WO2024053436A1 - 硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体 - Google Patents

硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体 Download PDF

Info

Publication number
WO2024053436A1
WO2024053436A1 PCT/JP2023/030805 JP2023030805W WO2024053436A1 WO 2024053436 A1 WO2024053436 A1 WO 2024053436A1 JP 2023030805 W JP2023030805 W JP 2023030805W WO 2024053436 A1 WO2024053436 A1 WO 2024053436A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
monomer
cured product
host
groups
Prior art date
Application number
PCT/JP2023/030805
Other languages
English (en)
French (fr)
Inventor
昌信 内藤
義徳 ▲高▼島
優作 河合
Original Assignee
国立研究開発法人物質・材料研究機構
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構, 国立大学法人大阪大学 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2024053436A1 publication Critical patent/WO2024053436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers

Abstract

分子内にエチレン性不飽和基、及び、ホスト基を有し、上記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基である、単量体Aと、分子内に動的共有結合を有する単量体Bと、上記動的共有結合を有していてもよい単量体Cと、を含む組成物を硬化させて得られる硬化物であって、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、硬化物は、優れた靭性、及び/又は、優れた強度を有し得る。

Description

硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体
 本開示は、硬化物、自己修復材部料、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体に関する。
 エポキシ樹脂のような熱硬化性樹脂は、高い耐水性、及び/又は、高い接着性を有するため、塗料、及び、接着剤として広く使用されている。一方で、その他の樹脂と比べて靭性が低く、耐久性が課題となっている。このような課題の解決のために、従来、エラストマー(ゴム)や熱可塑性樹脂を用いた複合化・改質が検討されてきた。このような技術として、非特許文献1には、熱可塑性樹脂によるエポキシ樹脂の改質について記載されている。
回路実装学会誌,1996,第11巻,第1号,p.53-58
 非特許文献1に記載された従来の改質方法は、樹脂同士の相溶性の問題で使用できる樹脂が限定されたり、改質剤の配合量を多くできない等の制限があったりして、所期の機能が得られにくかったり、製造工程が煩雑になったりする問題があった。
 本開示は、従来技術が有する課題に対する、従来とは異なるアプローチによる解決策を提示し、優れた靭性、及び、優れた強度の少なくともいずれか一方を有し得る硬化物を提供する。
 また、本開示によれば、自己修復材料、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体も提供され得る。
 本開示における、硬化物の実施形態の一つは、分子内にエチレン性不飽和基、及び、ホスト基を有し、上記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基である、単量体Aと、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有する単量体Bと、上記動的共有結合を有していてもよい単量体Cと、を含む組成物を硬化させて得られる硬化物であって、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、硬化物である。
 本開示における、接着剤の実施形態の一つは、単量体B、又は、単量体Cの一方と、上記単量体Aと含む第1剤と、単量体B、又は、単量体Cの他方を含む第2剤と、を備える接着剤であって、上記単量体Aは、分子内にエチレン性不飽和基、及び、ホスト基を有し、上記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であり、上記単量体Bは、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有し、上記単量体Cは、上記動的共有結合を有していてもよく、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、接着剤である。
 本開示における、接着剤の実施形態の一つは、後述する式(5)で表される部分構造を有する重合体を含む第1剤と、単量体Bを含む第2剤と、単量体Cを含む第3剤と、を備える接着剤であって、上記単量体Bは、分子内に動的共有結合としてジスルフィド結合を有し、上記単量体Cは、上記ジスルフィド結合を有していてもよく、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であるホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、接着剤である。
 本開示における、単量体の実施形態の一つは、後述する式(6)で表される単量体である。
 本開示は、優れた靭性、及び、優れた強度の少なくとも一方を有し得る硬化物を提供する。また、自己修復材料、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体も提供する。
式(3)で表される化合物の構造例を表した図である。 式(3)に「該当しない」化合物の構造例を表す図である。 硬化物の製造方法の一実施形態のフロー図である。 単量体A、B、及び、Cを含む組成物を硬化させて、重合体を得て、このジスルフィド結合を上記の方法で分解して、分解生成物である新たな単量体を得るという一連の工程を表す反応スキームの例である。 単量体A、B、及び、Cを含む組成物を硬化させて、重合体を得て、このジスルフィド結合を上記の方法で分解して、分解生成物である新たな単量体を得るという一連の工程を表す反応スキームの例である。 単量体A、B、及び、Cを含む組成物を硬化させて、重合体を得て、このジスルフィド結合を上記の方法で分解して、分解生成物である新たな単量体を得るという一連の工程を表す反応スキームの例である。 160℃で硬化させた硬化物について、応力ひずみ曲線から求めたホスト基の含有量に対する靭性を表す図である。 160℃で硬化させた硬化物について、応力ひずみ曲線から求めたホスト基の含有量に対するヤング率を表す図である。 実施例2の硬化物と、比較例の硬化物との応力ひずみ曲線の比較である。 実施例2の硬化物、比較例の硬化物の硬化温度を変化させたときの、ヤング率及び靭性の変化を表す図である。
 本開示における、硬化物の第1の実施形態は、分子内にエチレン性不飽和基、及び、ホスト基を有し、上記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基である、単量体Aと、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有する単量体Bと、上記動的共有結合を有していてもよい単量体Cと、を含む組成物を硬化させて得られる硬化物であって、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、硬化物である。
 上記硬化物は、上述の各単量体が重合した重合体を含む。(硬化物は、重合体以外の成分を含んでいてもよい。)重合体は、その分子内に「可動性架橋」構造と、「可逆的架橋」構造とを有する。可動性架橋は高分子鎖の運動性を高く維持する。更に、分子内に併存する可逆的架橋は、架橋点の解離・再結合による組み換えが可能で、可動性架橋の架橋点の可動域を更に広範とする効果を奏する。上記2つの架橋構造の相乗効果により、従来の可動性架橋の架橋点の可動域を超えた広範な緩和挙動が可能とされ、硬化物は優れた靭性と、優れた強度とを両立する。
 なお、「可動性架橋」構造、及び、「可逆的架橋」構造の詳細は後段で説明される。
 本開示における、硬化物の第2の実施形態は、第1の実施形態の硬化物において、上記ホスト基を、上記単量体B、又は、上記単量体Cの一方が串刺し状に貫通してなる包接錯体を、上記組成物が含む硬化物である。
 単量体B、又は、単量体Cの一方がホスト基を串刺し状に貫通した状態となると、重合体が形成されたときに可動性架橋がより生じやすい。言い換えれば、第2の実施形態の硬化物は、得られる硬化物中に含まれる重合体の分子内に可動性架橋の架橋点をより含みやすい。その結果として、硬化物はより優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第3の実施形態は、第1の実施形態の硬化物において、上記ホスト基を、上記単量体Bが串刺し状に貫通してなる包接錯体と、上記ホスト基を、上記単量体Cが串刺し状に貫通して成る包接錯体と、を上記組成物が含む硬化物である。
 単量体Bが串刺し状に貫通してなる包接錯体、及び、単量体Cが串刺し状に貫通して成る包接錯体を両方含む組成物を硬化して得られる第3の実施形態の硬化物は、硬化物中に含まれる重合体の分子鎖中により均一に可動性架橋の架橋点が生成されやすいため、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第4の実施形態は、第1~3の実施形態の硬化物において、下記式(5)で表される部分構造を有する重合体を含む、硬化物である。
Figure JPOXMLDOC01-appb-C000006
 式(5)中、*は結合位置を表し、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは前記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す。
 上記部分構造は、単量体Aが有するエチレン性不飽和基が、単量体Bが有する(更に単量体Cが有してもよい)動的共有結合であるジスルフィド結合と反応することで形成される部分構造である。上記部分構造を有する重合体は、単量体Aと、動的共有結合としてジスルフィド結合を有する単量体Bと、(更にジスルフィド結合を有してもよい)単量体Cと、を含む組成物を硬化させて得られた硬化物に含まれ得る。
 上記重合体は、金属とのより強い相互作用を有する。そのため、硬化物は、被接着体(特に金属)に対する優れた接着性を有する。また、上記重合体は、単量体Bに由来して、分子内にジスルフィド結合を含む。ジスルフィド結合は、炭素-炭素結合より弱く、酸素-酸素結合より強い結合解離エネルギーを有する。そのため、実用上より好ましい低温度領域にて(一形態として、室温~160℃)、交換反応を起こさせることができる。これは、より容易に可逆性架橋の機能を発現できることを意味しており、この効果によって硬化物は、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第5の実施形態は、第1~4の実施形態の硬化物において、上記単量体Aを含む、硬化物である。
 単量体Aは、エチレン性不飽和結合を有している。そのため、重合体が有する動的共有結合の解離で生ずるラジカルと反応し得る。そのため、動的共有結合の解離・再結合による結合の組み換え可能範囲が(分子内において)より広くなりやすく、硬化物は、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第6の実施形態は、第1~5の実施形態の硬化物において、上記組成物中における、上記動的共有結合のモル基準の合計含有量に対する、上記ホスト基のモル基準の合計含有量の含有量比が、0.01以上、0.1以下である、硬化物である。
 ホスト基/動的共有結合の含有量比が上記範囲内であると、硬化物は、より優れた靭性と、より優れた強度(剛性)とを両立する。
 本開示における、硬化物の第7の実施形態は、第1~6の実施形態の硬化物において、上記単量体Aが下記式(1)表される化合物を含む、硬化物である。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは上記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す。
 上記単量体Aを含む組成物を硬化させて得られる硬化物に含まれる重合体は、エチレン性不飽和基の反応(典型的には、動的共有結合の解離で生ずるラジカル等との反応)により主鎖が形成され、側基としてホスト基を含む形態となりやすい。そのため、可動性架橋の効果がより得られやすく、結果として、硬化物は、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第8の実施形態は、第1~7の実施形態の硬化物において、上記単量体Bが下記式(3)で表される化合物を含む、硬化物である。
Figure JPOXMLDOC01-appb-C000008
 式(3)中、Zは硬化性基を有する基であり、Rは水素原子、又は、1価の有機基であり、Lは上記動的共有結合を含むp+q価の基であり、pは0以上の整数を表し、qは2以上の整数を表し、Zで表される上記基の少なくとも一組が、上記動的共有結合を介して連結されている。
 上記単量体Bでは、少なくとも2つの硬化性基を有する基が、動的共有結合を含む基を介して連結される。言い換えれば、動的共有結合を含む基が、一対の硬化性基を有する基によって挟まれている。このような単量体Bを含む組成物を硬化させて得られる硬化物に含まれる重合体は、その主鎖に、動的共有結合を含んだ構造となりやすい。従って、より動的共有結合の解離・再結合によって(可逆性架橋によって)分子鎖に対してより大きな立体構造の変化を生じさせやすい。この結果として、硬化物は、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の第9の実施形態は、第1~8の実施形態の硬化物において、上記単量体B、及び、上記単量体Cが、上記動的共有結合としてジスルフィド結合を有し、上記単量体Cにおける上記硬化性基の少なくとも一組が、上記ジスルフィド結合を介して連結されている、硬化物である。
 ジスルフィド結合を有する単量体B、及び、単量体Cを含む組成物を硬化して得られる硬化物には、ジスルフィド結合を主鎖に有する重合体が含まれ得る。上記重合体は金属とのより強い相互作用を有する。そのため硬化物は、被接着体(特に金属)に対する優れた接着性を有する。また、ジスルフィド結合は、炭素-炭素結合より弱く、酸素-酸素結合より強い結合解離エネルギーを有する。そのため、実用上より好ましい低温度領域にて(一形態として、室温~160℃)、交換反応を起こさせることができる。これは、より容易に可逆性架橋の機能を発現できることを意味しており、この効果によって硬化物は、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、自己修復材の第1の実施形態は、第1~9の実施形態の硬化物を含む、自己修復材である。
 上記硬化物は、動的共有結合を有する重合体を含む。また、重合体は、可動性架橋を含む。このような重合体の構造的特徴は、硬化物中の残留応力の大きな緩和、硬化物の表面の平坦化によるクラックの修復等に寄与し得る。そのため、上記硬化物を含む自己修復材は優れた自己修復性を有する。
 本開示における、接着剤の第1の実施形態は、単量体B、又は、単量体Cの一方と、上記単量体Aと含む第1剤と、単量体B、又は、単量体Cの他方を含む第2剤と、を備える接着剤であって、上記単量体Aは、分子内にエチレン性不飽和基、及び、ホスト基を有し、上記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であり、上記単量体Bは、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有し、上記単量体Cは、上記動的共有結合を有していてもよく、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、接着剤である。
 上記接着剤は、2剤型であり、適用箇所で混合して硬化反応を進行させて硬化物を形成させて被接着物を接着できる。上記接着剤を硬化して得られる硬化物は、上述のとおりであるから、第1の実施形態の接着剤は、優れた靭性、及び/又は、より優れた接着強度を有する。
 なお、硬化は主に、単量体Bと単量体Cとが混合されて(必要に応じて加熱されて)起こるため上述の2剤構成の接着剤は、硬化反応の進行制御は容易である。
 本開示における、接着剤の第2の実施形態は、第1の実施形態の接着剤において、上記一方が上記ホスト基を串刺し状に貫通してなる包接錯体を、上記第1剤が含む、接着剤である。
 単量体B、又は、単量体Cの一方がホスト基を串刺し状に貫通した状態となると、重合体が形成されたときに可動性架橋がより生じやすい。言い換えれば、第2の実施形態の接着剤は、得られる硬化物中に含まれる重合体の分子内に可動性架橋の架橋点をより含みやすい。その結果として、第2の実施形態の接着剤は、より優れた靭性、及び/又は、より優れた接着強度を有する。
  本開示における、接着剤の第3の実施形態は、下記式(5)で表される部分構造を有する重合体を含む第1剤と、単量体Bを含む第2剤と、単量体Cを含む第3剤と、を備える接着剤であって、上記単量体Bは、分子内に動的共有結合としてジスルフィド結合を有し、上記単量体Cは、上記ジスルフィド結合を有していてもよく、上記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であるホスト基を串刺し状に貫通可能であり、上記単量体B、及び、上記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、上記単量体Bにおける上記硬化性基の少なくとも一組が、上記動的共有結合を介して連結されている、接着剤である。
Figure JPOXMLDOC01-appb-C000009
 式(5)中、*は結合位置を表し、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは上記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す。
 上記部分構造は、単量体Aが有するエチレン性不飽和基が、単量体Bが有する(更に単量体Cが有してもよい)動的共有結合であるジスルフィド結合と反応することで形成される部分構造である。上記部分構造を有する重合体は、単量体Aと、動的共有結合としてジスルフィド結合を有する単量体Bと、(更にジスルフィド結合を有してもよい)単量体Cと、を含む接着剤を硬化させて得られた硬化物に含まれ得る。
 上記重合体は、金属とのより強い相互作用を有する。そのため、硬化物は、被接着体(特に金属)に対する優れた接着性を有する。また、上記重合体は、単量体Bに由来して、分子内にジスルフィド結合を含む。ジスルフィド結合は、炭素-炭素結合より弱く、酸素-酸素結合より強い結合解離エネルギーを有する。そのため、実用上より好ましい低温度領域にて(一形態として、室温~160℃)、交換反応を起こさせることができる。これは、より容易に可逆性架橋の機能を発現できることを意味しており、これにより、接着剤は、より優れた靭性、及び/又は、より優れた強度を有する。
 また、接着剤の硬化物は、動的共有結合を有する重合体を含む。また、重合体は、可動性架橋を含む。このような重合体の構造的特徴は、硬化物中の残留応力の大きな緩和、硬化物の表面の平坦化によるクラックの修復等に寄与し得る。そのため、上記接着剤は、自己修復材を有する。
 また、単量体Aが、他の成分(単量体B、単量体C)と別とされているため、接着剤の硬化物の重合体に含まれる単量体A由来の単位、硬化物に含まれる未反応の単量体Aの含有量を容易に調整し得る。上記により、接着剤は、より優れた靭性、及び/又は、より優れた接着強度を有するとともに、3剤(特に第1剤)の混合比率により硬化物中の重合体の構造を任意に制御し得るため、結果として、用途に応じて靭性、接着強度を調整し得る。
 本開示における、硬化物の製造方法の第1の実施形態は、上記組成物に、エネルギーを付与して硬化物を得ることを含む、第1~第9の実施形態の硬化物の製造方法である。言い換えれば、硬化物の製造方法の第1の実施形態は、組成物にエネルギーを付与して、第1~第9の実施形態の硬化物を得ることを含む、硬化物の製造方法である。
 本開示における、硬化物の製造方法の第2の実施形態は、第1の実施形態の硬化物の製造方法において、上記エネルギーを付与する前に、上記単量体Aが有するホスト基を、上記単量体B、又は、上記単量体Cの一方が、串刺し状に貫通してなる包接錯体を生成することを更に含む、硬化物の製造方法である。
 第2の実施形態の硬化物の製造方法によれば、予め包接錯体が形成される。包接錯体における単量体B、又は、単量体Cの一方がホスト基を串刺し状に貫通した状態は、硬化物(に含まれる重合体)が形成されたときに可動性架橋となり得る部分である。従って、上記硬化物の製造方法により得られる硬化物は、得られる硬化物中に含まれる重合体の分子内に可動性架橋の架橋点をより含みやすく、結果として、より優れた靭性、及び/又は、より優れた強度を有する。
 本開示における、硬化物の分解方法の第1の実施形態は、有機溶媒を含む有機相と、分子内に少なくとも1つのメルカプト基を含む水溶性化合物、及び、水を含む水相と、からなる二相溶液に、第9の実施形態の硬化物を接触させて、上記硬化物を分解する、硬化物の分解方法である。
 第9の実施形態の硬化物は、いずれも分子内にジスルフィド結合を有する単量体B、Cを含む組成物を硬化して得られる。そのため、硬化物にメルカプト基を含む水溶性化合物を接触させると、重合体が有するジスルフィド結合が切断され、重合体が分解され得る。硬化物の主成分は上記重合体であるから、上記により、硬化物が分解され得る。更に、この分解生成物は有機相に回収され得る。本実施形態の硬化物の分解方法によれば、硬化物を容易に分解できることに加えて、再利用可能な分解生成物を容易に回収できる。
 本開示における、単量体の第1の実施形態は、下記式(6)で表される単量体である。なお、上記単量体は、「化合物」と言い換えてられてもよい。
Figure JPOXMLDOC01-appb-C000010
 式(6)中、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rはシクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であるホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表し、Lは、ジスルフィド結合を含まず、前記ホスト基を串刺し状に貫通可能な2価の基、又は、単結合を表し、Lはa+1価の基を表し、aは1以上の整数を表し、複数あるL、及び、Lはそれぞれ同一でも異なってもよい。
 上記単量体は、加熱、及び/又は、光照射等によって硬化させることができる。上記単量体を硬化させて得られる重合体には、ジスルフィド結合による可逆性架橋構造が含まれ得るため、得られる硬化物は、優れた靭性、及び/又は、優れた強度を有する。なお、「単量体の硬化物」という場合の「硬化物」は、単量体の重合体と同義である。
 本開示における、硬化物の第10の実施形態は、(直前の上記)第1の実施形態の単量体を硬化させて得られる硬化物である。
 なお、この場合の硬化物は、重合体を意味し、上記は、単量体(化合物)を硬化させて得られる重合体、と言い換えられる。
 上記硬化物(重合体)は、主鎖にジスルフィド結合を含む。そのため、上記重合体は金属とのより強い相互作用を有し、被接着体(特に金属)に対する優れた接着性を有する。また、ジスルフィド結合は、炭素-炭素結合より弱く、酸素-酸素結合より強い結合解離エネルギーを有する。そのため、実用上より好ましい低温度領域にて(一形態として、室温~160℃)、交換反応を起こさせることができる。これは、より容易に可逆性架橋の機能を発現できることを意味しており、この効果によって上記硬化物(重合体)は、優れた靭性、及び/又は、優れた強度を有する。
 以下の説明は、非限定的な実施形態に基づいてなされる。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、(メタ)アクリロイルとの記載は、メタクリロイル、及び、アクリロイルの少なくとも一方を表し、(メタ)アクリルとの記載は、メタクリル、及び、アクリルの少なくとも一方を表す。
 また、本明細書において、特定の符号で表示された置換基、若しくは、連結基等(以下、置換基等という)が複数あるとき、又は、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。
 また、特に断らない限り、複数の置換基等が近接(特に隣接)するときには、それらが互いに連結したり縮環したりして環を形成していてもよい。
 また、本明細書において置換・無置換を明記していない置換基等については、目的とする効果を損なわない範囲で、その基にさらに置換基を有していてもよい。これは置換・無置換を明記していない化合物についても同様である。
[硬化物]
 硬化物の実施形態の一つ(以下「本硬化物」ともいう。)は、分子内にエチレン性不飽和基と、ホスト基とを有する単量体Aと、動的共有結合を有する単量体Bと、動的共有結合を有してもよい単量体Cと、を含む組成物を硬化させて得られる硬化物であって、単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、上記ホスト基を串刺し状に貫通可能であり、単量体B、及び、単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、単量体Bにおける硬化性基の少なくとも一組が、動的共有結合を介して連結されている。
 本硬化物によって課題が解決される機序は必ずしも明らかではないが、その推測される機序の1つについて説明する。なお、以下の説明は、推測であり、本硬化物の課題解決の機序を限定的に説明するものではない。
 本硬化物の主成分は、単量体A、B、及び、Cの硬化反応により得られる重合体(共重合体)である。重合体の骨格(主鎖)は、単量体B、及び、Cがそれぞれ有する一対の硬化性基の連鎖的な反応によって得られる。
 更に、少なくとも単量体Bは、その分子内に動的共有結合を有している。更に、この動的共有結合は、後述する硬化性基の少なくとも1組について、それぞれの硬化性基を互いに隔てるように結合している。
 従って、上記単量体Bを含む組成物を硬化させて得られる硬化物の主鎖には、動的共有結合が含まれることとなる。
 動的共有結合にエネルギー(熱、及び、光等)が付与されると、これが解離してラジカルを生じさせる。具体的には、動的共有結合がジスルフィド結合であれば、加熱、及び/又は、紫外線照射等によって、解離してチイルラジカルを生じさせる。
 一方、単量体Aは、エチレン性不飽和基と、ホスト基を含む。単量体Aは、エチレン性不飽和基を有しているため、単量体Bが有する動的共有結合と付加反応する。これにより、硬化物の主成分である重合体の主鎖には、単量体Aが有するホスト基が側枝(側基、又は、側鎖)の一部として導入される。
 更に、単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、単量体Aが有するホスト基を串刺し状に貫通可能である。言い換えれば、単量体Aは、単量体B、及び/又は、単量体Cと包接錯体を形成し得る。
 従って、単量体A、B、及び、Cを含む組成物にエネルギーを付与して硬化させると、包接錯体の形成、及び、重合体の形成が、順次、又は、同時に進行する。このようにして得られる重合体は、重合体の側枝であるホスト基の少なくとも一部を、重合体の分子鎖の一部が串刺し状に貫通した構造となる。この構造は、架橋点のように働きつつ、応力を受けると一定範囲で可動する、いわゆる「可動性架橋」として機能し、本硬化物が有する特異な力学特性の発現に寄与するものと推測される。
 更に、上記重合体は、主鎖に動的共有結合が組み込まれているため、外部からの刺激(熱的、力学的、及び/又は、光学的刺激)によって、この解離・再結合が容易に起こり得る。すなわち、重合体の分子鎖のネットワークを構成する架橋点のつなぎ替えが外部刺激によって容易に起こるものと推測される(可逆性架橋)。
 可動性架橋の可動域は、他の架橋点(化学的架橋、物理的架橋)によって制限される場合がある。しかし、上記重合体においては、可逆性架橋の解離/再結合によって、この可動域を超えて、ホスト基が移動できる場合があるものと推測され、可動性架橋そのものが有するよりも、更に広範な緩和挙動が可能になるものと推測される。
 上記のように、本硬化物は、その主成分として含まれる重合体が、「可動性架橋」と「可逆的架橋」とを併せ持つ。これによって、可動性架橋、可逆性架橋のそれぞれの特性のみではなく、これらの機能の有機的な結びつきによる相乗作用により、従来の熱硬化性樹脂ではなし得なかった優れた靭性と、優れた強度とを両立するものと推測される。
 以下では、本硬化物について詳述するが、まず、本硬化物の製造に使用される組成物について、含まれる成分等を説明する。
<組成物>
 本硬化物は、単量体A、単量体B、及び、単量体Cを含む組成物を硬化させることによって得られる。本硬化物の主成分は、単量体A、B、及び、Cによって得られる重合体である。なお、本明細書において、主成分とは、含有量が50質量%以上の成分を意味し、70質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、一形態としては、硬化物が重合体のみで構成されているか、又は、硬化物が、重合体、及び、意図せず混入する不純物のみから構成されていてもよい。
(単量体A)
 単量体Aは、分子内にエチレン性不飽和基、及び、ホスト基を有する化合物である。
 組成物中の単量体Aの含有量は特に制限されないが、より優れた効果を有する単量体が得られる観点で、単量体A、B、及び、Cの合計含有量を100モル%としたとき、0.1モル%以上が好ましく、1.0モル%以上が好ましく、1.8モル%以上がより好ましく、2.0モル%以上が更に好ましく、2.5モル%以上が特に好ましく、3.0モル%以上が最も好ましい。
 一方で、優れた剛性を維持しつつ、より優れた靭性を有する硬化物が得られる観点では、単量体Aの含有量は、単量体A、B、及び、Cの合計含有量を100モル%としたとき、50モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下が更に好ましく、5.0モル%以下が特に好ましく、5.0モル%未満が最も好ましい。
 組成物中における単量体Aの含有量は、単量体A、B、及び、Cの合計含有量を100モル%としたとき、0.1~50モル%、1.0~20モル%、1.8~10モル%、2.0~10モル%、2.5~10モル%、3.0~10モル%以下、1.0~5.0モル%、1.8~5.0モル%、2.0~5.0モル%、2.5~5.0モル%、又は、3.0~5.0モル%以下が好ましい。
 また、1.0モル%以上、5.0モル%未満;1.8モル%以上、5.0モル%未満;2.0モル%以上、5.0モル%未満;2.5モル%以上、5.0モル%未満;又は、3.0モル%以上~5.0モル%未満が好ましい。
 また、組成物中に含まれる(典型的には単量体Bに由来する)動的共有結合のモル基準の(合計)含有量に対する、単量体Aに由来するホスト基のモル基準(物質量基準)の含有量の含有量比(ホスト基/動的共有結合、以下、「H/D」比ともいう。)は、より優れた靭性と、より優れた強度(剛性)とを両立する硬化物が得られる観点で、0.01以上が好ましく、0.02以上がより好ましく、0.04以上が更に好ましく、0.04を超えることが特に好ましく、0.06を超えることが最も好ましい。一方で、H/D比は、0.5未満が好ましく、0.2未満がより好ましく、0.1以下が更に好ましく、0.1未満が特に好ましい。なおH/Dは、有効数字1桁で求めるものとする。
 H/D比は、0.01以上、0.5未満;0.01以上、0.2未満;0.01~0.1;0.01以上、0.1未満;0.02以上、0.2未満;0.04以上、0.2未満;0.04~0.1;0.04以上、0.1未満;0.04を超えて、0.5未満;0.04を超えて、0.2未満;0.04を超えて、0.1以下;0.04を超えて、0.1未満;0.06を超えて、0.5未満;0.06を超えて、0.2未満;0.06を超えて、0.1以下;又は、0.06を超えて、0.1未満が好ましい。
 なお、単量体Aは一種を単独で用いても、二種以上を併用してもよい。単量体Aを二種以上併用する場合には、その合計含有量が上記範囲内であることが好ましい。
 なお、単量体Bに加えて、単量体Cが動的共有結合を有している場合、H/D比の計算においては、「D」は、組成物中における動的共有結合の含有量の合計とする。上記は、組成物が後述する硬化物前駆体(包接錯体)を含んでいる場合についても同様であり、「D」は、組成物中における動的共有結合の合計含有量となる。
 また、組成物が後述する包接錯体を含有している場合、「H」は単量体Aに由来するホスト基と、包接錯体に由来するホスト基との合計含有量として計算される。
 単量体Aが有するエチレン性不飽和基の数は特に限定されないが、より優れた効果を有する硬化物が得られる点では、1個以上が好ましく、4個以下が好ましく、2個以下がより好ましく、一形態としては、1個であってよい。
 なお、単量体Aはエチレン性不飽和基の一種を含んでも、二種以上を含んでもよい。単量体Aがエチレン性不飽和基の二種以上を含む場合には、その合計数が、2~4個であることが好ましい。
 本明細書において、エチレン性不飽和基とは、ラジカルによる付加反応が可能な炭素-炭素二重結合を含む官能基を意味する。エチレン性不飽和基としては、例えば、ビニル基、アリル基、及び、(メタ)アクリロイル基等が挙げられる。
 エチレン性不飽和基は、後述する動的共有結合との付加反応によって結合を形成し、重合体の主鎖に側枝としてホスト基を固定する機能を有する。
 ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体(以下、併せて「シクロデキストリン誘導体等」ともいう。)から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基である。更に、ホスト基は、ホスト-ゲスト相互作用によって、単量体B、及び/又は、単量体Cを串刺し状に貫通させ得る。すなわち、単量体Aは、単量体B、及び/又は、単量体Cと包接錯体を形成し得る。
 シクロデキストリン誘導体は、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、及び、γ-シクロデキストリン誘導体からなる群より選ばれる少なくとも1種である。本明細書における「シクロデキストリン誘導体」とは、シクロデキストリン分子が他の有機基で置換された構造を有する分子をいう。
 また、本明細書における「シクロデキストリン」とは、α-シクロデキストリン、β-シクロデキストリン、及び、γ-シクロデキストリンからなる群より選ばれる少なくとも1種を意味する。
 シクロデキストリン誘導体等から除かれる、水素原子、及び、ヒドロキシ基は、シクロデキストリン誘導体等の、いかなる部位に結合したものであってもよい。ホスト基が形成されやすい観点では、ホスト基は、シクロデキストリン誘導体等から1個のヒドロキシ基が除かれた1価の基であることが好ましい。
 ホスト基を形成するためのシクロデキストリン誘導体は、シクロデキストリンが有する少なくとも1個のヒドロキシ基(好ましくは、ヒドロキシ基が有する水素原子)が、炭化水素基、アシル基、及び、-CONHR(Rはメチル基又はエチル基)からなる群より選ばれる少なくとも1種の基で置換された構造を有することが好ましい。シクロデキストリン誘導体が上記の構造を有することで、単量体Aは、例えば、単量体B、及び、単量体Cの親水性/疎水性にかかわらず、これらに対してより高い親和性を示す。これにより、組成物がより均一となりやすく、結果として、得られる硬化物がより優れた均一性を有する。
 なお、本明細書において、「炭化水素基、アシル基、及び、-CONHRからなる群より選ばれる少なくとも1種の基」を便宜上、「CD修飾基」ということがある。
 ここで、シクロデキストリン1分子が有するヒドロキシ基の全個数をNとした場合、α-シクロデキストリンはN=18、β-シクロデキストリンはN=21、γ-シクロデキストリンはN=24である。
 シクロデキストリン誘導体から1個の「ヒドロキシ基」が除された1価の基がホスト基である場合は、シクロデキストリン誘導体の1分子あたり最大N-1個のヒドロキシ基の水素原子がCD修飾基で置換され得る。他方、シクロデキストリン誘導体から1個の「水素原子」が除された1価の基がホスト基である場合は、シクロデキストリン誘導体の1分子あたり最大N個のヒドロキシ基の水素原子がCD修飾基で置換され得る。
 シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基数のうち、70%以上のヒドロキシ基の水素原子がCD修飾基で置換された構造を、ホスト基が有することが好ましい。この場合、疎水性の他の単量体に対して、より高い親和性を、単量体Aが示す。ホスト基としては、シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基数のうち、80%以上のヒドロキシ基の水素原子がCD修飾基で置換されていることがより好ましく、全ヒドロキシ基数のうち、90%以上のヒドロキシ基の水素原子がCD修飾基で置換されていることが更に好ましい。上限は100%以下であり、70~100%、80~100%、又は、90~100%のヒドロキシ基の水素原子がCD修飾基で置換されていることが好ましい。
 α-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの13個(/18個、72%)以上のヒドロキシ基の水素原子がCD修飾基で置換された構造を、ホスト基が有することが好ましい。この場合、疎水性の他の単量体に対してより高い親和性を、単量体Aが示す。ホスト基は、α-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの15個(/21個、71%)以上のヒドロキシ基の水素原子がCD修飾基で置換されていることがより好ましく、全ヒドロキシ基のうちの17個(/24個、70%)以上のヒドロキシ基の水素原子がCD修飾基で置換されていることが更に好ましい。すなわち、全ヒドロキシ基の13~18個、15~17個、又は、17~18個のヒドロキシ基の水素原子がCD修飾基で置換されていることが好ましい。
 β-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの13個以上のヒドロキシ基の水素原子がCD修飾基で置換された構造を、ホスト基が有することが好ましい。この場合、疎水性の他の単量体に対してより高い親和性を、単量体Aが示す。ホスト基は、β-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの17個以上のヒドロキシ基の水素原子がCD修飾基で置換されていることがより好ましく、全ヒドロキシ基のうちの19個以上のヒドロキシ基の水素原子がCD修飾基で置換されていることが更に好ましい。すなわち、全ヒドロキシ基の13~21個、17~21個、又は、19~21個のヒドロキシ基の水素原子がCD修飾基で置換されていることが好ましい。
 γ-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの17個以上のヒドロキシ基の水素原子がCD修飾基等で置換された構造を、ホスト基が有することが好ましい。この場合、疎水性の他の単量体に対してより高い親和性を、単量体Aが示す。ホスト基は、γ-シクロデキストリン誘導体の1分子中に存在する全ヒドロキシ基のうちの19個(79%)以上のヒドロキシ基の水素原子がCD修飾基で置換されていることがより好ましく、全ヒドロキシ基のうちの22個(91%)以上のヒドロキシ基の水素原子がCD修飾基で置換されていることが更に好ましい。すなわち、全ヒドロキシ基の17~24個、17~24個、又は、19~24個のヒドロキシ基の水素原子がCD修飾基で置換されていることが好ましい。
 CD修飾基のうちの炭化水素基の種類は特に限定されない。炭化水素基としては、例えば、アルキル基、アルケニル基、及び、アルキニル基等が挙げられる。また、上記炭化水素基の炭素数の数は特に限定されない。親水性、又は、疎水性の他の単量体に対して、単量体Aがより高い親和性示し、かつ、ホスト-ゲスト相互作用がより働きやすいという観点から、上記炭化水素基の炭素数は1~4個が好ましい。
 炭素数が1~4個である炭化水素基としては、メチル基、エチル基、プロピル基、及び、ブチル基等が挙げられる。炭化水素基がプロピル基、及び、ブチル基である場合は、直鎖状、又は、分枝鎖状のいずれであってもよい。
 また、炭化水素基は、効果の阻害がない限り、置換基を有していてもよい。
 CD修飾基のうちのアシル基としては、アセチル基、プロピオニル基、及び、ホルミル基等が挙げられる。アシル基は、さらに置換基を有していてもよい。親水性、又は、疎水性の他の単量体に対して、単量体Aがより高い親和性示し、かつ、ホスト-ゲスト相互作用がより働きやすく、また、より優れた靭性、及び/又は、強度を有する硬化物が得られる観点から、アシル基は、アセチル基であることが好ましい。
 CD修飾基のうちの-CONHRは、メチルカルバメート基、又は、エチルカルバメート基である。親水性、又は、疎水性の他の単量体に対して、単量体Aがより高い親和性示し、かつ、ホスト-ゲスト相互作用がより働きやすい観点から、-CONHRは、エチルカルバメート基が好ましい。
 より優れた効果を有する硬化物が得られる点で、単量体Aは以下の式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Rは水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表す。Rはホスト基を表し、Lは-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状の、ヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基である。
 なお、Lは、動的共有結合を有しないことが好ましい。
 より優れた効果を有する硬化物が得られる点で、Rは、水素原子、又は、炭素数1~4個のアルキル基が好ましく、水素原子、メチル基、及び、エチル基からなる群より選択される少なくとも1種がより好ましく、水素原子、又は、メチル基が更に好ましい。
 また、Lの2価の基としては、より優れた効果を有する硬化物が得られる点で、以下の式(2-1)で表される基、式(2-2)で表される基、及び、式(2-3)で表される基からなる群より選択される少なくとも1種の基が好ましい。
式(2-1)*-L21-CH-O-**
式(2-2)*-L21-**
式(2-3)*-L21-(CH-N(Rb)-C(=O)-O-**
 なお、式(2-1)、式(2-2)、及び、式(2-3)中、右側の「**
」は、ホスト基Rとの結合位置を表し、左側の「*」は他方(エチレン性不飽和基側)との結合位置を表す。
 上記式中、L21は、動的共有結合を含まず、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状の、ヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表し、ヒドロキシ基、メルカプト基、1個以上の置換基を有してもよいアルコキシ基、1個以上の置換基を有してもよいチオアルコキシ基、1個以上の置換基を有してもよいアルキル基、1個の置換基を有してもよいアミノ基、1個の置換基を有してもよいアミド基、ホルミル基、及び、カルボキシ基からなる群より選択される1価の基から1個の水素原子を除去することにより形成される2価の基が好ましい。
 また、式(2-3)中、nは1~20、好ましくは1~10、より好ましくは1~5の整数を表す。また、Rbは、水素原子、又は、炭素数1~20個のアルキル基(好ましくは炭素数1~10個のアルキル基、より好ましくは炭素数1~6個のアルキル基)を表す。
 L21が有する「置換基」は特に限定されないが、例えば、水素原子、炭素数が1~20個のアルキル基、炭素数が2~20個のアルケニル基、炭素数が2~20個のアルキニル基、ハロゲン原子、カルボキシ基、カルボニル基、スルホニル基、スルホン基、シアノ基、及び、これらを組み合わせた基等が挙げられる。
 L21が1個の置換基を有してもよいアミノ基から1個の水素原子を除去することにより形成される2価の基であれば、アミノ基の窒素原子がエチレン性不飽和基との結合位置となる(C=C二重結合の炭素原子との結合位置となる)。
 L21が1個の置換基を有してもよいアミド基から1個の水素原子を除去することにより形成される2価の基であれば、アミド基の炭素原子がエチレン性不飽和基との結合位置となる。
 L21がホルミル基から1個の水素原子を除去することにより形成される2価の基であれば、ホルミル基の炭素原子がエチレン性不飽和基との結合位置となる。
 式(2-1)~(2-3)で表される単量体Aは、例えば、(メタ)アクリ
ル酸エステル誘導体(すなわち、L21が-C(=O)O-)、(メタ)アクリルアミド誘導体(すなわち、L21が-C(=O)NH-、又は、-C(=O)NR-であり、Rは上記置換基と同義である)であることが好ましい。なお、上記Rとしては、例えば、炭素数が1~20個のアルキル基が好ましく、炭素数が1~10個のアルキル基がより好ましく、炭素数が1~6個のアルキル基が更に好ましい。
 式(2-1)で表される単量体Aの具体例として、以下の式(2-1-1)~式(2-1-6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 式(2-1-1)、式(2-1-2)、及び、式(2-1-3)で表される化合物は、式(2-1)において、L21が-CON(CH)-であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、及び、γ-シクロデキストリン誘導体が有する一個のヒドロキシ基から水素原子が1個除かれたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がメチル基で置換されている。なお、これら式(2-1-1)、式(2-1-2)、及び、式(2-1-3)で表される化合物では、シクロデキストリン誘導体におけるヒドロキシ基の水素原子のメチル置換と同じ反応により、各化合物中のアミド部位の窒素原子のメチル置換を行うことができる。つまり、一段階の反応で、シクロデキストリン部位のメチル化及びアミド部位のメチル化を行うことでき、式(2-1-1)、式(2-1-2)、及び、式(2-1-3)で表される化合物を容易に得ることができる。
式(2-1-4)、式(2-1-5)、及び、式(2-1-6)で表される化合物は、式(2-1)において、L21が-CONH-であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、及び、γ-シクロデキストリン誘導体が有する一個のヒドロキシ基から水素原子が1個除かれたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がメチル基で置換されている。
 さらに、式(2-1)で表される単量体Aの具体例として、下記(2-1-7)~式(2-1-9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式(2-1-7)、式(2-1-8)、及び、式(2-1-9)で表される化合物は、式(2-1)においてL21が-CONH-であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、及び、γ-シクロデキストリン誘導体が有する一個のヒドロキシ基から水素原子が1個除かれたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がアセチル基(各式において「Ac」と表示)で置換されている。
 更に、式(2-1)で表される単量体Aの具体例として、下記式(2-
1-10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式(2-1-10)において、少なくとも1個のYは水素原子であり、また、少なくとも1個のYは-CONH(C)(エチルカルバメート基)である。nは5、6又は7である。
 式(2-1-10)で表される化合物は、式(2-1)においてL21が-CONH-であって、シクロデキストリン誘導体が有する1個のヒドロキシ基から水素原子が除かれたホスト基を有している。また、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がYで置換されている。
 式(2-2)で表される単量体Aの具体例として、下記式(2-2-1)~
式(2-2-9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式(2-2-1)、式(2-2-2)、及び、(2-2-3)で表される化合物は、式(2-2)においてL21が-CONR-(R=メチル基)であって、それぞれ、α-シクロデキストリン誘導体(式中、添え字で表される繰り返し数は5、以下同様)、β-シクロデキストリン誘導体(繰り返し数6、以下同様)、及び、γ-シクロデキストリン誘導体(繰り返し数7、以下同様)から一個のヒドロキシ基が除されたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個の水酸基の水素原子がメチル基で置換されている。
 式(2-2-4)、式(2-2-5)、及び、式(2-2-6)で表される化合物は、式(2-2)においてL21が-CONH-であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、γ-シクロデキストリン誘導体から一個のヒドロキシ基が除されたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がメチル基で置換されている。
 式(2-2-7)、式(2-2-8)、及び、式(2-2-9)で表される化合物は、式(2-2)においてL21が-COO-であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、γ-シクロデキストリン誘導体から一個のヒドロキシ基が除されたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個の水酸基の水素原子がメチル基で置換されている。
 式(2-3)で表される単量体Aの具体例として、下記式(2-3-1)~
式(2-3-3)で表される化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式(2-3-1)、式(2-3-2)、及び、式(2-3-3)で表される化合物は、式(2-3)においてL21が-COO-、n=2、及び、Rbが水素原子であって、それぞれ、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体、及び、γ-シクロデキストリン誘導体が有する一個のヒドロキシ基から水素原子が除かれたホスト基を有している。また、いずれも、シクロデキストリン誘導体におけるN-1個のヒドロキシ基の水素原子がアセチル基(Ac)で置換されている。式(2-3-1)、式(2-3-2)、及び、(式2-3-3)において、Rbの位置の水素原子は、メチル基で置換されてもよい。
 上記、式(2-1-1)~式(2-1-9)、式(2-2-1)~式(2-2-9)、及び、式(2-3-1)~式(2-3-3)で表される単量体Aはいずれもアクリル系であるが、メタ位の水素がメチル基に置き換えられた構造、すなわちメタクリル系であってもよい。
 なお、上記単量体Aの製造方法は特に限定されず、公知の方法で合成可能であり、例えば、国際公開第2018/159791号等の記載を参照すればよい。
(単量体B)
 単量体Bは、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有し、かつ、後述する単量体Cとの間で、互いに反応し得る硬化性基の一方を、分子内に少なくとも2個以上有し、硬化性基の少なくとも一組が、動的共有結合を介して連結されている化合物である。
 単量体Bは、単量体Cと反応し、硬化物の主成分である重合体の主鎖を形成する成分である。また、分子内の所定の箇所に動的共有結合を有するため、重合体の主鎖に動的共有結合が組み込まれる。これは可逆性架橋としての機能を担う。
 組成物中の単量体Bの含有量は特に限定されないが、単量体Cとの当量(モル当量)比をもとに適宜選択すればよく、単量体Cとの反応における単量体Bの当量を1.0としたとき、組成物中における単量体Bの含有量は、0.5~2.0が好ましく、0.8~1.2がより好ましく、0.9~1.1が更に好ましい。
 また、組成物中における単量体Bの含有量は特に制限されないが、より優れた効果を有する硬化物が得られる観点で、単量体A、B、及び、Cの合計含有量を100モル%としたとき、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がより好ましく、40モル%以上が更に好ましく、80モル%以下が好ましく、70モル%以下がより好ましく、60モル%以下が更に好ましい。
 単量体A、B、及び、Cの合計含有量を100モル%としたとき、単量体Bの含有量は10~80モル%、20~70モル%、又は、30~60モル%が好ましい。
 また、組成物中の単量体Bの含有量は、すでに説明したH/D比を満たすよう、調整されることが好ましい。
 なお、単量体Bは一種を単独で用いても、二種以上を併用してもよい。単量体Bを二種以上併用する場合には、その合計含有量を基準として、上記範囲内に調整されることが好ましい。
 単量体Bが有する硬化性基は、単量体Cが有する硬化基と互いに反応し得る関係にある。つまり、単量体Bが有する硬化性基と、単量体Cが有する硬化性基とは互いに反応し得る、対をなす硬化性基である。
 ここで、「互いに反応し得る硬化性基」とは、例えば、硬化性基Xと硬化性基Xとが反応し得る場合、このXとXとの組合せを意味する。
 例えば、(X、X)の硬化性基のうち、単量体Bがその少なくとも一方(X)を有する場合、単量体Cは、他方の硬化性基(X)を有する。また、その個数は、一分子中にそれぞれ2個以上である。
 対をなす硬化性基の組合せとしては特に限定されないが、例えば、Xがエポキシ基、グリシジル基、及び、グリシジルエーテル基(以下「エポキシ基等」ともいう。)である場合、Xは、アミノ基(第1級又は第2級)、酸無水物基、ヒドロキシ基、カルボキシ基、及び、メルカプト基等であってよい。また、Xがヒドロキシ基である場合、Xはカルボキシ基、及び、酸無水物基等であってよい。
 また、Xがイソシアネート基、又は、ブロックイソシアネート基である場合、Xはアミノ基、及び、ヒドロキシ基等であってよい。また、Xがアミノ基である場合、Xはカルボキシ基等であってよい。また、Xがヒドロキシ基のとき、Xを有する単量体がアセタール構造を有する化合物であってもよい。
 また、硬化性基は活性エステル基であってもよい。本明細書において、活性エステルとは、アミノ基と反応させることができるカルボン酸誘導体を意味し、そのような性質を有する活性エステル、及び、活性チオエステルを含む。
 活性エステルとしては、例えば、N-ヒドロキシスクシンイミド(ONSu)基、メチルチオエステル、アリールチオエステル、及び、アラルキルチオエステル等が挙げられる。
 上記の硬化性基(X、X)の組合せのうち、単量体Bが有する硬化性基は、X、又は、Xのいずれであってもよい。例えば、単量体Bがエポキシ基等を分子内に2個以上有する場合、後述する単量体Cは、Xのアミノ基、酸無水物基、ヒドロキシ基、カルボキシ基、及び、メルカプト基からなる群より選択される少なくとも1種の硬化性基を分子内に2個以上有していればよい。
 逆に、単量体Cがエポキシ基等を有する場合には、単量体Bは、アミノ基、酸無水物基、ヒドロキシ基、カルボキシ基、及び、メルカプト基からなる群より選択される少なくとも1種の硬化性基を分子内に2個以上有していればよい。
 単量体Bの構造は特に制限されないが、単量体Aが有するホスト基を串刺し状に貫通可能であることが好ましい。なお、ホスト基を串刺し状に貫通可能であるとは、単量体の少なくとも一部がホスト基を串刺し状に貫通可能であることを意味し、単量体の全体がホスト基を串刺し状に貫通可能であることが好ましい。
 単量体Bが単量体Aを串刺し状に貫通可能であると、組成物の硬化の過程で、単量体Aと単量体Bとの包接錯体が形成されやすく、より優れた効果を有する硬化物が得られる。
 ホスト基を串刺し状に貫通可能である構造(ゲスト基)としては、例えば、ヘテロ原子を有していてもよい炭素数が3~30個の直鎖状、分枝鎖状、又は、環状の炭化水素基等が挙げられ、炭素数が4~18個の直鎖状、分枝鎖状、又は、環状の炭化水素基が挙げられる。なかでも、単量体Bが、(ポリ)オキシアルキレン基(繰り返し数nは0~20が好ましい)を有する場合、単量体Aと単量体Bとが包接錯体をより形成しやすい点で好ましい。
・単量体Bの好適形態
 より優れた効果を有する硬化物が得られる点で、単量体Bは下記式(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(3)中、Zは硬化性基を有する基であり、Rは水素原子、又は、1価の有機基であり、Lは動的共有結合を含むp+q価の基であり、pは0以上の整数を表し、qは2以上の整数を表し、Zで表される基の少なくとも一組が、動的共通結合を介して連結されている。
 なお、式(3)において、複数あるZは同一でも異なってもよいが、同一であることが好ましい。
 式(3)中、pは0以上の整数であり、10以下が好ましく、8以下がより好ましく、6以下が更に好ましく、4以下が特に好ましく、2以下が最も好ましい。pは、0~10、0~8、0~6、0~4、又は、0~2が好ましく、なかでも、pは0がより好ましい。
 式(3)中、qは2以上の整数であり、8以下が好ましく、6以下がより好ましく、4以下が更に好ましく、3以下が特に好ましく、2が最も好ましい。qは、2~8、2~6、2~4、又は、2~3が好ましく、なかでも、qは2がより好ましい。
 式(3)中、Rは水素原子、又は、1価の有機基である。1価の有機基としては、硬化性基のいずれとも異なる基であって、より具体的には、環状又は鎖状のアルキル基、アリール基、又は、これらの複数の組合せが好ましく、中でも、炭素数が1~4個のアルキル基が好ましい。なかでも、Rとしては、水素原子、又は、炭素数が1~3個のアルキル基が好ましい。
 なお、複数あるRは同一でも異なってもよく、互いに結合して環を形成してもよい。
 式(3)中、Lは動的共有結合を含むp+q価の基である。Lが2価の基である場合、ジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合(-S-S-、-Se-Se-、及び、-Te-Te-)を有し、更に、-C(O)-、-C(O)O-、-OC(O)-、-O-、-NR20-(R20は水素原子又は1価の有機基を表す)、アルキレン基(炭素数は1~20個が好ましく、環状、及び、鎖状を含む)、アルケニレン基(炭素数2~20個が好ましく、環状、及び、鎖状を含む)、アリーレン基、ヘテロアリーレン基、(ポリ)オキシアルキレン基(繰り返し数=0~20が好ましい)、及び、これらの組合せ等を含んでもよい。
 なお、環状のアルキレン基、及び、環状のアルケニレン基、並びに、アリーレン基、及び、ヘテロアリーレン基の環はそれぞれ縮合環を形成していてもよい。
 このうち、アリーレン基としては、例えば、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、1,8-ナフチレン基、1,2-アントリレン基、2,3-アントリレン基、1,2-フェナントリレン基、3,4-フェナントリレン基、及び、9,10-フェナントリレン基等が挙げられ、いずれも置換基を有していてもよい。
 また、ヘテロアリーレン基としては、例えば、チオフェン、ピロール、オキサゾール、イソオキサゾール、チアゾール、チアジアゾール、イソチアゾール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、ベンゾチオフェン、インドール、イソインドール、インドリジン、ベンゾイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、キノリン、イソキノリン、キナゾリン、フタラジン、シンノリン、及び、キノキサリン等から任意の水素原子を2つ除いた基が挙げられる。
 なかでも、より優れた効果を有する組成物が得られる点で、Lの2価の基としては、動的共有結合(中でも、-S-S-が好ましい)そのもの、又は、動的共有結合に加えて、-O-、鎖状又は環状のアルキレン基、アリーレン基、若しくは、(ポリ)オキシアルキレン基(繰り返し数n=0~20が好ましい)を有する基が好ましい。2価の基が上記の基であると、単量体Bは単量体Aと包接錯体をより形成しやすくなる。
 また、Lが3価以上の基である場合には、特に制限されないが、例えば、以下の(3a)~(3d)で表される基が挙げられる。なお、以下の式中「*」は結合位置を表す。
Figure JPOXMLDOC01-appb-C000018
 式(3a)中、Qは3価の基を表す。Tは単結合又は2価の基を表し、3個のTは互いに同一でもよく、異なってもよい。なお、Tの少なくとも1つ以上は、2価の基である。
 Qとしては、第3級アミノ基、3価の炭化水素基(炭素数1~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、3価の複素環基(5員環~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Qの具体例としては、グリセリン残基、トリメチロールプロパン残基、フロログルシノール残基、シアヌル酸残基、キサンチン残基、及び、シクロヘキサントリオール残基等が挙げられる。
 なお、Tの2価の基はすでに説明したLの2価の基と同様の基であってよい。複数あるTのうち、少なくとも1つは、動的共有結合を有する2価の基であり、全部が動的共有結合を有する基であってもよい。Tが動的共有結合を有する場合、Tは動的共有結合(ジスルフィド結合等)のそのものであってもよいし、他の2価の基との組合せであってもよく、その場合、置換基を有してもよい炭素数1~5個のアルキレン基との組合せが好ましい。
 Tが動的共有結合を有しない基である場合、Tは、置換基を有してもよい炭素数1~5個のアルキレン基が好ましい。
 式(3b)中、Qは4価の基を表す。Tは単結合又は2価の基を表し、4個のTは互いに同一でもよく、異なってもよい。なお、Tの少なくとも1つ以上は、2価の基である。
 なお、Qとしては、4価の炭化水素基(炭素数1~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、4価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Qの具体例としては、ペンタエリスリトール残基、グリコールウリル残基、及び、ジトリメチロールプロパン残基等が挙げられる。
 なお、Tの2価の基はすでに説明したLの2価の基と同様の基であってよく、好適形態も同様である。但し、複数あるTのうち、少なくとも1つは、動的共有結合を有する2価の基であり、全部が動的共有結合を有する基であってもよい。Tが動的共有結合を有する場合、Tは動的共有結合(ジスルフィド基等)のそのものであってもよいし、他の2価の基との組合せであってもよく、その場合、置換基を有してもよい炭素数1~5個のアルキレン基との組合せが好ましい。
 Tが動的共有結合を有しない基である場合、Tは、置換基を有してもよい炭素数1~5個のアルキレン基が好ましい。
 式(3c)中、Qは5価の基を表す。Tは単結合又は2価の基を表し、5個のTは互いに同一であっても異なってもよい。なお、Tの少なくとも1つ以上は、2価の基である。
 なお、Qとしては、5価の炭化水素基(炭素数2~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、5価の複素環基(5~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Qの具体例としては、アラビニトール残基、フロログルシドール残基、及び、シクロヘキサンペンタオール残基等が挙げられる。
 なお、Tの2価の基はすでに説明したLの2価の基と同様の基であってよく、好適形態も同様である。但し、複数あるTのうち、少なくとも1つは、動的共有結合を有する2価の基であり、全部が動的共有結合を有する基であってもよい。Tが動的共有結合を有する場合、Tは動的共有結合(ジスルフィド基等)のそのものであってもよいし、他の2価の基との組合せであってもよく、その場合、置換基を有してもよい炭素数1~5個のアルキレン基との組合せが好ましい。
 Tが動的共有結合を有しない基である場合、Tは、置換基を有してもよい炭素数1~5個のアルキレン基が好ましい。
 式(3d)中、Qは6価の基を表す。Tは単結合又は2価の基を表し、6個のTは互いに同一でもよく、異なってもよい。なお、Tの少なくとも1つ以上は、2価の基である。
 なお、Qとしては、6価の炭化水素基(炭素数2~10個が好ましい。なお、炭化水素基は、芳香族炭化水素基でもよく脂肪族炭化水素基でもよい。)、又は、6価の複素環基(6~7員環の複素環基が好ましい)が挙げられ、炭化水素基にはヘテロ原子(例えば、-O-)が含まれていてもよい。Qの具体例としては、マンニトール残基、ソルビトール残基、ジペンタエリスリトール残基、ヘキサヒドロキシベンゼン、及び、ヘキサヒドロキシシクロヘキサン残基等が挙げられる。
 なお、Tの2価の基はすでに説明したLの2価の基と同様の基であってよく、好適形態も同様である。但し、複数あるTのうち、少なくとも1つは、動的共有結合を有する2価の基であり、全部が動的共有結合を有する基であってもよい。Tが動的共有結合を有する場合、Tは動的共有結合(ジスルフィド基等)のそのものであってもよいし、他の2価の基との組合せであってもよく、その場合、置換基を有してもよい炭素数1~5個のアルキレン基との組合せが好ましい。
 Tが動的共有結合を有しない基である場合、Tは、置換基を有してもよい炭素数1~5のアルキレン基が好ましい。
 なお、Lが7価以上の基である場合には、式(3a)~式(3d)で表した基を組合せた基が挙げられる。
 なお、単量体Bにおいて、Zで表される基の少なくとも一組が、動的共通結合を介して連結される。これは、Zで表される基の少なくとも一組が、動的共有結合で隔てられていることを意味する。
 図1A、Bは、式(3)で表される化合物における、Zで表される基の配置の説明図である。
 図1Aは、式(3)で表される化合物の構造例を表した図である。言い換えれば、式(3)に「該当する」化合物の構造例を表した図である。
 [II-A]は、Lが2価の基であり、Lは、動的共有結合11と、その他の部分10(2価の基)によって構成されている。[II-A]においては、Zで表される硬化性基を有する基(Z31、Z32)が、動的共有結合11を介して結合されている。言い換えれば、動的共有結合11で、Z31とZ32とが隔てられている。なお、その他の部分10は動的共有結合を有しないものとし、以下の説明においても同様である。
 次に、[III-A1]は、Lが3価の基であり、Lは、動的共有結合11と、その他の部分10(3価の基)によって構成されている。[III-A1]においては、Zで表される硬化性基を有する基(Z31、Z32)が、動的共有結合11を介して結合されている。Z32とRとは、動的共有結合11によって隔てられていないが、上記は、式(3)への該当性には関わらない。
 次に、[III-A2]は、Lが3価の基であり、Lは、動的共有結合11と、その他の部分10(3価の基)によって構成されている。[III-A2]においては、Zで表される硬化性基を有する基(Z31、Z32、Z33)のうち、Z31-Z32、Z31-Z33、Z32-Z33の3組が動的共有結合11を介して結合されている。
 次に、[IV-A1]は、Lが4価の基であり、Lは、動的共有結合11と、その他の部分10(4価の基)によって構成されている。[IV-A1]においては、Zで表される硬化性基を有する基(Z31、Z32、Z33)のうち、Z31-Z33、Z32-Z33の2組が動的共有結合11を介して結合されている。Z31-Z32は、動的共有結合11によって隔てられていないが、二組が動的共有結合11によって隔てられているため、式(3)に該当する。
 次に、[IV-A2]は、Lが4価の基であり、Lは、動的共有結合11と、その他の部分10(4価の基)によって構成されている。[IV-A2]においては、Zで表される硬化性基を有する基(Z31、Z33)が動的共有結合11を介して結合されているため、式(3)に該当する。
 なお、Z31(Z33)-R、R-Rも動的共有結合11で隔てられているが、上記は式(3)の該当性には関わらない。
 一方、図1Bは、式(3)に「該当しない」化合物の構造例を表す図である。
 [II-B]は、Lが2価の基であり、Lは、動的共有結合11を有さず、その他の部分10(2価の基)によって構成されている。そのため、Zで表される硬化性基を有する基(Z31、Z32)が、動的共有結合11を介さずに結合されている。従って[II-B]で表される化合物は式(3)に該当しない。
 次に、[III-B1]は、Lが3価の基であり、Lは、動的共有結合11と、その他の部分10(3価の基)によって構成されている。[III-B1]においては、Zで表される硬化性基を有する基(Z31、Z32)は、動的共有結合11を介さずに結合されている。従って[III-B1]で表される化合物は式(3)に該当しない。なお、R-Z31(Z32)は、動的共有結合11によって隔てられているが、[III-B1]は、式(3)に該当性しない。
 次に、[III-B2]は、Lが3価の基であり、Lは、動的共有結合11を有さず、その他の部分10(3価の基)によって構成されている。そのため、Zで表される硬化性基を有する基(Z31、Z32、Z33)のすべてが、動的共有結合11を介さずに結合されている。従って[III-B2]で表される化合物は式(3)に該当しない。
 次に、[IV-B1]は、Lが4価の基であり、Lは、動的共有結合11を有さず、その他の部分10(4価の基)によって構成されている。そのため、Zで表される硬化性基を有する基(Z31、Z32、Z33)のすべてが、動的共有結合11を介さずに結合されている。従って[IV-B2]で表される化合物は式(3)に該当しない。
 次に、[IV-B2]は、Lが4価の基であり、Lは、動的共有結合11と、その他の部分10(4価の基)によって構成されている。[IV-B2]においては、Zで表される硬化性基を有する基(Z31、Z33)は、動的共有結合11を介さずに結合されている。なお、Z31(Z33)-R、R-Rは動的共有結合11で隔てられているが、Zで表される基が一組も動的共有結合11を介して結合されていないため、[IV-B2]で表される化合物は式(3)に該当しない。
 式(3)に戻り、Lが2価の基(pが2で、qが0)である場合、例えば以下の式で表される基が挙げられる。なお、以下の式中、*は、Zで表される硬化性基を有する基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000019
 単量体Bとしては、単量体A(が有するホスト基)と包接錯体をより形成しやすい観点で、
 式(3-1):Z-L31-Z
で表される化合物が好ましい。式(3-1)中、L31は、2価の基を表し、Lの2価の基と同義であり好適形態も同様である。また、Zは式(3)におけるZと同義であり、好適形態も同様である。複数あるZは同一でも異なってもよいが、同一であることが好ましい。単量体Bが式(3-1)で表される化合物であると、ホスト基と包接錯体をより形成しやすく、その全体がホスト基を貫通可能になりやすい。
 式(3-1)中、Zの硬化性基を有する基としては特に制限されないが、以下の式(11)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(11)中、L11は単結合、又は、2価の基を表し、Xは硬化性基を表す。L11の2価の基としては特に制限されないが、すでに説明したLの2価の基と同様の基が挙げられる。なお、L11は動的共有結合を有していてもよいが、有さないことが好ましい。
 なかでも、より優れた効果が得られる点で、L11の2価の基としては、-O-、-C(=O)-、炭素数1~5個のアルキレン基、(ポリ)オキシアルキレン基、及び、これらを組合せた基が好ましく、-O-を含むことがより好ましい。
 また、L11が2価の基であって、水素原子を有する場合、その1つ以上が1価の置換基で置換されていてもよい。置換基は、硬化性基の反応性を調整する目的で使用することができ、例えば、ハロゲン基、ニトロ基、トリフルオロメチル基、及び、ニトリル基等の電子吸引基;アルコキシ基、及び、アルキル基等の電子供与基;t-ブチル基、イソプロピル基等のかさ高い置換基;疎水性の調整のための長鎖アルキル基等;が挙げられる。
 Xの硬化性基は、単量体Cとの関係で硬化反応が可能であればその種類は特に限定されないが、ホスト基を貫通可能であることが好ましい。このような硬化性基としては、例えば、エポキシ基、グリシジル基、グリシジルエーテル基、アミノ基、ヒドロキシ基、カルボキシ基、酸無水物基、イソシアネート基、ブロックイソシアネート基、及び、メルカプト基等が挙げられ、エポキシ基、グリシジル基、グリシジルエーテル基、アミノ基、ヒドロキシ基、カルボキシ基、酸無水物基、メルカプト基、及び、イソシアネート基が好ましく、エポキシ基、グリシジル基、グリシジルエーテル基、アミノ基、ヒドロキシ基、カルボキシ基、及び、メルカプト基がより好ましい。
 なお、酸無水物基としては、カルボン酸無水物基が好ましい。カルボン酸無水物基は、カルボン酸無水物基が有する任意の水素原子を1つ除いた基であり、酢酸無水物基、コハク酸無水物基、フタル酸無水物基、及び、マレイン酸無水物基からなる群より選択される少なくとも1種から任意の水素原子の1つを除いた基がより好ましい。
 単量体Bは、公知の方法で合成することもできるし、市販品を用いることもできる。市販品としては、例えば、4,4′-ジチオジアニリン、シスタミン(二塩酸塩)、2,2′-ジチオジアニリン、3,3′-ジチオジプロピオン酸、2,2′-ジチオジプロピオン酸、6,6′-ジチオジニコチン酸、ジチオジグリコール酸、2,2′-ジチオ二安息香酸、5,5′-ジチオビス(2-ニトロ安息香酸)、4,4′-ジヒドロキシジフェニルジスルフィド、6,6′-ジヒドロキシ-2,2′-ジナフチルジスルフィド、ビス(2-ヒドロキシエチル)ジスルフィド、ビス(2-ヒドロキシエチル)ジスルフィド、及び、4,4′-ジチオ二酪酸(いずれも東京化成工業製)が挙げられる。
 上記以外にも、例えば、Trans-4,5-dihydroxy-1,2-dithiane、Dithiodiglycolic acid、2,2′-Dithiodipropionic acid、3,3′-Dithiobisbenzoic acid、及び、「HG-4045」(いずれもCombi-Blocks製);「ACID-PEG2-SS-PEG2-ACID」、「ACID-PEG3-SS-PEG3-ACID」、「ACID-PEG4-SS-PEG4-ACID」、及び、「ACID-PEG6-SS-PEG6-ACID」(いずれもApollo Scientific製);Hydroxy-PEG3-SS-PEG3-alcohol(BROAD PHARM社製);等が使用できる。
 また、式(11)で表される硬化性基を有する基が、グリシジルエーテル基、すなわち、*-O-CH-(CO)(*は結合位置を表す)である場合、米国特許出願公開第2017/0038687号明細書の0025段落に記載の化合物、及び、中国特許出願公開第108641065号明細書等に記載された化合物が使用できる。
 また、Mat.Res.Soc.Symp.Proc.Vol.304.p.49-54(1993)に記載された方法、及び、中国特許出願公開第108641065号明細書に記載された方法等によって、単量体Bを合成して使用してもよい。具体的な一形態としては、動的共有結合とヒドロキシ基とを有する前駆体化合物に対して、NaOHの存在下でエピクロロヒドリンを反応させ、グリシジルエーテル基を生成する方法が挙げられる。
 単量体Bの分子量は特に制限されないが、一形態として、100以上が好ましく、120以上がより好ましく、130以上が更に好ましく、3000以下が好ましく、2000以下がより好ましい。単量体Bの分子量は100~3000、120~3000、130~3000、100~2000、120~2000、又は、130~2000が好ましい。
(単量体C)
 単量体Cは、単量体Bとの間で、互いに反応し得る硬化性基の一方を、分子内に少なくとも2個以上有する化合物である。単量体Cは、単量体Bと反応し、硬化物の主成分である重合体の主鎖を形成する成分である。
 なお、本明細書において、単量体Bと単量体Cとは互いに異なる化合物を意味し、典型的には、少なくとも硬化性基の種類が異なる。
 組成物中の単量体Cの含有量は特に限定されず、単量体Bとの当量(化学当量)比をもとに適宜選択すればよいが、単量体Bとの反応における単量体Cの当量を1.0としたとき、組成物中における単量体Cの含有量は、0.5~2.0が好ましく、0.8~1.2がより好ましく、0.9~1.1が更に好ましい。
 また、組成物中における単量体Cの含有量は特に制限されないが、より優れた効果を有する硬化物が得られる観点で、単量体A、B、及び、Cの合計含有量を100モル%としたとき、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がより好ましく、40モル%以上が更に好ましく、80モル%以下が好ましく、70モル%以下がより好ましく、60モル%以下が更に好ましい。単量体A、B、及び、Cの合計含有量を100モル%としたとき、10~80モル%、20~70モル%、又は、30~60モル%が好ましい。
 また、単量体Cが動的共有結合を有する場合、組成物中の単量体Cの含有量は、すでに説明したH/D比を満たすよう、調整されることが好ましい。
 なお、単量体Cは一種を単独で用いても、二種以上を併用してもよい。単量体Cを二種以上併用する場合には、その合計含有量を基準として、上記範囲内に調整されることが好ましい。
 単量体Cは、動的共有結合を有していてもよい。単量体Cが動的共有結合を有する場合、単量体Bと同一の動的共有結合を有することが好ましい。また、硬化性基の少なくとも一組が、動的共有結合を介して連結されていることが好ましい。
 単量体Cが動的共有結合を有する場合、後述する分解方法による硬化物の分解がより容易になる点で好ましい。
 動的共有結合を有する場合、単量体Cは、式(3)で表される化合物が挙げられ、好適形態も同様である。このとき、Zで表される「硬化性基を有する基」が有する硬化性基は、単量体Bが有する硬化性基とは異なる基であり、かつ、互いに反応し得るものが選択されればよい。
 一方、単量体Cが動的共有結合を有しない場合、単量体Cは以下の式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(4)中、Rは水素原子、又は、1価の有機基を表し、Zは硬化性基を有する基を表し、Lは単結合、又は、j+k価の基を表し、jは0以上の整数を表し、kは2以上の整数を表す。
 Rの1価の有機基としては特に制限されないが、式(3)のRの1価の有機基と同様の基が挙げられ、好適形態も同様である。
 Zの硬化性基を有する基としては、式(3)中のZの硬化性基を有する基と同様の基が挙げられ、好適形態も同様である。但し、Zが有する硬化性基と、Zが有する硬化性基とは、互いに反応し得る、対をなす基であり、すでに説明した組合せ等から互いに選択される。
 式(4)中、Lのj+k価の基としては特に制限されないが、動的共有結合を有しない点を除いては、式(3)中にけるLと同様の基が挙げられ、好適形態も同様である。なお、式(3)中のLで表される基と、式(4)中におけるLで表される基が同一の部分を有すると、組成物中における各成分の相溶性が高まり、より均一な硬化物を調製できる点で好ましい。
 なかでも、より優れた効果を有する硬化物が得られる点で、Lは、2価の基であって(kが2で、jが0であって)、-O-、鎖状又は環状のアルキレン基、アリーレン基、若しくは、(ポリ)オキシアルキレン基(繰り返し数n=0~20が好ましい)を有する基が好ましい。なお、本明細書において「(ポリ)オキシアルキレン基」は、ポリ(オキシアルキレン)基、及び、オキシアルキレン基を表す。
 式(4)中、jは、0以上の整数であり、10以下の整数が好ましく、8以下の整数がより好ましく、6以下の整数が更に好ましく、4以下の整数が特に好ましく、2以下の整数が最も好ましい。なかでも、0が好ましい。
 jは、0~10、0~8、0~6、0~4、又は、0~2が好ましく、0がより好ましい。
 式(4)中、kは、2以上の整数であり、10以下の整数が好ましく、8以下の整数がより好ましく、6以下の整数が更に好ましく、4以下の整数が特に好ましい。なかでも、2が好ましい。
 kは、2~10、2~8、2~6、又は、2~4が好ましく、2がより好ましい。
 動的共有結合を有しない単量体Cとしては、以下の式(4-1)で表される化合物が好ましい。
 式(4-1):Z-L41-Z
 式(4-1)中、L41は、2価の基を表す。L41の2価の基としては、-C(O)-、-C(O)O-、-OC(O)-、-O-、-NR20-(R20は水素原子又は1価の有機基を表す)、アルキレン基(炭素数は1~20個が好ましく、環状、及び、鎖状を含む)、アルケニレン基(炭素数2~20個が好ましく、環状、及び、鎖状を含む)、アリーレン基、ヘテロアリーレン基、(ポリ)オキシアルキレン基(繰り返し数n=0~20が好ましい)、及び、これらを組合せた基が挙げられる。
 なお、環状のアルキレン基、及び、環状アルケニレン基、並びに、アリーレン基、及び、ヘテロアリーレン基の環はそれぞれ縮合環を形成していてもよい。
 このうち、アリーレン基としては、例えば、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、1,8-ナフチレン基、1,2-アントリレン基、2,3-アントリレン基、1,2-フェナントリレン基、3,4-フェナントリレン基、及び、9,10-フェナントリレン基等が挙げられ、いずれも置換基を有していてもよい。
 また、ヘテロアリーレン基としては、例えば、チオフェン、ピロール、オキサゾール、イソオキサゾール、チアゾール、チアジアゾール、イソチアゾール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、ベンゾチオフェン、インドール、イソインドール、インドリジン、ベンゾイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、キノリン、イソキノリン、キナゾリン、フタラジン、シンノリン、及び、キノキサリン等から任意の水素原子を2つ除いた基が挙げられる。
 なかでも、より優れた効果を有する組成物が得られる点で、L41の2価の基としては、-O-、鎖状又は環状のアルキレン基、アリーレン基、(ポリ)オキシアルキレン基(繰り返し数n=0~20が好ましい)、及び、これらを組み合わせた基が好ましい。2価の基が上記の基であると、単量体Cは単量体A(のホスト基)と包接錯体をより形成しやすくなり、その全体がホスト基を貫通可能になりやすい。
(その他の成分)
 組成物は上記以外の成分を更に含んでいてもよい。上記以外の成分としては例えば、着色顔料、体質顔料、染料、紫外線吸収剤、各種フィラー、及び、溶媒等が挙げられる。
・溶媒
 溶媒としては特に制限されず、公知の有機溶媒等を用いることができる。具体的には、炭素数が1~6個のアルコール、及び、テトラヒドロフラン等の非プロトン性極性溶媒を用いることが好ましい。
 組成物が溶媒を含有する場合、組成物中の溶媒の含有量は特に制限されないが、組成物の全質量を100質量%としたとき、0.001~99質量%が好ましく、0.01~20質量%がより好ましく、0.02~10質量%が更に好ましく、0.03~5質量%が特に好ましく、0.03~3質量%が最も好ましい。なお、溶媒は一種を単独で用いても、二種以上を併用してもよい。溶媒を二種以上併用する場合には、その合計含有量が上記範囲内であることが好ましい。
・包接錯体
 また、より優れた効果を有する硬化物が得られる点で、組成物は、単量体Aが有するホスト基を、単量体B、又は、単量体Cの一方が串刺し状に貫通した包接錯体を含んでいてもよい。
 組成物が包接錯体を含有する場合、ホスト基によって形成される可動性架橋が、硬化物の主成分である重合体のネットワーク中により組み込まれやすく、より優れた効果を有する硬化物が得られる。
 組成物中における包接錯体の含有量は特に制限されないが、より優れた効果を有する硬化物が得られる点で、上記H/D比を満たすよう調整されることが好ましい。組成物が、単量体Aに加えて包接錯体を含む場合、組成物中におけるホスト基のモル基準(物質量基準)の合計含有量に対する、包接錯体に由来するホスト基のモル基準の含有量の比が0.01~0.99であることが好ましい。
 なお、包接錯体一種を単独で用いても、二種以上を併用してもよい。包接錯体を二種以上併用する場合には、その合計含有量が上記範囲内であることが好ましい。
 包接錯体の製造方法は特に限定されないが、単量体Aと、単量体B(又は単量体C)とを混合して混合物を調製し、必要に応じて溶媒を添加し、加熱する方法が挙げられる。加熱の温度は特に限定されないが、一般に20~100℃が好ましく、50~80℃がより好ましい。また、加熱時間も特に限定されず、1分~12時間が好ましく、15分~1時間がより好ましい。加熱手段も特に限定されず、例えば、ホットスターラーを用いてもよいし、恒温槽を使用してもよい。また、加熱とともに、又は、加熱に代えて混合物に超音波を照射してもよい。
 包接錯体が形成されたか否かについては、例えば、単量体A、及び、単量体B(又は単量体C)の混合物の状態を目視することで判定することができる。
 典型的には、包接錯体が形成される前に、混合物が懸濁した状態、又は、静置すると相分離する状態である場合、包接錯体が形成されると、ジェル状又はクリーム状等の粘性を有する状態となり得る。また、包接錯体が形成されると、混合物が透明となり得る。
 上記以外にも組成物は、単量体B、及び、単量体C(更に単量体Aを含んでもよい)とを硬化反応させて製造されるオリゴマーを含んでもよい。組成物がオリゴマーを含む場合、その含有量は特に限定されないが、組成物が流動性を維持する程度が好ましい。
<硬化物の製造方法>
 硬化物の製造方法は特に限定されず、組成物を支持体上に塗布して組成物を層状に成形したり、モールドに注入、又は、セルキャストして組成物を塊状に成形したりして、その成形後の組成物を加熱すればよい。また、加熱と併せて、また、加熱の前に、組成物に光照射して、単量体Aのエチレン性不飽和基と動的共有結合とを反応させてもよい。
 組成物を成形する方法としては、例えば、支持体上に公知の方法で塗布する方法が挙げられる。組成物が溶媒を含有する場合には、必要に応じて乾燥させればよい(この際、減圧してもよい)。支持体、及び、モールドの材質としては特に制限されないが、ガラス、金属、並びに、樹脂(フッ素樹脂、及び、シリコーン樹脂)等が挙げられる。
 組成物の厚みは特に制限されず、硬化物の用途に応じて適宜選択すればよい。一形態として、得られた硬化物を、シート状物として用いる場合、成形体の厚みは、一形態として、硬化した状態で、0.1~5000μmとなることが好ましい。
 加熱の温度は、特に限定されず、硬化性基の種類等に応じて任意に選択されればよく、一形態として、20~250℃が好ましく、50~200℃がより好ましく、80~170℃が更に好ましく、100~160℃が特に好ましい。
 加熱時間としては特に限定されないが、1分~24時間が好ましく、5分~12時間がより好ましい。
 組成物に対して光照射する場合、照射する光は、可視光、紫外光、赤外光、X線、α線、β線、及び、γ線からなる群より選択される1種以上の光、並びに、活性電子線等の活性エネルギー線が挙げられる。なかでも、より優れた効果が得られやすい観点で、紫外光が好ましい。
 なお、光線照射時に、組成物の温度を調整してもよい。例えば、組成物の各単量体、及び、硬化物(特に重合体)の耐熱性に応じて、組成物を冷却してもよい。また、一方で、動的共有結合の開裂で生じたラジカルと、エチレン性不飽和基との反応をより均一に進行する観点で、組成物を加熱してもよい。組成物を加熱する場合、加熱温度は特に制限されないが、単量体B、及び、単量体Cの硬化性基の反応による硬化反応が起こりやすい温度よりも低い温度、具体的には、100℃以下が好ましく、80℃以下がより好ましい。
 光照射は、パターン状に行ってもよい。パターン状に光照射することによって、硬化物内における単量体Aの結合状態を制御することができる。
 パターン状に光照射を行う方法は特に制限されないが、例えば、フォトマスクを介して組成物に光照射する方法、及び、電子線ビーム描画装置を用いる方法等が挙げられる。
 光源としては、特に制限されないが、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、及び、エキシマレーザー、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、及び、メタルハライドランプ等が挙げられる。
 光照射強度は、特に限定されないが、一形態として、10~3,000mW/cmが好ましい。光を照射する時間は、一形態としては、0.1秒~60分が好ましく、1秒~30分がより好ましく、10秒~20分が更に好ましい。積算光量としては、10~9,000mJ/cmが好ましい。
 より優れた効果を有する硬化物が得られる点で、硬化物の製造方法は、調製された組成物にエネルギーを付与して、硬化物前駆体を得ることと、得られた硬化物前駆体に更にエネルギーを付与して硬化物を得ることとを含む、製造方法が好ましい。
 図2は、硬化物の製造方法の一実施形態のフロー図である。まず、ステップS1として、組成物が調製される。組成物の調製方法としては特に限定されず、すでに説明した各成分を公知の方法により混合すればよい。調製を実施する温度において、単量体A、単量体B、及び、単量体Cからなる群より選択される少なくとも1種が液状(好ましくは、組成物の適用、及び/又は、成形温度においても液状)である場合には、その液状の単量体に対して、他の単量体を溶解、又は、分散させてもよい。また、各単量体を溶媒に順次溶解、又は、分散させてもよい。
 溶媒を使用せず、いずれかの単量体に他の単量体を溶解、又は、分散させる場合、溶媒の除去が不要となり、より容易に硬化物が得られる。
 なお、図2のフロー図では、硬化物の製造方法は、組成物の調製(ステップS1)を含むが、硬化物の製造方法の他の実施形態は、ステップS1を含まなくてもよい。この場合、予め調製された組成物を使用すればよい。
 次に、ステップS2として、組成物にエネルギーが付与され、硬化物前駆体が作製される。硬化物前駆体は、単量体B、及び/又は、単量体Cと、単量体A(のホスト基)と、の包接錯体を含む混合物である。硬化物前駆体は、包接錯体以外に、単量体A、単量体B、及び、単量体Cからなる群より選択される少なくとも1種の単量体を含むことが好ましく、単量体A、単量体B、及び、単量体Cを含むことがより好ましい。
 本ステップは、組成物中に含まれる単量体により包接錯体を形成するステップと言い換えることもできる。従って、付与されるエネルギーは、包接錯体を形成可能な程度であって、かつ、硬化性基の反応が進行しにくい程度であることが好ましい。
 例えば、付与されるエネルギーが熱エネルギーである場合、組成物を加熱すればよい。加熱の温度は特に限定されないが、一般に20~100℃が好ましく、50~80℃がより好ましい。また、加熱時間も特に限定されず、1分~12時間が好ましく、15分~1時間がより好ましい。加熱手段も特に限定されず、例えば、ホットスターラーを用いてもよいし、恒温槽を使用してもよい。また、加熱とともに、又は、加熱に代えて組成物に超音波を照射してもよい。
 硬化物の製造方法が本ステップを含む場合、単量体B、又は、単量体Cがホスト基を貫通した状態で硬化反応が進行しやすい。そのため、ホスト基が可動性架橋としてより機能しやすくなる。なお、本ステップでは、包接錯体の形成に加えて、単量体Aが有するエチレン性不飽和結合と、動的共有結合との反応を併せて進行してもよい。
 次に、ステップS3として、硬化物前駆体にエネルギーが付与されて硬化物が作製される。付与されるエネルギーは、例えば、熱エネルギーが好ましい。熱エネルギーの付与の方法としては、例えば、硬化物前駆体を加熱する方法が挙げられる。
 加熱の温度は、特に限定されず、硬化性基の種類等に応じて任意に選択されればよく、一形態として、70~250℃が好ましく、100~200℃がより好ましく、85~170℃が更に好ましく、105~160℃が特に好ましい。
 加熱時間としては特に限定されないが、1分~24時間が好ましく、5分~12時間がより好ましい。
 本ステップによって硬化反応が進行し、硬化物の主成分である重合体の分子鎖のネットワークが形成される。本硬化物の製造方法は、ステップS2、ステップS3とに分けて二段階で適切なエネルギーを組成物に付与することで、より効率よくホスト基をネットワークに組み込み、より優れた効果を有する硬化物が得られるという特徴がある。
<硬化物>
 実施形態に係る硬化物は、単量体B、及び、単量体Cがそれぞれ分子内に2個以上有する硬化性基が互いに反応して形成される重合体を主成分とし、この重合体の主鎖には、単量体Aに由来するホスト基が側枝として結合している。ホスト基は、単量体B(及び、単量体C)が有する動的共有結合と、単量体Aが有するエチレン性不飽和結合との反応により結合する。
 本実施形態の硬化物は、典型的には、組成物の硬化反応、又は、硬化物前駆体を含む組成物の硬化反応により形成されるが、この過程で、単量体B、及び、単量体Cからなる群より選択される少なくとも一方がホスト基を串刺し状に貫通しており、重合体に固定されたホスト基は、可動性架橋(点)として機能する。
 ホスト基は、単量体B(及び単量体C)が有する動的共有結合と、単量体Aが有するエチレン性不飽和基との反応により重合体の主鎖に固定される。従って、重合体におけるホスト基の導入率は、重合体におけるホスト基の含有量(モル基準)をH、重合体における動的共通結合の含有量(モル基準)をDとすると、導入率=H/(H+D)と表せる。
 重合体におけるホスト基の導入率は特に限定されないが、より優れた効果を有する硬化物が得られる点で、0.01以上が好ましく、0.02以上がより好ましく、0.04以上が更に好ましく、0.04を超えることが特に好ましく、0.06を超えることが最も好ましい。一方で、H/(H+D)比は、0.5未満が好ましく、0.2未満がより好ましく、0.1以下が更に好ましく、0.1未満が特に好ましい。なお、H/(H+D)は、有効数字1桁で求めるものとする。
 H/(H+D)は、0.01以上、0.5未満;0.01以上、0.2未満;0.01~0.1;0.01以上、0.1未満;0.02以上、0.2未満;0.04以上、0.2未満;0.04~0.1;0.04以上、0.1未満;0.04を超えて、0.5未満;0.04を超えて、0.2未満;0.04を超えて、0.1以下;0.04を超えて、0.1未満;0.06を超えて、0.5未満;0.06を超えて、0.2未満;0.06を超えて、0.1以下;又は、0.06を超えて、0.1未満が好ましい。
 単量体Aがエチレン性不飽和基を分子内に1個有し、かつ、単量体B(及び単量体C)が動的共有結合を分子内に1個有する場合、組成物を十分に硬化させて得られた硬化物においては、組成物のH/Dと、重合体のH/(H+D)は等しいものと推測される。つまり、この場合、Dは動的共有結合の残留量とも言える。
 より優れた効果を有する硬化物が得られる点で、重合体は下記式(5)で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(5)中、*は結合位置を表し、Rは水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、水素原子、又は、メチル基が好ましい。
は2価の基を表し、式(1)におけるLの2価の基と同様の基が挙げられ、好適形態も同様である。また、Rはホスト基を表し、式(1)におけるRと同様の基が挙げられ、好適形態も同様である。
 上記部分構造は、単量体Aが有するエチレン性不飽和基が、単量体Bが有する(更に単量体Cが有してもよい)動的共有結合であるジスルフィド結合と反応することで形成される部分構造である。すなわち、上記部分構造を有する重合体は、すでに説明した単量体Aと、動的共有結合としてジスルフィド結合を有する単量体Bと、(更にジスルフィド結合を有してもよい)単量体Cと、を含む組成物を硬化させて得られたものである。
 硬化物は、主成分として上記重合体を含んでいれば他の成分を含んでいてもよく、このような成分としては、例えば、着色顔料、体質顔料、染料、紫外線吸収剤、各種フィラー、及び、溶媒等が挙げられる。上記各成分は組成物に含まれる各成分と同様のものが挙げられ、好適形態も同様である。
 より優れた靭性を有する点で、硬化物は、単量体Aを含むことが好ましい。単量体Aを含む硬化物を製造する方法は特に限定されず、組成物中に含まれる単量体Aの一部を未反応の状態とするか、又は、硬化物に単量体Aを添加する方法が挙げられ、組成物中に含まれる単量体Aの少なくとも一部を未反応の状態とすることが好ましい。なお、未反応の状態とは、エチレン性不飽和基と、動的共有結合とによる結合が形成されていない状態を意味し、ホスト基を重合体の主鎖が串刺し状に貫通していてもよい。
 単量体Aの少なくとも一部を未反応とする方法が特に限定されないが、組成物を加熱して硬化させる場合、加熱温度をより低く調整すればよい。
 本硬化物は、優れた靭性、及び、優れた剛性を両立し、後述するとおり自己修復性を有するため、用途が広汎である。本硬化物は、例えば、自動車、電子部品、建築部材、食品容器、及び、輸送容器等に使用できる。また、組成物をコーティング剤、及び、塗料として使用することもできる。この場合、硬化物はコーティング膜、及び、塗膜として利用される。また、組成物を接着剤として使用することもできる。
 硬化物の形状としては特に限定されず、用途に応じて適宜調整されればよく、膜状、フィルム状、シート状、粒子状、板状、ブロック状、ペレット状、塊状、及び、粉末状等のいずれであってもよい。また、曲面を有する3次元形状であってもよい。
 また、硬化性基の一方がエポキシ基等である場合、従来のエポキシ樹脂の長所の1つである剛性を維持しつつ、短所の1つであった脆性を大幅に改善できるため、エポキシ樹脂が用いられてきた分野でその優れた代替材料となり得る。
 更に、本硬化物は、優れた自己修復性を有する。従って本硬化物は、自己修復部材としても使用できる。
 なお、本明細書において、自己修復性とは、外部からの刺激付与(エネルギー付与)によって、又は、外部からの刺激によらず、応力の緩和、及び/又は、クラック等の修復が起こり得る性質を意味する。典型的には、切断された部材の切断面同士を併せると、切断面が消失、又は、減少し、(元の状態に)復元する性質を意味する。
 本硬化物は、その主成分である重合体の主鎖に動的共有結合を有しているため、熱エネルギーの付与(加熱)、又は、光エネルギーの付与(光照射)によって動的共有結合が解離・再結合して、架橋点(可逆性架橋)のつなぎ替えが起こる。これにより、硬化物中の残留応力が大きく緩和したり、表面が平坦化することで、クラックが修復されたりする。
 光照射の場合、照射する光は、例えば、可視光、紫外光、赤外光、X線、α線、β線、及び、γ線からなる群より選択される1種以上の光、並びに、活性電子線等の活性エネルギー線が挙げられる。なかでも、より優れた効果が得られやすい観点で、紫外光が好ましい。
 外部刺激によって自己修復する方法(修復方法)として、自己修復部材を加熱する場合、加熱温度は特に制限されないが、100~140℃が好ましく、105~135℃がより好ましく、110~130℃が更に好ましい。加熱時間は特に限定されないが、0.5~24時間が好ましく、0.5~4時間がより好ましい。
 自己修復部材に光照射する場合、可視光、紫外光、赤外光、X線、α線、β線、及び、γ線からなる群より選択される1種以上の光、並びに、活性電子線等の活性エネルギー線を照射すればよい。
 光照射強度は、適宜選択されればよいが、一形態としては、10~3,000mW/cmが好ましい。光を照射する時間は、一形態としては、0.1秒~60分が好ましく、1秒~30分がより好ましく、10秒~20分が更に好ましい。積算光量としては、10~9,000mJ/cmが好ましい。なお、加熱と光照射とを併用してもよい。
<接着剤>
 硬化物の好ましい用途の1つとして接着剤が挙げられる。本硬化物を接着剤として使用する場合、その適用箇所で硬化反応を進行させて硬化物を形成することが好ましい。この点で、接着剤の一形態としては、単量体B、又は、単量体Cの一方と、単量体Aと含む第1剤と、単量体B、又は、単量体Cの他方を含む第2剤と、を備える接着剤が好ましい。
 第1剤は、単量体B、又は、単量体Cの一方と、単量体Aと含む。第1剤中に各単量体の含有量が特に制限されないが、第1剤に含まれる単量体A、及び、単量体B(C)、第2剤に含まれる単量体C(B)の合計含有量を100モル%としたとき、単量体Aの含有量は、0.1モル%以上が好ましく、1.0モル%以上が好ましく、1.8モル%以上がより好ましく、2.0モル%以上が更に好ましく、2.5モル%以上が特に好ましく、3.0モル%以上が最も好ましい。また、50モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下が更に好ましく、5.0モル%以下が特に好ましく、5.0モル%未満が最も好ましい。
 第1剤に含まれる単量体A、及び、単量体B(C)、第2剤に含まれる単量体C(B)の合計含有量を100モル%としたとき、単量体Aの含有量は、0.1~50モル%、1.0~20モル%、1.8~10モル%、2.0~10モル%、2.5~10モル%、3.0~10モル%以下、1.0~5.0モル%、1.8~5.0モル%、2.0~5.0モル%、2.5~5.0モル%、又は、3.0~5.0モル%以下が好ましい。
 また、1.0モル%以上、5.0モル%未満;1.8モル%以上、5.0モル%未満;2.0モル%以上、5.0モル%未満;2.5モル%以上、5.0モル%未満;又は、3.0モル%以上~5.0モル%未満が好ましい。
 また、単量体B、又は、単量体Cの一方の第1剤中における含有量は、第2剤に含まれる単量体の他方との当量比をもとに適宜選択すればよいが、第2剤に含まれる単量体の他方との反応における当量を1.0としたとき、第1剤中における単量体B又はCの含有量は、0.5~2.0が好ましく、0.8~1.2がより好ましく、0.9~1.1が更に好ましい。
 また、その含有量としては、上記単量体A、B、Cの合計含有量を100モル%としたとき、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がより好ましく、40モル%以上が更に好ましく、80モル%以下が好ましく、70モル%以下がより好ましく、60モル%以下が更に好ましい。
 単量体B、又は、単量体Cの一方の第1剤中における含有量は、上記単量体A、B、Cの合計含有量を100モル%としたとき、10~80モル%、20~70モル%、又は、30~60モル%が好ましい。
 第1剤は、上記以外の他の成分を含有していてもよい。他の成分としては、例えば、溶媒、及び、包接錯体等が挙げられる。
 第1剤が溶媒を含む場合、その種類、及び、量は、すでに説明した組成物が含んでもよい溶媒の種類、及び、量と同様であり、好適形態も同様である。
 また、第1剤は包接錯体を含んでもよい。包接錯体は、単量体B、又は、単量体Cの一方が、単量体Aが有するホスト基を串刺し状に貫通した包接錯体であることが好ましく、第1剤に含まれる単量体(B又はC)と同一の単量体と、単量体Aとの包接錯体であることが好ましい。
 第1剤が包接錯体を含む場合、硬化物の主成分である重合体においてホスト基によって形成される可動性架橋が、重合体のネットワーク中により組み込まれやすく、より優れた効果を有する硬化物が得られる。
 第1剤中における包接錯体の含有量は特に限定されないが、すでに説明したH/Dを満たすよう、調整されればよい。なお、包接錯体一種を単独で用いても、二種以上を併用してもよい。包接錯体を二種以上併用する場合には、その合計含有量が上記範囲内であることが好ましい。
 第2剤は、単量体B、又は、単量体Cの他方を含む。第2剤中における単量体B、又は、単量体Cの含有量は特に制限されないが、第1剤に含まれる単量体の一方との反応における当量を1.0としたとき、第2剤中における単量体B又はCの含有量は、0.5~2.0が好ましく、0.8~1.2がより好ましく、0.9~1.1が更に好ましい。
 第2剤は上記に加えて、単量体A、溶媒、及び、包接錯体を更に含んでいてもよい。第2剤が、単量体A、及び、包接錯体を含む場合、その含有量は、第1剤中における単量体Aの含有量、及び、包接錯体の含有量と同様に調整されればよい。具体的は、その合計含有量が、上記数値範囲内に調整されることが好ましい。
 上記2剤型の接着剤の使用方法としては特に限定されないが、第1剤と第2剤とを使用時に混合して混合物を調製し、これを使用箇所に適用した後にエネルギー付与して硬化させる方法が挙げられる。
 付与されるエネルギーは、例えば、熱エネルギーが好ましい。熱エネルギーの付与の方法としては、例えば、混合物を加熱する方法が挙げられる。
 加熱の温度は、特に限定されず、硬化性基の種類等に応じて任意に選択されればよく、一形態として、70~250℃が好ましく、100~200℃がより好ましく、85~170℃が更に好ましく、105~160℃が特に好ましい。
 加熱時間としては特に限定されないが、1分~24時間が好ましく、5分~12時間がより好ましい。
 本接着剤は、反応後の硬化物が優れた靭性と、優れた剛性とを併せ持つため、優れた接着強度を有する。また、自己修復性を有するため、マイクロクラック等が発生した場合でも、外部刺激(熱・光)によってこれを修復できるため、用途が広汎である。
 なお、以上は2剤型の接着剤について説明したが、接着剤としては上記に限定されず、3剤以上からなる接着剤であってもよい。3剤型の接着剤としては、例えば、単量体A、B、及び、Cをそれぞれ含む3剤型であってよい。また、単量体A、B、及び、Cを含む組成物を硬化させて、流動性が維持された状態のオリゴマーとし、これを含む第1剤と、単量体Bを含む第2剤と、単量体Cを含む第3剤とを含む3剤型の接着剤としてもよい。
<硬化物の分解方法>
 本硬化物の主成分である重合体は、主鎖に動的共有結合を有しているため、加熱、及び/又は、光照射によりこれを解離させることで、軟化させ、再度成形することができる。
 加熱の温度としては特に限定されないが、一形態として、70~250℃が好ましく、100~200℃がより好ましく、85~170℃が更に好ましく、105~160℃が特に好ましい。
 加熱時間としては特に限定されないが、1分~24時間が好ましく、5分~12時間がより好ましい。
 光照射の場合、照射する光は、例えば、可視光、紫外光、赤外光、X線、α線、β線、及び、γ線からなる群より選択される1種以上の光、並びに、活性電子線等の活性エネルギー線が挙げられる。なかでも、より優れた効果が得られやすい観点で、紫外光が好ましい。
 光照射強度は、適宜選択されればよいが、一形態としては、10~3,000mW/cmが好ましい。光を照射する時間は、一形態としては、0.1秒~60分が好ましく、1秒~30分がより好ましく、10秒~20分が更に好ましい。積算光量としては、10~9,000mJ/cmが好ましい。
 更に、上記重合体が動的共有結合としてジスルフィド結合を有する場合、上記ジスルフィド結合を解離させ、単量体を回収することができる。この硬化物の分解方法について説明する。
 硬化物の分解方法の実施形態の一つは、有機溶媒を含む有機相(油相)と、分子内に少なくとも1つのメルカプト基を含む水溶性化合物、及び、水を含む水相と、からなる二相溶液に、硬化物を接触させる、硬化物の分解方法である。
 本分解方法に用いられる硬化物は、いずれも、分子内にジスルフィド結合を有する単量体B、及び、単量体Cを含む組成物を硬化して得られたものであり、単量体Cにおける硬化性基の少なくとも一組が、ジスルフィド結合を介して連結されている、硬化物(以下「特定硬化物」ともいう。)である。
 特定硬化物にメルカプト基を有する水溶性化合物(以下、「特定水溶性化合物」ともいう。)を接触させることで、ジスルフィド結合を切断し、重合体の分子鎖のネットワークを切断することができる。
 本分解方法で生成する分解生成物は、その末端に少なくとも2つ以上のメルカプト基を有しているため、加熱等により再度、重合して重合体を形成可能な、新たな単量体を含む。
 更に、この反応を有機相/水相の二相溶液中(特に界面で)起こすことで、分解生成物が有機相、及び、水相にそれぞれ分配される。そのため、重合体のネットワークが切断されて生ずる上記単量体は有機相に分配され、特定水溶性化合物、及び、その反応生成物(「特定水溶性化合物等」ともいう。)は水相に分配される。これにより、新たな単量体は特定水溶性化合物等と混合されることなく、有機相から容易に回収できる。
 有機相に含まれる有機溶媒としては特に限定されないが、ベンゼン、tert-ブチルベンゼン、及び、クロロベンゼン等の芳香族炭化水素;シクロヘキサン、n-ヘキサン、n-ぺンタン、及び、n-オクタン等の脂肪族炭化水素;四塩化炭素、クロロホルム、ジクロルメチル、及び、ジクロルエタン等の塩素化脂肪族炭化水素;等が使用できる。
 メルカプト基を有する水溶性化合物は、メルカプト基と、ヒドロキシ基等の親水性基とを有する化合物が好ましい。メルカプト基を有する水溶性化合物としては、例えば、グルタチオン、チオレドキシン、ペルオキシレドキシン、及び、ジチオスレイトール(DTT)等が使用でき、なかでも、グルタチオンが好ましい。
 有機相/水相の二相溶液中で、特定水溶性化合物と特定硬化物とを接触させると、チオール-ジスルフィド交換反応により、特定硬化物中のジスルフィド結合が切断され、特定水溶性化合物のS-H結合と交換される。これにより、分解した生成物(単量体)を有機相に溶解させることができる。一方、例えば、特定水溶性化合物等は、水相中に溶解させることができる。
 なお、分解の条件の詳細は、SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS(2021)、VOL.22、NO.1、P.532-542の記載を参照することができる。本分解方法においても上記の条件が使用できる。
 本分解方法を適用可能な特定硬化物は、単量体B、及び、単量体Cのいずれも分子内にジスルフィド結合を有し、このジスルフィド結合によってそれぞれ一組以上の硬化性基が隔てられていること以外は、すでに説明した単量体B、及び、単量体Cと同様であり、また、好適形態も同様である。
 なかでも、単量体B、及び、単量体Cがそれぞれ式(32)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(32)中、Zは硬化性基を有する基を表し、式(3)中のZで表される基と同義であり、好適形態も同様である。
 式(32)中、L32は、ジスルフィド結合を含み、ホスト基を串刺し状に貫通可能な2価の基であり、式(3)中のLの2価の基と同義であり、好適形態も同様である。
 上記分解方法により得られる分解生成物は、ジスルフィド結合が分解して生成したメルカプト基をその末端に少なくとも2個以上有しており、エネルギー付与(熱、及び/又は、光)によって、ジスルフィド結合を再形成して、重合させることができる。すなわち、上記分解方法により得られた分解生成物は、新たな単量体として使用できる。分解生成物である単量体は、以下の式(6)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(6)中、Rは水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Lは2価の基を表し、Rはホスト基を表す。R、L、及び、Rで表される基は、単量体Aとジスルフィド結合との反応に由来して重合体のネットワークに導入された結合である。言い換えれば、R、L、及び、Rは単量体Aに由来する基である。
 Lの2価の基としては特に制限されないが、式(1)におけるLの2価の基と同様の基が挙げられ、好適形態も同様である。また、Rで表されるホスト基、及び、Rで表される基も、それぞれ、式(1)におけるRで表されるホスト基、及び、Rで表される基と同様の基が挙げられ、好適形態も同様である。
 式(6)中、Lはジスルフィド結合を含まず、ホスト基を串刺し状に貫通可能な2価の基、又は、単結合を表す。Lで表される2価の基は、典型的には、L32で表される2価の基が有するジスルフィド結合に、式(1)で表される単量体Aが付加して形成された、その残基であることが好ましい。すなわち、*-L-S-S-L-*で表される基が、L32で表される基と同義であることが好ましい。なお、Lは互いに同一でも異なってもよい。
 Lの2価の基としては、-C(O)-、-C(O)O-、-OC(O)-、-O-、-NR20-(R20は水素原子又は1価の有機基を表す)、-N=、アルキレン基(炭素数は1~20個が好ましく、環状、及び、鎖状を含む)、アルケニレン基(炭素数2~20個が好ましく、環状、及び、鎖状を含む)、アリーレン基、ヘテロアリーレン基、(ポリ)オキシアルキレン基(繰り返し数n=0~20が好ましい)、及び、これらを組合せた基が挙げられる。
 式(6)中、Lは、a+1価の基であり、aは1以上の整数であり、9以下が好ましく、7以下がより好ましく、5以下が更に好ましく、3以下が特に好ましい。Lのa+1価の基としては、式(4)のLで表される基と同様の基が挙げられる。なかでも、Lのa+1価の基は、単量体B、及び、単量体Cがそれぞれ有する硬化性基の反応により形成される連結基であることが好ましい。
 Lで表される基としては、特に限定されないが、以下の式で表される基が挙げられる。なお、式中、「*」は結合位置を表す。また、式中、Rは、水素原子、又は、1価の有機基(但し、硬化性基、及び、ジスルフィド結合を含まない)を表す。
Figure JPOXMLDOC01-appb-C000025
 図3~図5は、[1]単量体A、B、及び、Cを含む組成物を硬化させて、[2]重合体を得て、[3]このジスルフィド結合を上記の方法で分解して、[4]分解生成物である新たな単量体を得るという一連の工程を表す反応スキームの例である。
 式中、L61、L62、L63、及び、L64は、ジスルフィド結合を有さない2価の基、又は、単結合を表し、Lで表される基と同義であり、好適形態も同様である。L61及びL62は同一でも異なってもよく、L63、及び、L64も同一でも異なってもよい。
 本実施形態の硬化物の分解方法によれば、新たな単量体として使用できる分解生成物を容易に得ることができる。また、得られた単量体は、再度、任意の形状に成形して硬化させることができるため、硬化物のリサイクル方法としても活用できる。
 また、ジスルフィド結合を有する重合体は、還元的環境(低酸化還元電位条件)下ではジスルフィド結合が還元的に切断されることが知られている。分解生成物は、海洋微生物等により無機化合物に代謝される可能性があり、本実施形態の硬化物は生分解性プラスチックとしての機能も併せて有することが期待される。
(組成物の調製、及び、硬化物の作製)
 TAcγCD、Polyethylene Glycol Diglycidyl Ether (PEO、M=500、Sigma-Aldrich社製)、bis(4-aminophenyl) disulfide(AMDS、東京化成社製)をメタノール中に溶解させ、ポリテトラフルオロエチレン製モールドに流し込んだ。その後、50℃のウィンディオーブンにて2時間加熱し、溶媒を乾燥させた。130℃、又は、160℃のウィンディオーブンで4時間加熱したところ、ゴム状の目的物が得られた。
 TAcγCDは、国際公開第2018/159791号の0250段落の製造例6を参照して合成した。なお、TAcγCDは、式(2-1-9)で表される化合物であり、シクロデキストリン誘導体1分子中に存在していたヒドロキシ基の100%がアセチル基に置換されている。反応スキームは以下のとおりである。
Figure JPOXMLDOC01-appb-C000026
 表1、及び、表2は、硬化物の作製に使用した組成物の組成を表す表である。
 表1の各欄には、各成分の含有量が記載されている。例えば、実施例1であれば、組成物中におけるTAcγCDの含有量が0.1g(0.04mmol)、PEOの含有量が0.50g(1.01mmol)、AMDSの含有量が0.25g(1.01mmol)であり、使用したメタノール(MeOH)が0.70mgであったことを表しており、他も同様である。
 また、表2は、各成分の含有量比等の計算結果を表す表である。例えば、実施例1であれば、TAcγCDを0.04mmol含み、これが、TAcγCD、PEO、AMDSの合計含有量を100モル%としたとき、1.9mol%にあたり、質量基準では、0.10gであり、これが組成物の全質量を100質量%としたとき、6.5質量%にあたることが記載されている。同様にして、PEO、AMDSについても記載されている。
 また、MeOH(メタノール)については、組成物中の含有量(mg)と、成物の全質量を100質量%としたときの含有量(質量%)について記載されている。
 また、H/Dについては、AMDSは1分子あたりS-S結合を1個有しており、TAcγCDは、ホスト基を1分子あたり1個有しており、PEOはS-S結合を有していないため、各組成物におけるH/D比(ホスト基/動的共有結合)は、それぞれ、表2のとおり計算された。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
(力学特性の評価)
 比較例、実施例1~3の硬化物について、力学特性を評価した。得られた硬化物のダンベル試験片を作製し、室温で引張試験(引張速度1mm/s)を実施した。得られた応力ひずみ曲線から、曲線下面積を求めて、これをToughness(靭性)とし、初期ひずみ1~5%の傾きからYoung’s modulus(ヤング率)を算出した。
 図6Aは、160℃で硬化させた硬化物について、応力ひずみ曲線から求めたホスト基(CD基)の含有量(mol%)に対する靭性(Toughness/KJm-3)を表す図である。また、図6Bは、160℃で硬化させた硬化物について、応力ひずみ曲線から求めたホスト基の含有量(mol%)に対するヤング率(Young’s modulus/MPa)を表す図である。
 各図におけるプロットは、「E1」、「E2」、「E3」がぞれぞれ実施例1~3の硬化物に対応し、「C1」が比較例の硬化物に対応する
 図6Bの結果から、TAcγCDを含む組成物を硬化させて得られた硬化物は、比較例の硬化物と比較して、より優れた靭性を有していた。また、図6Bの結果から、TAcγCDを含む組成物を硬化させて得られた硬化物は、比較例の硬化物と比較して、より優れたヤング率を有していた。
 ポリマーを主成分とする硬化物においては、剛性の指標の一つであるヤング率と、靭性とはトレードオフの関係となることが多い。しかし、実施例1~3の硬化物は、比較例の硬化物と比較して、優れた靭性と、優れたヤング率(剛性)とを両立していた。
 また、H/D比が、0.04を超える実施例2の硬化物は、実施例1の硬化物と比較して、より優れた靭性と、より優れたヤング率とを有していた。また、H/D比が0.06を超える実施例3の硬化物は、実施例2の硬化物と比較して、ヤング率が同程度で維持されているにも関わらず、より優れた靭性を有していた。
 図7Aは、実施例2(図中、「E2」)の硬化物と、比較例の硬化物(図中「C1」)との応力ひずみ曲線の比較である。なお、いずれの硬化物も130℃で硬化させたものである。図7Bは、実施例2の硬化物(図中「E2」)、比較例の硬化物(図中「C1」)の硬化温度を変化させたときの、ヤング率及び靭性の変化を表す図である。T=130と記載された、三角形のマーカーは、いずれも硬化温度を130℃とした硬化物、T=160と記載された、円のマーカーは、いずれも硬化温度を160℃とした硬化物である。すなわち、図中には、「C1、T=130」として、130℃で硬化された比較例の硬化物、「C1、T=160」として、160℃で硬化された比較例の硬化物、「E2、T=130」として、130℃で硬化された実施例2の硬化物、「E2、T=160」として、160℃で硬化された実施例2の硬化物のデータがぞれぞれプロットされている。
 図7Bの結果から、硬化温度が130℃の場合、硬化温度が160℃の場合と比較して、硬化物がより優れた靭性を有していることがわかった。更に、160℃で硬化させた場合との比較では、比較例の硬化物では、靭性の差が150KJ・m-3程度であったのに対し、実施例2の硬化物では、200KJ・m-3以上と、より大きな差があることがわかった。
 実施例2の硬化物と、比較例の硬化物とでは、主鎖を形成する単量体は同一のものを使用し、かつ、その量比、及び、絶対量は同一である。従って、上記の差は、実施例2の130℃で硬化させた硬化物には、単量体Aが未反応で残存していることを示唆している。
 すなわち、130℃で硬化させた場合には、160℃で硬化させた場合と比較して、硬化物中における未反応の単量体Aの含有量が多いことがわかった。
 このような特徴を有する実施例2(T=130)の硬化物は、未反応の単量体Aを含むため、優れた剛性を維持しつつ、更に優れた靭性を有することがわかった。すなわち、単量体Aを含む硬化物は、優れた剛性を維持しつつ、更に優れた靭性を有することがわかった。

Claims (18)

  1.  分子内にエチレン性不飽和基、及び、ホスト基を有し、前記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基である、単量体Aと、
     分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有する単量体Bと、
     前記動的共有結合を有していてもよい単量体Cと、を含む組成物を硬化させて得られる硬化物であって、
     前記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、前記ホスト基を串刺し状に貫通可能であり、
     前記単量体B、及び、前記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、
     前記単量体Bにおける前記硬化性基の少なくとも一組が、前記動的共有結合を介して連結されている、硬化物。
  2.  前記ホスト基を、前記単量体B、又は、前記単量体Cの一方が串刺し状に貫通してなる包接錯体を、前記組成物が含む、請求項1に記載の硬化物。
  3.  前記ホスト基を、前記単量体Bが串刺し状に貫通してなる包接錯体と、
     前記ホスト基を、前記単量体Cが串刺し状に貫通して成る包接錯体と、を前記組成物が含む、請求項1に記載の硬化物。
  4.  下記式(5)で表される部分構造を有する重合体を含む、請求項1~3のいずれか1項に記載の硬化物。
    Figure JPOXMLDOC01-appb-C000001
    (式(5)中、*は結合位置を表し、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは前記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す)
  5.  前記単量体Aを含む、請求項1~4のいずれか1項に記載の硬化物。
  6.  前記組成物中における、前記動的共有結合のモル基準の合計含有量に対する、前記ホスト基のモル基準の合計含有量の含有量比が、0.01以上、0.1以下である、請求項1~5のいずれか1項に記載の硬化物。
  7.  前記単量体Aが下記式(1)表される化合物を含む、請求項1~6のいずれか1項に記載の硬化物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは前記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す)
  8.  前記単量体Bが下記式(3)で表される化合物を含む、請求項1~7のいずれか1項に記載の硬化物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Zは硬化性基を有する基であり、Rは水素原子、又は、1価の有機基であり、Lは前記動的共有結合を含むp+q価の基であり、pは0以上の整数を表し、qは2以上の整数を表し、Zで表される前記基の少なくとも一組が、前記動的共有結合を介して連結されている)
  9. 前記単量体B、及び、前記単量体Cが、前記動的共有結合としてジスルフィド結合を有し、前記単量体Cにおける前記硬化性基の少なくとも一組が、前記ジスルフィド結合を介して連結されている、請求項1~8のいずれか1項に記載の硬化物。
  10.  請求項1~9のいずれか1項に記載の硬化物を含む、自己修復部材。
  11.  単量体B、又は、単量体Cの一方と、単量体Aと含む第1剤と、
     単量体B、又は、単量体Cの他方を含む第2剤と、を備える接着剤であって、
     前記単量体Aは、分子内にエチレン性不飽和基、及び、ホスト基を有し、前記ホスト基は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であり、
     前記単量体Bは、分子内にジスルフィド結合、ジセレニド結合、及び、ジテルリド結合からなる群より選択される少なくとも1種の動的共有結合を有し、
     前記単量体Cは、前記動的共有結合を有していてもよく、
     前記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、前記ホスト基を串刺し状に貫通可能であり、
     前記単量体B、及び、前記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、
     前記単量体Bにおける前記硬化性基の少なくとも一組が、前記動的共有結合を介して連結されている、接着剤。
  12.  前記一方が前記ホスト基を串刺し状に貫通してなる包接錯体を、前記第1剤が含む、請求項11に記載の接着剤。
  13.  下記式(5)で表される部分構造を有する重合体を含む第1剤と、
     単量体Bを含む第2剤と、
     単量体Cを含む第3剤と、を備える接着剤であって、
     前記単量体Bは、分子内に動的共有結合としてジスルフィド結合を有し、
     前記単量体Cは、前記ジスルフィド結合を有していてもよく、
     前記単量体B、及び、単量体Cからなる群より選択される少なくとも一方は、シクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であるホスト基を串刺し状に貫通可能であり、
     前記単量体B、及び、前記単量体Cは、互いに反応し得る硬化性基の一方を、それぞれの分子内に少なくとも2個以上有し、
     前記単量体Bにおける前記硬化性基の少なくとも一組が、前記動的共有結合を介して連結されている、接着剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、*は結合位置を表し、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rは前記ホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表す)
  14.  前記組成物に、エネルギーを付与して硬化物を得ることを含む、請求項1~9のいずれか1項に記載の硬化物の製造方法。
  15.  前記エネルギーを付与する前に、前記単量体Aが有するホスト基を、前記単量体B、又は、前記単量体Cの一方が、串刺し状に貫通してなる包接錯体を生成することを更に含む、請求項14に記載の硬化物の製造方法。
  16.  有機溶媒を含む有機相と、分子内に少なくとも1つのメルカプト基を含む水溶性化合物、及び、水を含む水相と、からなる二相溶液に請求項9に記載の硬化物を接触させて、前記硬化物を分解する、硬化物の分解方法。
  17.  下記式(6)で表される単量体。
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、Rは、水素原子、ハロゲン原子、又は、炭素数1~6個のアルキル基を表し、Rはシクロデキストリン、又は、シクロデキストリン誘導体から1個の水素原子、又は、ヒドロキシ基が除かれた1価の基であるホスト基を表し、Lは、-O-、-NR-(Rは水素原子、又は、炭素数1~6個のアルキル基を表す)、-S-、カルボニル基、炭素数1~20の直鎖状、分枝鎖状、又は、環状のヘテロ原子を有していてもよい2価の炭化水素基、及び、これらを組み合わせた2価の基からなる群より選択される少なくとも1種の基を表し、Lは、ジスルフィド結合を含まず、前記ホスト基を串刺し状に貫通可能な2価の基、又は、単結合を表し、Lはa+1価の基を表し、aは1以上の整数を表し、複数あるL、及び、Lはそれぞれ同一でも異なってもよい。)
  18.  請求項17に記載の単量体を硬化させて得られる硬化物。

     
PCT/JP2023/030805 2022-09-07 2023-08-25 硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体 WO2024053436A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-142380 2022-09-07
JP2022142380 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053436A1 true WO2024053436A1 (ja) 2024-03-14

Family

ID=90191116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030805 WO2024053436A1 (ja) 2022-09-07 2023-08-25 硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体

Country Status (1)

Country Link
WO (1) WO2024053436A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068032A (ja) * 2003-08-28 2005-03-17 Bridgestone Corp 架橋体及びその製造方法、並びにそのリサイクル方法
WO2020179908A1 (ja) * 2019-03-06 2020-09-10 国立大学法人大阪大学 高分子材料及びその製造方法
CN115322605A (zh) * 2022-07-20 2022-11-11 吉林大学 一种主-客体自修复防雾涂层及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068032A (ja) * 2003-08-28 2005-03-17 Bridgestone Corp 架橋体及びその製造方法、並びにそのリサイクル方法
WO2020179908A1 (ja) * 2019-03-06 2020-09-10 国立大学法人大阪大学 高分子材料及びその製造方法
CN115322605A (zh) * 2022-07-20 2022-11-11 吉林大学 一种主-客体自修复防雾涂层及其制备方法

Similar Documents

Publication Publication Date Title
Ding et al. Sustainable near UV-curable acrylates based on natural phenolics for stereolithography 3D printing
Kempe et al. Microwave-assisted polymerizations: recent status and future perspectives
Shen et al. Modified epoxy acrylate resin for photocurable temporary protective coatings
EP3131952B1 (en) Resin composition suitable for printing and printing method utilizing the same
Ratna et al. Acrylate‐based liquid rubber as impact modifier for epoxy resin
JP7393367B2 (ja) 多段ポリマーをベースとする硬化性組成物
Wei et al. Design of photoinitiator-functionalized hydrophilic nanogels with uniform size and excellent biocompatibility
Zhou et al. A well-defined amphiphilic polymer co-network from precise control of the end-functional groups of linear RAFT polymers
Shao et al. A chemical approach for the future of PLA upcycling: from plastic wastes to new 3D printing materials
JP4803937B2 (ja) 架橋性官能基を有するポリオルガノシロキサンの重合用及び/又は架橋用開始剤、相当する組成物及びそれらの使用
JP7440185B2 (ja) 印刷に好適な樹脂組成物および印刷方法
WO2024053436A1 (ja) 硬化物、自己修復部材、接着剤、硬化物の製造方法、修復方法、硬化物の分解方法、及び、単量体
Porwal et al. Biobased and degradable thiol–ene networks from levoglucosan for sustainable 3D printing
Celik et al. Propiolated castor oil: a novel and highly versatile bio-based platform for extremely fast, catalyst-, and solvent-free amino-yne click reactions
Sangermano et al. New developments in cationic photopolymerization: process and properties
JPH0892369A (ja) 硬化性液状樹脂組成物およびその硬化物の製造方法
Sato et al. Photocuring of Radically Polymerizable Hyperbranched Polymers Having Degradable Linkages
Lee et al. Malleable and recyclable thermoset network with reversible β‐hydroxyl esters and disulfide bonds
JP4463649B2 (ja) 光ラジカル重合開始剤、感光性樹脂組成物及び、物品
JP2024503122A (ja) 強靱な物体の付加製造のための放射線硬化性組成物
JPH01178515A (ja) 耐熱性樹脂組成物
Zhang et al. Synthesis and characterization of epoxidized acrylated natural rubber cross-linked by star-shaped polystyrene
WO2021230940A2 (en) Network toughening of additively manufactured, high glass transition temperature materials via sequentially cured, interpenetrating polymers
Alameda Hydrolytically Degradable Thermosets with Tunable Degradation Profiles via Ketal-Based Crosslinks
CN116987313B (zh) 一种环保型食品用包装袋及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862975

Country of ref document: EP

Kind code of ref document: A1