and makes the upper part of the recess 156 a space. . As a result, the reinforcing member 110 is in a state where the upper side of the hole 122 is open facing the space above the recess 156.
 次に、図23Aに示すように、凹部156内の補強部材110に対して上方から樹脂部140を形成する樹脂を流し込み、加熱やUV照射等、樹脂材料に応じた処理により樹脂材料を硬化させることが行われる。これにより、貫通配線部121の孔部122が樹脂で封止され、孔部122を埋める樹脂部140が形成された状態となる。なお、孔部122からはみ出た樹脂材料157は、凹部156内において上面配線部123上に存在する。 Next, as shown in FIG. 23A, a resin forming the resin part 140 is poured into the reinforcing member 110 in the recess 156 from above, and the resin material is hardened by a process depending on the resin material, such as heating or UV irradiation. things are done. As a result, the hole 122 of the through wiring portion 121 is sealed with resin, and a resin portion 140 filling the hole 122 is formed. Note that the resin material 157 protruding from the hole 122 exists on the upper surface wiring portion 123 within the recess 156 .
 その後、図23Bに示すように、基板155の部分的な除去、および上面配線部123上の樹脂材料157の除去を行った後、ボンディングパッド11および内蔵パッド125を形成する工程が行われる。 Thereafter, as shown in FIG. 23B, after partially removing the substrate 155 and removing the resin material 157 on the upper wiring section 123, a step of forming the bonding pad 11 and the built-in pad 125 is performed.
 具体的には、基板155については、補強部材110の収容部位を含み基板155の周縁部による枠状の部分が残るように、基板155の中央側の部分が、イメージセンサ3のチップサイズに応じた範囲で除去される。また、基板155については、下面配線部124を露出させるため、凹部156の底部をなす部分が除去されて内蔵パッド125形成用のビアが形成される。また、上面配線部123を露出させるため、上面配線部123上の樹脂材料157が除去される。基板155の部分的な除去や樹脂材料157の除去は、エッチング等適宜の方法により行われる。 Specifically, regarding the substrate 155, the center portion of the substrate 155 is shaped according to the chip size of the image sensor 3 so that a frame-shaped portion including the housing portion of the reinforcing member 110 and the peripheral edge of the substrate 155 remains. removed within the specified range. Further, regarding the substrate 155, in order to expose the lower wiring portion 124, a portion forming the bottom of the recess 156 is removed, and a via for forming the built-in pad 125 is formed. Further, in order to expose the upper surface wiring section 123, the resin material 157 on the upper surface wiring section 123 is removed. Partial removal of the substrate 155 and removal of the resin material 157 are performed by an appropriate method such as etching.
 その後、上面配線部123および下面配線部124それぞれに対して、ボンディングパッド11および内蔵パッド125を形成する工程が行われる。これらの電極パッドは、めっきやスパッタリング等により形成される。以上のような工程により、枠状の基板部分の2箇所に補強部材110を内蔵するとともに複数箇所にボンディングパッド11および内蔵パッド125を設けた矩形枠状の枠状基板160が得られる。 Thereafter, a step of forming bonding pads 11 and built-in pads 125 is performed for upper surface wiring section 123 and lower surface wiring section 124, respectively. These electrode pads are formed by plating, sputtering, or the like. Through the above steps, a rectangular frame-shaped frame substrate 160 is obtained in which reinforcing members 110 are built in at two locations in the frame-shaped substrate portion, and bonding pads 11 and built-in pads 125 are provided at a plurality of locations.
 次に、図23Cに示すように、枠状基板160とインターポーザ基板165とを貼り合わせる工程が行われる。インターポーザ基板165は、基板2においてイメージセンサ3の取付けを受ける基板本体部20をなす部材である。この工程において、枠状基板160側の内蔵パッド125は、インターポーザ基板165内の所定の配線部に対して電気的に接続される。なお、インターポーザ基板165については、基板本体部20となる部分を複数有する集合基板を用いてもよい。この場合、集合基板に複数の枠状基板160を接合させた構成が、所定の工程において個片化されることになる。 Next, as shown in FIG. 23C, a step of bonding the frame-shaped substrate 160 and the interposer substrate 165 is performed. The interposer substrate 165 is a member forming the substrate main body portion 20 on the substrate 2 to which the image sensor 3 is attached. In this step, the built-in pads 125 on the frame-shaped substrate 160 side are electrically connected to predetermined wiring portions within the interposer substrate 165. Note that for the interposer substrate 165, a collective substrate having a plurality of portions that will become the substrate main body portion 20 may be used. In this case, a configuration in which a plurality of frame-shaped substrates 160 are bonded to a collective substrate is separated into pieces in a predetermined process.
 以上のような工程により、図23Dに示すように、四方の突縁部23からなる周壁部21を有し、長辺側の突縁部23内に補強部材110を内蔵するとともに、イメージセンサ3を配置させる凹部25をなすキャビティ基板である基板2が得られる。以降、基板2に対し、第1実施形態に係る固体撮像装置1の製造方法におけるステップS20~S50(図5参照)の各工程と同様の工程を行うことで、本実施形態に係る固体撮像装置100が得られる。なお、本実施形態に係る基板2の製造方法においては、上述した方法の他、公知の部品内蔵基板(電子部品等を埋設した多層基板)の製造技術を適宜用いることで、補強部材110を埋め込んだ基板2を得ることができる。 Through the above steps, as shown in FIG. 23D, the peripheral wall part 21 is made up of four projecting edges 23, the reinforcing member 110 is built into the projecting edges 23 on the long side, and the image sensor 3 A substrate 2 is obtained, which is a cavity substrate forming a recess 25 in which the . Thereafter, the same steps as steps S20 to S50 (see FIG. 5) in the method for manufacturing the solid-state imaging device 1 according to the first embodiment are performed on the substrate 2, thereby producing the solid-state imaging device according to the present embodiment. 100 is obtained. In addition to the method described above, in the method for manufacturing the board 2 according to the present embodiment, the reinforcing member 110 can be embedded by appropriately using a known manufacturing technology for a component-embedded board (a multilayer board in which electronic components etc. are embedded). A substrate 2 can be obtained.
 本実施形態に係る固体撮像装置100によれば、上段面部22をなす突縁部23内に補強部材110が設けられているため、基板2の剛性を向上させることができ、イメージセンサ3およびパッケージの反り等の変形を抑制することができる。 According to the solid-state imaging device 100 according to the present embodiment, since the reinforcing member 110 is provided in the protruding edge portion 23 forming the upper surface portion 22, the rigidity of the substrate 2 can be improved, and the image sensor 3 and package deformation such as warpage can be suppressed.
 基板2は突縁部23を有することで体積を増大させるため、基板2の反りが生じやすくなり、イメージセンサ3やパッケージの反りが生じやすくなる。イメージセンサ3やパッケージの反りは、イメージセンサ3の機能等を確保するうえで好ましくない。そこで、突縁部23内に基板2よりも高い剛性を有する補強部材110を設けることにより、基板2の剛性を向上させることができ、基板2の反りに起因するイメージセンサ3およびパッケージの反りを抑制することができる。 Since the substrate 2 increases in volume by having the protruding edge portion 23, the substrate 2 is more likely to warp, and the image sensor 3 and the package are more likely to be warped. Warpage of the image sensor 3 or the package is undesirable in ensuring the functionality of the image sensor 3. Therefore, by providing a reinforcing member 110 having higher rigidity than the substrate 2 in the protrusion 23, the rigidity of the substrate 2 can be improved, and the warpage of the image sensor 3 and the package caused by the warpage of the substrate 2 can be prevented. Can be suppressed.
 また、補強部材110の基材は、基板2の基材より線膨張係数が小さい材料となっている。本実施形態では、補強部材110の基材の一例として補強部材本体部130をなすガラスが用いられている。このような構成によれば、突縁部23内に補強部材110を設けた構成において、熱変形としての基板2の反りを抑制することができ、イメージセンサ3およびパッケージの反りを効果的に抑制することができる。 Furthermore, the base material of the reinforcing member 110 is made of a material having a smaller coefficient of linear expansion than the base material of the substrate 2. In this embodiment, glass forming the reinforcing member main body portion 130 is used as an example of the base material of the reinforcing member 110. According to such a configuration, in a configuration in which the reinforcing member 110 is provided in the protrusion 23, it is possible to suppress warpage of the substrate 2 due to thermal deformation, and effectively suppress warpage of the image sensor 3 and the package. can do.
 このように、突縁部23内に補強部材110を設ける構成によれば、補強部材110の基材の選択により、補強部材110の剛性や線膨張係数等の物性を容易にコントロールすることが可能となる。これにより、基板2の形状やワイヤ4の配設態様等に応じて、基板2の剛性を向上させるための補強部材110を設けることができるので、基板2の反りを効果的に抑制することができる。 As described above, according to the configuration in which the reinforcing member 110 is provided within the projecting edge portion 23, the physical properties such as the rigidity and coefficient of linear expansion of the reinforcing member 110 can be easily controlled by selecting the base material of the reinforcing member 110. becomes. As a result, the reinforcing member 110 for improving the rigidity of the substrate 2 can be provided depending on the shape of the substrate 2, the arrangement of the wires 4, etc., so that warping of the substrate 2 can be effectively suppressed. can.
 また、補強部材110は、ボンディングパッド11に通電させるための配線部120を有するものであるため、イメージセンサ3等の反りを低減させるために突縁部23内に設ける部材の上にボンディングパッド11を設けることができる。これにより、イメージセンサ3等の反りを低減するための部品をイメージセンサ3に対する電気的な信号経路とは無関係に設けた構成と比べて、コンパクトな構成を実現することができる。加えて、突縁部23内に補強部材110を設ける構成によれば、イメージセンサ3のセンサ面(受光面)に干渉したりワイヤ4のボンディングを阻害したりすることなく、基板2の剛性を向上させることができ、イメージセンサ3およびパッケージの反りを抑制することができる。 Further, since the reinforcing member 110 has a wiring portion 120 for supplying electricity to the bonding pad 11, the bonding pad 11 is placed on a member provided within the protruding edge portion 23 in order to reduce warping of the image sensor 3, etc. can be provided. This makes it possible to realize a more compact configuration than a configuration in which components for reducing warpage of the image sensor 3 and the like are provided independently of the electrical signal path to the image sensor 3. In addition, the configuration in which the reinforcing member 110 is provided within the protruding edge portion 23 increases the rigidity of the substrate 2 without interfering with the sensor surface (light-receiving surface) of the image sensor 3 or inhibiting bonding of the wire 4. warping of the image sensor 3 and the package can be suppressed.
 また、補強部材110が有する配線部120に関し、補強部材110は、配線部120において貫通配線部121を有し、貫通配線部121の孔部122内には樹脂部140が設けられている。このような構成によれば、孔部122内を空洞とした構成と比べて、補強部材本体部130の剛性を向上させることができる。これにより、基板2の反りを効果的に抑制することができる。 Regarding the wiring portion 120 of the reinforcing member 110, the reinforcing member 110 has a through wiring portion 121 in the wiring portion 120, and a resin portion 140 is provided in the hole 122 of the through wiring portion 121. According to such a configuration, the rigidity of the reinforcing member main body portion 130 can be improved compared to a configuration in which the inside of the hole portion 122 is hollow. Thereby, warpage of the substrate 2 can be effectively suppressed.
 また、本実施形態に係る基板2は、平面視で一方を長手方向とした矩形状を有し(図20参照)、補強部材110は、両方の長辺部の突縁部23Aに沿って延伸状に設けられている。このような構成によれば、基板2において比較的反りが生じやすい長手方向についての剛性を補強部材110により高くすることができるので、基板2の反りを効果的に抑制することができる。 Further, the substrate 2 according to the present embodiment has a rectangular shape with one longitudinal direction in plan view (see FIG. 20), and the reinforcing member 110 extends along the protruding edges 23A of both long sides. It is set up in a shape. According to such a configuration, the reinforcing member 110 can increase the rigidity in the longitudinal direction where the substrate 2 is relatively prone to warpage, so that the warpage of the substrate 2 can be effectively suppressed.
 <10.第5実施形態に係る固体撮像装置の変形例>
 本技術の第5実施形態に係る固体撮像装置100の変形例について説明する。
<10. Modification example of solid-state imaging device according to fifth embodiment>
A modification of the solid-state imaging device 100 according to the fifth embodiment of the present technology will be described.
 (第1の変形例)
 図24に示すように、第1の変形例の構成において、基板2は、補強部材110として、互いに異なる基材により形成された複数種類の補強部材(110A,110B)を有する。すなわち、図24に示すように、第1の変形例においては、複数種類の補強部材110として、基材が異なる2種類の第1補強部材110Aおよび第2補強部材110Bが設けられている。
(First modification)
As shown in FIG. 24, in the configuration of the first modification, the substrate 2 includes, as the reinforcing member 110, a plurality of types of reinforcing members (110A, 110B) made of different base materials. That is, as shown in FIG. 24, in the first modification, as the plurality of types of reinforcing members 110, two types of first reinforcing members 110A and second reinforcing members 110B having different base materials are provided.
 第1補強部材110Aの基材は、第2補強部材110Bの基材よりも剛性が高い材料であり、第1補強部材110Aは、第2補強部材110Bよりも高い剛性を有する。例えば、第2補強部材110Bの基材がガラスである場合、第1補強部材110Aの基材として、ガラスよりも剛性が高い樹脂材料が用いられる。 The base material of the first reinforcing member 110A is a material with higher rigidity than the base material of the second reinforcing member 110B, and the first reinforcing member 110A has higher rigidity than the second reinforcing member 110B. For example, when the base material of the second reinforcing member 110B is glass, a resin material having higher rigidity than glass is used as the base material of the first reinforcing member 110A.
 図24に示すように、比較的剛性が高い第1補強部材110Aは、基板2が有する四辺の突縁部23のうち、基板2の長辺部に沿う両側の(図24において上下両側の)突縁部23A内に設けられることで、基板2の長手方向に沿って設けられている。また、比較的剛性が低い第2補強部材110Bは、基板2が有する四辺の突縁部23のうち、基板2の短辺部に沿う両側の(図24において左右両側の)突縁部23B内に設けられることで、基板2の短手方向に沿って設けられている。 As shown in FIG. 24, the first reinforcing member 110A, which has relatively high rigidity, is located on both sides along the long side of the board 2 (on both upper and lower sides in FIG. 24) among the four protruding edges 23 of the board 2. By being provided within the projecting edge portion 23A, it is provided along the longitudinal direction of the substrate 2. In addition, the second reinforcing member 110B, which has relatively low rigidity, is located inside the projecting edges 23B on both sides (on both left and right sides in FIG. 24) along the short side of the board 2 among the projecting edges 23 on the four sides of the board 2. By being provided in , it is provided along the lateral direction of the substrate 2 .
 第1の変形例の構成のように、剛性が異なる複数種類の補強部材110を各突縁部23に内蔵した構成によれば、基板2の特性に異方性を持たせることが可能となる。これにより、基板2の形状や内部構造等に応じて、基板2の反りを効率的に抑制することが可能となる。 According to the configuration in which a plurality of types of reinforcing members 110 having different rigidities are built into each of the projecting edges 23, as in the configuration of the first modification, it is possible to impart anisotropy to the characteristics of the substrate 2. . This makes it possible to efficiently suppress warpage of the substrate 2 depending on the shape, internal structure, etc. of the substrate 2.
 図24に示す構成例によれば、基板2の長手方向に沿って延伸した補強部材110を比較的剛性が高い第1補強部材110Aとしているため、基板2において反りが生じやすい長手方向についての剛性を短手方向についての剛性と比べて高くすることができるので、基板2の全体としての反りを効果的に抑制することができる。また、基板2の短手方向についても、第2補強部材110Bによる剛性の向上作用によって抑制することができる。 According to the configuration example shown in FIG. 24, since the reinforcing member 110 extending along the longitudinal direction of the substrate 2 is the first reinforcing member 110A having relatively high rigidity, the rigidity in the longitudinal direction where the substrate 2 is likely to warp is can be made higher than the rigidity in the lateral direction, so that warping of the substrate 2 as a whole can be effectively suppressed. Further, the width direction of the substrate 2 can also be suppressed by the rigidity improving effect of the second reinforcing member 110B.
 なお、基板2における補強部材110の配置構成に関しては、基板2の四辺の突縁部23に対して、基材を共通としたつまり同程度の剛性を有する補強部材110が設けられてもよい。また、基板2の四辺の各辺で基材を異にする4種類の補強部材110が設けられてもよい。このような構成によれば、補強部材110の配置箇所に応じて補強部材110の剛性や線膨張率を調整することで、基板2の特性としてより複雑な異方性を持たせることが可能となる。これにより、基板2の反りを抑制するために基板2の特性に応じた精度の高い対応が可能となり、基板2の反りを効率的に抑制することが可能となる。 Regarding the arrangement of the reinforcing members 110 on the substrate 2, reinforcing members 110 having a common base material, that is, having the same degree of rigidity, may be provided for the protruding edges 23 on the four sides of the substrate 2. Further, four types of reinforcing members 110 may be provided on each of the four sides of the substrate 2 using different base materials. According to such a configuration, by adjusting the rigidity and coefficient of linear expansion of the reinforcing member 110 depending on the placement location of the reinforcing member 110, it is possible to give the substrate 2 more complex anisotropy as a characteristic. Become. As a result, it is possible to suppress warpage of the substrate 2 with high precision in accordance with the characteristics of the substrate 2, and it is possible to efficiently suppress warpage of the substrate 2.
 また、補強部材110は、基板2が有する四辺の突縁部23のうち少なくとも1つの突縁部23内に設けられればよい。さらに、突縁部23内に補強部材110を内蔵した構成例としては、基板2の長辺側の突縁部23Aには補強部材110を内蔵するとともに、基板2の短辺側の突縁部23Bについては、幅を突縁部23Aよりも広くし、ノイズ除去を目的としたMLCC等のコンデンサを埋め込むといった構成が挙げられる。 Further, the reinforcing member 110 may be provided within at least one of the four side projecting edges 23 of the substrate 2 . Further, as an example of a configuration in which the reinforcing member 110 is built in the projecting edge 23, the reinforcing member 110 is built into the projecting edge 23A on the long side of the board 2, and the projecting edge on the short side of the board 2 As for 23B, an example of a configuration is to make the width wider than the protrusion 23A and embed a capacitor such as MLCC for the purpose of noise removal.
 (第2の変形例)
 図25に示すように、第2の変形例の構成においては、補強部材110が、各突縁部23において複数に分割された態様で設けられている。図25に示す例では、基板2の長辺部に沿う突縁部23Aには、補強部材110が、補強部材110C,110D,110Eの3つの分割要素により3分割の態様で設けられており、基板2の短辺部に沿う突縁部23Bには、補強部材110が、補強部材110F,110Gの2つの分割要素により2分割の態様で設けられている。
(Second modification)
As shown in FIG. 25, in the configuration of the second modification, the reinforcing member 110 is provided in a manner that is divided into a plurality of parts at each of the projecting edges 23. As shown in FIG. In the example shown in FIG. 25, the reinforcing member 110 is provided on the protruding edge 23A along the long side of the substrate 2 in a manner divided into three by three dividing elements of reinforcing members 110C, 110D, and 110E. A reinforcing member 110 is provided on the protruding edge 23B along the short side of the substrate 2 in a manner of being divided into two by two dividing elements, reinforcing members 110F and 110G.
 このように、補強部材110は、基板2における各突縁部23において延伸方向について複数の部材(分割要素)を所定の間隔をあけて並べた非連続の態様で設けられてもよい。第2の変形例においては、各突縁部23に配置された複数の補強部材110について、形状や寸法や基材を異ならせることで、補強部材110の配置箇所に応じて補強部材110の剛性や線膨張率を調整することができ、基板2の特性に異方性を持たせることが可能となる。 In this way, the reinforcing member 110 may be provided in a discontinuous manner in which a plurality of members (dividing elements) are arranged at predetermined intervals in the stretching direction at each of the protruding edges 23 of the substrate 2. In the second modification, the shapes, dimensions, and base materials of the plurality of reinforcing members 110 arranged on each of the projecting edges 23 are made different, so that the rigidity of the reinforcing members 110 can be adjusted depending on the location where the reinforcing members 110 are arranged. It is possible to adjust the coefficient of linear expansion and the coefficient of linear expansion, and it is possible to impart anisotropy to the characteristics of the substrate 2.
 また、基板2において上段面部22をなす凸部については、基板2の周縁部において凸部を断続的に設けた構成、つまり基板2の各辺部の延伸方向について部分的に複数の凸部を設けた構成であってもよい。このような構成においては、複数の凸部のうちすべての凸部に対して、あるいは選択された一部の凸部に対して補強部材110が設けられる。 Regarding the convex portions forming the upper surface portion 22 of the substrate 2, the convex portions are provided intermittently at the peripheral edge of the substrate 2, that is, a plurality of convex portions are partially provided in the extending direction of each side of the substrate 2. A configuration may be provided. In such a configuration, the reinforcing member 110 is provided for all or a selected portion of the plurality of protrusions.
 (第3の変形例)
 第3の変形例は、補強部材110が有する配線部120についての変形例である。図26に示すように、第3の変形例の構成における補強部材110は、補強部材本体部130に対して設けられる配線部120において、貫通配線部121の代わりに側面配線部127を有する。
(Third modification)
The third modification is a modification of the wiring section 120 included in the reinforcing member 110. As shown in FIG. 26, the reinforcing member 110 in the configuration of the third modification has a side wiring part 127 instead of the through wiring part 121 in the wiring part 120 provided to the reinforcing member main body part 130.
 側面配線部127は、補強部材本体部130の側面133に沿って配された配線部であり、複数のボンディングパッド11の配置に対応した位置に設けられている。側面配線部127は、上側を上面配線部123に連続させるとともに、下側を下面配線部124に連続させ、上面配線部123および下面配線部124を互いに電気的に接続させている。 The side wiring section 127 is a wiring section arranged along the side surface 133 of the reinforcing member main body section 130, and is provided at a position corresponding to the arrangement of the plurality of bonding pads 11. The side wiring part 127 has an upper side connected to the upper wiring part 123 and a lower side connected to the lower wiring part 124, thereby electrically connecting the upper wiring part 123 and the lower wiring part 124 to each other.
 第3の変形例においては、基板2の突縁部23内において、ボンディングパッド11と、上面配線部123、側面配線部127および下面配線部124を含む配線部120と、内蔵パッド125とにより、補強部材本体部130に対して設けられるとともにワイヤ4に対して電気的に接続された配線部分が構成される。なお、図26に示す例では、側面配線部127は、補強部材本体部130の2つの側面133のうちの内側の側面133に形成されているが、側面配線部127は、外側の側面133に形成されてもよい。 In the third modification, within the protruding edge portion 23 of the substrate 2, the bonding pad 11, the wiring portion 120 including the upper wiring portion 123, the side wiring portion 127, and the lower wiring portion 124, and the built-in pad 125, A wiring portion provided to the reinforcing member main body portion 130 and electrically connected to the wire 4 is configured. In the example shown in FIG. 26, the side wiring portion 127 is formed on the inner side surface 133 of the two side surfaces 133 of the reinforcing member main body portion 130, but the side wiring portion 127 is formed on the outer side surface 133. may be formed.
 第3の変形例の構成によれば、補強部材本体部130をなすガラスへの孔開け加工が不要となり、補強部材本体部130に対して配線部120を形成するための工程を簡略化することが可能となる。 According to the configuration of the third modification, it is not necessary to drill holes in the glass forming the reinforcing member main body 130, and the process for forming the wiring part 120 on the reinforcing member main body 130 is simplified. becomes possible.
 <11.電子機器の構成例>
 上述した実施形態に係る半導体装置の電子機器への適用例について、図27を用いて説明する。
<11. Configuration example of electronic equipment>
An example of application of the semiconductor device according to the above-described embodiment to an electronic device will be described with reference to FIG. 27.
 本技術に係る半導体装置(固体撮像装置)は、例えば可視光、赤外光、紫外光、X線等の光をセンシングする様々な装置として適用することができる。本技術に係る固体撮像装置は、デジタルスチルカメラやビデオカメラ等のカメラ装置、撮像機能を有する携帯端末装置、画像読取部に固体撮像素子を用いる複写機、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、車両間等の測距を行う測距センサ等、画像取込部(光電変換部)に固体撮像素子を用いる電子機器全般に対して適用可能である。また、固体撮像装置は、ワンチップとして形成された形態のものであってもよいし、撮像部と信号処理部または光学系とがまとめてパッケージングされた撮像機能を有するモジュール状の形態のものであってもよい。 The semiconductor device (solid-state imaging device) according to the present technology can be applied as various devices that sense light such as visible light, infrared light, ultraviolet light, and X-rays. Solid-state imaging devices according to this technology include camera devices such as digital still cameras and video cameras, mobile terminal devices with an imaging function, copying machines that use solid-state imaging devices in the image reading section, the front, rear, surroundings, and inside of automobiles. The present invention is applicable to all kinds of electronic devices that use a solid-state image sensor in an image capturing section (photoelectric conversion section), such as a vehicle-mounted sensor that takes pictures of objects, a distance measuring sensor that measures distances between vehicles, etc. Further, the solid-state imaging device may be formed as a single chip, or may be a module having an imaging function in which an imaging section and a signal processing section or an optical system are packaged together. It may be.
 図27に示すように、電子機器としてのカメラ装置200は、光学部202と、固体撮像装置201と、カメラ信号処理回路であるDSP(Digital Signal Processor)回路203と、フレームメモリ204と、表示部205と、記録部206と、操作部207と、電源部208とを備える。DSP回路203、フレームメモリ204、表示部205、記録部206、操作部207および電源部208は、バスライン等の接続線209を介して適宜接続されている。固体撮像装置201は、上述した各実施形態に係る固体撮像装置のいずれかである。 As shown in FIG. 27, the camera device 200 as an electronic device includes an optical section 202, a solid-state imaging device 201, a DSP (Digital Signal Processor) circuit 203 which is a camera signal processing circuit, a frame memory 204, and a display section. 205, a recording section 206, an operation section 207, and a power supply section 208. The DSP circuit 203, frame memory 204, display section 205, recording section 206, operation section 207, and power supply section 208 are appropriately connected via a connection line 209 such as a bus line. The solid-state imaging device 201 is any of the solid-state imaging devices according to each of the embodiments described above.
 光学部202は、複数のレンズを含み、被写体からの入射光(像光)を取り込んで固体撮像装置201の撮像面上に結像する。固体撮像装置201は、光学部202によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。 The optical section 202 includes a plurality of lenses, takes in incident light (image light) from a subject, and forms an image on the imaging surface of the solid-state imaging device 201. The solid-state imaging device 201 converts the amount of incident light that is imaged onto the imaging surface by the optical section 202 into an electrical signal for each pixel, and outputs the electric signal as a pixel signal.
 表示部205は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像装置201で撮像された動画または静止画を表示する。記録部206は、固体撮像装置201で撮像された動画または静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。 The display unit 205 is comprised of a panel display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays moving images or still images captured by the solid-state imaging device 201. The recording unit 206 records a moving image or a still image captured by the solid-state imaging device 201 on a recording medium such as a hard disk or a semiconductor memory.
 操作部207は、ユーザによる操作の下に、カメラ装置200が持つ様々な機能について操作指令を発する。電源部208は、DSP回路203、フレームメモリ204、表示部205、記録部206および操作部207の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation unit 207 issues operation commands regarding various functions of the camera device 200 under operation by the user. The power supply unit 208 appropriately supplies various power supplies that serve as operating power for the DSP circuit 203, frame memory 204, display unit 205, recording unit 206, and operation unit 207 to these supply targets.
 以上のようなカメラ装置200によれば、固体撮像装置201に関し、基板2とイメージセンサ3とを互いに電気的に接続するワイヤ4へのストレスを低減することができるとともに、パッケージの小型化を図ることができる。ワイヤ4へのストレスが低減できることは、固体撮像装置201の性能の確保、延いてはカメラ装置200の性能の確保につながる。また、固体撮像装置201のパッケージの小型化が図れることは、カメラ装置200の小型化の観点から有益である。 According to the camera device 200 as described above, stress on the wire 4 that electrically connects the substrate 2 and the image sensor 3 to each other can be reduced in the solid-state imaging device 201, and the package can be made smaller. be able to. Being able to reduce the stress on the wire 4 leads to ensuring the performance of the solid-state imaging device 201 and, by extension, the performance of the camera device 200. Furthermore, being able to downsize the package of the solid-state imaging device 201 is beneficial from the perspective of downsizing the camera device 200.
 上述した実施形態の説明は本技術の一例であり、本技術は上述の実施形態に限定されることはない。このため、上述した実施形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。また、本開示に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。また、上述した各実施形態の構成、各変形例の構成は適宜組み合せることができる。 The description of the embodiments described above is an example of the present technology, and the present technology is not limited to the embodiments described above. Therefore, it goes without saying that various changes can be made to the embodiments other than those described above, depending on the design, etc., as long as they do not deviate from the technical idea of the present disclosure. Furthermore, the effects described in the present disclosure are merely examples and are not limiting, and other effects may also be present. Further, the configurations of each embodiment and the configurations of each modification example described above can be combined as appropriate.
 上述した実施形態では、半導体素子は、受光素子であるイメージセンサ3であるが、本技術に係る半導体素子はこれに限定されない。本技術に係る半導体素子は、例えば、VCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)、レーザーダイオード、LED(Light Emitting Diode)等の発光素子であってもよい。また、半導体装置としての撮像装置は、1つのチップに複数の半導体素子を備えた構成のものや、複数の半導体素子を複数のチップとして備えた構成のものであってもよい。 In the embodiment described above, the semiconductor element is the image sensor 3 which is a light receiving element, but the semiconductor element according to the present technology is not limited to this. The semiconductor device according to the present technology may be, for example, a light emitting device such as a VCSEL (Vertical Cavity Surface Emitting Laser), a laser diode, an LED (Light Emitting Diode), or the like. Further, the imaging device as a semiconductor device may have a configuration in which a single chip includes a plurality of semiconductor elements, or a configuration in which a plurality of semiconductor elements are provided as a plurality of chips.
 また、上述した実施形態では、本技術に係るカバー部材として透明なガラス5が例示されているが、本技術に係るカバー部材は、透明な部材に限定されるものではなく、半透明または不透明なカバー体であってもよい。 Furthermore, in the embodiments described above, the transparent glass 5 is exemplified as the cover member according to the present technology, but the cover member according to the present technology is not limited to a transparent member, and can be semi-transparent or opaque. It may be a cover body.
 なお、本技術は、以下のような構成を取ることができる。
 (1)
 基板と、
 前記基板上に設けられた半導体素子と、
 前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、
 前記基板は、
 前記半導体素子の取付けを受ける第1面部と、
 上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有する
 半導体装置。
 (2)
 前記第2面部は、前記半導体素子の上側の面に設けられ前記接続部材の接続を受ける素子側電極部の高さ位置以下の高さに位置している
 前記(1)に記載の半導体装置。
 (3)
 前記半導体素子を上方から覆うカバー部材と、
 前記半導体素子と前記カバー部材との間に介在し、前記半導体素子に対して前記カバー部材を支持する支持部と、を備え、
 前記支持部は、前記半導体素子に対する前記接続部材の接続部を被覆するように設けられている
 前記(1)または前記(2)に記載の半導体装置。
 (4)
 前記基板は、前記第1面部と前記第2面部との間に形成された段差面部を有し、
 前記段差面部は、上下方向について前記第1面部側から前記第2面部側にかけて徐々に前記半導体素子との間の間隔を広げる向きに傾斜した傾斜面をなしている
 前記(1)~(3)のいずれか1つに記載の半導体装置。
 (5)
 前記第2面部は、前記第1面部を形成する部材とは異なる部材により形成されている
 前記(1)~(4)のいずれか1つに記載の半導体装置。
 (6)
 前記基板は、前記第2面部として、互いに高さが異なる複数種類の面部を有する
 前記(1)~(5)のいずれか1つに記載の半導体装置。
 (7)
 前記基板上における前記半導体素子および前記カバー部材の周囲に設けられた封止樹脂部を備え、
 前記カバー部材は、側面の少なくとも上側の一部を前記封止樹脂部により被覆されていない露出面部としている
 前記(1)~(6)のいずれか1つに記載の半導体装置。
 (8)
 前記基板は、前記第2面部をなす部分として、前記第1面部に対して突出した凸部を有し、
 前記凸部内には、前記電極部に通電させるための配線部を有するとともに前記基板より高い剛性を有する補強部材が設けられている
 前記(1)~(7)のいずれか1つに記載の半導体装置。
 (9)
 前記補強部材の基材は、前記基板の基材より線膨張係数が小さい材料である
 前記(8)に記載の半導体装置。
 (10)
 前記配線部は、前記補強部材の基材により形成された本体部を貫通する孔部をなす貫通配線部を含み、
 前記孔部には、前記孔部内を充填する樹脂材料により形成された樹脂部が設けられている
 前記(8)または前記(9)に記載の半導体装置。
 (11)
 前記基板は、平面視で長方形状の外形を有し、
 前記補強部材は、前記基板の平面視外形における長手方向に沿って延伸状に設けられている
 前記(8)~(10)のいずれか1つに記載の半導体装置。
 (12)
 前記基板は、前記補強部材として、互いに異なる基材により形成された複数種類の補強部材を有する
 前記(8)~(11)のいずれか1つに記載の半導体装置。
 (13)
 基板と、
 前記基板上に設けられた半導体素子と、
 前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、
 前記基板は、
 前記半導体素子の取付けを受ける第1面部と、
 上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有する
 半導体装置を備えた
 電子機器。
Note that the present technology can have the following configuration.
(1)
A substrate and
a semiconductor element provided on the substrate;
a connecting member that electrically connects the substrate and the semiconductor element,
The substrate is
a first surface portion to which the semiconductor element is attached;
A semiconductor device, comprising: a second surface portion located above the first surface portion in the vertical direction and having an electrode portion connected to the connection member disposed thereon.
(2)
The semiconductor device according to (1), wherein the second surface portion is located at a height equal to or lower than the height of an element-side electrode portion provided on the upper surface of the semiconductor element and to which the connection member is connected.
(3)
a cover member that covers the semiconductor element from above;
a support part interposed between the semiconductor element and the cover member and supporting the cover member with respect to the semiconductor element,
The semiconductor device according to (1) or (2), wherein the support portion is provided to cover a connection portion of the connection member to the semiconductor element.
(4)
The substrate has a stepped surface portion formed between the first surface portion and the second surface portion,
(1) to (3) above, wherein the stepped surface portion has an inclined surface that is inclined in a direction that gradually widens the distance between the step surface portion and the semiconductor element from the first surface portion side to the second surface portion side in the vertical direction. The semiconductor device according to any one of the above.
(5)
The semiconductor device according to any one of (1) to (4), wherein the second surface portion is formed of a member different from the member forming the first surface portion.
(6)
The semiconductor device according to any one of (1) to (5), wherein the substrate has a plurality of types of surface portions having different heights as the second surface portion.
(7)
comprising a sealing resin part provided around the semiconductor element and the cover member on the substrate,
The semiconductor device according to any one of (1) to (6), wherein the cover member has at least a portion of the upper side of the side surface as an exposed surface portion that is not covered with the sealing resin portion.
(8)
The substrate has a convex portion protruding from the first surface as a portion forming the second surface,
The semiconductor according to any one of (1) to (7) above, wherein a reinforcing member having a wiring portion for supplying electricity to the electrode portion and having higher rigidity than the substrate is provided in the convex portion. Device.
(9)
The semiconductor device according to (8), wherein the base material of the reinforcing member is a material having a smaller coefficient of linear expansion than the base material of the substrate.
(10)
The wiring portion includes a through wiring portion that is a hole that penetrates a main body portion formed by a base material of the reinforcing member,
The semiconductor device according to (8) or (9), wherein the hole is provided with a resin part formed of a resin material that fills the inside of the hole.
(11)
The substrate has a rectangular outer shape in plan view,
The semiconductor device according to any one of (8) to (10), wherein the reinforcing member is provided to extend along the longitudinal direction of the substrate in a plan view.
(12)
The semiconductor device according to any one of (8) to (11), wherein the substrate has a plurality of types of reinforcing members formed of different base materials as the reinforcing members.
(13)
A substrate and
a semiconductor element provided on the substrate;
a connecting member that electrically connects the substrate and the semiconductor element,
The substrate is
a first surface portion to which the semiconductor element is attached;
An electronic device comprising: a second surface portion located above the first surface portion in the vertical direction, and having an electrode portion connected to the connection member disposed thereon;
 1    固体撮像装置(半導体装置)
 2    基板
 2a   表面(第1面部)
 3    イメージセンサ(半導体素子)
 3a   表面(上側の面)
 4    ワイヤ(接続部材)
 5    ガラス(カバー部材)
 5e   露出面部
 6    リブ部(支持部)
 7    封止樹脂部
 9    ダイボンド材
 11   ボンディングパッド(電極部)
 15   接続パッド(素子側電極部)
 22   上段面部(第2面部)
 23   突縁部(凸部)
 25   凹部
 26   内側面(段差面部)
 50   固体撮像装置(半導体装置)
 60   固体撮像装置(半導体装置)
 62   フレーム
 80   固体撮像装置(半導体装置)
 91   第1上段面部
 92   第2上段面部
 100  固体撮像装置(半導体装置)
 110  補強部材
 110A 第1補強部材
 110B 第2補強部材
 120  配線部
 121  貫通配線部
 122  孔部
 130  補強部材本体部(本体部)
 140  樹脂部
 200  カメラ装置(電子機器)
 201  固体撮像装置(半導体装置)
1 Solid-state imaging device (semiconductor device)
2 Substrate 2a Surface (first surface part)
3 Image sensor (semiconductor element)
3a Surface (upper surface)
4 Wire (connection member)
5 Glass (cover member)
5e Exposed surface portion 6 Rib portion (support portion)
7 Sealing resin part 9 Die bonding material 11 Bonding pad (electrode part)
15 Connection pad (element side electrode part)
22 Upper surface section (second surface section)
23 Projection (protrusion)
25 Recess 26 Inner surface (stepped surface)
50 Solid-state imaging device (semiconductor device)
60 Solid-state imaging device (semiconductor device)
62 Frame 80 Solid-state imaging device (semiconductor device)
91 First upper surface portion 92 Second upper surface portion 100 Solid-state imaging device (semiconductor device)
110 Reinforcing member 110A First reinforcing member 110B Second reinforcing member 120 Wiring portion 121 Penetrating wiring portion 122 Hole portion 130 Reinforcing member main body portion (main body portion)
140 Resin part 200 Camera device (electronic equipment)
201 Solid-state imaging device (semiconductor device)

Claims (13)

  1.  基板と、
     前記基板上に設けられた半導体素子と、
     前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、
     前記基板は、
     前記半導体素子の取付けを受ける第1面部と、
     上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有する
     半導体装置。
    A substrate and
    a semiconductor element provided on the substrate;
    a connecting member that electrically connects the substrate and the semiconductor element,
    The substrate is
    a first surface portion to which the semiconductor element is attached;
    A semiconductor device, comprising: a second surface portion located above the first surface portion in the vertical direction and having an electrode portion connected to the connection member disposed thereon.
  2.  前記第2面部は、前記半導体素子の上側の面に設けられ前記接続部材の接続を受ける素子側電極部の高さ位置以下の高さに位置している
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the second surface portion is located at a height lower than the height of an element-side electrode portion provided on the upper surface of the semiconductor element and connected to the connection member.
  3.  前記半導体素子を上方から覆うカバー部材と、
     前記半導体素子と前記カバー部材との間に介在し、前記半導体素子に対して前記カバー部材を支持する支持部と、を備え、
     前記支持部は、前記半導体素子に対する前記接続部材の接続部を被覆するように設けられている
     請求項1に記載の半導体装置。
    a cover member that covers the semiconductor element from above;
    a support part interposed between the semiconductor element and the cover member and supporting the cover member with respect to the semiconductor element,
    The semiconductor device according to claim 1, wherein the support portion is provided to cover a connection portion of the connection member to the semiconductor element.
  4.  前記基板は、前記第1面部と前記第2面部との間に形成された段差面部を有し、
     前記段差面部は、上下方向について前記第1面部側から前記第2面部側にかけて徐々に前記半導体素子との間の間隔を広げる向きに傾斜した傾斜面をなしている
     請求項1に記載の半導体装置。
    The substrate has a stepped surface portion formed between the first surface portion and the second surface portion,
    2. The semiconductor device according to claim 1, wherein the stepped surface section is an inclined surface that is inclined in a direction that gradually widens the distance between the step surface section and the semiconductor element from the first surface section side to the second surface section side in the vertical direction. .
  5.  前記第2面部は、前記第1面部を形成する部材とは異なる部材により形成されている
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the second surface portion is formed of a member different from a member forming the first surface portion.
  6.  前記基板は、前記第2面部として、互いに高さが異なる複数種類の面部を有する
     請求項1に記載の半導体装置。
    The semiconductor device according to claim 1, wherein the substrate has a plurality of types of surface portions having different heights as the second surface portion.
  7.  前記基板上における前記半導体素子および前記カバー部材の周囲に設けられた封止樹脂部を備え、
     前記カバー部材は、側面の少なくとも上側の一部を前記封止樹脂部により被覆されていない露出面部としている
     請求項1に記載の半導体装置。
    comprising a sealing resin part provided around the semiconductor element and the cover member on the substrate,
    The semiconductor device according to claim 1, wherein the cover member has at least a portion of an upper side of a side surface as an exposed surface portion that is not covered with the sealing resin portion.
  8.  前記基板は、前記第2面部をなす部分として、前記第1面部に対して突出した凸部を有し、
     前記凸部内には、前記電極部に通電させるための配線部を有するとともに前記基板より高い剛性を有する補強部材が設けられている
     請求項1に記載の半導体装置。
    The substrate has a convex portion protruding from the first surface as a portion forming the second surface,
    2. The semiconductor device according to claim 1, wherein a reinforcing member is provided in the convex portion, the reinforcing member having a wiring portion for energizing the electrode portion and having higher rigidity than the substrate.
  9.  前記補強部材の基材は、前記基板の基材より線膨張係数が小さい材料である
     請求項8に記載の半導体装置。
    The semiconductor device according to claim 8, wherein the base material of the reinforcing member is a material having a smaller linear expansion coefficient than the base material of the substrate.
  10.  前記配線部は、前記補強部材の基材により形成された本体部を貫通する孔部をなす貫通配線部を含み、
     前記孔部には、前記孔部内を充填する樹脂材料により形成された樹脂部が設けられている
     請求項8に記載の半導体装置。
    The wiring portion includes a through wiring portion that is a hole that penetrates a main body portion formed by a base material of the reinforcing member,
    9. The semiconductor device according to claim 8, wherein the hole is provided with a resin part made of a resin material that fills the inside of the hole.
  11.  前記基板は、平面視で長方形状の外形を有し、
     前記補強部材は、前記基板の平面視外形における長手方向に沿って延伸状に設けられている
     請求項8に記載の半導体装置。
    The substrate has a rectangular outer shape in plan view,
    9. The semiconductor device according to claim 8, wherein the reinforcing member is provided to extend along the longitudinal direction of the substrate in a plan view.
  12.  前記基板は、前記補強部材として、互いに異なる基材により形成された複数種類の補強部材を有する
     請求項8に記載の半導体装置。
    The semiconductor device according to claim 8, wherein the substrate includes a plurality of types of reinforcing members formed of different base materials as the reinforcing members.
  13.  基板と、
     前記基板上に設けられた半導体素子と、
     前記基板と前記半導体素子とを電気的に接続する接続部材と、を備え、
     前記基板は、
     前記半導体素子の取付けを受ける第1面部と、
     上下方向について前記第1面部に対して上側に位置し、前記接続部材の接続を受ける電極部を配置した第2面部と、を有する
     半導体装置を備えた
     電子機器。
    A substrate and
    a semiconductor element provided on the substrate;
    a connecting member that electrically connects the substrate and the semiconductor element,
    The substrate is
    a first surface portion to which the semiconductor element is attached;
    An electronic device comprising: a second surface portion located above the first surface portion in the vertical direction and having an electrode portion connected to the connection member disposed thereon;
PCT/JP2023/031052 2022-09-09 2023-08-28 Semiconductor device and electronic equipment WO2024053466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144042 2022-09-09
JP2022-144042 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053466A1 true WO2024053466A1 (en) 2024-03-14

Family

ID=90191159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031052 WO2024053466A1 (en) 2022-09-09 2023-08-28 Semiconductor device and electronic equipment

Country Status (1)

Country Link
WO (1) WO2024053466A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017604A (en) * 2001-06-28 2003-01-17 Kyocera Corp Package for housing semiconductor element and semiconductor device
JP2007035906A (en) * 2005-07-27 2007-02-08 Kyocera Corp Package for housing electronic component, and electronic device provided therewith
JP2011029523A (en) * 2009-07-29 2011-02-10 Kyocera Corp Package for electronic component storage, and electronic device
JP2018006760A (en) * 2016-07-06 2018-01-11 キングパック テクノロジー インコーポレイテッドKingpak Technology Inc. Sensor package structure
WO2018079644A1 (en) * 2016-10-27 2018-05-03 京セラ株式会社 Substrate for imaging element mounting, imaging device and imaging module
JP2018088443A (en) * 2016-11-28 2018-06-07 京セラ株式会社 Electronic element mount substrate and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017604A (en) * 2001-06-28 2003-01-17 Kyocera Corp Package for housing semiconductor element and semiconductor device
JP2007035906A (en) * 2005-07-27 2007-02-08 Kyocera Corp Package for housing electronic component, and electronic device provided therewith
JP2011029523A (en) * 2009-07-29 2011-02-10 Kyocera Corp Package for electronic component storage, and electronic device
JP2018006760A (en) * 2016-07-06 2018-01-11 キングパック テクノロジー インコーポレイテッドKingpak Technology Inc. Sensor package structure
WO2018079644A1 (en) * 2016-10-27 2018-05-03 京セラ株式会社 Substrate for imaging element mounting, imaging device and imaging module
JP2018088443A (en) * 2016-11-28 2018-06-07 京セラ株式会社 Electronic element mount substrate and electronic device

Similar Documents

Publication Publication Date Title
US7511367B2 (en) Optical device and method for fabricating the same
US10008533B2 (en) Semiconductor package
KR100652375B1 (en) Image sensor module structure comprising a wire bonding package and method of manufacturing the same
US6940141B2 (en) Flip-chip image sensor packages and methods of fabrication
KR101120341B1 (en) Solide imaging device and manufacturing method thereof
US7593636B2 (en) Pin referenced image sensor to reduce tilt in a camera module
US7893514B2 (en) Image sensor package, method of manufacturing the same, and image sensor module including the image sensor package
US7423335B2 (en) Sensor module package structure and method of the same
US8232633B2 (en) Image sensor package with dual substrates and the method of the same
JP2005209967A (en) Semiconductor device, module for optical device, and method for manufacturing the semiconductor device
KR20080074773A (en) Image sensor package with die receiving opening and method of the same
KR100583509B1 (en) Optical device and method for manufacturing the same
US20060016973A1 (en) Multi-chip image sensor package module
JP2012094882A (en) Manufacturing method for wafer-level image sensor module
US20090230408A1 (en) Optical device and method for manufacturing the same
JP2017168567A (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JPH11261044A (en) Semiconductor device with solid-state image sensing element and manufacture of this semiconductor device
US7242538B2 (en) Optical device
WO2024053466A1 (en) Semiconductor device and electronic equipment
CN113519058A (en) Semiconductor device with a plurality of semiconductor chips
JP2010093285A (en) Method of manufacturing semiconductor device
US7205095B1 (en) Apparatus and method for packaging image sensing semiconductor chips
JP2006005612A (en) Imaging module
KR20050116760A (en) Package for image sensor
CN112151560A (en) Image sensor package and related methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863005

Country of ref document: EP

Kind code of ref document: A1