WO2024053461A1 - 電力変換装置及びプログラム - Google Patents

電力変換装置及びプログラム Download PDF

Info

Publication number
WO2024053461A1
WO2024053461A1 PCT/JP2023/031005 JP2023031005W WO2024053461A1 WO 2024053461 A1 WO2024053461 A1 WO 2024053461A1 JP 2023031005 W JP2023031005 W JP 2023031005W WO 2024053461 A1 WO2024053461 A1 WO 2024053461A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
power storage
storage unit
determined
Prior art date
Application number
PCT/JP2023/031005
Other languages
English (en)
French (fr)
Inventor
佳祐 外山
俊一 久保
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024053461A1 publication Critical patent/WO2024053461A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device and a program.
  • a control device determines whether a switch in a power conversion device is stuck on when charging an on-vehicle battery using an external charger. For example, the control device described in Patent Document 1 transmits an ON command to a switch to be determined, and checks the voltage across the switch. At this time, if the voltages across the switch are the same, the control device determines that the switch is stuck on.
  • the present disclosure has been made in view of the above problems, and aims to provide a power conversion device and a program that can suppress the flow of short-circuit current between switches.
  • a high potential side electrical path electrically connectable to the positive terminal of the first power storage unit; a low potential side electrical path electrically connectable to the negative terminal of the second power storage unit; an inverter having an upper arm switch electrically connected to the high potential side electrical path, and a lower arm switch electrically connected to the low potential side electrical path; a motor electrically connected to a connection point of the upper arm switch and the lower arm switch;
  • a power conversion device comprising: an inter-power storage unit switch provided in an inter-power storage unit electrical path that electrically connects the negative terminal of the first power storage unit and the positive terminal of the second power storage unit; At least one of the electrical connection between the negative terminals of the first power storage unit and the second power storage unit, and the electrical connection between the positive terminals of the first power storage unit and the second power storage unit Bypass switch for making connections, A control unit that determines whether or not the other switch is stuck on before turning on one of the power storage unit switch and the bypass switch.
  • FIG. 1 is an overall configuration diagram of a system according to a first embodiment
  • FIG. 2 is a diagram showing how the switch is operated during low-voltage charging
  • FIG. 3 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 4 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 5 is a diagram illustrating the mechanism by which short-circuit current occurs.
  • FIG. 6 is a diagram illustrating a method of determining on-stickiness using the smoothing capacitor according to the first embodiment
  • FIG. 1 is an overall configuration diagram of a system according to a first embodiment
  • FIG. 2 is a diagram showing how the switch is operated during low-voltage charging
  • FIG. 3 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 4 is a diagram showing how the switch is operated during high-voltage charging
  • FIG. 5 is a diagram illustrating the mechanism by which short-circuit current occurs.
  • FIG. 6 is a diagram illustrating a method of
  • FIG. 7 is a diagram illustrating a method of determining on-sticking using the smoothing capacitor according to the first embodiment
  • FIG. 8 is a diagram illustrating a method of determining on-stability using the smoothing capacitor according to the first embodiment
  • FIG. 9 is a flowchart illustrating an example of the operation of the control device according to the first embodiment
  • FIG. 10 is a diagram illustrating a method for determining on-stability using the smoothing capacitor according to the second embodiment
  • FIG. 11 is a diagram illustrating a method of determining on-stability using a smoothing capacitor according to the second embodiment
  • FIG. 12 is a diagram illustrating a method for determining on-stability using the smoothing capacitor according to the second embodiment
  • FIG. 13 is a flowchart illustrating an example of the operation of the control device according to the second embodiment
  • FIG. 14 is a diagram illustrating a method for determining on-fixation according to the third embodiment
  • FIG. 15 is a flowchart illustrating an example of the operation of the control device according to the third embodiment
  • FIG. 16 is a flowchart illustrating an example of the operation of the control device according to the third embodiment
  • FIG. 17 is a flowchart illustrating an example of the operation of the control device according to the third embodiment
  • FIG. 18 is a flowchart illustrating an example of the operation of the control device according to the third embodiment
  • FIG. 19 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 20 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 21 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 22 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 23 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 24 is a flowchart illustrating an example of the operation of the control device according to the fourth embodiment
  • FIG. 25 is an overall configuration diagram of the system according to the fifth embodiment
  • FIG. 26 is a flowchart illustrating an example of the operation of the control device according to the fifth embodiment
  • FIG. 27 is a flowchart illustrating an example of the operation of the control device according to a modification of the fifth embodiment
  • FIG. 28 is an overall configuration diagram of a system according to the sixth embodiment
  • FIG. 29 is a flowchart illustrating an example of the operation of the control device according to the sixth embodiment
  • FIG. 30 is a flowchart illustrating an example of the operation of the control device according to the sixth embodiment
  • FIG. 31 is a flowchart illustrating an example of the operation of the control device according to the sixth embodiment
  • FIG. 32 is a flowchart illustrating an example of the operation of the control device according to the sixth embodiment
  • FIG. 33 is an overall configuration diagram of the system according to the seventh embodiment
  • FIG. 34 is an overall configuration diagram of the system according to the eighth embodiment
  • FIG. 35 is an overall configuration diagram of the system according to the ninth embodiment
  • FIG. 36 is an overall configuration diagram of a system according to the tenth embodiment.
  • the power conversion device of this embodiment is installed in an electric vehicle such as an electric vehicle or a hybrid vehicle, an electric aircraft, an electric ship, etc., and constitutes an electric vehicle system.
  • the system includes a power conversion device.
  • the power conversion device includes a motor 10, an inverter 20, a high potential electrical path 22H, and a low potential electrical path 22L.
  • the motor 10 is a three-phase synchronous machine, and includes star-connected armature windings 11 of U, V, and W phases, and a rotor (not shown).
  • the armature windings 11 of each phase are arranged to be shifted by 120 degrees in electrical angle.
  • the motor 10 is, for example, a permanent magnet synchronous machine.
  • the rotor is capable of transmitting power to the drive wheels of the vehicle. Therefore, the motor 10 becomes a source of torque that drives the vehicle.
  • the inverter 20 includes a series connection body of an upper arm switch SWH and a lower arm switch SWL for three phases.
  • An upper arm diode DH which is a freewheeling diode, is connected antiparallel to the upper arm switch SWH, and a lower arm diode DL, which is a freewheeling diode, is connected antiparallel to the lower arm switch SWL.
  • each switch SWH, SWL is an IGBT.
  • the inverter 20 includes a smoothing capacitor 21.
  • the high potential side terminal of the smoothing capacitor 21 is connected to the first end side of the elongated high potential side electrical path 22H.
  • a first end of a long low potential electrical path 22L is connected to the low potential terminal of the smoothing capacitor 21.
  • the smoothing capacitor 21 may be provided outside the inverter 20.
  • the voltage of smoothing capacitor 21 is detected by SC voltage sensor 19.
  • the armature winding is connected to the connection point between the emitter, which is the low potential side terminal of the upper arm switch SWH, and the collector, which is the high potential side terminal of the lower arm switch SWL, through a conductive member 23 such as a bus bar.
  • a first end of line 11 is connected.
  • the second ends of the armature windings 11 of each phase are connected at a neutral point.
  • the armature windings 11 of each phase are set to have the same number of turns. As a result, the armature windings 11 of each phase are set to have the same inductance, for example.
  • a high potential side electrical path 22H is connected to the collector of the upper arm switch SWH of each phase.
  • a low potential side electrical path 22L is connected to the emitter of the lower arm switch SWL of each phase.
  • the system includes a first storage battery 31 (corresponding to a "first power storage unit") and a second storage battery 32 (corresponding to a "second power storage unit”).
  • Each of the storage batteries 31 and 32 serves as a power supply source for rotationally driving the rotor of the motor 10.
  • Each of the storage batteries 31 and 32 is an assembled battery configured as a series connection of battery cells that are single batteries.
  • the positive terminal of the first storage battery 31 is connected to the high potential side electrical path 22H, and the negative terminal of the second storage battery 32 is connected to the low potential side electrical path 22L.
  • the terminal voltage (for example, rated voltage) of the first storage battery 31 is 400V
  • the terminal voltage (for example, rated voltage) of the second storage battery 32 is 200V.
  • the battery cell is, for example, a secondary battery such as a lithium ion battery.
  • Each storage battery 31, 32 can be charged by an external charger, which will be described later, provided outside the vehicle.
  • the external charger is, for example, a stationary charger.
  • a negative electrode side connection portion to which a negative electrode terminal of an external charger can be connected is provided on the second end side of the low potential side electrical path 22L on the opposite side to the connection point side of the smoothing capacitor 21.
  • the power conversion device includes a main switch for electrically connecting or disconnecting between the first and second storage batteries 31 and 32 and the inverter 20. Specifically, a high potential side main switch SMRH and a low potential side main switch SMRL are provided as the main switches. Further, the power conversion device includes a charging switch for electrically connecting or disconnecting between the external charger and the first and second storage batteries 31 and 32. Specifically, a high potential side charging switch DCRH and a low potential side charging switch DCRL are provided as the charging switches. In this embodiment, each switch SMRH, SMRL, DCRH, and DCRL is described as a mechanical relay, but is not limited to this, and may be a semiconductor switching element.
  • Each of the switches SMRH, SMRL, DCRH, and DCRL blocks bidirectional current flow in the off state, and allows bidirectional current flow in the on state.
  • the high potential side electrical path 22H is provided with a high potential side main switch SMRH and a high potential side charging switch DCRH in this order from the inverter 20 side.
  • the low potential side electrical path 22L is provided with a low potential side main switch SMRL and a low potential side charging switch DCRL in this order from the inverter 20 side.
  • the power conversion device uses an inter-battery switch 40 as a switch for switching the connection state of the first storage battery 31 and the second storage battery 32 to either a state in which they are connected in series or a state in which they are connected in parallel to an external charger. , a negative electrode bypass switch 50, a motor side switch 60, and a connection switch 80.
  • the inter-battery switch 40, the negative electrode bypass switch 50, the motor-side switch 60, and the connection switch 80 are described as mechanical relays, but are not limited thereto, and may be semiconductor switching elements.
  • the inter-battery switch 40, the negative electrode bypass switch 50, the motor-side switch 60, and the connection switch 80 block bidirectional current flow in the off state, and allow bidirectional current flow in the on state.
  • the inter-battery switch 40 is provided in the inter-battery electrical path 24 (corresponding to the "inter-storage unit electrical path") that connects the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32.
  • the inter-battery switch 40 When the inter-battery switch 40 is in the on state, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically connected. On the other hand, when the inter-battery switch 40 is in the off state, the negative terminal of the first storage battery 31 and the positive terminal of the second storage battery 32 are electrically disconnected.
  • the negative electrode bypass switch 50 connects the negative electrode terminal of the first storage battery 31 and the low potential side electrical path 22L.
  • the negative electrode bypass switch 50 When the negative electrode bypass switch 50 is in the on state, the negative electrode terminal of the first storage battery 31 and the negative electrode terminal of the second storage battery 32 are electrically connected.
  • the negative electrode bypass switch 50 when the negative electrode bypass switch 50 is in the off state, the negative electrode terminal of the first storage battery 31 and the negative electrode terminal of the second storage battery 32 are electrically disconnected.
  • the motor-side switch 60 and the connection switch 80 are provided in the motor-side electrical path 25 that connects the inter-battery electrical path 24 closer to the second storage battery 32 than the inter-battery switch 40 and the neutral point of the armature winding 11. It is being More specifically, the connection switch 80 is provided closer to the neutral point than the motor-side switch 60 in the motor-side electrical path 25 . When the motor side switch 60 and the connection switch 80 are in the on state, the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically connected. On the other hand, when the motor side switch 60 and the connection switch 80 are in the off state, the neutral point of the armature winding 11 and the positive terminal of the second storage battery 32 are electrically disconnected.
  • the motor-side electrical path 25 is a path that electrically connects the neutral point of the armature winding 11 and a portion of the inter-battery electrical path 24 that is closer to the second storage battery 32 than the inter-battery switch 40 .
  • the power conversion device includes a first voltage sensor 71 that detects the voltage between the terminals of the first storage battery 31 and a second voltage sensor 72 that detects the voltage between the terminals of the second storage battery 32.
  • the power conversion device includes a first current sensor 73 that detects the current flowing through the first storage battery 31 and a second current sensor 74 that detects the current flowing through the second storage battery 32.
  • the first current sensor 73 is provided on an electrical path that connects the positive terminal of the first storage battery 31 and the high potential side electrical path 22H.
  • the second current sensor 74 is provided on an electrical path that connects the negative terminal of the second storage battery 32 and the low potential side electrical path 22L.
  • the power conversion device includes, as other sensors, a rotation angle sensor that detects the rotation angle (electrical angle) of the rotor, and a phase current sensor that detects the phase current flowing in the armature winding 11 of each phase. There is.
  • the detected values of each sensor are input to a control device 100 (corresponding to a "control unit") included in the power conversion device.
  • the control device 100 is mainly configured with a microcomputer 101, and the microcomputer 101 includes a CPU.
  • the functions provided by the microcomputer 101 can be provided by software recorded in a physical memory device and a computer that executes it, only software, only hardware, or a combination thereof.
  • the microcomputer 101 is provided by an electronic circuit that is hardware, it can be provided by a digital circuit including a large number of logic circuits or an analog circuit.
  • the microcomputer 101 executes a program stored in a non-transitory tangible storage medium, which serves as a storage unit included in the microcomputer 101 .
  • the program includes, for example, a program for processing shown in FIG. 9, which will be described later. By executing the program, a method corresponding to the program is executed.
  • the storage unit is, for example, a nonvolatile memory. Note that the program stored in the storage unit can be updated via a communication network such as the Internet, such as OTA (Over The Air).
  • the control device 100 performs switching control of the switches SWH and SWL that constitute the inverter 20 in order to feedback control the control amount of the motor 10 to a command value based on the detected values of each sensor.
  • the controlled amount is, for example, torque.
  • the upper arm switch SWH and the lower arm switch SWL are turned on alternately. Through this feedback control, the rotational power of the rotor is transmitted to the drive wheels, and the vehicle runs.
  • the positive electrode side connection portion of the high potential side electrical path 22H and the negative electrode side connection portion of the low potential side electrical path 22L are interfaces for connection to an external charger.
  • the external charger is a low voltage charger 200 or a high voltage charger 210 (see FIGS. 2-4).
  • the charging voltage of the low voltage charger 200 is a voltage lower than the voltage between the terminals (specifically, the rated voltage) of the series connection of the first and second storage batteries 31 and 32, and is, for example, 400V.
  • the charging voltage of the high-voltage charger 210 is higher than the rated voltage of the series connection of the first and second storage batteries 31 and 32, and is, for example, 800V.
  • the high potential side charging switch DCRH and the low potential side charging switch DCRL are , is switched to the on state by the control device 100.
  • the high potential side charging switch DCRH and the low potential side charging switch DCRL are switched to the off state by the control device 100.
  • the positive electrode side connection portion and the negative electrode side connection portion are exposed to the outside from the casing of the power conversion device, there is a possibility that the positive electrode side connection portion and the negative electrode side connection portion may be touched by a user or an operator. Electric shock is prevented by turning off the high potential side charging switch DCRH and the low potential side charging switch DCRL.
  • a low potential side electrical path 22L is connected to a portion of the motor side electrical path 25 between the motor side switch 60 and the connection switch 80 via a neutral point capacitor 90.
  • the neutral point capacitor 90 is provided with an NC voltage sensor 75 that detects the voltage of the neutral point capacitor 90.
  • the reason why the neutral point capacitor 90 is provided between the motor side electrical path 25 and the low potential side electrical path 22L is as follows. In the charging process when an external charger is connected, high frequency current is generated due to switching. A neutral point capacitor 90 is provided to suppress high frequency current generated due to switching from flowing from the inverter 20 side to the first and second storage batteries 31, 32 and the external charger.
  • a series connection body of a precharge switch SP and a resistor 95 is connected in parallel to the low potential side main switch SMRL.
  • the precharge switch SP is used, for example, in a precharge process to charge the smoothing capacitor 21 and the neutral point capacitor 90 when starting up the power conversion device.
  • FIG. 2 shows the on/off state of each switch when the external charger connected to each connection part of each electrical path 22H, 22L is a low voltage charger 200.
  • the control device 100 connects the first storage battery 31 in parallel to the low voltage charger 200, and connects the second storage battery to the low voltage charger 200.
  • 32 are connected in parallel via the inverter 20 and the armature winding 11. Operate the upper and lower arm switches SWH and SWL of 20.
  • the control device 100 turns on the main switches SMRH, SMRL, the negative electrode bypass switch 50, the motor side switch 60, and the connection switch 80, and turns off the inter-battery switch 40. Further, the control device 100 repeatedly turns off the lower arm switch SWL of all phases of the inverter 20 and turns on and off the upper arm switch SWH of at least one phase. As a result, as shown in FIG. are connected in parallel. Therefore, a current flows through a closed circuit including the low-voltage charger 200, the high-potential electric path 22H, the first storage battery 31, the negative electrode bypass switch 50, and the low-potential electric path 22L, and the first storage battery 31 is charged.
  • the low voltage charger 200, high potential side electrical path 22H, upper arm switch SWH, armature winding 11, neutral point, connection switch 80, motor side switch 60, second storage battery 32, and low potential side electrical path 22L are provided.
  • the multi-phase upper arm switch SWH is turned on, the impedance of the charging path can be reduced.
  • the mode in which charging is performed in the switch state shown in FIG. 2 is referred to as a "parallel mode.”
  • FIG. 3 shows the on/off state of each switch when the external charger connected to each connection part of each electric path 22H, 22L is the high voltage charger 210.
  • the control device 100 controls the main battery so that the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 210. Operate the switches SMRH, SMRL, the inter-battery switch 40, the negative electrode bypass switch 50, the motor-side switch 60, the connection switch 80, and the upper and lower arm switches SWH and SWL of the inverter 20.
  • the control device 100 turns on the main switches SMRH, SMRL and the inter-battery switch 40, and turns on the negative electrode bypass switch 50, the motor-side switch 60, the connection switch 80, and the upper and lower arm switches SWH of all phases of the inverter 20. , turn off SWL.
  • the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 210. Therefore, a current flows in a closed circuit including the high voltage charger 210, the high potential side electrical path 22H, the first storage battery 31, the inter-battery switch 40, the second storage battery 32, and the low potential side electrical path 22L, and the first storage battery 31 and the low potential side electrical path 22L flow.
  • the second storage battery 32 is charged while being connected in series. At this time, since the upper arm switch SWH of the inverter 20, the connection switch 80, and the motor side switch 60 are turned off, it is possible to prevent the charging current of the high voltage charger 210 from flowing to the inverter 20 and the armature winding 11.
  • the mode in which charging is performed in the switch state shown in FIG. 3 is referred to as a "series mode.”
  • FIG. 4 also shows the on/off state of each switch when the external charger connected to each connection part of each electrical path 22H, 22L is the high voltage charger 210.
  • the first storage battery 31 and the second storage battery 32 are connected in series to the high-voltage charger 210, which is the same as in FIG. 3, but in FIG. 4, the on/off state of each switch is different from FIG. 3.
  • the control device 100 turns on the main switches SMRH, SMRL, the inter-battery switch 40, the motor-side switch 60, and the connection switch 80, and turns off the negative electrode bypass switch 50.
  • the first storage battery 31 and the second storage battery 32 are connected in series to the high voltage charger 210.
  • control device 100 alternately turns on the upper and lower arm switches SWH and SWL of the inverter.
  • the mode in which charging is performed in the switch state shown in FIG. 4 is referred to as "series neutral mode.”
  • "Stuck on” is one of the failure modes of a switch, and is a failure mode in which the contacts of the switch are stuck in a connected state (on state). For example, if the switch is a mechanical relay with contacts, the contacts may weld if an arc occurs when the contacts open or close, or if a current exceeding the rated value flows through the contacts. In this case, the switch is fixed in the on state regardless of control by the control device 100.
  • the system is not connected to an external charger and each switch is in the off state.
  • the inter-battery switch 40 is stuck on and does not turn off even if it receives an off command from the control device 100.
  • the negative electrode bypass switch 50 is turned on as explained in FIG. 2.
  • the inter-battery switch 40 is stuck on, a short-circuit current flows through the closed circuit including the inter-battery switch 40, the negative electrode bypass switch 50, and the second storage battery 32, as shown in FIG. 5(b). .
  • FIGS. 5A and 5B an example has been described in which the inter-battery switch 40 is stuck on, but the same applies to the case where the negative electrode bypass switch 50 instead of the inter-battery switch 40 is stuck on. That is, when the high-voltage charger 210 is connected, for example, when the negative electrode bypass switch 50 is stuck on, the inter-battery switch 40 is turned on as explained in FIGS. 3 and 4. As a result, a short-circuit current flows through the closed circuit including the inter-battery switch 40, the negative-electrode bypass switch 50, and the second storage battery 32.
  • any of the parallel mode, series mode, and series neutral point mode when charging is performed, either the inter-battery switch 40 or the negative electrode bypass switch 50 is turned on, so that charging It is required to determine whether the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are stuck on before starting charging or after charging is completed.
  • each switch in FIGS. 6 to 8 indicates the on/off state at the time of starting the power conversion device, that is, before starting charging.
  • the high potential side main switch SMRH and the low potential side main switch SMRL are turned on.
  • the precharge switch SP may be turned on instead of the low potential side main switch SMRL. That is, the "low potential side switch provided between the lower arm switch and the negative electrode terminal of the second power storage unit in the low potential side electrical path" includes the low potential side main switch SMRL and the precharge switch SP. .
  • the inter-battery switch 40, the negative electrode bypass switch 50, the motor-side switch 60, and the connection switch 80 are in the off state. Since the inter-battery switch 40 and the negative electrode bypass switch 50 are in the off state, no current flows through the smoothing capacitor 21, and therefore the voltage Vinv of the smoothing capacitor 21 is 0V.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 when the main switches SMRH and SMRL are turned on is equal to 0 V at the time of starting the power converter, the inter-battery switch 40 and the negative electrode bypass switch 50 are It is determined that it is not stuck on.
  • the main switches SMRH and SMRL are turned on when the power converter is started. 7 is different from FIG. 6 in that the inter-battery switch 40 is fixed on. In this case, the first storage battery 31 and the second storage battery 32 are connected in series. As a result, a current flows through a closed circuit including the second storage battery 32, the inter-battery switch 40, the first storage battery 31, the high potential side electrical path 22H, the smoothing capacitor 21, and the low potential side electrical path 22L, and the voltage Vinv of the smoothing capacitor 21 is 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32.
  • the control device 100 is configured such that the voltage Vinv of the smoothing capacitor 21 when the main switches SMRH and SMRL are turned on is equal to the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32 at the time of starting the power conversion device. If it is determined that the inter-battery switch 40 is stuck on.
  • the main switches SMRH and SMRL are turned on when the power conversion device is started. 8 is different from FIG. 6 in that the negative electrode bypass switch 50 is fixed on. In this case, a current flows through a closed circuit including the negative electrode bypass switch 50, the first storage battery 31, the high potential side electrical path 22H, the smoothing capacitor 21, and the low potential side electrical path 22L, and the voltage Vinv of the smoothing capacitor 21 is The voltage is 400V, which is the same as the storage battery 31.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 when the main switches SMRH and SMRL are turned on is equal to the voltage of the first storage battery 31 at the time of starting the power conversion device, the negative electrode bypass switch 50 is activated. It is determined that it is stuck on.
  • the initial state of each switch at the start of the flowchart is a state in which it is receiving an off command from the control device 100.
  • the control device 100 selects a charging mode. This can be done by selecting a mode depending on the type of external charger connected, for example.
  • step S102 the control device 100 turns on the main switches SMRH and SMRL to obtain the voltage Vinv of the smoothing capacitor 21 detected by the SC voltage sensor 19.
  • step S104 the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S105 the control device 100 switches the on/off state of each switch based on the charging mode. This starts charging.
  • step S103 determines that the process in step S103 is NO.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the total value (600V) of the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S106 is YES.
  • step S107 the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S108 the control device 100 stops charging.
  • step S106 If the process in step S106 is NO, the process proceeds to step S109.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage (400V) of the first storage battery 31, that is, when the process in step S109 is YES, the process proceeds to step S110.
  • step S110 the control device 100 determines that the negative electrode bypass switch 50 is stuck on. After that, the process advances to step S108. Note that if the answer in step S109 is NO, there is a possibility that an unexpected phenomenon has occurred, so the process proceeds to step S108.
  • the control device 100 Before turning on either one of the inter-battery switch 40 and the negative-electrode bypass switch 50, the control device 100 determines whether the other switch is stuck on. If it is determined that one switch is stuck on, the other switch will not be turned on, so as explained in FIG. The short circuit current is suppressed from flowing into the closed circuit including the short circuit.
  • the control device 100 turns on the main switches SMRH and SMRL when starting up the power conversion device, that is, before starting charging, and turns on the inter-battery switch 40 and the negative electrode bypass switch based on the voltage Vinv of the smoothing capacitor 21 at that time. 50 is determined to be stuck on. According to this configuration, it is possible to determine whether or not the inter-battery switch 40 and the bypass switch 50 between negative electrodes are stuck on without actually turning on or turning off the inter-battery switch 40 and the bypass switch 50 between negative electrodes. can be determined.
  • the on-fixation determination described using FIGS. 6 to 8 may be performed not when the power converter is started, but when the power converter is terminated.
  • each switch is controlled to be in the OFF state, so whether the switch is stuck on can be determined using the same method as when starting up.
  • charge is accumulated in the smoothing capacitor 21 due to charging. Therefore, in order to determine whether the power converter is stuck on when the power converter is terminated, it is necessary to discharge the smoothing capacitor 21 to bring the voltage of the smoothing capacitor 21 to 0V.
  • a method of discharging the smoothing capacitor 21 for example, a method of discharging the smoothing capacitor 21 by flowing a d-axis current through the inverter 20 and the motor 10 can be mentioned. Note that since the voltage of the smoothing capacitor 21 is 0V when the power conversion device is started, such a discharging process is unnecessary.
  • the second embodiment will be described below with reference to FIGS. 10 to 13.
  • the second embodiment differs from the first embodiment in the switches that are to be controlled when the power converter is started.
  • reference numerals will be cited and descriptions thereof will be omitted. The differences will be mainly explained below.
  • FIG. 10 shows the on/off state of each switch at the time of starting up the power conversion device.
  • the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 are turned on.
  • the inter-battery switch 40, the negative electrode bypass switch 50, and the low potential side main switch SMRL are in the off state. Since the inter-battery switch 40 and the negative electrode bypass switch 50 are in the off state, no current flows through the smoothing capacitor 21, and therefore the voltage Vinv of the smoothing capacitor 21 is 0V.
  • control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V when the high-potential side main switch SMRH, the motor side switch 60, and the connection switch 80 are turned on at the time of starting the power conversion device, the control device 100 controls the battery. It is determined that the between-interval switch 40 and the negative-electrode bypass switch 50 are not stuck on.
  • FIG. 11 when the power conversion device is started, the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 are turned on.
  • the inter-battery switch 40 is fixed on. In this case, current flows in a closed circuit including the inter-battery switch 40, the first storage battery 31, the high potential side electrical path 22H, the smoothing capacitor 21, the inverter 20, the neutral point of the motor 10, the connection switch 80, and the motor side switch 60.
  • the voltage Vinv of the smoothing capacitor 21 is 400V, which is the same as that of the first storage battery 31.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage of the first storage battery 31 when the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 are turned on when the power conversion device is started. If so, it is determined that the inter-battery switch 40 is stuck on.
  • FIG. 12 when the power converter is started, the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 are turned on.
  • the negative electrode bypass switch 50 is fixed on.
  • the first storage battery 31 and the second storage battery 32 are connected in parallel. This includes the second storage battery 32, the negative electrode bypass switch 50, the first storage battery 31, the high potential side electrical path 22H, the smoothing capacitor 21, the inverter 20, the neutral point of the motor 10, the connection switch 80, and the motor side switch 60.
  • a current flows in the closed circuit, and the voltage Vinv of the smoothing capacitor 21 becomes equal to the voltage difference (200 V) between the voltage of the first storage battery 31 and the voltage of the second storage battery 32.
  • the control device 100 is configured such that the voltage Vinv of the smoothing capacitor 21 when the high potential side main switch SMRH, the motor side switch 60 and the connection switch 80 are turned on is equal to the voltage of the first storage battery 31 and the second storage battery 31 when the power conversion device is started. When it is determined that the voltage difference is equal to the voltage of the storage battery 32, it is determined that the negative electrode bypass switch 50 is stuck on.
  • control device 100 selects a charging mode.
  • step S202 the control device 100 turns on the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 to obtain the voltage Vinv of the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S203 is YES, the process proceeds to step S204.
  • step S204 the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S205 the control device 100 switches the on/off state of each switch based on the charging mode. This starts charging.
  • step S203 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage (400V) of the first storage battery 31, that is, when the process in step S206 is YES.
  • step S207 the control device 100 determines that the inter-battery switch 40 is stuck on. The process advances to step S208, and the control device 100 stops charging.
  • step S206 If the process in step S206 is NO, the process proceeds to step S209.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage difference (200 V) between the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S209 is YES, The process proceeds to step S210.
  • step S210 the control device 100 determines that the negative electrode bypass switch 50 is stuck on. After that, the process advances to step S208. Note that if the process in step S209 is NO, there is a possibility that an unexpected phenomenon has occurred, so the process proceeds to step S208.
  • the control device 100 turns on the high potential side main switch SMRH, the motor side switch 60, and the connection switch 80 at the time of starting up the power conversion device, that is, before starting charging. It is determined whether the inter-battery switch 40 or the negative electrode-interval bypass switch 50 is stuck on. According to this configuration, it is possible to determine whether the inter-battery switch 40 or the bypass switch 50 is stuck on without actually turning on or turning off the inter-battery switch 40 or the negative electrode bypass switch 50. Can be done.
  • the on-sticky determination described using FIGS. 10 to 12 may be performed not when the power converter is started, but when the power converter is terminated.
  • each switch is controlled to be in the OFF state, so whether the switch is stuck on can be determined using the same method as when starting up.
  • charge is accumulated in the smoothing capacitor 21 due to charging. Therefore, in order to determine whether the power converter is stuck on when the power converter is terminated, it is necessary to discharge the smoothing capacitor 21 to bring the voltage of the smoothing capacitor 21 to 0V.
  • the method of discharging the smoothing capacitor 21 is the same as the modified example of the first embodiment.
  • FIG. 14 is a configuration diagram of a power conversion device in a third embodiment.
  • the power converter includes at least an inter-battery switch voltage sensor 76 that detects the voltage across the inter-battery switch 40, a bypass switch voltage sensor 77 that detects the voltage across the negative electrode bypass switch 50, and a first storage battery.
  • An inter-terminal voltage sensor 78 detects the inter-terminal voltage that is the voltage between the positive terminal of the battery 31 and the positive terminal of the second storage battery 32, and the PN voltage that is the voltage between the high potential side electrical path 22H and the low potential side electrical path 22L.
  • the PN voltage sensor 79 detects the PN voltage sensor 79.
  • the control device 100 detects the voltage across the battery detected by the battery switch voltage sensor 76, the voltage across the bypass switch voltage sensor 77, the voltage between the terminals detected by the voltage sensor 78, and the voltage between PN and PN detected by the voltage sensor 79. It is determined whether the inter-battery switch 40 or the negative electrode bypass switch 50 is stuck on based on any one of the PN voltages.
  • step S301 the control device 100 determines whether the voltage VB across the inter-battery switch 40 detected by the inter-battery switch voltage sensor 76 is 600 V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Determine whether or not.
  • the voltage VB across the inter-battery switch 40 is the voltage of the first storage battery 31 and the voltage of the second storage battery 32. The total value of the voltage is 600V. Therefore, if the process in step S301 is YES, the process proceeds to step S302, and the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S303 the control device 100 determines whether the voltage VB across the inter-battery switch 40 is 0V. In this embodiment, when the inter-battery switch 40 is stuck on, the voltage VB across the inter-battery switch 40 becomes 0V. Therefore, if the process in step S303 is YES, the process proceeds to step S304, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S305 the control device 100 determines whether the voltage VB across the inter-battery switch 40 is equal to the voltage (200V) of the second storage battery 32. In this embodiment, when the negative inter-electrode bypass switch 50 is stuck on, the voltage VB across the inter-battery switch 40 becomes equal to the voltage of the second storage battery 32. Therefore, when the process in step S305 is YES, the process proceeds to step S306, and the control device 100 determines that the negative electrode bypass switch 50 is stuck on.
  • step S307 the control device 100 stops charging. Note that even if the answer in step S305 is NO, the process proceeds to step S307.
  • step S401 the control device 100 determines whether the voltage VP across the negative electrode bypass switch 50 detected by the bypass switch voltage sensor 77 is equal to the voltage of the first storage battery 31 (400V).
  • the voltage VP across the negative electrode bypass switch 50 becomes equal to the voltage of the first storage battery 31. Therefore, when the process in step S401 is YES, the process proceeds to step S402, and the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S401 determines whether the process in step S401 is NO.
  • step S403 the control device 100 determines whether the voltage VP across the negative electrode bypass switch 50 is equal to the voltage of the second storage battery 32 (200V). In this embodiment, when the inter-battery switch 40 is stuck on, the voltage VP across the negative electrode bypass switch 50 becomes equal to the voltage of the second storage battery 32 . Therefore, if the process in step S403 is YES, the process proceeds to step S404, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S403 the process proceeds to step S405.
  • step S405 the control device 100 determines whether the voltage VP across the negative electrode bypass switch 50 is 0V. In this embodiment, when the negative electrode bypass switch 50 is stuck on, the voltage VP across the negative electrode bypass switch 50 becomes 0V. Therefore, if the process in step S405 is YES, the process proceeds to step S406, and the control device 100 determines that the negative electrode bypass switch 50 is stuck on.
  • step S407 the control device 100 stops charging. Note that even if the answer in step S405 is NO, the process proceeds to step S407.
  • step S501 the control device 100 determines whether the inter-terminal voltage VT detected by the inter-terminal voltage sensor 78 is equal to the voltage of the second storage battery 32.
  • the inter-terminal voltage VT becomes equal to the voltage of the second storage battery 32. Therefore, when the process in step S501 is YES, the process proceeds to step S502, and the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S501 determines whether the process in step S501 is NO.
  • step S503 the control device 100 determines whether the inter-terminal voltage VT is equal to the voltage of the first storage battery 31. In this embodiment, when the inter-battery switch 40 is stuck on, the inter-terminal voltage VT becomes equal to the voltage of the first storage battery 31. Therefore, if the process in step S503 is YES, the process proceeds to step S504, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S505 the control device 100 determines whether the inter-terminal voltage VT is equal to the voltage difference between the voltage of the first storage battery 31 and the voltage of the second storage battery 32. In this embodiment, when the negative inter-electrode bypass switch 50 is stuck on, the inter-terminal voltage VT becomes equal to the voltage difference between the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Therefore, when the process in step S505 is YES, the process proceeds to step S506, and the control device 100 determines that the negative electrode bypass switch 50 is stuck on.
  • step S507 the control device 100 stops charging. Note that even if the answer in step S505 is NO, the process proceeds to step S507.
  • step S601 the control device 100 determines whether the PN voltage VPN detected by the PN voltage sensor 79 is 0V. In this embodiment, when the inter-battery switch 40 and the negative electrode bypass switch 50 are not stuck on and are in the off state, the PN voltage VPN becomes 0V. Therefore, if the process in step S601 is YES, the process proceeds to step S602, and the control device 100 determines that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S603 the control device 100 determines whether the PN voltage VPN is 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32. In this embodiment, when the inter-battery switch 40 is stuck on, the PN voltage VPN becomes 600 V, which is the sum of the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Therefore, if the process in step S603 is YES, the process proceeds to step S604, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S605 the control device 100 determines whether the PN voltage VPN is equal to the voltage of the first storage battery 31 (400V). In this embodiment, when the negative electrode bypass switch 50 is stuck on, the PN voltage VPN becomes equal to the voltage of the first storage battery 31. Therefore, if the process in step S605 is YES, the process proceeds to step S606, and the control device 100 determines that the negative electrode bypass switch 50 is stuck on.
  • step S607 the control device 100 stops charging. Note that even if the answer in step S605 is NO, the process proceeds to step S607.
  • the control device 100 uses any of the voltages detected by each of the voltage sensors 76 to 79 when starting up the power conversion device, that is, before starting charging, to prevent the inter-battery switch 40 and the negative electrode-interval bypass switch 50 from being stuck on. judge. According to this configuration, it is possible to determine whether or not the inter-battery switch 40 and the bypass switch 50 between negative electrodes are stuck on without actually turning on or turning off the inter-battery switch 40 and the bypass switch 50 between negative electrodes. can be determined.
  • the on-sticky determination described using FIGS. 15 to 18 may be performed not when the power converter is started, but when the power converter is terminated.
  • each switch is controlled to be in the OFF state, so whether the switch is stuck on can be determined using the same method as when starting up.
  • FIG. 19 is a flowchart in serial mode. This flowchart is a flow after it is determined that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S701 the control device 100 turns on the inter-battery switch 40.
  • step S702 the control device 100 turns on the precharge switch SP and acquires the voltage Vinv of the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S703 is YES, the process advances to step S704.
  • step S704 the control device 100 turns on the high potential side main switch SMRH and obtains the voltage Vinv of the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S706 is YES.
  • step S708 the control device 100 turns on the low potential side main switch SMRL.
  • step S709 control device 100 turns off precharge switch SP.
  • step S710 control device 100 starts charging.
  • step S703 If the process in step S703 is NO, the process proceeds to step S705, and the control device 100 determines that the high potential side main switch SMRH is stuck on. The process advances to step S711, and the control device 100 stops charging.
  • step S706 determines that the high potential side main switch SMRH is stuck off.
  • "Sticked off” is a failure mode in which the contacts of a switch are stuck in an unconnected state.
  • the process advances to step S711, and the control device 100 stops charging.
  • the fact that the process in step S706 is NO means that although the control device 100 outputs an on command to the high potential side main switch SMRH in step S704, the high potential side main switch SMRH did not turn on due to being stuck in the off state. means.
  • FIG. 20 is a flowchart in parallel mode. This flowchart is a flow after it is determined that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S801 the control device 100 turns on the negative electrode bypass switch 50.
  • step S802 the control device 100 turns on the precharge switch SP and acquires the voltage Vinv of the smoothing capacitor 21 and the voltage Vcb of the neutral point capacitor 90 detected by the NC voltage sensor 75.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S803 is YES, the process advances to step S804.
  • step S807 the control device 100 turns on the high potential side main switch SMRH and obtains the voltage Vinv of the smoothing capacitor 21.
  • step S809 the control device 100 turns on the motor side switch 60 and obtains the voltage Vcb of the neutral point capacitor 90.
  • step S811 If the control device 100 determines that the voltage Vcb of the neutral point capacitor 90 is equal to the voltage (200V) of the second storage battery 32, that is, if the process in step S811 is YES, the process proceeds to step S812. In step S812, the control device 100 turns on the low potential side main switch SMRL. In subsequent step S814, control device 100 turns off precharge switch SP.
  • step S815 the control device 100 determines whether the voltage Vinv of the smoothing capacitor 21 is larger than the voltage Vcb of the neutral point capacitor 90.
  • the reason for this determination in step S815 is that when the voltage Vcb of the neutral point capacitor 90 is larger than the voltage Vinv of the smoothing capacitor 21, the current flows from the neutral point capacitor 90 to the storage battery side via the upper arm diode DH. This is because there is a possibility that it may flow. If the answer in step S815 is YES, the process advances to step S816.
  • step S815 the process proceeds to step S818, and it is determined whether the phenomenon that the voltage Vcb of the neutral point capacitor 90 is larger than the voltage Vinv of the smoothing capacitor 21 has occurred more than a predetermined number of times. If it is determined that the phenomenon that the voltage Vcb of the neutral point capacitor 90 is higher than the voltage Vinv of the smoothing capacitor 21 has occurred a predetermined number of times or more, that is, if the process in step S818 is YES, the process advances to step S819, and the control device 100 will stop charging.
  • step S816 the control device 100 turns on the connection switch 80.
  • step S817 control device 100 starts charging.
  • step S803 the process proceeds to step S805, and the control device 100 determines that the high potential side main switch SMRH is stuck on. If the process in step S804 is NO, the process proceeds to step S806, and the control device 100 determines that the motor side switch 60 is stuck on. If the answer in step S808 is NO, the process proceeds to step S810, and the control device 100 determines that the high potential side main switch SMRH is stuck off. When the process in step S811 is NO, the process proceeds to step S813, and the control device 100 determines that the motor side switch 60 is stuck in the off state. After steps S805, S806, S810, and S813, the process advances to step S819, and the control device 100 stops charging.
  • step S808 is NO means that although the control device 100 outputs an on command to the high potential side main switch SMRH in step S807, the high potential side main switch SMRH did not turn on due to being stuck in the off state. means. Furthermore, the fact that the process in step S811 is NO means that although the control device 100 outputs an on command to the motor-side switch 60 in step S809, the motor-side switch 60 is stuck in the off state and does not turn on. do.
  • the motor side switch 60 may be turned on before the high potential side main switch SMRH.
  • the flow in this case will be explained with reference to FIG. 21.
  • step S907 the control device 100 turns on the motor side switch 60 and obtains the voltage Vinv of the neutral point capacitor 90 and the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vcb of the neutral point capacitor 90 is equal to the voltage (200V) of the second storage battery 32, that is, when the process in step S908 is YES, the process advances to step S909.
  • step S911 the control device 100 turns on the high potential side main switch SMRH and obtains the voltage Vinv of the smoothing capacitor 21.
  • step S914 the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage (400V) of the first storage battery 31, that is, when the process in step S913 is YES.
  • step S908 the process proceeds to step S910, and the control device 100 determines that the motor side switch 60 is stuck in the off state. If the process in step S909 is NO, the process proceeds to step S912, and the control device 100 determines that the connection switch 80 is stuck on. If the process in step S913 is NO, the process proceeds to step S915, and the control device 100 determines that the high potential side main switch SMRH is stuck off.
  • step S908 If the process in step S908 is NO, it means that although the control device 100 outputs an on command to the motor side switch 60 in step S907, the motor side switch 60 is stuck in the off state and does not turn on. Further, the fact that the process in step S913 is NO means that although the control device 100 outputs an on command to the high potential side main switch SMRH in step S911, the high potential side main switch SMRH does not turn on due to being stuck in the off state. It means something.
  • FIG. 22 is a flowchart in series neutral point mode. This flowchart is a flow after it is determined that the inter-battery switch 40 and the negative electrode-interval bypass switch 50 are not stuck on.
  • step S1001 the control device 100 turns on the inter-battery switch 40.
  • step S1002 the control device 100 turns on the precharge switch SP and acquires the voltage of the smoothing capacitor 21 and the voltage Vcb of the neutral point capacitor 90.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S1003 is YES, the process advances to step S1004.
  • step S1007 the control device 100 turns on the high potential side main switch SMRH and obtains the voltage Vinv of the smoothing capacitor 21.
  • step S1009 the control device 100 turns on the motor side switch 60 and obtains the voltage Vcb of the neutral point capacitor 90.
  • step S1011 If the control device 100 determines that the voltage Vcb of the neutral point capacitor 90 is equal to the voltage (200V) of the second storage battery 32, that is, if the process in step S1011 is YES, the process proceeds to step S1012. In step S1012, the control device 100 turns on the low potential side main switch SMRL. In subsequent step S1014, control device 100 turns off precharge switch SP.
  • step S1015 the control device 100 determines whether the voltage Vinv of the smoothing capacitor 21 is larger than the voltage Vcb of the neutral point capacitor 90. If the answer in step S1015 is YES, the process advances to step S1016. When the process in step S1015 is NO, the process proceeds to step S1018, and it is determined whether the phenomenon that the voltage Vcb of the neutral point capacitor 90 is larger than the voltage Vinv of the smoothing capacitor 21 has occurred more than a predetermined number of times.
  • step S1018 If it is determined that the phenomenon in which the voltage Vcb of the neutral point capacitor 90 is greater than the voltage Vinv of the smoothing capacitor 21 has occurred a predetermined number of times or more, that is, if the process in step S1018 is YES, the process proceeds to step S1019, and the control device 100 will stop charging.
  • step S1016 the control device 100 turns on the connection switch 80.
  • step S1017 control device 100 starts charging.
  • step S1005 the process proceeds to step S1005, and the control device 100 determines that the high potential side main switch SMRH is stuck on. If the process in step S1004 is NO, the process proceeds to step S1006, and the control device 100 determines that the motor side switch 60 is stuck on. If the process in step S1008 is NO, the process proceeds to step S1010, and the control device 100 determines that the high potential side main switch SMRH is stuck off. When the process in step S1011 is NO, the process proceeds to step S1013, and the control device 100 determines that the motor side switch 60 is stuck in the off state. After steps S1005, S1006, S1010, and S1013, the process advances to step S1019, and the control device 100 stops charging.
  • step S1008 The fact that the process in step S1008 is NO means that although the control device 100 outputs an on command to the high potential side main switch SMRH in step S1007, the high potential side main switch SMRH is stuck in the off state and does not turn on. means. Furthermore, the fact that the process in step S1011 is NO means that although the control device 100 outputs an on command to the motor-side switch 60 in step S1009, the motor-side switch 60 is stuck in the off state and does not turn on. do.
  • the motor side switch 60 may be turned on before the high potential side main switch SMRH.
  • the flow in this case will be explained with reference to FIG. 23.
  • the processing in steps S1101, S1102, S1103, S1104, S1105, S1106, S1114, S1116, S1117, S1118, S1119, S1120 and S1121 in FIG. 1006 , S1012, S1014, S1015, S1016, S1017, S1018, and S1019 so the explanation will be omitted.
  • step S1107 the control device 100 turns on the motor side switch 60 and obtains the voltage Vinv of the neutral point capacitor 90 and the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vcb of the neutral point capacitor 90 is equal to the voltage (200V) of the second storage battery 32, that is, when the process in step S1108 is YES, the process advances to step S1109.
  • step S1111 the control device 100 turns on the high potential side main switch SMRH and obtains the voltage Vinv of the smoothing capacitor 21.
  • step S1114 the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S1113 is YES.
  • step S1114 the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S1113 is YES.
  • step S1108 the process proceeds to step S1110, and the control device 100 determines that the motor side switch 60 is stuck in the off state. If the process in step S1109 is NO, the process proceeds to step S1112, and the control device 100 determines that the connection switch 80 is stuck on. If the answer in step S1113 is NO, the process proceeds to step S1115, and the control device 100 determines that the high potential side main switch SMRH is stuck off.
  • step S1108 If the process in step S1108 is NO, it means that although the control device 100 outputs an on command to the motor side switch 60 in step S1107, the motor side switch 60 is stuck in the off state and does not turn on. Further, the fact that the process in step S1113 is NO means that although the control device 100 outputs an on command to the high potential side main switch SMRH in step S1111, the high potential side main switch SMRH is not turned on due to being stuck in the off state. It means something.
  • the control device 100 terminates the power conversion device after charging is completed. At this time, the power conversion device may be terminated according to the flow shown in FIG. 24.
  • the flow shown in FIG. 24 starts after charging is completed.
  • step S1201 the control device 100 turns off each switch except the connection switch 80.
  • step S1202 control device 100 discharges neutral point capacitor 90.
  • the voltage may be increased by the inverter 30, and the charge of the neutral point capacitor 90 may be transferred to the smoothing capacitor 21.
  • the process proceeds to step S1203, and the control device 100 turns off the connection switch 80.
  • step S1204 the control device 100 transfers the charge of the smoothing capacitor 21 to the neutral point capacitor 90 via the inverter 20 and motor 10. At this time, if the connection switch 80 is not fixed on, the charge in the smoothing capacitor 21 will not be transferred to the neutral point capacitor 90, and the voltage Vcb of the neutral point capacitor 90 will be 0V. If the control device 100 determines that the voltage Vcb of the neutral point capacitor 90 is equal to 0V, that is, if the process in step S1205 is YES, the process advances to step S1206. In step S1206, the control device 100 discharges the smoothing capacitor 21 until the voltage of the smoothing capacitor 21 becomes 0V, and terminates the power conversion device.
  • step S1205 If the process in step S1205 is NO, the process proceeds to step S1207, and the control device 100 determines that the connection switch 80 is stuck on. The process advances to step S1208, and the control device 100 notifies the driver that an abnormality has occurred.
  • step S1205 The fact that the process in step S1205 is NO means that although the control device 100 outputs an off command to the connection switch 80 in step S1203, the connection switch 80 is stuck on and does not turn off.
  • the power conversion device includes a positive electrode bypass switch 51 that connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H, and as shown in FIG.
  • the negative electrode bypass switch 50 is not provided.
  • the power conversion device also includes a neutral point capacitor 91 and an NC voltage sensor 75A that detects the voltage of the neutral point capacitor 91 between the motor side electrical path 25 and the high potential side electrical path 22H.
  • the neutral point capacitor 90 and the NC voltage sensor 75 shown in 1 are not provided.
  • the motor-side electrical path 25 connects the neutral point of the armature winding 11 and a portion of the inter-battery electrical path 24 that is closer to the first storage battery 31 than the inter-battery switch 40 .
  • a motor-side switch 61 is provided in the motor-side electrical path 25 . Further, the voltage of the first storage battery 31 is 200V, and the voltage of the second storage battery 32 is 400V.
  • control device 100 selects a charging mode.
  • step S1302 the control device 100 turns on the main switches SMRH and SMRL to obtain the voltage Vinv of the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S1303 is YES, the process advances to step S1304.
  • step S1304 the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1305 the control device 100 switches the on/off state of each switch based on the charging mode. This starts charging.
  • step S1303 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the total value (600V) of the voltage of the first storage battery 31 and the voltage of the second storage battery 32, that is, when the process of step S1306 is YES.
  • step S1307 the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S1306 If the process in step S1306 is NO, the process proceeds to step S1309.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage (400V) of the second storage battery 32, that is, when the process in step S1309 is YES, the process advances to step S1310.
  • step S1310 the control device 100 determines that the positive electrode bypass switch 51 is stuck on. After that, the process advances to step S1308. Note that if the process in step S1309 is NO, there is a possibility that an unexpected phenomenon has occurred, so the process proceeds to step S1308.
  • the control device 100 turns on the main switches SMRH and SMRL when starting up the power conversion device, that is, before starting charging, and turns on the inter-battery switch 40 and the positive electrode bypass switch based on the voltage Vinv of the smoothing capacitor 21 at that time. 51 is determined to be stuck on. According to this configuration, it is possible to determine whether or not the inter-battery switch 40 and the bypass switch 51 between positive electrodes are stuck on without actually turning on or turning off the inter-battery switch 40 and the bypass switch 51 between positive electrodes. can be determined.
  • ⁇ Modification 1 of the fifth embodiment> Whether the inter-battery switch 40 or the positive-electrode bypass switch 51 is stuck on may be determined according to the flowchart shown in FIG. 27. The flowchart will be explained below.
  • the initial state of each switch at the start of the flowchart is a state in which it is receiving an off command from the control device 100.
  • step S1401 the control device 100 selects a charging mode.
  • step S1402 the control device 100 turns on the low potential side main switch SMRL, the motor side switch 61, and the connection switch 80 to obtain the voltage Vinv of the smoothing capacitor 21.
  • the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to 0V, that is, when the process in step S1403 is YES, the process advances to step S1404.
  • step S1404 the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1405 the control device 100 switches the on/off state of each switch based on the charging mode. This starts charging.
  • step S1406 If the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage of the second storage battery 32, that is, if the process in step S1406 is YES, the process advances to step S1407. In step S1407, the control device 100 determines that the inter-battery switch 40 is stuck on. The process advances to step S1408, and the control device 100 stops charging.
  • step S1409 If the process in step S1406 is NO, the process advances to step S1409. If the control device 100 determines that the voltage Vinv of the smoothing capacitor 21 is equal to the voltage difference between the voltage of the second storage battery 32 and the voltage of the first storage battery 31, that is, if the process in step S1409 is YES, the process proceeds to step Proceed to S1410. In step S1410, the control device 100 determines that the positive electrode bypass switch 51 is stuck on. After that, the process advances to step S1408. Note that if the answer in step S1409 is NO, there is a possibility that an unexpected phenomenon has occurred, so the process advances to step S1408.
  • the on-sticky determination described using FIGS. 26 and 27 may be performed not when the power converter is started, but when the power converter is terminated.
  • each switch is controlled to be in the OFF state, so whether the switch is stuck on can be determined using the same method as when starting up.
  • charge is accumulated in the smoothing capacitor 21 due to charging. Therefore, in order to determine whether the power converter is stuck on when the power converter is terminated, it is necessary to discharge the smoothing capacitor 21 to bring the voltage of the smoothing capacitor 21 to 0V.
  • the method of discharging the smoothing capacitor 21 is the same as the modified example of the first embodiment.
  • the power conversion device includes at least an inter-battery switch voltage sensor 86 that detects the voltage across the inter-battery switch 40, a bypass switch voltage sensor 87 that detects the voltage across the positive electrode bypass switch 51, and a first storage battery.
  • An inter-terminal voltage sensor 88 detects the inter-terminal voltage that is the voltage between the negative terminal of the battery 31 and the negative terminal of the second storage battery 32, and the PN voltage that is the voltage between the high potential side electrical path 22H and the low potential side electrical path 22L.
  • the PN voltage sensor 89 detects the PN voltage sensor 89.
  • the control device 100 detects the voltage between both ends detected by the battery switch voltage sensor 86 , the voltage between both ends detected by the bypass switch voltage sensor 87 , the voltage between terminals detected by the voltage sensor 88 between terminals, and the voltage between PN and PN detected by the voltage sensor 89 . It is determined whether the inter-battery switch 40 or the positive electrode bypass switch 51 is stuck on based on any one of the PN voltages.
  • step S1501 the control device 100 determines whether the voltage VB2 across the inter-battery switch 40 detected by the inter-battery switch voltage sensor 86 is 600 V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Determine whether or not.
  • the voltage VB2 across the inter-battery switch 40 is the voltage of the first storage battery 31 and the voltage of the second storage battery 32.
  • the total value of the voltage is 600V. Therefore, if the process in step S1501 is YES, the process proceeds to step S1502, and the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1503 the control device 100 determines whether the voltage VB2 across the inter-battery switch 40 is 0V. In this embodiment, when the inter-battery switch 40 is stuck on, the voltage VB2 across the inter-battery switch 40 becomes 0V. Therefore, if the answer in step S1503 is YES, the process proceeds to step S1504, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S1503 the process advances to step S1505.
  • step S1505 the control device 100 determines whether the voltage VB2 across the inter-battery switch 40 is equal to the voltage of the first storage battery 31 (200V). In this embodiment, when the positive electrode bypass switch 51 is fixed on, the voltage VB2 across the battery switch 40 becomes equal to the voltage of the first storage battery 31. Therefore, if the process in step S1505 is YES, the process proceeds to step S1506, and the control device 100 determines that the positive electrode bypass switch 51 is stuck on.
  • step S1507 the control device 100 stops charging. Note that even if the answer in step S1505 is NO, the process proceeds to step S1507.
  • step S1601 the control device 100 determines whether the voltage VP2 across the positive electrode bypass switch 51 detected by the bypass switch voltage sensor 87 is equal to the voltage of the second storage battery 32 (400V).
  • the voltage VP2 across the positive-electrode bypass switch 51 becomes equal to the voltage of the second storage battery 32. Therefore, if the process in step S1601 is YES, the process proceeds to step S1602, and the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1603 the control device 100 determines whether the voltage VP2 across the positive electrode bypass switch 51 is equal to the voltage of the first storage battery 31 (200V). In this embodiment, when the inter-battery switch 40 is stuck on, the voltage VP2 across the positive electrode bypass switch 51 becomes equal to the voltage of the first storage battery 31. Therefore, if the process in step S1603 is YES, the process proceeds to step S1604, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S1605 the control device 100 determines whether the voltage VP2 across the positive pole bypass switch 51 is 0V. In this embodiment, when the positive electrode bypass switch 51 is stuck on, the voltage VP2 across the positive electrode bypass switch 51 becomes 0V. Therefore, if the process in step S1605 is YES, the process proceeds to step S1606, and the control device 100 determines that the positive electrode bypass switch 51 is stuck on.
  • step S1607 the control device 100 stops charging. Note that even if the answer in step S1605 is NO, the process proceeds to step S1607.
  • step S1701 the control device 100 determines whether the inter-terminal voltage VT2 detected by the inter-terminal voltage sensor 88 is equal to the voltage of the first storage battery 31.
  • the inter-terminal voltage VT2 becomes equal to the voltage of the first storage battery 31. Therefore, if the process in step S1701 is YES, the process proceeds to step S1702, and the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1703 the control device 100 determines whether the inter-terminal voltage VT2 is equal to the voltage of the second storage battery 32. In this embodiment, when the inter-battery switch 40 is stuck on, the inter-terminal voltage VT2 becomes equal to the voltage of the second storage battery 32. Therefore, if the process in step S1703 is YES, the process proceeds to step S1704, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S1705 the control device 100 determines whether the inter-terminal voltage VT2 is equal to the voltage difference between the voltage of the second storage battery 32 and the voltage of the first storage battery 31. In this embodiment, when the positive electrode bypass switch 51 is stuck on, the inter-terminal voltage VT2 becomes equal to the voltage difference between the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Therefore, if the process in step S1705 is YES, the process proceeds to step S1706, and the control device 100 determines that the positive electrode bypass switch 51 is stuck on.
  • step S1707 the control device 100 stops charging. Note that even if the answer in step S1705 is NO, the process proceeds to step S1707.
  • step S1801 the control device 100 determines whether the PN voltage VPN2 detected by the PN voltage sensor 89 is 0V. In this embodiment, when the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on and are in the off state, the PN voltage VPN2 becomes 0V. Therefore, if the process in step S1801 is YES, the process proceeds to step S1802, and the control device 100 determines that the inter-battery switch 40 and the positive-electrode bypass switch 51 are not stuck on.
  • step S1801 determines whether the PN voltage VPN2 is 600V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32.
  • the PN voltage VPN2 becomes 600 V, which is the total value of the voltage of the first storage battery 31 and the voltage of the second storage battery 32. Therefore, if the answer in step S1803 is YES, the process proceeds to step S1804, and the control device 100 determines that the inter-battery switch 40 is stuck on.
  • step S1803 determines whether the answer in step S1803 is NO.
  • step S1805 the control device 100 determines whether the PN voltage VPN2 is equal to the voltage of the second storage battery 32 (400V). In this embodiment, when the positive electrode bypass switch 51 is stuck on, the PN voltage VPN2 becomes equal to the voltage of the second storage battery 32. Therefore, if the process in step S1805 is YES, the process proceeds to step S1806, and the control device 100 determines that the positive electrode bypass switch 51 is stuck on.
  • step S1807 the control device 100 stops charging. Note that even if the answer in step S1805 is NO, the process proceeds to step S1807.
  • the control device 100 uses any of the voltages detected by each of the voltage sensors 86 to 89 when starting up the power converter, that is, before starting charging, to prevent the inter-battery switch 40 and the positive-electrode bypass switch 51 from being turned on. judge. According to this configuration, it is possible to determine whether or not the inter-battery switch 40 and the bypass switch 51 between positive electrodes are stuck on without actually turning on or turning off the inter-battery switch 40 and the bypass switch 51 between positive electrodes. can be determined.
  • the on-sticky determination described using FIGS. 29 to 32 may be performed not when the power converter is started, but when the power converter is terminated.
  • each switch is controlled to be in the OFF state, so whether the switch is stuck on can be determined using the same method as when starting up.
  • the power converter further includes a positive electrode bypass switch 51 that connects the positive terminal of the second storage battery 32 and the high potential side electrical path 22H.
  • control device 100 turns on the positive electrode bypass switch 51, and turns on the negative electrode bypass switch 50, the inter-battery switch 40, the motor side switch 60, the connection switch 80, the high potential side main switch SMRH, and the low potential side main switch SMRL.
  • the second storage battery 32 can be individually charged by the low-voltage charger 200 in a state where the second storage battery 32 is turned off.
  • the power converter further includes a negative electrode bypass switch 50 that connects the negative terminal of the first storage battery 31 and the low potential side electrical path 22L.
  • control device 100 turns on the negative electrode bypass switch 50, and switches on the positive electrode bypass switch 51, the inter-battery switch 40, the motor side switch 60, the connection switch 80, the high potential side main switch SMRH, and the low potential side main switch SMRL.
  • the first storage battery 31 can be individually charged by the low-voltage charger 200 while the first storage battery 31 is turned off.
  • the ninth embodiment will be described below with reference to the drawings, focusing on the differences from the above embodiments.
  • the motor side switch in addition to a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31, the motor side switch includes A switch is provided to connect the point and the positive terminal of the second storage battery 32.
  • the first end of the common path 26 is connected to the neutral point of the armature winding 11.
  • a first end of a first electrical path 27 is connected to the second end of the common path 26, and a second storage battery is connected to the second end of the inter-battery electrical path 24 rather than the inter-battery switch 40.
  • 32 side is connected.
  • a first end of a second electrical path 28 is connected to the second end of the common path 26, and a second end of the second electrical path 28 is connected to a second end of the inter-battery electrical path 24 that is lower than the inter-battery switch 40.
  • 1 storage battery 31 side is connected.
  • the first electric path 27 is provided with a first motor side switch 60 .
  • a second motor side switch 61 is provided on the second electrical path 28 . Note that the common path 26 may not be provided, and the first ends of the first electrical path 27 and the second electrical path 28 may be connected to the neutral point of the armature winding 11.
  • the motor side switch in addition to a switch connecting the neutral point of the armature winding 11 and the negative terminal of the first storage battery 31, the motor side switch includes A switch is provided to connect the point and the positive terminal of the second storage battery 32.
  • the first end of the common path 26 is connected to the neutral point of the armature winding 11.
  • a first end of a first electrical path 27 is connected to the second end of the common path 26, and a second storage battery is connected to the second end of the inter-battery electrical path 24 rather than the inter-battery switch 40.
  • 32 side is connected.
  • a first end of a second electrical path 28 is connected to the second end of the common path 26, and a second end of the second electrical path 28 is connected to a second end of the inter-battery electrical path 24 that is lower than the inter-battery switch 40.
  • 1 storage battery 31 side is connected.
  • the first electric path 27 is provided with a first motor side switch 60 .
  • a second motor side switch 61 is provided on the second electrical path 28 . Note that the common path 26 may not be provided, and the first ends of the first electrical path 27 and the second electrical path 28 may be connected to the neutral point of the armature winding 11.
  • the motor is not limited to a star-connected motor, but may be a delta-connected motor. Further, the motor and inverter are not limited to three-phase motors, but may be two-phase motors or four-phase motors or more. Further, the motor is not limited to a permanent magnet type synchronous machine having a permanent magnet as a field pole on the rotor, but may be a wound field type synchronous machine having a field winding as a field pole on the rotor. In this case, the rotor may be equipped with both field windings and permanent magnets. Further, the motor is not limited to a synchronous machine, but may be an induction machine.
  • the switch of the inverter 20 is not limited to an IGBT in which freewheeling diodes are connected in antiparallel, but may be an N-channel MOSFET including a body diode, for example. In this case, the high potential side terminal of the N-channel MOSFET becomes the drain, and the low potential side terminal becomes the source.
  • the power storage unit to be charged by the external charger is not limited to a storage battery, but may be, for example, a large-capacity electric double layer capacitor, or one that includes both a storage battery and an electric double layer capacitor.
  • the power conversion device is not limited to a mobile object, but may be a stationary device.
  • control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be realized.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits.
  • the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電力変換装置は、第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、インバータ(20)と、モータ(10)と、を備える。電力変換装置は、第1蓄電部の負極端子と第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、第1蓄電部及び第2蓄電部の負極端子同士の電気的な接続と、第1蓄電部及び第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチ(50,51)と、蓄電部間スイッチ及びバイパススイッチのうち、いずれか一方のスイッチをオン操作する前に他方のスイッチがオン固着しているか否かを判定する制御部(100)と、を備える。

Description

電力変換装置及びプログラム 関連出願の相互参照
 本出願は、2022年9月9日に出願された日本出願番号2022-144021号に基づくもので、ここにその記載内容を援用する。
 本開示は、電力変換装置及びプログラムに関する。
 従来、外部充電器を用いて車載バッテリを充電する際に、電力変換装置内のスイッチがオン固着しているか否かを判定する制御装置が知られている。例えば、特許文献1に記載された制御装置は、判定対象となるスイッチに対し、オン指令を送信し、スイッチの両端電圧を確認する。このとき、制御装置は、スイッチの両端電圧が同じである場合は、スイッチがオン固着していると判定する。
米国特許第11245346号明細書
 ところで、電力変換装置内のスイッチが並列に接続されている場合、一方のスイッチがオン固着している状態で他方のスイッチがオンすると、スイッチ間に短絡電流が流れてしまう。
 本開示は、上記課題に鑑みてなされたものであり、スイッチ間に短絡電流が流れることを抑制可能な電力変換装置及びプログラムを提供することを目的とする。
 本開示は、
 第1蓄電部の正極端子に電気的に接続可能な高電位側電気経路と、
 第2蓄電部の負極端子に電気的に接続可能な低電位側電気経路と、
 前記高電位側電気経路に電気的に接続された上アームスイッチ、及び前記低電位側電気経路に電気的に接続された下アームスイッチを有するインバータと、
 前記上アームスイッチ及び前記下アームスイッチの接続点に電気的に接続されたモータと、
を備える電力変換装置において、
 前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路に設けられた蓄電部間スイッチと、
 前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチと、
 前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチをオン操作する前に他方のスイッチがオン固着しているか否かを判定する制御部と、を備える。
 上記構成によれば、一方のスイッチがオン固着していると判定された場合は、他方のスイッチをオン操作することがなくなるため、スイッチ間に短絡電流が流れることが抑制される。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るシステムの全体構成図であり、 図2は、低圧充電時におけるスイッチの操作態様を示す図であり、 図3は、高圧充電時におけるスイッチの操作態様を示す図であり、 図4は、高圧充電時におけるスイッチの操作態様を示す図であり、 図5は、短絡電流が発生するメカニズムを説明する図であり、 図6は、第1実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図7は、第1実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図8は、第1実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図9は、第1実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図10は、第2実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図11は、第2実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図12は、第2実施形態に係る平滑コンデンサを用いたオン固着の判定方法を説明する図であり、 図13は、第2実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図14は、第3実施形態に係るオン固着の判定方法を説明する図であり、 図15は、第3実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図16は、第3実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図17は、第3実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図18は、第3実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図19は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図20は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図21は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図22は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図23は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図24は、第4実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図25は、第5実施形態に係るシステムの全体構成図であり、 図26は、第5実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図27は、第5実施形態の変形例に係る制御装置の一動作例を説明するフローチャートであり、 図28は、第6実施形態に係るシステムの全体構成図であり、 図29は、第6実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図30は、第6実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図31は、第6実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図32は、第6実施形態に係る制御装置の一動作例を説明するフローチャートであり、 図33は、第7実施形態に係るシステムの全体構成図であり、 図34は、第8実施形態に係るシステムの全体構成図であり、 図35は、第9実施形態に係るシステムの全体構成図であり、 図36は、第10実施形態に係るシステムの全体構成図である。
 図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的に及び/又は構造的に対応する部分及び/又は関連付けられる部分には同一の参照符号、又は百以上の位が異なる参照符号が付される場合がある。対応する部分及び/又は関連付けられる部分については、他の実施形態の説明を参照することができる。
 <第1実施形態>
 以下、本開示に係る電力変換装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の電力変換装置は、電気自動車やハイブリッド車等の電動車両、電動航空機、電動船等に搭載され、電動移動体システムを構成する。
 システムは、電力変換装置を備えている。電力変換装置は、図1に示すように、モータ10と、インバータ20と、高電位側電気経路22Hと、低電位側電気経路22Lとを備えている。モータ10は、3相の同期機であり、星形結線されたU,V,W相の電機子巻線11と、図示しないロータとを備えている。各相の電機子巻線11は、電気角で120°ずつずれて配置されている。モータ10は、例えば永久磁石同期機である。ロータは、車両の駆動輪と動力伝達可能になっている。このため、モータ10は、車両を走行させるトルクの発生源となる。
 インバータ20は、上アームスイッチSWHと下アームスイッチSWLとの直列接続体を3相分備えている。上アームスイッチSWHには、フリーホイールダイオードである上アームダイオードDHが逆並列に接続され、下アームスイッチSWLには、フリーホイールダイオードである下アームダイオードDLが逆並列に接続されている。本実施形態において、各スイッチSWH,SWLはIGBTである。
 インバータ20は、平滑コンデンサ21を備えている。平滑コンデンサ21の高電位側端子には、長尺状の高電位側電気経路22Hの第1端側が接続されている。平滑コンデンサ21の低電位側端子には、長尺状の低電位側電気経路22Lの第1端側が接続されている。なお、平滑コンデンサ21は、インバータ20の外部に設けられていてもよい。平滑コンデンサ21の電圧は、SC電圧センサ19によって検出される。
 各相において、上アームスイッチSWHの低電位側端子であるエミッタと、下アームスイッチSWLの高電位側端子であるコレクタとの接続点には、バスバー等の導電部材23を介して、電機子巻線11の第1端が接続されている。各相の電機子巻線11の第2端同士は、中性点で接続されている。なお、本実施形態において、各相の電機子巻線11は、ターン数が同じに設定されている。これにより、各相の電機子巻線11は、例えばインダクタンスが同じに設定されている。
 各相の上アームスイッチSWHのコレクタには、高電位側電気経路22Hが接続されている。各相の下アームスイッチSWLのエミッタには、低電位側電気経路22Lが接続されている。
 システムは、第1蓄電池31(「第1蓄電部」に相当)及び第2蓄電池32(「第2蓄電部」に相当)を備えている。各蓄電池31,32は、モータ10のロータを回転駆動させるための電力供給源となる。各蓄電池31,32は、単電池である電池セルの直列接続体として構成された組電池である。第1蓄電池31の正極端子は高電位側電気経路22Hに接続され、第2蓄電池32の負極端子は低電位側電気経路22Lに接続されている。本実施形態において、第1蓄電池31の端子電圧(例えば定格電圧)は400Vであり、第2蓄電池32の端子電圧(例えば定格電圧)は200Vである。ただし、これに限定されず、第1蓄電池31の端子電圧は第2蓄電池32の端子電圧以上であれば足りる。電池セルは、例えば、リチウムイオン電池等の2次電池である。
 各蓄電池31,32は、車両の外部に備えられた後述する外部充電器により充電可能である。外部充電器は、例えば定置式の充電器である。高電位側電気経路22Hのうち平滑コンデンサ21の接続点側とは反対側の第2端側には、外部充電器の正極端子が接続可能な正極側接続部が設けられている。低電位側電気経路22Lのうち平滑コンデンサ21の接続点側とは反対側の第2端側には、外部充電器の負極端子が接続可能な負極側接続部が設けられている。
 電力変換装置は、第1,第2蓄電池31,32とインバータ20との間を電気的に接続又は遮断するためのメインスイッチを備えている。詳しくは、メインスイッチとして、高電位側メインスイッチSMRHと、低電位側メインスイッチSMRLとが設けられている。また、電力変換装置は、外部充電器と第1,第2蓄電池31,32との間を電気的に接続又は遮断するための充電スイッチを備えている。詳しくは、充電スイッチとして、高電位側充電スイッチDCRHと、低電位側充電スイッチDCRLとが設けられている。本実施形態において、各スイッチSMRH,SMRL,DCRH,DCRLは、機械式のリレーとして説明するが、これに限定されず、半導体スイッチング素子であってもよい。各スイッチSMRH,SMRL,DCRH,DCRLは、オフ状態では双方向の電流の流通を阻止し、オン状態では双方向の電流の流通を許容する。高電位側電気経路22Hには、インバータ20側から順に、高電位側メインスイッチSMRH及び高電位側充電スイッチDCRHが設けられている。低電位側電気経路22Lには、インバータ20側から順に、低電位側メインスイッチSMRL及び低電位側充電スイッチDCRLが設けられている。
 電力変換装置は、第1蓄電池31及び第2蓄電池32の接続状態を、外部充電器に対して直列接続される状態又は並列接続される状態のいずれかに切り替えるためのスイッチとして、電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60及び接続スイッチ80を備えている。本実施形態において、電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60及び接続スイッチ80は、機械式のリレーとして説明するが、これに限定されず、半導体スイッチング素子であってもよい。電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60及び接続スイッチ80は、オフ状態では双方向の電流の流通を阻止し、オン状態では双方向の電流の流通を許容する。
 電池間スイッチ40は、第1蓄電池31の負極端子と第2蓄電池32の正極端子とを接続する電池間電気経路24(「蓄電部間電気経路」に相当)に設けられている。電池間スイッチ40がオン状態である場合、第1蓄電池31の負極端子と第2蓄電池32の正極端子とが電気的に接続される。一方、電池間スイッチ40がオフ状態である場合、第1蓄電池31の負極端子と第2蓄電池32の正極端子とが電気的に遮断される。
 負極間バイパススイッチ50は、第1蓄電池31の負極端子と低電位側電気経路22Lとを接続する。負極間バイパススイッチ50がオン状態である場合、第1蓄電池31の負極端子と第2蓄電池32の負極端子とが電気的に接続される。一方、負極間バイパススイッチ50がオフ状態である場合、第1蓄電池31の負極端子と第2蓄電池32の負極端子とが電気的に遮断される。
 モータ側スイッチ60及び接続スイッチ80は、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側と、電機子巻線11の中性点とを接続するモータ側電気経路25に設けられている。より詳しくは、接続スイッチ80は、モータ側電気経路25のうちモータ側スイッチ60よりも中性点側に設けられている。モータ側スイッチ60及び接続スイッチ80がオン状態である場合、電機子巻線11の中性点と第2蓄電池32の正極端子とが電気的に接続される。一方、モータ側スイッチ60及び接続スイッチ80がオフ状態である場合、電機子巻線11の中性点と第2蓄電池32の正極端子とが電気的に遮断される。モータ側電気経路25は、電機子巻線11の中性点と、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側の部分とを電気的に接続する経路である。
 電力変換装置は、第1蓄電池31の端子間電圧を検出する第1電圧センサ71と、第2蓄電池32の端子間電圧を検出する第2電圧センサ72とを備えている。電力変換装置は、第1蓄電池31に流れる電流を検出する第1電流センサ73と、第2蓄電池32に流れる電流を検出する第2電流センサ74とを備えている。第1電流センサ73は、第1蓄電池31の正極端子と高電位側電気経路22Hとを接続する電気経路に設けられている。第2電流センサ74は、第2蓄電池32の負極端子と低電位側電気経路22Lとを接続する電気経路に設けられている。なお、電力変換装置は、その他のセンサとして、ロータの回転角(電気角)を検出する回転角センサと、各相の電機子巻線11に流れる相電流を検出する相電流センサとを備えている。
 各センサの検出値は、電力変換装置が備える制御装置100(「制御部」に相当)に入力される。制御装置100は、マイコン101を主体として構成され、マイコン101は、CPUを備えている。マイコン101が提供する機能は、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、マイコン101がハードウェアである電子回路によって提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路によって提供することができる。例えば、マイコン101は、自身が備える記憶部としての非遷移的実体的記録媒体(non-transitory tangible storage medium)に格納されたプログラムを実行する。プログラムには、例えば、後述する図9等に示す処理のプログラムが含まれる。プログラムが実行されることにより、プログラムに対応する方法が実行される。記憶部は、例えば不揮発性メモリである。なお、記憶部に記憶されたプログラムは、例えばOTA(Over The Air)等、インターネット等の通信ネットワークを介して更新可能である。
 制御装置100は、各センサの検出値に基づいて、モータ10の制御量を指令値にフィードバック制御すべく、インバータ20を構成する各スイッチSWH,SWLのスイッチング制御を行う。制御量は例えばトルクである。各相において、上アームスイッチSWHと下アームスイッチSWLとは交互にオン操作される。このフィードバック制御により、ロータの回転動力が駆動輪に伝達され、車両が走行する。
 高電位側電気経路22Hの正極側接続部及び低電位側電気経路22Lの負極側接続部は、外部充電器と接続するためのインターフェースである。本実施形態において、外部充電器は、低圧充電器200又は高圧充電器210である(図2~4参照)。低圧充電器200の充電電圧は、第1,第2蓄電池31,32の直列接続体の端子間電圧(具体的には定格電圧)よりも低い電圧であり、例えば400Vである。
 高圧充電器210の充電電圧は、第1,第2蓄電池31,32の直列接続体の定格電圧よりも高い電圧であり、例えば800Vである。例えばユーザ又は作業者により外部充電器が各接続部に接続され、外部充電器により第1,第2蓄電池31,32が充電される場合、高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLは、制御装置100によりオン状態に切り替えられる。
 一方、外部充電器による充電が実施されない場合又は外部充電器が接続されていない場合、高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLは、制御装置100によりオフ状態に切り替えられる。正極側接続部及び負極側接続部は、電力変換装置の筐体から外部に露出している場合、ユーザ又は作業者に触れられる可能性がある。高電位側充電スイッチDCRH及び低電位側充電スイッチDCRLがオフ操作されることにより、感電の発生を防止する。
 モータ側電気経路25のうちモータ側スイッチ60と接続スイッチ80との間の部分には、中性点コンデンサ90を介して低電位側電気経路22Lが接続されている。中性点コンデンサ90には、中性点コンデンサ90の電圧を検出するNC電圧センサ75が設けられている。モータ側電気経路25と低電位側電気経路22Lとの間に中性点コンデンサ90を設ける理由は以下の通りである。外部充電器が接続された場合の充電処理において、スイッチングに伴う高周波電流が発生する。スイッチングに伴い発生する高周波電流がインバータ20側から第1,第2蓄電池31,32及び外部充電器へと流れ込むことを抑制するために、中性点コンデンサ90が設けられる。
 低電位側メインスイッチSMRLには、プリチャージスイッチSP及び抵抗体95の直列接続体が並列接続されている。プリチャージスイッチSPは、例えば電力変換装置の起動時において、平滑コンデンサ21や中性点コンデンサ90を充電するプリチャージ処理で用いられる。
 次に、図2~4を参照して、システムが外部充電器に接続され、充電が行われる際の各スイッチのオンオフ状態について説明する。なお、図2以降の図面において、制御装置100及びSC電圧センサ19の図示は省略されている。
 図2は、各電気経路22H,22Lの各接続部に接続された外部充電器が低圧充電器200である場合の各スイッチのオンオフ状態を示す。図2に示すように、低圧充電器200が接続された場合、制御装置100は、低圧充電器200に対して第1蓄電池31が並列接続され、かつ、低圧充電器200に対して第2蓄電池32がインバータ20及び電機子巻線11を介して並列接続された状態になるように、メインスイッチSMRH,SMRL、電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60、接続スイッチ80及びインバータ20の上,下アームスイッチSWH,SWLを操作する。
 詳しくは、制御装置100は、メインスイッチSMRH,SMRL、負極間バイパススイッチ50、モータ側スイッチ60及び接続スイッチ80をオン操作し、電池間スイッチ40をオフ操作する。また、制御装置100は、インバータ20の全相の下アームスイッチSWLをオフ操作し、少なくとも1相の上アームスイッチSWHのオンオフ操作を繰り返す。これにより、図2に示すように、低圧充電器200に対して第1蓄電池31が並列接続され、かつ、低圧充電器200に対して第2蓄電池32がインバータ20及び電機子巻線11を介して並列接続された状態になる。このため、低圧充電器200、高電位側電気経路22H、第1蓄電池31、負極間バイパススイッチ50及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31が充電される。また、低圧充電器200、高電位側電気経路22H、上アームスイッチSWH、電機子巻線11、中性点、接続スイッチ80、モータ側スイッチ60、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第2蓄電池32は降圧されて充電される。なお、複数相の上アームスイッチSWHがオン操作される場合、充電経路のインピーダンスを低下させることができる。本実施形態では、図2に示すスイッチ状態で充電されるモードを「並列モード」と呼ぶ。
 図3は、各電気経路22H,22Lの各接続部に接続された外部充電器が高圧充電器210である場合の各スイッチのオンオフ状態を示す。図3に示すように、高圧充電器210が接続された場合、制御装置100は、高圧充電器210に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になるように、メインスイッチSMRH,SMRL、電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60、接続スイッチ80及びインバータ20の上,下アームスイッチSWH,SWLを操作する。
 詳しくは、制御装置100は、メインスイッチSMRH,SMRL及び電池間スイッチ40をオン操作し、負極間バイパススイッチ50、モータ側スイッチ60、接続スイッチ80及びインバータ20の全相の上,下アームスイッチSWH,SWLをオフ操作する。これにより、図3に示すように、高圧充電器210に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になる。このため、高圧充電器210、高電位側電気経路22H、第1蓄電池31、電池間スイッチ40、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31及び第2蓄電池32が直列接続された状態で充電される。この際、インバータ20の上アームスイッチSWH、接続スイッチ80及びモータ側スイッチ60がオフ操作されているため、高圧充電器210の充電電流がインバータ20及び電機子巻線11に流れることを回避できる。本実施形態では、図3に示すスイッチ状態で充電されるモードを「直列モード」と呼ぶ。
 図4も図3と同様に、各電気経路22H,22Lの各接続部に接続された外部充電器が高圧充電器210である場合の各スイッチのオンオフ状態を示す。高圧充電器210に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になる点も図3と同じであるが、図4では図3とは各スイッチのオンオフ状態が異なる。
 図4において、制御装置100は、メインスイッチSMRH,SMRL、電池間スイッチ40、モータ側スイッチ60及び接続スイッチ80をオン操作し、負極間バイパススイッチ50をオフ操作する。これにより、図4に示すように、高圧充電器210に対して第1蓄電池31及び第2蓄電池32が直列接続された状態になる。これにより、高圧充電器210、高電位側電気経路22H、第1蓄電池31、電池間スイッチ40、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第1蓄電池31及び第2蓄電池32が直列接続された状態で充電される。また、制御装置100は、インバータの上,下アームスイッチSWH,SWLを交互にオン操作する。これにより、高圧充電器210、高電位側電気経路22H、上アームスイッチSWH、電機子巻線11、中性点、接続スイッチ80、モータ側スイッチ60、第2蓄電池32及び低電位側電気経路22Lを含む閉回路に電流が流れ、第2蓄電池32が充電される。本実施形態では、図4に示すスイッチ状態で充電されるモードを「直列中性点モード」と呼ぶ。
 次に、図5(a)~(b)を参照して、電池間スイッチ40及び負極間バイパススイッチ50のうち、いずれか一方がオン固着している場合について説明する。「オン固着」とは、スイッチの故障モードのうちの1つであり、スイッチの接点が接続状態(オン状態)で固定される故障モードである。例えば、スイッチが接点を有する機械式のリレーである場合には、接点の開閉に伴うアークが生じた場合や、接点に定格値を超える電流が流れた場合に、接点が溶着することがある。この場合、スイッチは、制御装置100の制御によらず、オン状態に固定される。
 図5(a)において、システムが外部充電器に接続されておらず、各スイッチはオフ状態である。ただし、電池間スイッチ40はオン固着しており、制御装置100からオフ指令を受けてもオフ状態になっていない。この状態において、例えば低圧充電器200が接続されると、図2で説明したように負極間バイパススイッチ50がオン操作される。このとき、電池間スイッチ40はオン固着しているため、図5(b)に示すように電池間スイッチ40、負極間バイパススイッチ50及び第2蓄電池32を含む閉回路に短絡電流が流れてしまう。
 図5(a)~(b)では、電池間スイッチ40はオン固着している例を説明したが、電池間スイッチ40ではなく負極間バイパススイッチ50がオン固着している場合も同じである。すなわち、負極間バイパススイッチ50がオン固着している場合に例えば高圧充電器210が接続されると、図3,4で説明したように電池間スイッチ40がオン操作される。これにより、電池間スイッチ40、負極間バイパススイッチ50及び第2蓄電池32を含む閉回路に短絡電流が流れてしまう。したがって、並列モード、直列モード及び直列中性点モードのいずれのモードにおいても、充電が行われる際には電池間スイッチ40又は負極間バイパススイッチ50のいずれかを一方がオン操作されるため、充電を開始する前、又は充電が完了した後に電池間スイッチ40及び負極間バイパススイッチ50がオン固着しているか否かを判定することが求められる。
 次に、図6~8を参照してオン固着の判定方法の一例について説明する。ここでは平滑コンデンサ21の電圧を用いてオン固着を判定する方法について説明する。以下ではSC電圧センサ19によって検出された平滑コンデンサ21の電圧を、以下では電圧Vinvと呼ぶ。図6~8における各スイッチのオンオフ状態は、電力変換装置の起動時、すなわち充電を開始する前のオンオフ状態を示す。図6に示すように、電力変換装置の起動時には、高電位側メインスイッチSMRH及び低電位側メインスイッチSMRLがオン操作される。なお、低電位側メインスイッチSMRLの代わりにプリチャージスイッチSPがオン操作されてもよい。すなわち、「低電位側電気経路のうち、下アームスイッチと第2蓄電部の負極端子との間に設けられる低電位側スイッチ」には、低電位側メインスイッチSMRL及びプリチャージスイッチSPが含まれる。
 電池間スイッチ40、負極間バイパススイッチ50、モータ側スイッチ60及び接続スイッチ80はオフ状態である。電池間スイッチ40及び負極間バイパススイッチ50はオフ状態であるため、平滑コンデンサ21に電流は流れず、したがって平滑コンデンサ21の電圧Vinvは0Vである。制御装置100は、電力変換装置の起動時において、メインスイッチSMRH,SMRLをオン操作した際の平滑コンデンサ21の電圧Vinvが0Vに等しいと判定した場合、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 図7も図6と同様に、電力変換装置の起動時において、メインスイッチSMRH,SMRLがオン操作される。図7が図6と異なるのは、電池間スイッチ40がオン固着していることである。この場合、第1蓄電池31及び第2蓄電池32が直列接続された状態になる。これにより、第2蓄電池32、電池間スイッチ40、第1蓄電池31、高電位側電気経路22H、平滑コンデンサ21及び低電位側電気経路22Lを含む閉回路に電流が流れ、平滑コンデンサ21の電圧Vinvは、第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vとなる。制御装置100は、電力変換装置の起動時において、メインスイッチSMRH,SMRLをオン操作した際の平滑コンデンサ21の電圧Vinvが第1蓄電池31の電圧と第2蓄電池32の電圧との合計値に等しいと判定した場合、電池間スイッチ40はオン固着していると判定する。
 図8も図6と同様に、電力変換装置の起動時において、メインスイッチSMRH,SMRLがオン操作される。図8が図6と異なるのは、負極間バイパススイッチ50がオン固着していることである。この場合、負極間バイパススイッチ50、第1蓄電池31、高電位側電気経路22H、平滑コンデンサ21及び低電位側電気経路22Lを含む閉回路に電流が流れ、平滑コンデンサ21の電圧Vinvは、第1蓄電池31と同じ400Vとなる。制御装置100は、電力変換装置の起動時において、メインスイッチSMRH,SMRLをオン操作した際の平滑コンデンサ21の電圧Vinvが第1蓄電池31の電圧に等しいと判定した場合、負極間バイパススイッチ50はオン固着していると判定する。
 次に、図9のフローチャートを参照して、制御装置100の一動作例を説明する。フローチャートの開始時点における各スイッチの初期状態は、制御装置100からのオフ指令を受けている状態である。ステップS101において、制御装置100は、充電のモードを選択する。これは、例えば接続された外部充電器の種類に応じてモードを選択すればよい。
 ステップS102において、制御装置100は、メインスイッチSMRH,SMRLをオン操作して、SC電圧センサ19により検出された平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS103の処理がYESである場合、処理はステップS104に進む。ステップS104において、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。処理はステップS105に進み、制御装置100は、充電のモードに基づいて各スイッチのオンオフ状態を切り替える。これにより、充電が開始される。
 一方、ステップS103の処理がNOである場合、処理はステップS106に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値(600V)に等しいと判定した場合、すなわち、ステップS106の処理がYESである場合、処理はステップS107に進む。ステップS107において、制御装置100は、電池間スイッチ40がオン固着していると判定する。処理はステップS108に進み、制御装置100は充電を中止する。
 ステップS106の処理がNOである場合、処理はステップS109に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧(400V)に等しいと判定した場合、すなわち、ステップS109の処理がYESである場合、処理はステップS110に進む。ステップS110において、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。その後、処理はステップS108に進む。なお、ステップS109の処理がNOである場合、予期せぬ現象が発生している可能性があるため、処理はステップS108に進む。
 以上詳述した第1実施形態によれば、以下の効果が得られる。
 制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50のうち、いずれか一方のスイッチをオン操作する前に他方のスイッチがオン固着しているか否かを判定する。一方のスイッチがオン固着していると判定された場合は、他方のスイッチをオン操作することがなくなるため、図5で説明したように電池間スイッチ40、負極間バイパススイッチ50及び第2蓄電池32を含む閉回路に短絡電流が流れることが抑制される。
 制御装置100は、電力変換装置の起動時、すなわち充電を開始する前にメインスイッチSMRH,SMRLをオン操作し、その際の平滑コンデンサ21の電圧Vinvに基づいて電池間スイッチ40や負極間バイパススイッチ50のオン固着を判定する。この構成によれば、電池間スイッチ40や負極間バイパススイッチ50を実際にオン操作したりオフ操作したりすることなく、電池間スイッチ40や負極間バイパススイッチ50がオン固着しているか否かを判定することができる。
 電池間スイッチ40や負極間バイパススイッチ50がオン固着している場合、平滑コンデンサ21の電圧は変化する。したがって、平滑コンデンサ21の電圧に着目することにより、電池間スイッチ40及び負極間バイパススイッチ50のうち、どちらのスイッチがオン固着しているか判定することができる。
 <第1実施形態の変形例>
 ・図6~8を用いて説明したオン固着判定は、電力変換装置の起動時ではなく、電力変換装置の終了時に行ってもよい。電力変換装置の終了時、すなわち、充電が完了した後は、各スイッチはオフ状態に制御されるため、起動時と同じ方法でオン固着を判定することができる。ただし、電力変換装置の終了時には充電を行ったことにより平滑コンデンサ21に電荷が溜まっている。したがって、電力変換装置の終了時にオン固着を判定するためには、平滑コンデンサ21を放電させて平滑コンデンサ21の電圧を0Vにする必要がある。平滑コンデンサ21を放電させる方法としては、例えば、インバータ20及びモータ10にd軸電流を流して放電させる方法が挙げられる。なお、電力変換装置の起動時には平滑コンデンサ21の電圧は0Vであるため、このような放電工程は不要である。
 <第2実施形態>
 以下、図10~13を参照して第2実施形態について説明する。第2実施形態が第1実施形態と異なるのは、電力変換装置の起動時に制御対象となるスイッチである。第1実施形態と重複する構成については符号を引用してその説明は省略する。以下、相違点を中心に説明する。
 図10は、電力変換装置の起動時における各スイッチのオンオフ状態を示す。図10に示すように、電力変換装置の起動時には、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80がオン操作される。電池間スイッチ40、負極間バイパススイッチ50及び低電位側メインスイッチSMRLはオフ状態である。電池間スイッチ40及び負極間バイパススイッチ50はオフ状態であるため、平滑コンデンサ21に電流は流れず、したがって平滑コンデンサ21の電圧Vinvは0Vである。制御装置100は、電力変換装置の起動時において、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80をオン操作した際の平滑コンデンサ21の電圧Vinvが0Vに等しいと判定した場合、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 図11も図10と同様に、電力変換装置の起動時において、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80がオン操作される。図11が図10と異なるのは、電池間スイッチ40がオン固着していることである。この場合、電池間スイッチ40、第1蓄電池31、高電位側電気経路22H、平滑コンデンサ21、インバータ20、モータ10の中性点、接続スイッチ80及びモータ側スイッチ60を含む閉回路に電流が流れ、平滑コンデンサ21の電圧Vinvは、第1蓄電池31と同じ400Vとなる。制御装置100は、電力変換装置の起動時において、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80をオン操作した際の平滑コンデンサ21の電圧Vinvが第1蓄電池31の電圧に等しいと判定した場合、電池間スイッチ40はオン固着していると判定する。
 図12も図10と同様に、電力変換装置の起動時において、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80がオン操作される。図12が図10と異なるのは、負極間バイパススイッチ50がオン固着していることである。この場合、第1蓄電池31及び第2蓄電池32が並列接続された状態になる。これにより、第2蓄電池32、負極間バイパススイッチ50、第1蓄電池31、高電位側電気経路22H、平滑コンデンサ21、インバータ20、モータ10の中性点、接続スイッチ80及びモータ側スイッチ60を含む閉回路に電流が流れ、平滑コンデンサ21の電圧Vinvは、第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差(200V)に等しくなる。制御装置100は、電力変換装置の起動時において、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80をオン操作した際の平滑コンデンサ21の電圧Vinvが第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差に等しいと判定した場合、負極間バイパススイッチ50はオン固着していると判定する。
 次に、図13のフローチャートを参照して、制御装置100の一動作例を説明する。フローチャートの開始時点における各スイッチの初期状態は、制御装置100からのオフ指令を受けている状態である。ステップS201において、制御装置100は、充電のモードを選択する。
 ステップS202において、制御装置100は、高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80をオン操作して、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvが0Vに等しいと判定した場合、すなわち、ステップS203の処理がYESである場合、処理はステップS204に進む。ステップS204において、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。処理はステップS205に進み、制御装置100は、充電のモードに基づいて各スイッチのオンオフ状態を切り替える。これにより、充電が開始される。
 一方、ステップS203の処理がNOである場合、処理はステップS206に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧(400V)に等しいと判定した場合、すなわち、ステップS206の処理がYESである場合、処理はステップS207に進む。ステップS207において、制御装置100は、電池間スイッチ40がオン固着していると判定する。処理はステップS208に進み、制御装置100は充電を中止する。
 ステップS206の処理がNOである場合、処理はステップS209に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差(200V)に等しいと判定した場合、すなわち、ステップS209の処理がYESである場合、処理はステップS210に進む。ステップS210において、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。その後、処理はステップS208に進む。なお、ステップS209の処理がNOである場合、予期せぬ現象が発生している可能性があるため、処理はステップS208に進む。
 以上詳述した第2実施形態によれば、以下の効果が得られる。
 制御装置100は、電力変換装置の起動時、すなわち充電を開始する前に高電位側メインスイッチSMRH、モータ側スイッチ60及び接続スイッチ80をオン操作し、その際の平滑コンデンサ21の電圧Vinvに基づいて電池間スイッチ40や負極間バイパススイッチ50のオン固着を判定する。この構成によれば、電池間スイッチ40や負極間バイパススイッチ50を実際にオン操作したりオフ操作したりすることなく、電池間スイッチ40やバイパススイッチがオン固着しているか否かを判定することができる。
 電池間スイッチ40や負極間バイパススイッチ50がオン固着している場合、平滑コンデンサ21の電圧は変化する。したがって、平滑コンデンサ21の電圧に着目することにより、電池間スイッチ40及び負極間バイパススイッチ50のうち、どちらのスイッチがオン固着しているか判定することができる。
 <第2実施形態の変形例>
 ・図10~12を用いて説明したオン固着判定は、電力変換装置の起動時ではなく、電力変換装置の終了時に行ってもよい。電力変換装置の終了時、すなわち、充電が完了した後は、各スイッチはオフ状態に制御されるため、起動時と同じ方法でオン固着を判定することができる。ただし、電力変換装置の終了時には充電を行ったことにより平滑コンデンサ21に電荷が溜まっている。したがって、電力変換装置の終了時にオン固着を判定するためには、平滑コンデンサ21を放電させて平滑コンデンサ21の電圧を0Vにする必要がある。平滑コンデンサ21を放電させる方法は、第1実施形態の変形例と同様である。
 <第3実施形態>
 以下、図14を参照して第3実施形態について説明する。第1実施形態と重複する構成については符号を引用してその説明は省略する。以下、相違点を中心に説明する。図14は、第3実施形態における電力変換装置の構成図である。図14に示すように、電力変換装置は、少なくとも電池間スイッチ40の両端電圧を検出する電池間スイッチ電圧センサ76、負極間バイパススイッチ50の両端電圧を検出するバイパススイッチ電圧センサ77、第1蓄電池31の正極端子及び第2蓄電池32の正極端子間の電圧である端子間電圧を検出する端子間電圧センサ78、高電位側電気経路22H及び低電位側電気経路22L間の電圧であるPN間電圧を検出するPN間電圧センサ79、のいずれか1つを備える。
 制御装置100は、電池間スイッチ電圧センサ76によって検出された両端電圧、バイパススイッチ電圧センサ77によって検出された両端電圧、端子間電圧センサ78によって検出された端子間電圧及びPN間電圧センサ79によって検出されたPN間電圧のうち、いずれか1つの電圧に基づいて電池間スイッチ40や負極間バイパススイッチ50のオン固着を判定する。
 まず最初に電池間スイッチ40の両端電圧を用いた判定方法について、図15のフローチャートを参照して説明する。ステップS301において、制御装置100は、電池間スイッチ電圧センサ76により検出された電池間スイッチ40の両端電圧VBが、第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vか否かを判定する。本実施形態において、電池間スイッチ40及び負極間バイパススイッチ50がオン固着しておらずオフ状態になっている場合、電池間スイッチ40の両端電圧VBは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vとなる。したがって、ステップS301の処理がYESである場合、処理はステップS302に進み、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 一方、ステップS301の処理がNOである場合、処理はステップS303に進む。ステップS303において、制御装置100は、電池間スイッチ40の両端電圧VBが0Vか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、電池間スイッチ40の両端電圧VBは0Vとなる。したがって、ステップS303の処理がYESである場合、処理はステップS304に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS303の処理がNOである場合、処理はステップS305に進む。ステップS305において、制御装置100は、電池間スイッチ40の両端電圧VBが第2蓄電池32の電圧(200V)に等しいか否かを判定する。本実施形態において、負極間バイパススイッチ50がオン固着している場合、電池間スイッチ40の両端電圧VBは第2蓄電池32の電圧に等しくなる。したがって、ステップS305の処理がYESである場合、処理はステップS306に進み、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。
 ステップS304及びS306の後、処理はステップS307に進み、制御装置100は充電を中止する。なお、ステップS305の処理がNOである場合も、処理はステップS307に進む。
 次に、負極間バイパススイッチ50の両端電圧を用いた判定方法について、図16のフローチャートを参照して説明する。ステップS401において、制御装置100は、バイパススイッチ電圧センサ77により検出された負極間バイパススイッチ50の両端電圧VPが、第1蓄電池31の電圧(400V)に等しいか否かを判定する。本実施形態において、電池間スイッチ40及び負極間バイパススイッチ50がオン固着しておらずオフ状態になっている場合、負極間バイパススイッチ50の両端電圧VPは第1蓄電池31の電圧に等しくなる。したがって、ステップS401の処理がYESである場合、処理はステップS402に進み、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 一方、ステップS401の処理がNOである場合、処理はステップS403に進む。ステップS403において、制御装置100は、負極間バイパススイッチ50の両端電圧VPが第2蓄電池32の電圧(200V)に等しいか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、負極間バイパススイッチ50の両端電圧VPは第2蓄電池32の電圧に等しくなる。したがって、ステップS403の処理がYESである場合、処理はステップS404に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS403の処理がNOである場合、処理はステップS405に進む。ステップS405において、制御装置100は、負極間バイパススイッチ50の両端電圧VPが0Vか否かを判定する。本実施形態において、負極間バイパススイッチ50がオン固着している場合、負極間バイパススイッチ50の両端電圧VPは0Vとなる。したがって、ステップS405の処理がYESである場合、処理はステップS406に進み、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。
 ステップS404及びS406の後、処理はステップS407に進み、制御装置100は充電を中止する。なお、ステップS405の処理がNOである場合も、処理はステップS407に進む。
 次に、端子間電圧を用いた判定方法について、図17のフローチャートを参照して説明する。ステップS501において、制御装置100は、端子間電圧センサ78により検出された端子間電圧VTが第2蓄電池32の電圧に等しいか否かを判定する。本実施形態において、電池間スイッチ40及び負極間バイパススイッチ50がオン固着しておらずオフ状態になっている場合、端子間電圧VTは第2蓄電池32の電圧に等しくなる。したがって、ステップS501の処理がYESである場合、処理はステップS502に進み、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 一方、ステップS501の処理がNOである場合、処理はステップS503に進む。ステップS503において、制御装置100は、端子間電圧VTが第1蓄電池31の電圧に等しいか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、端子間電圧VTは第1蓄電池31の電圧に等しくなる。したがって、ステップS503の処理がYESである場合、処理はステップS504に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS503の処理がNOである場合、処理はステップS505に進む。ステップS505において、制御装置100は、端子間電圧VTが第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差に等しいか否かを判定する。本実施形態において、負極間バイパススイッチ50がオン固着している場合、端子間電圧VTは第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差に等しくなる。したがって、ステップS505の処理がYESである場合、処理はステップS506に進み、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。
 ステップS504及びS506の後、処理はステップS507に進み、制御装置100は充電を中止する。なお、ステップS505の処理がNOである場合も、処理はステップS507に進む。
 次に、PN間電圧を用いた判定方法について、図18のフローチャートを参照して説明する。ステップS601において、制御装置100は、PN間電圧センサ79により検出されたPN間電圧VPNが0Vか否かを判定する。本実施形態において、電池間スイッチ40及び負極間バイパススイッチ50がオン固着しておらずオフ状態になっている場合、PN間電圧VPNは0Vとなる。したがって、ステップS601の処理がYESである場合、処理はステップS602に進み、制御装置100は、電池間スイッチ40及び負極間バイパススイッチ50はオン固着していないと判定する。
 一方、ステップS601の処理がNOである場合、処理はステップS603に進む。ステップS603において、制御装置100は、PN間電圧VPNが第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、PN間電圧VPNは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vとなる。したがって、ステップS603の処理がYESである場合、処理はステップS604に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS603の処理がNOである場合、処理はステップS605に進む。ステップS605において、制御装置100は、PN間電圧VPNが第1蓄電池31の電圧(400V)に等しいか否かを判定する。本実施形態において、負極間バイパススイッチ50がオン固着している場合、PN間電圧VPNは第1蓄電池31の電圧に等しくなる。したがって、ステップS605の処理がYESである場合、処理はステップS606に進み、制御装置100は、負極間バイパススイッチ50がオン固着していると判定する。
 ステップS604及びS606の後、処理はステップS607に進み、制御装置100は充電を中止する。なお、ステップS605の処理がNOである場合も、処理はステップS607に進む。
 以上詳述した第3実施形態によれば、以下の効果が得られる。
 制御装置100は、電力変換装置の起動時、すなわち充電を開始する前に各電圧センサ76~79によって検出された電圧のいずれかを用いて電池間スイッチ40や負極間バイパススイッチ50のオン固着を判定する。この構成によれば、電池間スイッチ40や負極間バイパススイッチ50を実際にオン操作したりオフ操作したりすることなく、電池間スイッチ40や負極間バイパススイッチ50がオン固着しているか否かを判定することができる。
 電池間スイッチ40や負極間バイパススイッチ50がオン固着している場合、各電圧センサ76~79によって検出された電圧は変化する。したがって、各電圧センサ76~79によって検出された電圧のいずれかに着目することにより、電池間スイッチ40及び負極間バイパススイッチ50のうち、どちらのスイッチがオン固着しているか判定することができる。
 <第3実施形態の変形例>
 ・図15~18を用いて説明したオン固着判定は、電力変換装置の起動時ではなく、電力変換装置の終了時に行ってもよい。電力変換装置の終了時、すなわち、充電が完了した後は、各スイッチはオフ状態に制御されるため、起動時と同じ方法でオン固着を判定することができる。
 <第4実施形態>
 以下、第4実施形態について説明する。先の実施形態では、電池間スイッチ40及び負極間バイパススイッチ50のオン固着を判定し、電池間スイッチ40及び負極間バイパススイッチ50がオン固着していないと判定した場合に充電を開始すると説明した。電池間スイッチ40及び負極間バイパススイッチ50がオン固着していないと判定した後で、充電を開始する前にその他のスイッチが故障しているか否かを判定してもよい。以下では、直列モード、並列モード及び直列中性点モードのそれぞれについて、判定方法の一例を説明する。
 図19は、直列モードにおけるフローチャートである。このフローチャートは、電池間スイッチ40及び負極間バイパススイッチ50がオン固着していないと判定された後のフローである。
 ステップS701において、制御装置100は、電池間スイッチ40をオン操作する。続くステップS702において、制御装置100は、プリチャージスイッチSPをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS703の処理がYESである場合、処理はステップS704に進む。
 ステップS704において、制御装置100は、高電位側メインスイッチSMRHをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vに等しいと判定した場合、すなわち、ステップS706の処理がYESである場合、処理はステップS708に進む。ステップS708において、制御装置100は、低電位側メインスイッチSMRLをオン操作する。続くステップS709において、制御装置100は、プリチャージスイッチSPをオフ操作する。続くステップS710において、制御装置100は、充電を開始する。
 ステップS703の処理がNOである場合、処理はステップS705に進み、制御装置100は、高電位側メインスイッチSMRHがオン固着していると判定する。処理はステップS711に進み、制御装置100は充電を中止する。
 ステップS706の処理がNOである場合、処理はステップS707に進み、制御装置100は、高電位側メインスイッチSMRHがオフ固着していると判定する。「オフ固着」とは、スイッチの接点が非接続状態で固定される故障モードである。処理はステップS711に進み、制御装置100は充電を中止する。ステップS706の処理がNOということは、ステップS704において制御装置100は高電位側メインスイッチSMRHに対してオン指令を出力したものの、高電位側メインスイッチSMRHはオフ固着によりオン状態にならなかったことを意味する。
 図20は、並列モードにおけるフローチャートである。このフローチャートは、電池間スイッチ40及び負極間バイパススイッチ50がオン固着していないと判定された後のフローである。
 ステップS801において、制御装置100は、負極間バイパススイッチ50をオン操作する。続くステップS802において、制御装置100は、プリチャージスイッチSPをオン操作し、平滑コンデンサ21の電圧Vinvと、NC電圧センサ75により検出された中性点コンデンサ90の電圧Vcbを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS803の処理がYESである場合、処理はステップS804に進む。
 制御装置100が中性点コンデンサ90の電圧Vcbは0Vに等しいと判定した場合、すなわち、ステップS804の処理がYESである場合、処理はステップS807に進む。ステップS807において、制御装置100は、高電位側メインスイッチSMRHをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧(400V)に等しいと判定した場合、すなわち、ステップS808の処理がYESである場合、処理はステップS809に進む。ステップS809において、制御装置100は、モータ側スイッチ60をオン操作し、中性点コンデンサ90の電圧Vcbを取得する。
 制御装置100が中性点コンデンサ90の電圧Vcbは第2蓄電池32の電圧(200V)に等しいと判定した場合、すなわち、ステップS811の処理がYESである場合、処理はステップS812に進む。ステップS812において、制御装置100は、低電位側メインスイッチSMRLをオン操作する。続くステップS814において、制御装置100は、プリチャージスイッチSPをオフ操作する。
 続くステップS815において、制御装置100は、平滑コンデンサ21の電圧Vinvが中性点コンデンサ90の電圧Vcbより大きいか否かを判定する。ステップS815にてこのように判定する理由は、中性点コンデンサ90の電圧Vcbが平滑コンデンサ21の電圧Vinvより大きい場合、中性点コンデンサ90から上アームダイオードDHを経由して蓄電池側に電流が流れる可能性があるからである。ステップS815の処理がYESである場合、処理はステップS816に進む。ステップS815の処理がNOである場合、処理はステップS818に進み、中性点コンデンサ90の電圧Vcbが平滑コンデンサ21の電圧Vinvより大きいという現象が所定回数以上か判定する。中性点コンデンサ90の電圧Vcbが平滑コンデンサ21の電圧Vinvより大きいという現象が所定回数以上と判定された場合、すなわちステップS818の処理がYESである場合、処理はステップS819に進み、制御装置100は充電を中止する。
 ステップS816において、制御装置100は、接続スイッチ80をオン操作する。続くステップS817において、制御装置100は、充電を開始する。
 ステップS803の処理がNOである場合、処理はステップS805に進み、制御装置100は、高電位側メインスイッチSMRHがオン固着していると判定する。ステップS804の処理がNOである場合、処理はステップS806に進み、制御装置100は、モータ側スイッチ60がオン固着していると判定する。ステップS808の処理がNOである場合、処理はステップS810に進み、制御装置100は、高電位側メインスイッチSMRHがオフ固着していると判定する。ステップS811の処理がNOである場合、処理はステップS813に進み、制御装置100は、モータ側スイッチ60がオフ固着していると判定する。ステップS805,S806,S810及びS813の後、処理はステップS819に進み、制御装置100は充電を中止する。
 ステップS808の処理がNOということは、ステップS807において制御装置100は高電位側メインスイッチSMRHに対してオン指令を出力したものの、高電位側メインスイッチSMRHはオフ固着によりオン状態にならなかったことを意味する。また、ステップS811の処理がNOということは、ステップS809において制御装置100はモータ側スイッチ60に対してオン指令を出力したものの、モータ側スイッチ60はオフ固着によりオン状態にならなかったことを意味する。
 なお、図20のフローにおいて、高電位側メインスイッチSMRHより先にモータ側スイッチ60がオン操作されてもよい。この場合のフローについて図21を参照して説明する。ただし、図21のステップS901,S902,S903,S904,S905,S906,S914,S916,S917,S918,S919,S920及びS921の処理は、図20のステップS801,S802,S803,S804,S805,S806,S812,S814,S815,S816,S817,S818及びS819の処理と同じため説明を省略する。
 ステップS907において、制御装置100は、モータ側スイッチ60をオン操作し、中性点コンデンサ90及び平滑コンデンサ21の電圧Vinvを取得する。制御装置100が中性点コンデンサ90の電圧Vcbは第2蓄電池32の電圧(200V)に等しいと判定した場合、すなわち、ステップS908の処理がYESである場合、処理はステップS909に進む。
 制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS909の処理がYESである場合、処理はステップS911に進む。ステップS911において、制御装置100は、高電位側メインスイッチSMRHをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧(400V)に等しいと判定した場合、すなわち、ステップS913の処理がYESである場合、処理はステップS914に進む。
 ステップS908の処理がNOである場合、処理はステップS910に進み、制御装置100は、モータ側スイッチ60がオフ固着していると判定する。ステップS909の処理がNOである場合、処理はステップS912に進み、制御装置100は、接続スイッチ80がオン固着していると判定する。ステップS913の処理がNOである場合、処理はステップS915に進み、制御装置100は、高電位側メインスイッチSMRHがオフ固着していると判定する。
 ステップS908の処理がNOということは、ステップS907において制御装置100はモータ側スイッチ60に対してオン指令を出力したものの、モータ側スイッチ60はオフ固着によりオン状態にならなかったことを意味する。また、ステップS913の処理がNOということは、ステップS911において制御装置100は高電位側メインスイッチSMRHに対してオン指令を出力したものの、高電位側メインスイッチSMRHはオフ固着によりオン状態にならなかったことを意味する。
 図22は、直列中性点モードにおけるフローチャートである。このフローチャートは、電池間スイッチ40及び負極間バイパススイッチ50がオン固着していないと判定された後のフローである。
 ステップS1001において、制御装置100は、電池間スイッチ40をオン操作する。続くステップS1002において、制御装置100は、プリチャージスイッチSPをオン操作し、平滑コンデンサ21の電圧及び中性点コンデンサ90の電圧Vcbを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS1003の処理がYESである場合、処理はステップS1004に進む。
 制御装置100が中性点コンデンサ90の電圧Vcbは0Vに等しいと判定した場合、すなわち、ステップS1004の処理がYESである場合、処理はステップS1007に進む。ステップS1007において、制御装置100は、高電位側メインスイッチSMRHをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vに等しいと判定した場合、すなわち、ステップS1008の処理がYESである場合、処理はステップS1009に進む。ステップS1009において、制御装置100は、モータ側スイッチ60をオン操作し、中性点コンデンサ90の電圧Vcbを取得する。
 制御装置100が中性点コンデンサ90の電圧Vcbは第2蓄電池32の電圧(200V)に等しいと判定した場合、すなわち、ステップS1011の処理がYESである場合、処理はステップS1012に進む。ステップS1012において、制御装置100は、低電位側メインスイッチSMRLをオン操作する。続くステップS1014において、制御装置100は、プリチャージスイッチSPをオフ操作する。
 続くステップS1015において、制御装置100は、平滑コンデンサ21の電圧Vinvが中性点コンデンサ90の電圧Vcbより大きいか否かを判定する。ステップS1015の処理がYESである場合、処理はステップS1016に進む。ステップS1015の処理がNOである場合、処理はステップS1018に進み、中性点コンデンサ90の電圧Vcbが平滑コンデンサ21の電圧Vinvより大きいという現象が所定回数以上か判定する。中性点コンデンサ90の電圧Vcbが平滑コンデンサ21の電圧Vinvより大きいという現象が所定回数以上と判定された場合、すなわちステップS1018の処理がYESである場合、処理はステップS1019に進み、制御装置100は充電を中止する。
 ステップS1016において、制御装置100は、接続スイッチ80をオン操作する。続くステップS1017において、制御装置100は、充電を開始する。
 ステップS1003の処理がNOである場合、処理はステップS1005に進み、制御装置100は、高電位側メインスイッチSMRHがオン固着していると判定する。ステップS1004の処理がNOである場合、処理はステップS1006に進み、制御装置100は、モータ側スイッチ60がオン固着していると判定する。ステップS1008の処理がNOである場合、処理はステップS1010に進み、制御装置100は、高電位側メインスイッチSMRHがオフ固着していると判定する。ステップS1011の処理がNOである場合、処理はステップS1013に進み、制御装置100は、モータ側スイッチ60がオフ固着していると判定する。ステップS1005,S1006,S1010及びS1013の後、処理はステップS1019に進み、制御装置100は充電を中止する。
 ステップS1008の処理がNOということは、ステップS1007において制御装置100は高電位側メインスイッチSMRHに対してオン指令を出力したものの、高電位側メインスイッチSMRHはオフ固着によりオン状態にならなかったことを意味する。また、ステップS1011の処理がNOということは、ステップS1009において制御装置100はモータ側スイッチ60に対してオン指令を出力したものの、モータ側スイッチ60はオフ固着によりオン状態にならなかったことを意味する。
 なお、図22のフローにおいて、高電位側メインスイッチSMRHより先にモータ側スイッチ60がオン操作されてもよい。この場合のフローについて図23を参照して説明する。ただし、図23のステップS1101,S1102,S1103,S1104,S1105,S1106,S1114,S1116,S1117,S1118,S1119,S1120及びS1121の処理は、図22のステップS1001,S1002,S1003,S1004,S1005,S1006,S1012,S1014,S1015,S1016,S1017,S1018及びS1019の処理と同じため説明を省略する。
 ステップS1107において、制御装置100は、モータ側スイッチ60をオン操作し、中性点コンデンサ90及び平滑コンデンサ21の電圧Vinvを取得する。制御装置100が中性点コンデンサ90の電圧Vcbは第2蓄電池32の電圧(200V)に等しいと判定した場合、すなわち、ステップS1108の処理がYESである場合、処理はステップS1109に進む。
 制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS1109の処理がYESである場合、処理はステップS1111に進む。ステップS1111において、制御装置100は、高電位側メインスイッチSMRHをオン操作し、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vに等しいと判定した場合、すなわち、ステップS1113の処理がYESである場合、処理はステップS1114に進む。
 ステップS1108の処理がNOである場合、処理はステップS1110に進み、制御装置100は、モータ側スイッチ60がオフ固着していると判定する。ステップS1109の処理がNOである場合、処理はステップS1112に進み、制御装置100は、接続スイッチ80がオン固着していると判定する。ステップS1113の処理がNOである場合、処理はステップS1115に進み、制御装置100は、高電位側メインスイッチSMRHがオフ固着していると判定する。
 ステップS1108の処理がNOということは、ステップS1107において制御装置100はモータ側スイッチ60に対してオン指令を出力したものの、モータ側スイッチ60はオフ固着によりオン状態にならなかったことを意味する。また、ステップS1113の処理がNOということは、ステップS1111において制御装置100は高電位側メインスイッチSMRHに対してオン指令を出力したものの、高電位側メインスイッチSMRHはオフ固着によりオン状態にならなかったことを意味する。
 制御装置100は、充電が完了した後に電力変換装置を終了させる。このとき、図24に示すフローに沿って電力変換装置を終了させてもよい。図24に示すフローは、充電が完了した後に開始する。ステップS1201において、制御装置100は、接続スイッチ80を除く各スイッチをオフ操作する。続くステップS1202において、制御装置100は、中性点コンデンサ90を放電させる。中性点コンデンサ90を放電させる方法としてはインバータ30で昇圧させ、中性点コンデンサ90の電荷を平滑コンデンサ21に転送すればよい。中性点コンデンサ90の電圧が0Vになるまで中性点コンデンサ90を放電させた後、処理はステップS1203に進み、制御装置100は、接続スイッチ80をオフ操作する。
 ステップS1204において、制御装置100は、インバータ20及びモータ10を介して平滑コンデンサ21の電荷を中性点コンデンサ90へ転送させる。このとき、接続スイッチ80がオン固着していなければ平滑コンデンサ21の電荷が中性点コンデンサ90へ転送されることはなく、中性点コンデンサ90の電圧Vcbは0Vである。制御装置100が中性点コンデンサ90の電圧Vcbは0Vに等しいと判定した場合、すなわち、ステップS1205の処理がYESである場合、処理はステップS1206に進む。ステップS1206において、制御装置100は、平滑コンデンサ21の電圧が0Vになるまで平滑コンデンサ21を放電させて電力変換装置を終了させる。
 ステップS1205の処理がNOである場合、処理はステップS1207に進み、制御装置100は、接続スイッチ80がオン固着していると判定する。処理はステップS1208に進み、制御装置100は、異常が発生している旨をドライバに通知する。
 ステップS1205の処理がNOということは、ステップS1203において制御装置100は接続スイッチ80に対してオフ指令を出力したものの、接続スイッチ80はオン固着によりオフ状態にならなかったことを意味する。
 <第5実施形態>
 以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図25に示すように、電力変換装置は、第2蓄電池32の正極端子と高電位側電気経路22Hとを接続する正極間バイパススイッチ51を備える一方、先の図1に示した負極間バイパススイッチ50を備えていない。また、電力変換装置は、モータ側電気経路25と高電位側電気経路22Hとの間に中性点コンデンサ91及び中性点コンデンサ91の電圧を検出するNC電圧センサ75Aを備える一方、先の図1に示した中性点コンデンサ90及びNC電圧センサ75を備えていない。また、モータ側電気経路25は、電機子巻線11の中性点と、電池間電気経路24のうち電池間スイッチ40よりも第1蓄電池31側の部分とを接続する。モータ側電気経路25には、モータ側スイッチ61が設けられている。また、第1蓄電池31の電圧は200Vであり、第2蓄電池32の電圧は400Vである。
 図25に示す回路構成における、電池間スイッチ40や正極間バイパススイッチ51のオン固着を判定する方法の一例を図26のフローチャートを参照して説明する。フローチャートの開始時点における各スイッチの初期状態は、制御装置100からのオフ指令を受けている状態である。ステップS1301において、制御装置100は、充電のモードを選択する。
 ステップS1302において、制御装置100は、メインスイッチSMRH,SMRLをオン操作して、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvは0Vに等しいと判定した場合、すなわち、ステップS1303の処理がYESである場合、処理はステップS1304に進む。ステップS1304において、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。処理はステップS1305に進み、制御装置100は、充電のモードに基づいて各スイッチのオンオフ状態を切り替える。これにより、充電が開始される。
 一方、ステップS1303の処理がNOである場合、処理はステップS1306に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第1蓄電池31の電圧と第2蓄電池32の電圧との合計値(600V)に等しいと判定した場合、すなわち、ステップS1306の処理がYESである場合、処理はステップS1307に進む。ステップS1307において、制御装置100は、電池間スイッチ40がオン固着していると判定する。処理はステップS1308に進み、制御装置100は充電を中止する。
 ステップS1306の処理がNOである場合、処理はステップS1309に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第2蓄電池32の電圧(400V)に等しいと判定した場合、すなわち、ステップS1309の処理がYESである場合、処理はステップS1310に進む。ステップS1310において、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。その後、処理はステップS1308に進む。なお、ステップS1309の処理がNOである場合、予期せぬ現象が発生している可能性があるため、処理はステップS1308に進む。
 以上詳述した第5実施形態によれば、以下の効果が得られる。
 制御装置100は、電力変換装置の起動時、すなわち充電を開始する前にメインスイッチSMRH,SMRLをオン操作し、その際の平滑コンデンサ21の電圧Vinvに基づいて電池間スイッチ40や正極間バイパススイッチ51のオン固着を判定する。この構成によれば、電池間スイッチ40や正極間バイパススイッチ51を実際にオン操作したりオフ操作したりすることなく、電池間スイッチ40や正極間バイパススイッチ51がオン固着しているか否かを判定することができる。
 <第5実施形態の変形例1>
 ・電池間スイッチ40や正極間バイパススイッチ51のオン固着について、図27に示すフローチャートに沿って判定してもよい。以下、フローチャートについて説明する。フローチャートの開始時点における各スイッチの初期状態は、制御装置100からのオフ指令を受けている状態である。
 ステップS1401において、制御装置100は、充電のモードを選択する。ステップS1402において、制御装置100は、低電位側メインスイッチSMRL、モータ側スイッチ61及び接続スイッチ80をオン操作して、平滑コンデンサ21の電圧Vinvを取得する。制御装置100が平滑コンデンサ21の電圧Vinvが0Vに等しいと判定した場合、すなわち、ステップS1403の処理がYESである場合、処理はステップS1404に進む。ステップS1404において、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。処理はステップS1405に進み、制御装置100は、充電のモードに基づいて各スイッチのオンオフ状態を切り替える。これにより、充電が開始される。
 一方、ステップS1403の処理がNOである場合、処理はステップS1406に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第2蓄電池32の電圧に等しいと判定した場合、すなわち、ステップS1406の処理がYESである場合、処理はステップS1407に進む。ステップS1407において、制御装置100は、電池間スイッチ40がオン固着していると判定する。処理はステップS1408に進み、制御装置100は充電を中止する。
 ステップS1406の処理がNOである場合、処理はステップS1409に進む。制御装置100が平滑コンデンサ21の電圧Vinvは第2蓄電池32の電圧と第1蓄電池31の電圧との電圧差に等しいと判定した場合、すなわち、ステップS1409の処理がYESである場合、処理はステップS1410に進む。ステップS1410において、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。その後、処理はステップS1408に進む。なお、ステップS1409の処理がNOである場合、予期せぬ現象が発生している可能性があるため、処理はステップS1408に進む。
 電池間スイッチ40や正極間バイパススイッチ51がオン固着している場合、平滑コンデンサ21の電圧は変化する。したがって、平滑コンデンサ21の電圧に着目することにより、電池間スイッチ40及び正極間バイパススイッチ51のうち、どちらのスイッチがオン固着しているか判定することができる。
 ・図26~27を用いて説明したオン固着判定は、電力変換装置の起動時ではなく、電力変換装置の終了時に行ってもよい。電力変換装置の終了時、すなわち、充電が完了した後は、各スイッチはオフ状態に制御されるため、起動時と同じ方法でオン固着を判定することができる。ただし、電力変換装置の終了時には充電を行ったことにより平滑コンデンサ21に電荷が溜まっている。したがって、電力変換装置の終了時にオン固着を判定するためには、平滑コンデンサ21を放電させて平滑コンデンサ21の電圧を0Vにする必要がある。平滑コンデンサ21を放電させる方法は、第1実施形態の変形例と同様である。
 <第6実施形態>
 以下、第6実施形態について、第5実施形態との相違点を中心に図面を参照しつつ説明する。図28に示すように、電力変換装置は、少なくとも電池間スイッチ40の両端電圧を検出する電池間スイッチ電圧センサ86、正極間バイパススイッチ51の両端電圧を検出するバイパススイッチ電圧センサ87、第1蓄電池31の負極端子及び第2蓄電池32の負極端子間の電圧である端子間電圧を検出する端子間電圧センサ88、高電位側電気経路22H及び低電位側電気経路22L間の電圧であるPN間電圧を検出するPN間電圧センサ89、のいずれか1つを備える。
 制御装置100は、電池間スイッチ電圧センサ86によって検出された両端電圧、バイパススイッチ電圧センサ87によって検出された両端電圧、端子間電圧センサ88によって検出された端子間電圧及びPN間電圧センサ89によって検出されたPN間電圧のうち、いずれか1つの電圧に基づいて電池間スイッチ40や正極間バイパススイッチ51のオン固着を判定する。
 まず最初に電池間スイッチ40の両端電圧を用いた判定方法について、図29のフローチャートを参照して説明する。ステップS1501において、制御装置100は、電池間スイッチ電圧センサ86により検出された電池間スイッチ40の両端電圧VB2が、第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vか否かを判定する。本実施形態において、電池間スイッチ40及び正極間バイパススイッチ51がオン固着しておらずオフ状態になっている場合、電池間スイッチ40の両端電圧VB2は第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vとなる。したがって、ステップS1501の処理がYESである場合、処理はステップS1502に進み、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。
 一方、ステップS1501の処理がNOである場合、処理はステップS1503に進む。ステップS1503において、制御装置100は、電池間スイッチ40の両端電圧VB2が0Vか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、電池間スイッチ40の両端電圧VB2は0Vとなる。したがって、ステップS1503の処理がYESである場合、処理はステップS1504に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS1503の処理がNOである場合、処理はステップS1505に進む。ステップS1505において、制御装置100は、電池間スイッチ40の両端電圧VB2が第1蓄電池31の電圧(200V)に等しいか否かを判定する。本実施形態において、正極間バイパススイッチ51がオン固着している場合、電池間スイッチ40の両端電圧VB2は第1蓄電池31の電圧に等しくなる。したがって、ステップS1505の処理がYESである場合、処理はステップS1506に進み、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。
 ステップS1504及びS1506の後、処理はステップS1507に進み、制御装置100は充電を中止する。なお、ステップS1505の処理がNOである場合も、処理はステップS1507に進む。
 次に、正極間バイパススイッチ51の両端電圧を用いた判定方法について、図30のフローチャートを参照して説明する。ステップS1601において、制御装置100は、バイパススイッチ電圧センサ87により検出された正極間バイパススイッチ51の両端電圧VP2が、第2蓄電池32の電圧(400V)に等しいか否かを判定する。本実施形態において、電池間スイッチ40及び正極間バイパススイッチ51がオン固着しておらずオフ状態になっている場合、正極間バイパススイッチ51の両端電圧VP2は第2蓄電池32の電圧に等しくなる。したがって、ステップS1601の処理がYESである場合、処理はステップS1602に進み、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。
 一方、ステップS1601の処理がNOである場合、処理はステップS1603に進む。ステップS1603において、制御装置100は、正極間バイパススイッチ51の両端電圧VP2が第1蓄電池31の電圧(200V)に等しいか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、正極間バイパススイッチ51の両端電圧VP2は第1蓄電池31の電圧に等しくなる。したがって、ステップS1603の処理がYESである場合、処理はステップS1604に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS1603の処理がNOである場合、処理はステップS1605に進む。ステップS1605において、制御装置100は、正極間バイパススイッチ51の両端電圧VP2が0Vか否かを判定する。本実施形態において、正極間バイパススイッチ51がオン固着している場合、正極間バイパススイッチ51の両端電圧VP2は0Vとなる。したがって、ステップS1605の処理がYESである場合、処理はステップS1606に進み、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。
 ステップS1604及びS1606の後、処理はステップS1607に進み、制御装置100は充電を中止する。なお、ステップS1605の処理がNOである場合も、処理はステップS1607に進む。
 次に、端子間電圧を用いた判定方法について、図31のフローチャートを参照して説明する。ステップS1701において、制御装置100は、端子間電圧センサ88により検出された端子間電圧VT2が第1蓄電池31の電圧に等しいか否かを判定する。本実施形態において、電池間スイッチ40及び正極間バイパススイッチ51がオン固着しておらずオフ状態になっている場合、端子間電圧VT2は第1蓄電池31の電圧に等しくなる。したがって、ステップS1701の処理がYESである場合、処理はステップS1702に進み、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。
 一方、ステップS1701の処理がNOである場合、処理はステップS1703に進む。ステップS1703において、制御装置100は、端子間電圧VT2が第2蓄電池32の電圧に等しいか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、端子間電圧VT2は第2蓄電池32の電圧に等しくなる。したがって、ステップS1703の処理がYESである場合、処理はステップS1704に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS1703の処理がNOである場合、処理はステップS1705に進む。ステップS1705において、制御装置100は、端子間電圧VT2が第2蓄電池32の電圧と第1蓄電池31の電圧との電圧差に等しいか否かを判定する。本実施形態において、正極間バイパススイッチ51がオン固着している場合、端子間電圧VT2は第1蓄電池31の電圧と第2蓄電池32の電圧との電圧差に等しくなる。したがって、ステップS1705の処理がYESである場合、処理はステップS1706に進み、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。
 ステップS1704及びS1706の後、処理はステップS1707に進み、制御装置100は充電を中止する。なお、ステップS1705の処理がNOである場合も、処理はステップS1707に進む。
 次に、PN間電圧を用いた判定方法について、図32のフローチャートを参照して説明する。ステップS1801において、制御装置100は、PN間電圧センサ89により検出されたPN間電圧VPN2が0Vか否かを判定する。本実施形態において、電池間スイッチ40及び正極間バイパススイッチ51がオン固着しておらずオフ状態になっている場合、PN間電圧VPN2は0Vとなる。したがって、ステップS1801の処理がYESである場合、処理はステップS1802に進み、制御装置100は、電池間スイッチ40及び正極間バイパススイッチ51はオン固着していないと判定する。
 一方、ステップS1801の処理がNOである場合、処理はステップS1803に進む。ステップS1803において、制御装置100は、PN間電圧VPN2が第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vか否かを判定する。本実施形態において、電池間スイッチ40がオン固着している場合、PN間電圧VPN2は第1蓄電池31の電圧と第2蓄電池32の電圧との合計値である600Vとなる。したがって、ステップS1803の処理がYESである場合、処理はステップS1804に進み、制御装置100は、電池間スイッチ40がオン固着していると判定する。
 ステップS1803の処理がNOである場合、処理はステップS1805に進む。ステップS1805において、制御装置100は、PN間電圧VPN2が第2蓄電池32の電圧(400V)に等しいか否かを判定する。本実施形態において、正極間バイパススイッチ51がオン固着している場合、PN間電圧VPN2は第2蓄電池32の電圧に等しくなる。したがって、ステップS1805の処理がYESである場合、処理はステップS1806に進み、制御装置100は、正極間バイパススイッチ51がオン固着していると判定する。
 ステップS1804及びS1806の後、処理はステップS1807に進み、制御装置100は充電を中止する。なお、ステップS1805の処理がNOである場合も、処理はステップS1807に進む。
 以上詳述した第6実施形態によれば、以下の効果が得られる。
 制御装置100は、電力変換装置の起動時、すなわち充電を開始する前に各電圧センサ86~89によって検出された電圧のいずれかを用いて電池間スイッチ40や正極間バイパススイッチ51のオン固着を判定する。この構成によれば、電池間スイッチ40や正極間バイパススイッチ51を実際にオン操作したりオフ操作したりすることなく、電池間スイッチ40や正極間バイパススイッチ51がオン固着しているか否かを判定することができる。
 電池間スイッチ40や正極間バイパススイッチ51がオン固着している場合、各電圧センサ86~89によって検出された電圧は変化する。したがって、各電圧センサ86~89によって検出された電圧のいずれかに着目することにより、電池間スイッチ40及び正極間バイパススイッチ51のうち、どちらのスイッチがオン固着しているか判定することができる。
 <第6実施形態の変形例>
 ・図29~32を用いて説明したオン固着判定は、電力変換装置の起動時ではなく、電力変換装置の終了時に行ってもよい。電力変換装置の終了時、すなわち、充電が完了した後は、各スイッチはオフ状態に制御されるため、起動時と同じ方法でオン固着を判定することができる。
 <第7実施形態>
 以下、第7実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図33に示すように、電力変換装置は、第2蓄電池32の正極端子と高電位側電気経路22Hとを接続する正極間バイパススイッチ51を更に備える。
 制御装置100は、例えば、正極間バイパススイッチ51をオン操作し、負極間バイパススイッチ50、電池間スイッチ40、モータ側スイッチ60、接続スイッチ80、高電位側メインスイッチSMRH及び低電位側メインスイッチSMRLをオフ操作した状態で、低圧充電器200により第2蓄電池32を個別に充電することができる。
 <第8実施形態>
 以下、第8実施形態について、第5実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図34に示すように、電力変換装置は、第1蓄電池31の負極端子と低電位側電気経路22Lとを接続する負極間バイパススイッチ50を更に備える。
 制御装置100は、例えば、負極間バイパススイッチ50をオン操作し、正極間バイパススイッチ51、電池間スイッチ40、モータ側スイッチ60、接続スイッチ80、高電位側メインスイッチSMRH及び低電位側メインスイッチSMRLをオフ操作した状態で、低圧充電器200により第1蓄電池31を個別に充電することができる。
 <第9実施形態>
 以下、第9実施形態について、上記各実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図35に示すように、モータ側スイッチとして、電機子巻線11の中性点と第1蓄電池31の負極端子とを接続するスイッチに加え、電機子巻線11の中性点と第2蓄電池32の正極端子とを接続するスイッチが備えられている。
 電機子巻線11の中性点には、共通経路26の第1端が接続されている。共通経路26の第2端には第1電気経路27の第1端が接続され、第1電気経路27の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側が接続されている。また、共通経路26の第2端には第2電気経路28の第1端が接続され、第2電気経路28の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第1蓄電池31側が接続されている。第1電気経路27には、第1モータ側スイッチ60が設けられている。第2電気経路28には、第2モータ側スイッチ61が設けられている。なお、共通経路26が設けられず、第1電気経路27及び第2電気経路28それぞれの第1端が電機子巻線11の中性点に接続されていてもよい。
 以上説明した本実施形態によれば、図1に示す回路構成における図9の処理や図13の処理を行うことができる。
 <第10実施形態>
 以下、第10実施形態について、上記各実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図36に示すように、モータ側スイッチとして、電機子巻線11の中性点と第1蓄電池31の負極端子とを接続するスイッチに加え、電機子巻線11の中性点と第2蓄電池32の正極端子とを接続するスイッチが備えられている。
 電機子巻線11の中性点には、共通経路26の第1端が接続されている。共通経路26の第2端には第1電気経路27の第1端が接続され、第1電気経路27の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第2蓄電池32側が接続されている。また、共通経路26の第2端には第2電気経路28の第1端が接続され、第2電気経路28の第2端には、電池間電気経路24のうち電池間スイッチ40よりも第1蓄電池31側が接続されている。第1電気経路27には、第1モータ側スイッチ60が設けられている。第2電気経路28には、第2モータ側スイッチ61が設けられている。なお、共通経路26が設けられず、第1電気経路27及び第2電気経路28それぞれの第1端が電機子巻線11の中性点に接続されていてもよい。
 以上説明した本実施形態によれば、図25に示す回路構成における図26の処理や図27の処理を行うことができる。
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
 ・モータとしては、星形結線されるものに限らず、Δ結線されるものであってもよい。また、モータ及びインバータとしては、3相のものに限らず、2相のもの、又は4相以上のものであってもよい。また、モータとしては、ロータに界磁極として永久磁石を有する永久磁石型の同期機に限らず、ロータに界磁極として界磁巻線を有する巻線界磁型の同期機であってもよい。この場合、ロータに界磁巻線及び永久磁石の双方が備えられていてもよい。また、モータとしては、同期機に限らず、誘導機であってもよい。
 ・インバータ20のスイッチとしては、フリーホイールダイオードが逆並列接続されたIGBTに限らず、例えばボディダイオードを備えるNチャネルMOSFETであってもよい。この場合、NチャネルMOSFETの高電位側端子がドレインとなり、低電位側端子がソースとなる。
 ・外部充電器による充電対象となる蓄電部としては、蓄電池に限らず、例えば、大容量の電気二重層キャパシタ、又は蓄電池及び電気二重層キャパシタの双方を備えるものであってもよい。
 ・電力変換装置の搭載先は、移動体に限らず、定置式の装置であってもよい。
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (19)

  1.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に電気的に接続されたモータ(10)と、
    を備える電力変換装置において、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチ(50,51)と、
     前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチをオン操作する前に他方のスイッチがオン固着しているか否かを判定する制御部(100)と、を備える電力変換装置。
  2.  前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
     前記平滑コンデンサの電圧を検出する電圧センサ(19)と、
     前記高電位側電気経路のうち、前記上アームスイッチとの接続点と前記第1蓄電部の正極端子との接続点との間に設けられる高電位側スイッチ(SMRH)と、
     前記低電位側電気経路のうち、前記下アームスイッチとの接続点と前記第2蓄電部の負極端子との接続点との間に設けられる低電位側スイッチ(SMRL)と、
    を備え、
     前記制御部は、前記高電位側スイッチ及び前記低電位側スイッチをオン操作した場合における前記電圧センサによって検出された前記平滑コンデンサの電圧に基づいて、前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチがオン固着しているか否かを判定する、請求項1に記載の電力変換装置。
  3.  前記バイパススイッチは、前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する負極間バイパススイッチ(50)であり、
     前記制御部は、
     前記平滑コンデンサの電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記平滑コンデンサの電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記平滑コンデンサの電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項2に記載の電力変換装置。
  4.  前記モータは、電機子巻線(11)を有し、
     前記電機子巻線の第1端側に、前記上アームスイッチ及び前記下アームスイッチの接続点が電気的に接続され、
     前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
     前記平滑コンデンサの電圧を検出する電圧センサ(19)と、
     前記高電位側電気経路のうち、前記上アームスイッチとの接続点と前記第1蓄電部の正極端子との接続点との間に設けられる高電位側スイッチ(SMRH)と、
     前記電機子巻線の第2端側と前記蓄電部間電気経路とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられるモータ側スイッチ(60)と、
     前記モータ側電気経路のうち、前記モータ側スイッチよりも前記接続点側に設けられる接続スイッチ(80)と、を更に備え、
     前記制御部は、前記高電位側スイッチ、前記モータ側スイッチ、及び前記接続スイッチをオン操作した場合における前記電圧センサによって検出された前記平滑コンデンサの電圧に基づいて、前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチがオン固着しているか否かを判定する、請求項1に記載の電力変換装置。
  5.  前記バイパススイッチは、前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する負極間バイパススイッチ(50)であり、
     前記モータ側電気経路は、前記電機子巻線の第2端側と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第2蓄電部側の部分とを電気的に接続する経路であり、
     前記制御部は、
     前記平滑コンデンサの電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記平滑コンデンサの電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記平滑コンデンサの電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との電圧差に等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項4に記載の電力変換装置。
  6.  前記バイパススイッチは、前記第1蓄電部の負極端子と前記第2蓄電部の負極端子とを電気的に接続する負極間バイパススイッチ(50)であり、
     前記制御部は、少なくとも前記蓄電部間スイッチの両端電圧、前記負極間バイパススイッチの両端電圧、前記高電位側電気経路及び前記低電位側電気経路間の電圧又は前記第1蓄電部の正極端子及び前記第2蓄電部の正極端子間の電圧のいずれか1つに基づいて、前記蓄電部間スイッチ及び前記負極間バイパススイッチのうち、いずれか一方のスイッチがオン固着しているか否かを判定する、請求項1に記載の電力変換装置。
  7.  前記制御部は、
     前記蓄電部間スイッチの両端電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記蓄電部間スイッチの両端電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記蓄電部間スイッチの両端電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項6に記載の電力変換装置。
  8.  前記制御部は、
     前記負極間バイパススイッチの両端電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記負極間バイパススイッチの両端電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記負極間バイパススイッチの両端電圧が0Vに等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項6に記載の電力変換装置。
  9.  前記制御部は、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項6に記載の電力変換装置。
  10.  前記制御部は、
     前記第1蓄電部の正極端子及び前記第2蓄電部の正極端子間の電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチ及び前記負極間バイパススイッチがオン固着していないと判定し、
     前記第1蓄電部の正極端子及び前記第2蓄電部の正極端子間の電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記第1蓄電部の正極端子及び前記第2蓄電部の正極端子間の電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との電圧差に等しいと判定した場合、前記負極間バイパススイッチがオン固着していると判定する、請求項6に記載の電力変換装置。
  11.  前記バイパススイッチは、前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する正極間バイパススイッチ(51)であり、
     前記制御部は、
     前記平滑コンデンサの電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記平滑コンデンサの電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記平滑コンデンサの電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項2に記載の電力変換装置。
  12.  前記モータは、電機子巻線(11)を有し、
     前記電機子巻線の第1端側に、前記上アームスイッチ及び前記下アームスイッチの接続点が電気的に接続され、
     前記高電位側電気経路と前記低電位側電気経路とを電気的に接続するとともに、前記インバータの入力電圧を平滑化する平滑コンデンサ(21)と、
     前記平滑コンデンサの電圧を検出する電圧センサ(19)と、
     前記低電位側電気経路のうち、前記下アームスイッチとの接続点と前記第2蓄電部の負極端子との接続点との間に設けられる低電位側スイッチ(SMRL)と、
     前記電機子巻線の第2端側と前記蓄電部間電気経路とを電気的に接続するモータ側電気経路(25)と、
     前記モータ側電気経路に設けられるモータ側スイッチ(61)と、
     前記モータ側電気経路のうち、前記モータ側スイッチよりも前記接続点側に設けられる接続スイッチ(80)と、を更に備え、
     前記制御部は、前記低電位側スイッチ、前記モータ側スイッチ及び前記接続スイッチをオン操作した場合における前記電圧センサによって検出された前記平滑コンデンサの電圧に基づいて、前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチがオン固着しているか否かを判定する、請求項1に記載の電力変換装置。
  13.  前記バイパススイッチは、前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する正極間バイパススイッチ(51)であり、
     前記モータ側電気経路は、前記電機子巻線の第2端側と、前記蓄電部間電気経路のうち前記蓄電部間スイッチよりも前記第1蓄電部側の部分とを電気的に接続する経路であり、
     前記制御部は、
     前記平滑コンデンサの電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記平滑コンデンサの電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記平滑コンデンサの電圧が前記第2蓄電部の電圧と前記第1蓄電部の電圧との電圧差に等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項12に記載の電力変換装置。
  14.  前記バイパススイッチは、前記第1蓄電部の正極端子と前記第2蓄電部の正極端子とを電気的に接続する正極間バイパススイッチ(51)であり、
     前記制御部は、少なくとも前記蓄電部間スイッチの両端電圧、前記正極間バイパススイッチの両端電圧、前記高電位側電気経路及び前記低電位側電気経路間の電圧又は前記第1蓄電部の負極端子及び前記第2蓄電部の負極端子間の電圧のいずれか1つに基づいて、前記蓄電部間スイッチ及び前記正極間バイパススイッチのうち、いずれか一方のスイッチがオン固着しているか否かを判定する、請求項1に記載の電力変換装置。
  15.  前記制御部は、
     前記蓄電部間スイッチの両端電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記蓄電部間スイッチの両端電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記蓄電部間スイッチの両端電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項14に記載の電力変換装置。
  16.  前記制御部は、
     前記正極間バイパススイッチの両端電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記正極間バイパススイッチの両端電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記正極間バイパススイッチの両端電圧が0Vに等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項14に記載の電力変換装置。
  17.  前記制御部は、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が0Vに等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が前記第1蓄電部の電圧と前記第2蓄電部の電圧との合計値に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記高電位側電気経路及び前記低電位側電気経路間の電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項14に記載の電力変換装置。
  18.  前記制御部は、
     前記第1蓄電部の負極端子及び前記第2蓄電部の負極端子間の電圧が前記第1蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチ及び前記正極間バイパススイッチがオン固着していないと判定し、
     前記第1蓄電部の負極端子及び前記第2蓄電部の負極端子間の電圧が前記第2蓄電部の電圧に等しいと判定した場合、前記蓄電部間スイッチがオン固着していると判定し、
     前記第1蓄電部の負極端子及び前記第2蓄電部の負極端子間の電圧が前記第2蓄電部の電圧と前記第1蓄電部の電圧との電圧差に等しいと判定した場合、前記正極間バイパススイッチがオン固着していると判定する、請求項14に記載の電力変換装置。
  19.  第1蓄電部(31)の正極端子に電気的に接続可能な高電位側電気経路(22H)と、
     第2蓄電部(32)の負極端子に電気的に接続可能な低電位側電気経路(22L)と、
     前記高電位側電気経路に電気的に接続された上アームスイッチ(SWH)、及び前記低電位側電気経路に電気的に接続された下アームスイッチ(SWL)を有するインバータ(20)と、
     前記上アームスイッチ及び前記下アームスイッチの接続点に電気的に接続されたモータ(10)と、
     コンピュータ(101)と、を備える電力変換装置に適用されるプログラムにおいて、
     前記電力変換装置は、
     前記第1蓄電部の負極端子と前記第2蓄電部の正極端子とを電気的に接続する蓄電部間電気経路(24)に設けられた蓄電部間スイッチ(40)と、
     前記第1蓄電部及び前記第2蓄電部の負極端子同士の電気的な接続と、前記第1蓄電部及び前記第2蓄電部の正極端子同士の電気的な接続とのうち、少なくとも一方の電気的な接続を行うバイパススイッチ(50,51)と、
    を備え、
     前記コンピュータに、
     前記蓄電部間スイッチ及び前記バイパススイッチのうち、いずれか一方のスイッチをオン操作する前に他方のスイッチがオン固着しているか否かを判定する処理を実行させる、プログラム。
PCT/JP2023/031005 2022-09-09 2023-08-28 電力変換装置及びプログラム WO2024053461A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144021 2022-09-09
JP2022144021 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053461A1 true WO2024053461A1 (ja) 2024-03-14

Family

ID=90191181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031005 WO2024053461A1 (ja) 2022-09-09 2023-08-28 電力変換装置及びプログラム

Country Status (1)

Country Link
WO (1) WO2024053461A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171637A (ja) * 2015-03-11 2016-09-23 トヨタ自動車株式会社 電源システム
JP2020150618A (ja) * 2019-03-12 2020-09-17 株式会社デンソー 蓄電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171637A (ja) * 2015-03-11 2016-09-23 トヨタ自動車株式会社 電源システム
JP2020150618A (ja) * 2019-03-12 2020-09-17 株式会社デンソー 蓄電システム

Similar Documents

Publication Publication Date Title
JP6064657B2 (ja) 回転電機駆動装置
JP6156484B2 (ja) 車両
JP5687719B2 (ja) 受電装置、送電装置および電力伝送システム
EP2873551B1 (en) Driving apparatus for electric vehicle
JP5672378B2 (ja) 電源システムおよびそれを備えた車両ならびに電源システムの制御方法
US9493081B2 (en) Power supply system, vehicle equipped with the same, and control method for power supply system
US9180781B2 (en) Electric automobile
CN109873569A (zh) 功率转换器、电功率系统和用于控制电功率系统的方法
JP2014161142A (ja) 充電装置、充電方法及びモータ駆動方法
JP5842888B2 (ja) 絶縁電源装置
JP6973739B2 (ja) Dc−dc電圧コンバータをブースト動作モードから安全動作モードに切り換える制御システム
JP6495554B2 (ja) Dc−dc電圧コンバータをバック動作モードから安全動作モードに切り換える制御システム
JP7222687B2 (ja) 充電システム、および、充電システムのプログラム
WO2022239665A1 (ja) 電力変換装置
KR102334658B1 (ko) 차량 배터리 충전 장치
WO2024053461A1 (ja) 電力変換装置及びプログラム
JP7490768B2 (ja) 電源システム及び電源システムの制御方法
JP7244075B2 (ja) 充電システム
JP7338437B2 (ja) 充電システム
US20230130454A1 (en) System and method of controlling battery connection for electric vehicle
JP7063745B2 (ja) 電源システム
WO2024024425A1 (ja) 電力変換装置、プログラム
JP5017529B2 (ja) 磁石式同期モータ用電力変換装置
JP6079455B2 (ja) 充電装置及び制御方法
CN106740155B (zh) 增程器、能量管理系统及能量管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863000

Country of ref document: EP

Kind code of ref document: A1