WO2024053283A1 - 照明システム - Google Patents

照明システム Download PDF

Info

Publication number
WO2024053283A1
WO2024053283A1 PCT/JP2023/027922 JP2023027922W WO2024053283A1 WO 2024053283 A1 WO2024053283 A1 WO 2024053283A1 JP 2023027922 W JP2023027922 W JP 2023027922W WO 2024053283 A1 WO2024053283 A1 WO 2024053283A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light distribution
gradation
voltage
transparent electrode
Prior art date
Application number
PCT/JP2023/027922
Other languages
English (en)
French (fr)
Inventor
健夫 小糸
幸次朗 池田
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2024053283A1 publication Critical patent/WO2024053283A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission

Definitions

  • One embodiment of the present invention relates to a lighting system that uses liquid crystal to control the distribution angle of light emitted from a light source.
  • JP2016-39026A Japanese Patent Application Publication No. 2012-69409
  • an embodiment of the present invention has as one object to provide a lighting system that enables control of light distribution that matches the user's operational feeling.
  • a lighting system includes a light source, a liquid crystal cell that changes the light distribution angle of light emitted from the light source, and a control device that controls the gradation of the light distribution angle.
  • the control device includes: a second substrate on which third transparent electrodes and fourth transparent electrodes are alternately provided; and a liquid crystal layer between the first substrate and the second substrate.
  • a communication unit that receives the gradation information of the light distribution angle from an information communication terminal; a storage unit that stores a weighting coefficient that associates an amount of change in the light distribution angle with a change in the gradation of the light distribution angle; and gradation information. and a weighting coefficient, a first voltage input to the first transparent electrode, a second voltage input to the second transparent electrode, a third voltage input to the third transparent electrode, and a control unit that calculates a fourth voltage input to the fourth transparent electrode.
  • FIG. 1 is a schematic diagram showing the configuration of a lighting system according to an embodiment of the present invention.
  • 1 is a block diagram showing the configuration of a lighting system according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing the configuration of a lighting system according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing the configuration of a lighting system according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing an electrode pattern of a liquid crystal cell included in an optical element of an illumination system according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing an electrode pattern of a liquid crystal cell included in an optical element of an illumination system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a lighting system according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing the configuration of a lighting system according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view
  • FIG. 2 is a schematic diagram illustrating optical characteristics of a liquid crystal cell included in an optical element of an illumination system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating optical characteristics of a liquid crystal cell included in an optical element of an illumination system according to an embodiment of the present invention.
  • 5 is a timing chart of a signal input to a transparent electrode of an optical element to control a light distribution shape in an illumination system according to an embodiment of the present invention.
  • 5 is a timing chart of a signal input to a transparent electrode of an optical element to control a light distribution shape in an illumination system according to an embodiment of the present invention.
  • 5 is a timing chart of a signal input to a transparent electrode of an optical element to control a light distribution shape in an illumination system according to an embodiment of the present invention.
  • It is a schematic diagram explaining the definition of the light distribution angle and half-width at half maximum in the illumination system concerning one embodiment of the present invention. It is a schematic diagram explaining the definition of the light distribution angle and half-width at half maximum in the illumination system concerning one embodiment of the present invention. It is a graph showing the correlation between the voltage applied to the transparent electrode of the optical element and the half width at half maximum in the illumination system according to one embodiment of the present invention. It is a flow chart explaining gradation control processing in a lighting system concerning one embodiment of the present invention. In the illumination system according to one embodiment of the present invention, it is a graph showing the correlation between the gradation and the half width at half maximum when the weighting coefficient b 1.
  • FIG. 1 is a block diagram illustrating a lighting system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a lighting system according to an embodiment of the present invention.
  • drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual aspect, but this is just an example, and the shape itself is not the same as the original. It does not limit the interpretation of the invention.
  • elements with the same functions as those explained in relation to the drawings already mentioned in the specification may be given the same reference numerals even if they are in separate drawings, and redundant explanations may be omitted. .
  • each structure When a single film is processed to form a plurality of structures, each structure may have a different function or role, and each structure may have a different base on which it is formed.
  • these plurality of structures are derived from a film formed as the same layer in the same process, and have the same material. Therefore, these multiple films are defined as existing in the same layer.
  • FIG. 1 is a schematic diagram showing the configuration of a lighting system 1 according to an embodiment of the present invention. As shown in FIG. 1, the lighting system 1 includes an optical element 10, a light source 20, a control device 30, and an information communication terminal 40.
  • Optical element 10 includes four liquid crystal cells 100 (first liquid crystal cell 100-1, second liquid crystal cell 100-2, third liquid crystal cell 100-3, and fourth liquid crystal cell 100-4). .
  • a first liquid crystal cell 100-1, a second liquid crystal cell 100-2, a third liquid crystal cell 100-3, and a fourth liquid crystal cell 100-4 are arranged. , are laminated in order in the z-axis direction.
  • the number of liquid crystal cells 100 included in the optical element 10 is not limited to four.
  • the optical element 10 only needs to include at least two liquid crystal cells 100. Details of the configuration of the optical element 10 will be described later.
  • the light source 20 emits light to the optical element 10.
  • the light emitted from the light source 20 enters the first liquid crystal cell 100-1 and is emitted from the fourth liquid crystal cell 100-4.
  • the four liquid crystal cells included in the optical element 10 control the diffusion and polarization of light, and the spread (light distribution) of the light emitted from the fourth liquid crystal cell 100-4 can be changed.
  • can for example, light emitting diodes (LEDs) can be used, but the present invention is not limited thereto.
  • the light source 20 may be any element or device that can emit light.
  • the control device 30 is connected to the optical element 10 and the light source 20 and controls the optical element 10 and the light source 20.
  • the control device 30 is, for example, a central processing unit (CPU), a microprocessor (Micro Processing Unit: MPU), an integrated circuit (IC), or a specific application integrated circuit (Application). tion Specific Integrated Circuit: ASIC ), field-programmable gate array (FPGA), or random access memory (RAM). Note that details of the configuration of the control device 30 will be described later.
  • the information communication terminal 40 is, for example, a mobile phone, a smartphone, a tablet, or a personal computer, but is not limited to these.
  • the information communication terminal 40 is communicatively connected to the control device 30 via the network NW.
  • the network NW may be wired or wireless. However, when the information communication terminal 40 is a portable terminal, it is preferable that the network NW is wireless.
  • the network NW is a LAN (Local Area Network) or the Internet, but is not limited to these. Further, the network NW may be a network via communication base stations managed by a communication carrier. Note that details of the configuration of the information communication terminal 40 will be described later.
  • the user can use the information communication terminal 40 to set the light distribution of the light emitted from the light source 20. That is, in the lighting system 1, the control device 30 controls the optical element 10 and the light source 20 based on user input information from the information communication terminal 40, and can change the light distribution of the light emitted from the light source 20.
  • FIG. 2 is a block diagram showing the configuration of the lighting system 1 according to an embodiment of the present invention.
  • the control device 30 includes a communication section 310, a light source control section 320, an optical element control section 330, and a storage section 340.
  • the information communication terminal 40 also includes a communication section 410, a display section 420, and an input section 430.
  • the communication unit 310 is a communication interface that can send and receive data or information.
  • the communication unit 310 is, for example, a LAN module or a Wi-Fi (registered trademark) module.
  • the light source control unit 320 controls the operation of the light source 20.
  • the control device 30 can cause the light source control unit 320 to function by executing a predetermined program.
  • the light source control unit 320 controls turning on and off the power of the light source 20 based on user input information transmitted from the information communication terminal 40. Further, the light source control unit 320 adjusts the light amount or color temperature of the light source 20 based on user input information.
  • the optical element control unit 330 controls the optical element 10 and changes the illumination mode, light distribution shape, and gradation of the light distribution angle.
  • the control device 30 can cause the optical element control section 330 to function by executing a predetermined program.
  • the optical element control unit 330 calculates a voltage for controlling the optical element 10 based on user input information transmitted from the information communication terminal 40, and inputs a signal including the calculated voltage to the liquid crystal cell 100.
  • the gradation of light distribution can be changed depending on the lighting mode. Note that in the following description, the degree of spread of emitted light in the illumination system will be referred to as gradation.
  • the gradation can be set in multiple stages from the smallest spread of the emitted light (there is no spread of the emitted light, or the light emitted from the light source is directly emitted) to the largest.
  • the gradation can be set to 8 steps, 16 steps, 32 steps, 64 steps, 128 steps, or 256 steps.
  • set the light spread state from 0% (state where there is no light spread or the state where the light from the light source is irradiated as is) to 100% (state where the light spread is maximum) Configurations are also applicable.
  • the illumination mode may be, for example, a wide-angle illumination mode that illuminates a wide area like a downlight, or a narrow-angle illumination mode that illuminates a narrow area like a spotlight, but is not limited thereto. Note that details of the gradation control of light distribution by the optical element control unit 330 will be described later.
  • the storage unit 340 is a storage that can store data or information.
  • the storage unit 340 is, for example, a hard disk drive (HDD), a solid state drive (SSD), a read only memory (ROM), a random access memory (RAM), a flash memory, or the like. It is.
  • the storage unit 340 stores a plurality of weighting coefficients 341 corresponding to a plurality of illumination modes.
  • the communication unit 410 has the same configuration as the communication unit 310, so a description thereof will be omitted.
  • the display unit 420 is a display interface that includes a screen and can display images and the like on the screen.
  • the display unit is, for example, a liquid crystal display device or an OLED display device.
  • the input unit 430 is a user interface through which the user can input data or information.
  • the input unit 430 is, for example, a button, a keyboard, a mouse, or the like, which can accept user operations. Furthermore, the input unit 430 can generate user input information based on user operations.
  • the user input information includes, for example, illumination mode information including the illumination mode selected by the user, gradation information including the gradation selected by the user, and the like. Note that the input unit 430 may be a touch screen integrated with the display unit 420.
  • FIGS. 3A and 3B are schematic cross-sectional views showing the configuration of the lighting system 1 according to an embodiment of the present invention. Specifically, FIG. 3A is a cross-sectional view of the optical element 10 taken along the line A1-A2 in FIG. 1, and FIG. 3B is a cross-sectional view of the optical element 10 taken along the line B1-B2 in FIG. It is.
  • each of the first liquid crystal cell 100-1 to fourth liquid crystal cell 100-4 includes a first substrate 110-1, a second substrate 110-2, a plurality of one transparent electrode 120-1, a plurality of second transparent electrodes 120-2, a plurality of third transparent electrodes 120-3, a plurality of fourth transparent electrodes 120-4, a first alignment film 130-1, It includes a second alignment film 130-2, a sealant 140, and a liquid crystal layer 150.
  • First transparent electrodes 120-1 and second transparent electrodes 120-2 are alternately provided on the first substrate 110-1. That is, the plurality of first transparent electrodes 120-1 and the plurality of second transparent electrodes 120-2 are arranged in a comb-like shape.
  • a first alignment film 130-1 is provided on the first substrate 110-1 so as to cover the first transparent electrode 120-1 and the second transparent electrode 120-2.
  • Third transparent electrodes 120-3 and fourth transparent electrodes 120-4 are alternately provided on the second substrate 110-2. That is, the plurality of third transparent electrodes 120-1 and the plurality of fourth transparent electrodes 120-4 are arranged in a comb-like shape.
  • a second alignment film 130-2 is provided on the second substrate 110-2 so as to cover the third transparent electrode 120-3 and the fourth transparent electrode 120-4.
  • the first substrate 110-1 and the second substrate 110-2 have a first transparent electrode 120-1, a second transparent electrode 120-2, a third transparent electrode 120-3, and a fourth transparent electrode.
  • the first substrate 110-1 and the second substrate 110-2 are bonded to each other via a sealant 140 provided at their peripheries.
  • a first substrate 110-1 (more specifically, a first alignment film 130-1), a second substrate 110-2 (more specifically, a second alignment film 130-2), and a seal.
  • a liquid crystal is sealed in the space surrounded by the material 140, and a liquid crystal layer 150 is provided between the first substrate 110-1 and the second substrate 110-2.
  • An optical elastic resin layer 160 is provided between the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2. Similarly, there is optical elasticity between the second liquid crystal cell 100-2 and the third liquid crystal cell 100-3, and between the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100-4.
  • a resin layer 160 is provided.
  • the optical elastic resin layer 160 for example, an adhesive containing a translucent acrylic resin can be used. That is, the optical elastic resin layer 160 can adhere and fix two adjacent liquid crystal cells 100.
  • each of the first substrate 110-1 and the second substrate 110-2 for example, a rigid substrate having light-transmitting properties such as a glass substrate, a quartz substrate, or a sapphire substrate is used.
  • each of the first substrate 110-1 and the second substrate 110-2 may be a flexible substrate having light-transmitting properties, such as a polyimide resin substrate, an acrylic resin substrate, a siloxane resin substrate, or a fluororesin substrate. You can also use
  • Each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 is used for forming an electric field in the liquid crystal layer 150. Functions as an electrode.
  • Each of the first transparent electrode 120-1, the second transparent electrode 120-2, the third transparent electrode 120-3, and the fourth transparent electrode 120-4 is made of, for example, indium tin oxide (ITO). Alternatively, a transparent conductive material such as indium zinc oxide (IZO) is used.
  • the first transparent electrode 120-1 and the second transparent electrode 120-2 extend in the x-axis direction
  • the third transparent electrode 120-3 and the fourth transparent electrode 120-4 extend in the y-axis direction
  • the first transparent electrode 120-1 and the second transparent electrode 120-2 extend in the y-axis direction
  • the third Transparent electrode 120-3 and fourth transparent electrode 120-4 extend in the x-axis direction.
  • the first transparent electrode 120-1 to the fourth transparent electrode 120-4 may be described as the transparent electrode 120 unless they are particularly distinguished.
  • Each of the first alignment film 130-1 and the second alignment film 130-2 aligns liquid crystal molecules in the liquid crystal layer 150 in a predetermined direction.
  • Polyimide resin or the like is used as each of the first alignment film 130-1 and the second alignment film 130-2.
  • each of the first alignment film 130-1 and the second alignment film 130-2 may be given alignment characteristics by an alignment treatment such as a rubbing method or a photo alignment method.
  • the rubbing method is a method of rubbing the surface of an alignment film in one direction.
  • the photo-alignment method is a method in which an alignment film is irradiated with linearly polarized ultraviolet light.
  • the first alignment film 130-1 is formed on the first substrate 110-1 side of the liquid crystal layer 150 in a direction perpendicular to the extending direction of the first transparent electrode 120-1 and the second transparent electrode 120-2. An alignment process is performed so that the liquid crystal molecules are aligned.
  • the second alignment film 130-2 extends over the second substrate 110-2 of the liquid crystal layer 150 in a direction perpendicular to the extending direction of the third transparent electrode 120-3 and the fourth transparent electrode 120-4. An alignment process is performed so that the liquid crystal molecules on both sides are aligned.
  • the long axis of the liquid crystal molecules on the first substrate 110-1 side is aligned in the y-axis direction
  • the long axis of the liquid crystal molecules on the first substrate 110-1 side is aligned in the y-axis direction
  • the long axes of the liquid crystal molecules on the side are aligned in the x-axis direction.
  • the long axis of the liquid crystal molecules on the first substrate 110-1 side is aligned in the x-axis direction
  • the long axis of the liquid crystal molecules on the first substrate 110-1 side is aligned in the x-axis direction
  • the long axes of the liquid crystal molecules on the side are aligned in the y-axis direction.
  • the alignment direction of the liquid crystal molecules and the extending direction of the transparent electrode 120 may be at an angle other than orthogonal, for example. , may intersect at an angle of 85 degrees or more and less than 90 degrees.
  • an adhesive containing epoxy resin or acrylic resin is used as the sealant 140.
  • the adhesive may be of an ultraviolet curing type or a thermosetting type.
  • the liquid crystal layer 150 can refract the transmitted light or change the polarization state of the transmitted light, depending on the alignment state of the liquid crystal molecules.
  • the liquid crystal of the liquid crystal layer 150 nematic liquid crystal or the like is used.
  • the liquid crystal described in this embodiment is of a positive type, a configuration in which a negative type is applied is also possible by changing the orientation direction of liquid crystal molecules in a state where no voltage is applied to the transparent electrode 120.
  • the liquid crystal contains a chiral agent that imparts twist to the liquid crystal molecules.
  • FIGS. 4A and 4B are schematic plan view showing an electrode pattern of a liquid crystal cell 100 included in an optical element 10 of an illumination system 1 according to an embodiment of the present invention.
  • FIG. 4A is a plan view showing an electrode pattern formed on the first substrate 110-1 of the first liquid crystal cell 100-1
  • FIG. 4B is a plan view showing the electrode pattern formed on the first substrate 110-1 of the first liquid crystal cell 100-1.
  • 1 is a plan view showing an electrode pattern formed on a second substrate 110-2 of FIG.
  • a first connection pad 121-1 and a second connection pad 121-2 are provided on the first substrate 110-1.
  • the plurality of first transparent electrodes 120-1 are electrically connected to the first connection pad 121-1.
  • the plurality of second transparent electrodes 120-2 are electrically connected to second connection pads 121-2.
  • a third connection pad 121-3 As shown in FIG. 4B, on the second substrate 110-2, there are a third connection pad 121-3, a fourth connection pad 121-4, a first terminal 122-1, a second terminal 122- 2, a third terminal 122-3, and a fourth terminal 122-4.
  • the plurality of third transparent electrodes 120-3 are electrically connected to the third terminal 122-3.
  • the plurality of fourth transparent electrodes 120-4 are electrically connected to the fourth terminal 122-4.
  • the third connection pad 121-3 is electrically connected to the first terminal 122-1.
  • the fourth connection pad 121-4 is electrically connected to the second terminal 122-2.
  • the first connection pad 121-1 and the second connection pad 121-2 are connected to the third connection pad 121-2, respectively. It overlaps with the third and fourth connection pads 121-4.
  • a conductive material such as silver paste is provided between the first connection pad 121-1 and the third connection pad 121-3. -3 is electrically connected via a conductive material.
  • a conductive material is provided between the second connection pad 121-2 and the fourth connection pad 121-4. 4 is electrically connected via a conductive material. Therefore, the first transparent electrode 120-1 and the second transparent electrode 120-2 on the first substrate 110-1 are electrically connected to the first terminal 122-1 and the second terminal 122-2, respectively. It is connected to the.
  • the electrode pattern of the second liquid crystal cell 100-2 is the same as the electrode pattern of the first liquid crystal cell 100-1.
  • the structure of the electrode pattern of the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100-4 is different from that of the first liquid crystal cell 100-1 except that the extending direction of the transparent electrode 120 is rotated by 90 degrees. It is similar to the configuration.
  • the first terminal 122-1 to the fourth terminal 122-4 on the second substrate 110-2 are exposed from the first substrate 110-1.
  • flexible printed circuits FPCs
  • FPCs 170 are electrically connected to control device 30. Therefore, the control device 30 can control the optical element 10 by inputting signals to each of the first transparent electrode 120-1 to the fourth transparent electrode 120-4 of the liquid crystal cell 100 via the FPCs 170. .
  • FIGS. 5A and 5B are schematic diagram illustrating the optical characteristics of the liquid crystal cell 100 included in the optical element 10 of the illumination system 1 according to an embodiment of the present invention. Specifically, FIG. 5A shows the liquid crystal cell 100 in a state where no voltage is applied to the transparent electrode 120, and FIG. 5B shows the liquid crystal cell 100 in a state where a voltage is applied to the transparent electrode 120.
  • the liquid crystal molecules on the first substrate 110-1 side of the liquid crystal layer 150 are aligned in the y-axis direction, and the liquid crystal molecules on the second substrate 110-2 side of the liquid crystal layer 150 are aligned in the x-axis direction. Oriented. Therefore, when no voltage is applied to any of the first transparent electrode 120-1 to fourth transparent electrode 120-4, the liquid crystal molecules in the liquid crystal layer 150 move from the first substrate 110-1 to the fourth transparent electrode 120-4.
  • the orientation is such that it is twisted by 90° in the c-axis direction as it approaches the No. 2 substrate 110-2.
  • the plane of polarization (the polarization axis or the direction of the polarization component) of the light transmitted through the liquid crystal layer 150 is rotated by 90 degrees according to the orientation of the liquid crystal molecules. More specifically, the P-polarized light component incident on the liquid crystal cell 100 becomes the S-polarized light component by passing through the liquid crystal layer 150 of the liquid crystal cell 100, and the S-polarized light component incident on the liquid crystal cell 100 becomes the P-polarized light component. Become. Such a phenomenon in which polarized light components shift may be referred to as optical rotation.
  • the liquid crystal molecules in the liquid crystal layer 150 are oriented so as to be twisted by 90 degrees in the c-axis direction as they move from the first substrate 110-1 to the second substrate 110-2.
  • the liquid crystal molecules near the substrate 110-1 are shaped like a convex arc with respect to the first substrate 110-1 due to the transverse electric field between the first transparent electrode 120-1 and the second transparent electrode 120-2.
  • the liquid crystal molecules near the second substrate 110-2 are aligned with respect to the second substrate 110-2 due to the transverse electric field between the third transparent electrode 120-3 and the fourth transparent electrode 120-4.
  • the liquid crystal molecules arranged in a convex arc shape have a refractive index distribution, and light having the same polarization direction as the alignment direction of the liquid crystal molecules is diffused.
  • the cell gap d which is the distance between the first substrate 110-1 and the second substrate 110-2, is sufficiently larger than the distance between two adjacent transparent electrodes (for example, 10 ⁇ m ⁇ d ⁇ 30 ⁇ m). ), the orientation of liquid crystal molecules located near the center between the first substrate 110-1 and the second substrate 110-2 hardly changes.
  • the light emitted from the light source 20 includes a polarized light component in the x-axis direction (hereinafter referred to as "P-polarized light component”) and a polarized light component in the y-axis direction (hereinafter referred to as "S-polarized light component").
  • P-polarized light component a polarized light component in the x-axis direction
  • S-polarized light component a polarized light component in the y-axis direction
  • the first light 1000-1 Since the P polarized light component of the first light 1000-1 incident from the first substrate 110-1 side is different from the alignment direction of the liquid crystal molecules on the first substrate 110-1 side, the first light 1000-1 is It is not diffused (see (1) in FIG. 5B). Further, the first light 1000-1 undergoes optical rotation in the process of passing through the liquid crystal layer 150, and its polarization component changes from a P-polarization component to an S-polarization component. Since the S-polarized component of the first light 1000-1 is different from the orientation direction of the liquid crystal molecules on the second substrate 110-2 side, the first light 1000-1 is not diffused (see (2) in FIG. 5B). ).
  • the second light 1000-2 2 Since the S polarization component of the second light 1000-2 incident from the first substrate 110-1 side is the same as the alignment direction of the liquid crystal molecules on the first substrate 110-1 side, the second light 1000-2 2 is diffused in the y-axis direction according to the refractive index distribution of liquid crystal molecules (see (3) in FIG. 5B). Further, the second light 1000-2 undergoes optical rotation in the process of passing through the liquid crystal layer 150, and its polarization component changes from an S-polarization component to a P-polarization component. Since the P-polarized component of the second light 1000-2 is the same as the alignment direction of the liquid crystal molecules on the second substrate 110-2 side, the second light 1000-2 is It is diffused in the axial direction (see (4) in FIG. 5B).
  • FIGS. 6A to 6C is a timing chart of signals input to the transparent electrode 120 of the optical element 10 in order to control the shape of light distribution in the illumination system 1 according to an embodiment of the present invention.
  • the High voltage is + ⁇ V (or - ⁇ V)
  • the High voltage is - ⁇ V (or ⁇ V)
  • the intermediate voltage is 0V.
  • the High voltage may be any voltage higher than the Low voltage and the intermediate voltage.
  • the intermediate voltage may be any voltage between the High voltage and the Low voltage.
  • the High voltage, Low voltage, and intermediate voltage may be 30V, 0V, and 15V, respectively.
  • the voltage included in the signal input to the transparent electrode 120 is a rectangular wave in which high voltage and low voltage are repeated, or a constant intermediate voltage, but is not limited to this.
  • a first signal S1, a second signal S2, a third signal S3, and a fourth signal are shown in FIGS. 6A to 6C.
  • the first signal S1 is applied to the first transparent electrode 120-1 of the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2, and the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100.
  • -4 is input to the third transparent electrode 120-3.
  • the second signal S2 is applied to the second transparent electrode 120-2 of the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2, as well as the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100.
  • -4 is input to the fourth transparent electrode 120-4.
  • the third signal S3 is applied to the third transparent electrode 120-3 of the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2, as well as the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100.
  • -4 is input to the first transparent electrode 120-1.
  • the fourth signal S4 is applied to the fourth transparent electrode 120-4 of the first liquid crystal cell 100-1 and the second liquid crystal cell 100-2, as well as the third liquid crystal cell 100-3 and the fourth liquid crystal cell 100.
  • -4 is input to the second transparent electrode 120-2.
  • a transverse electric field is generated between two adjacent transparent electrodes 120 extending in the y-axis direction.
  • liquid crystal molecules whose long axes are oriented in the x-axis direction are arranged in a convex arc shape. Therefore, the light transmitted through the optical element 10 is diffused in the x-axis direction in each of the first liquid crystal cell 100-1 to the fourth liquid crystal cell 100-4. Therefore, in the timing chart shown in FIG. 6A, it is possible to obtain a linear light distribution that spreads in the x-axis direction.
  • a transverse electric field is generated between two adjacent transparent electrodes 120 extending in the x-axis direction.
  • liquid crystal molecules whose long axes are oriented in the y-axis direction are arranged in a convex arc shape. Therefore, the light transmitted through the optical element 10 is diffused in the y-axis direction in each of the first liquid crystal cell 100-1 to the fourth liquid crystal cell 100-4. Therefore, in the timing chart shown in FIG. 6B, it is possible to obtain a linear light distribution that spreads in the y-axis direction.
  • a transverse electric field is generated between two adjacent transparent electrodes 120 extending in the y-axis direction and between two adjacent transparent electrodes 120 extending in the x-axis direction.
  • liquid crystal molecules are arranged in a convex arc shape.
  • FIGS. 7A and 7B are schematic diagrams illustrating the definition of the light distribution angle and the half width at half maximum in the illumination system 1 according to an embodiment of the present invention. More specifically, in FIG. 7B, when the state of FIG. 7A is viewed from the y-axis direction, the horizontal axis is the polar angle in the x-axis direction, the vertical axis is the illuminance of the surface S illuminated by the lighting system 1, and the polar It is a graph showing a change in illuminance with respect to a polar angle when a light source 20 is provided at a position of an angle of 0°.
  • the light distribution of the light emitted from the light source 20 is controlled by the optical element 10, and light having a predetermined light distribution shape is projected onto the projection plane.
  • the illuminance of the light on the projection plane is greatest at the center (directly below the light source 20) and decreases as it moves away from the center.
  • the 1/2 illuminance angle is essentially defined as the angle formed by a line in the vertical direction of the light source 20 and a line connecting the light source 20 and a point where the illuminance is 50% of the illuminance directly below the light source 20.
  • the polar angle is at which the illuminance is 50%.
  • the light distribution angle is equal to 1/2 illuminance angle, and may be referred to as half width at half maximum (HWHM). That is, the light distribution angle can be expressed as a half width at half maximum ⁇ °. Therefore, below, for convenience, the light distribution angle may be explained using half-width at half maximum. Note that twice the half width at half maximum is the full width at half maximum (FWHM).
  • FIG. 8 is a graph showing the correlation between the voltage applied to the transparent electrode 120 of the optical element 10 and the half width at half maximum in the illumination system 1 according to an embodiment of the present invention.
  • FIG. 8 shows data measured in the manufactured illumination system 1 (black circles in FIG. 8) and its approximate curve.
  • the half width at half maximum with respect to the voltage applied to the transparent electrode 120 shows a complicated curve.
  • the function f(x) of the approximate curve shown in FIG. 8 can be expressed as the sum of two sigmoid functions by Equation (1).
  • Equation (1) k 1 and k 2 are proportional constants, and z is a predetermined coefficient.
  • Equation (1) is an example, and the function f(x) for calculating the half-width at half maximum with respect to voltage x is not limited to Equation (1).
  • each constant in equation (1) may vary depending on the number of liquid crystal cells 100 included in the optical element 10, the type of light source 20, and the like.
  • the function f(x) can be calculated based on measured data, and may be any function that shows the correlation between the voltage x applied to the transparent electrode 120 of the liquid crystal cell 100 and the half width at half maximum.
  • the light distribution angle can be changed by user operation.
  • the relationship between the light distribution angle and the voltage is complex like the function f(x) mentioned above, it is not possible to just allocate the voltage x evenly to the gradation levels operated by the user.
  • the change in the optical angle is large and cases where it is small, and there are cases where the change does not match the user's operational feeling.
  • a and c are arbitrary constants, and b is a weighting coefficient.
  • the constants a and c are a>0 and c>0, and the weighting coefficient b is b ⁇ 1.
  • the light distribution angle increases as the gradation level p increases.
  • the number of gradation levels p that is, the number of gradations is, for example, 256 (gradation levels 0 to 255), but is not limited to this.
  • p max is the maximum number of the set gradation levels, and p max is 255 when the gradation levels are from 0 to 255. Depending on the number of gradations, p max takes a different value.
  • p max is 15, 31, and 63, respectively. It goes without saying that if the minimum gradation does not include 0, p max will be 16, 32, 64, 256, etc., depending on the number of gradations.
  • g(n) can also be defined as in equation (3).
  • the light distribution angle and the half width at half maximum are the same.
  • the weighting coefficient b is a value that determines the ratio of the amount of change in the half width at half maximum to the amount of change in the gradation level p.
  • the weighting coefficient b becomes larger, the amount of change in the light distribution angle at the lower gradation level p becomes smaller, and the amount of change in the light distribution angle at the higher gradation level p becomes larger.
  • the weighting coefficient b increases, the number of gradations on the lower gradation side increases. Therefore, in this case, fine adjustment at a small half-width at half maximum becomes easy.
  • the lighting mode is the narrow angle lighting mode, it is often used at a smaller light distribution angle than a large light distribution angle.
  • the weighting coefficient b be large. In this way, in the lighting system 1, the weighting coefficient b can be changed depending on the usage (lighting mode). Therefore, the storage unit 340 includes a plurality of weighting coefficients 341 corresponding to each of the plurality of illumination modes. Note that the weighting coefficient b is not limited to a natural number.
  • FIG. 9 is a flowchart illustrating gradation control processing in the lighting system 1 according to an embodiment of the present invention. Although the flowchart shown in FIG. 9 includes steps S110 to S150, the gradation control process may further include other steps.
  • step S110 the communication unit 310 receives lighting mode information transmitted from the information communication terminal 40.
  • the lighting mode information is one type of user input information, and is generated by the user operating the input unit 430 of the information communication terminal 40.
  • the optical element control unit 330 determines the weighting coefficient b based on the illumination mode information. Specifically, the optical element control unit 330 determines the weighting coefficient b corresponding to the illumination mode information from among the plurality of weighting coefficients 341 stored in the storage unit 340.
  • step S130 the communication unit 310 receives the gradation information transmitted from the information communication terminal 40.
  • the gradation information is one type of user input information, and is generated by the user operating the input unit 430 of the information communication terminal 40.
  • step S150 the optical element control unit 330 inputs a signal including the calculated voltage x to the transparent electrode 120 of the liquid crystal cell 100.
  • the optical element control unit 330 controls the first The voltages input to the transparent electrodes 120-1 to 120-4 can be calculated.
  • the amount of change in half width at half maximum with respect to the amount of change in tone level p is constant.
  • the amount of change in the area of the light distribution shape on the projection plane is not constant. For example, when changing from gradation level 15 to gradation level 30, the amount of change in the half width at half maximum is 1.65°, and the area change rate of the light distribution shape is 1.95%.
  • the amount of change in the half width at half maximum is 1.65°, but the area change rate of the light distribution shape is 1.14%. That is, in a comparison based on the area change rate of the light distribution shape, the change is larger at the lower gradation level than at the upper gradation level. This means that the amount of increase in area at lower gradation levels is greater than the amount of increase in area at higher gradation levels. Therefore, the user is more likely to feel the spread of illumination at lower gradation levels than at higher gradation levels.
  • the optical element control unit 330 can convert the gradation level p into a voltage x based on the relational expression shown in FIG. 10B.
  • the amount of change in half width at half maximum with respect to the amount of change in tone level p is not constant.
  • the amount of change in half-width at half maximum changes more at upper gradation levels than at lower gradation levels.
  • the amount of change in the area of the light distribution shape on the projection plane is not as large as the amount of change in the half width at half maximum. For example, when changing from gradation level 15 to gradation level 30, the amount of increase in the half width at half maximum is 0.292°, and the area increase rate of the light distribution shape is 1.23%.
  • the amount of increase in the half-width at half maximum is 3.106°
  • the area increase rate of the light distribution shape is 1.30%.
  • the area increase rate of the light distribution shape is approximately the same at the lower gradation level and the upper gradation level. Therefore, the user can feel the spread of the illumination to the same extent at the lower gradation level and the upper gradation level.
  • the optical element control unit 330 can convert the gradation level p into a voltage x based on the relational expression shown in FIG. 11B.
  • the amount of increase in half width at half maximum with respect to the amount of increase in tone level p is not constant.
  • the optical element control unit 330 can convert the gradation level p into a voltage x based on the relational expression shown in FIG. 12B.
  • the weighting coefficient b for example, by setting the weighting coefficient b to 3 and converting the gradation level p into a voltage x, the number of gradations at a small half-width at half maximum increases, and the gradation of the light distribution can be finely adjusted.
  • equation (2) includes a weighting coefficient b, and by changing the weighting coefficient b, it is possible to control the gradation of light distribution in accordance with the application (illumination mode) used by the user. Therefore, in the lighting system 1, the gradation of light distribution can be controlled according to the lighting mode.
  • a lighting system 1A according to an embodiment of the present invention will be described. Below, when the configuration of the illumination system 1A is similar to the configuration of the illumination system 1, the description of the configuration of the illumination system 1A may be omitted.
  • FIG. 13 is a block diagram illustrating a lighting system 1A according to an embodiment of the present invention.
  • the control device 30 includes a communication section 310, a light source control section 320, an optical element control section 330A, and a storage section 340.
  • the storage unit 340 stores a plurality of weighting coefficients 341 corresponding to a plurality of illumination modes. Furthermore, the storage unit 340 further stores a plurality of look-up tables (LUTs) 342A corresponding to the plurality of weighting coefficients 341.
  • LUTs look-up tables
  • the optical element control unit 330A can generate a signal for controlling the optical element 10, and can input the generated signal to the first liquid crystal cell 100-1 to the fourth liquid crystal cell 100-4. Thereby, the shape and gradation of light distribution can be controlled.
  • the optical element control unit 330A selects a weighting coefficient corresponding to the illumination mode information from among the plurality of weighting coefficients 341 stored in the storage unit 340 based on the illumination mode information transmitted from the information communication terminal 40. Determine b.
  • the optical element control unit 330A determines the gradation level based on the gradation information transmitted from the information communication terminal 40.
  • the optical element control unit 330A obtains the lookup table corresponding to the weighting coefficient b from among the plurality of lookup tables 342A stored in the storage unit 340.
  • the optical element control unit 330A controls the first transparent electrode 120-1 of each of the first liquid crystal cell 100-1 to fourth liquid crystal cell 100-4 corresponding to the gradation level based on the acquired lookup table.
  • the optical element control unit 330A transmits the signal including the acquired voltage to the first transparent electrode 120-1 to the fourth transparent electrode of each of the first liquid crystal cell 100-1 to fourth liquid crystal cell 100-4. Enter in 120-4. Thereby, the light emitted from the light source 20 is controlled to have a light distribution having a gradation desired by the user.
  • a plurality of lookup tables 342A are stored, and when the optical element control unit 330A obtains a predetermined lookup table, the obtained lookup table is Based on this, the gradation can be controlled so that the light distribution angle increases (or decreases). That is, in the lighting system 1, it is easy to control the gradation of light distribution.
  • equation (2) includes a weighting coefficient b, and by changing the weighting coefficient b, it is possible to control the gradation of light distribution in accordance with the application (illumination mode) used by the user. Therefore, in the lighting system 1A, the gradation of light distribution can be controlled according to the lighting mode.
  • a lighting system 1B according to an embodiment of the present invention will be described. Below, when the configuration of the illumination system 1B is similar to the configuration of the illumination system 1, the description of the configuration of the illumination system 1B may be omitted.
  • FIG. 14 is a block diagram illustrating a lighting system 1B according to an embodiment of the present invention.
  • the control device 30 includes a communication section 310, a light source control section 320, and an optical element control section 330B.
  • the information communication terminal 40 includes a communication section 410, a display section 420, an input section 430, a calculation section 440B, and a storage section 450B.
  • the storage unit 450B stores weighting coefficients 451B corresponding to a plurality of illumination modes.
  • the calculation unit 440B is, for example, a computer.
  • the calculation unit 440B can generate gradation data necessary for controlling the optical element 10. Specifically, the calculation unit 440B determines the weighting coefficient b corresponding to the lighting mode information from among the plurality of weighting coefficients 451B stored in the storage unit 450B based on the lighting mode information generated by the input unit 430. .
  • the calculation unit 440B determines the gradation level based on the gradation information generated by the input unit 430.
  • the gradation data including the calculated voltage is transmitted to the control device 30 via the communication unit 410.
  • the optical element control unit 330B generates a signal for controlling the optical element 10 based on the transmitted gradation data, and transmits the generated signal to the first liquid crystal cell 100-1 to the fourth liquid crystal cell 100-4. can be entered. Thereby, the shape and gradation of light distribution can be controlled.
  • a program is installed in the user's information communication terminal 40, and the calculation unit 440B calculates the voltage x to be applied to the transparent electrode 120 using equation (2). .
  • the calculated voltage x is transmitted to the control device 30, and the optical element control unit 330B controls the gradation so that the light distribution angle monotonically increases (or monotonically decreases) based on the transmitted voltage x. Can be done. That is, in the lighting system 1A, it is easy to control the gradation of light distribution.
  • the gist of the present invention also includes those in which a person skilled in the art appropriately adds, deletes, or changes the design of each of the above-described embodiments, or adds, omit, or changes the conditions in a process. It is within the scope of the present invention as long as it has the following.
  • 1, 1A, 1B lighting system
  • 10 optical element
  • 20 light source
  • 30 control device
  • 40 information communication terminal
  • 100 liquid crystal cell
  • 110 substrate
  • 120 transparent electrode
  • 121 connection pad
  • 122 Terminal
  • 130 First alignment film
  • 140 Sealing material
  • 150 Liquid crystal layer
  • 160 Optical elastic resin layer
  • 170 Flexible printed circuit board (FPCs)
  • 310 Communication section
  • 320 Light source control section
  • 330, 330A Optical element control section
  • 340 Storage section
  • 342A Lookup table
  • 410 Communication section
  • 420 Display section
  • 430 Input section
  • 440B Arithmetic section
  • 450B Storage section
  • 1000-1 First light
  • 1000-2 Second light

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Liquid Crystal (AREA)

Abstract

照明システムは、光源と、光源から出射された光の配光角を変化させる液晶セルと、配光角の階調を制御する制御装置と、を含み、液晶セルは、各々が第1の方向に延在する第1の透明電極および第2の透明電極が交互に設けられた第1の基板と、各々が第1の方向と交差する第2の方向に延在する第3の透明電極および第4の透明電極が交互に設けられた第2の基板と、第1の基板と前記第2の基板との間の液晶層と、を含み、制御装置は、情報通信端末から前記配光角の階調情報を受信する通信部と、配光角の階調の変化に対して配光角の変化量を関連付ける重み付け係数を格納する記憶部と、階調情報と重み付け係数とに基づいて、第1の透明電極乃至第4の透明電極に入力される第1の電圧、乃至第4の電圧を算出する制御部と、を含む。

Description

照明システム
 本発明の一実施形態は、液晶を利用し、光源から出射された光の配光角を制御する照明システム関する。
 照明装置の配光の制御においては、レンズを組み合わせてレンズ位置を調整する方法、またはモータで焦点位置を調整する方法が提案されている(例えば、特許文献1参照)。一方で、近年、液晶に印加する電圧を調整し、液晶の屈折率が変化することを利用した光学素子、いわゆる液晶レンズを用いた照明装置の開発が進められている(例えば、技術文献2参照)。
特開2016-39026号公報 特開2012-69409号公報
 液晶レンズを利用する照明装置では、液晶に印加する電圧によって配光を制御する。しかしながら、電圧に対する液晶の屈折率の変化は一定ではないため、配光の制御が難しく、ユーザの操作感と合わないという問題があった。
 本発明の一実施形態は、上記問題に鑑み、ユーザの操作感に合う配光の制御を可能とする照明システムを提供することを目的の一つとする。
 本発明の一実施形態に係る照明システムは、光源と、光源から出射された光の配光角を変化させる液晶セルと、配光角の階調を制御する制御装置と、を含み、液晶セルは、各々が第1の方向に延在する第1の透明電極および第2の透明電極が交互に設けられた第1の基板と、各々が第1の方向と交差する第2の方向に延在する第3の透明電極および第4の透明電極が交互に設けられた第2の基板と、第1の基板と前記第2の基板との間の液晶層と、を含み、制御装置は、情報通信端末から前記配光角の階調情報を受信する通信部と、配光角の階調の変化に対して配光角の変化量を関連付ける重み付け係数を格納する記憶部と、階調情報と重み付け係数とに基づいて、第1の透明電極に入力される第1の電圧、第2の透明電極に入力される第2の電圧、第3の透明電極に入力される第3の電圧、および第4の透明電極に入力される第4の電圧を算出する制御部と、を含む。
本発明の一実施形態に係る照明システムの構成を示す模式図である。 本発明の一実施形態に係る照明システムの構成を示すブロック図である。 本発明の一実施形態に係る照明システムの構成を示す模式的な断面図である。 本発明の一実施形態に係る照明システムの構成を示す模式的な断面図である。 本発明の一実施形態に係る照明システムの光学素子に含まれる液晶セルの電極パターンを示す模式的な平面図である。 本発明の一実施形態に係る照明システムの光学素子に含まれる液晶セルの電極パターンを示す模式的な平面図である。 本発明の一実施形態に係る照明システムの光学素子に含まれる液晶セルの光学特性を説明する模式図である。 本発明の一実施形態に係る照明システムの光学素子に含まれる液晶セルの光学特性を説明する模式図である。 本発明の一実施形態に係る照明システムにおいて、配光形状を制御するために光学素子の透明電極に入力される信号のタイミングチャートである。 本発明の一実施形態に係る照明システムにおいて、配光形状を制御するために光学素子の透明電極に入力される信号のタイミングチャートである。 本発明の一実施形態に係る照明システムにおいて、配光形状を制御するために光学素子の透明電極に入力される信号のタイミングチャートである。 本発明の一実施形態に係る照明システムにおける配光角および半値半幅の定義を説明する模式図である。 本発明の一実施形態に係る照明システムにおける配光角および半値半幅の定義を説明する模式図である。 本発明の一実施形態に係る照明システムにおける光学素子の透明電極に印加する電圧と半値半幅との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおける階調制御処理を説明するフローチャートである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=1の場合における階調と半値半幅との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=1の場合における階調と透明電極に印加する電圧との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=2の場合における階調と半値半幅との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=2の場合における階調と透明電極に印加する電圧との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=3の場合における階調と半値半幅との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムにおいて、重み付け係数b=3の場合における階調と透明電極に印加する電圧との相関関係を示すグラフである。 本発明の一実施形態に係る照明システムを説明するブロック図である。 本発明の一実施形態に係る照明システムを説明するブロック図である。
 以下、本発明の各実施形態において、図面等を参照しつつ説明する。但し、本発明は、その技術的思想の要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、図示の形状そのものが本発明の解釈を限定するものではない。また、図面において、明細書中で既出の図に関して説明したものと同様の機能を備えた要素には、別図であっても同一の符号を付して、重複する説明を省略する場合がある。
 ある一つの膜を加工して複数の構造体を形成した場合、各々の構造体は異なる機能、役割を有する場合があり、また各々の構造体はそれが形成される下地が異なる場合がある。しかしながらこれら複数の構造体は、同一の工程で同一層として形成された膜に由来するものであり、同一の材料を有する。従って、これら複数の膜は同一層に存在しているものと定義する。
 ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上」と表記する場合、特に断りの無い限りは、ある構造体に接して、直上に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
<第1実施形態>
 図1~図12Bを参照して、本発明の一実施形態に係る照明システム1について説明する。
[1.照明システム1の構成]
 図1は、本発明の一実施形態に係る照明システム1の構成を示す模式図である。図1に示すように、照明システム1は、光学素子10、光源20、制御装置30、および情報通信端末40を含む。
 光学素子10は、4つの液晶セル100(第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4)を含む。光学素子10では、光源20に近い方から順に、第1の液晶セル100-1、第2の液晶セル100-2、第3の液晶セル100-3、および第4の液晶セル100-4が、z軸方向に順に積層されている。なお、以下では、光学素子10が4つの液晶セル100を含む構成について説明するが、光学素子10に含まれる液晶セル100の数は4つに限られない。光学素子10には、少なくとも2つの液晶セル100が含まれていればよい。光学素子10の構成の詳細は、後述する。
 光源20は、光学素子10に対して光を出射する。光源20から出射された光は、第1の液晶セル100-1に入射され、第4の液晶セル100-4から出射される。照明システム1では、光学素子10に含まれる4つの液晶セルにより、光の拡散および偏光が制御され、第4の液晶セル100-4から出射される光の拡がり(配光)を変化させることができる。光源20として、例えば、発光ダイオード(Light Emitting Diodes:LEDs)を用いることができるが、これに限定されない。光源20は、光を出射することができる素子または装置であればよい。
 制御装置30は、光学素子10および光源20と接続され、光学素子10および光源20を制御する。制御装置30は、例えば、中央演算処理装置(Central Processing Unit:CPU)、マイクロプロセッサ(Micro Processing Unit:MPU)、集積回路(Integrated Circuit:IC)、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、フィールド・プログラマブル・ゲート・アレイ(Field-Programmable Gate Array:FPGA)、またはランダムアクセスメモリ(Random Access Memory:RAM)などを含む。なお、制御装置30の構成の詳細は、後述する。
 情報通信端末40は、例えば、携帯電話、スマートフォン、タブレット、またはパーソナルコンピュータなどであるが、これらに限られない。情報通信端末40は、ネットワークNWを介して、制御装置30と通信可能に接続される。ネットワークNWは、有線であってもよく、無線であってもよい。但し、情報通信端末40が携帯型端末である場合には、ネットワークNWは無線であることが好ましい。ネットワークNWは、LAN(Local Area Network)またはインターネットなどであるが、これらに限られない。また、ネットワークNWは、通信業者によって管理される通信基地局を介したネットワークであってもよい。なお、情報通信端末40の構成の詳細は、後述する。
 ユーザは、情報通信端末40を使用して、光源20から出射された光の配光を設定することができる。すなわち、照明システム1では、情報通信端末40からのユーザ入力情報に基づき、制御装置30が光学素子10および光源20を制御し、光源20から出射された光の配光を変化させることができる。
 図2は、本発明の一実施形態に係る照明システム1の構成を示すブロック図である。図2に示すように、制御装置30は、通信部310、光源制御部320、光学素子制御部330、および記憶部340を含む。また、情報通信端末40は、通信部410、表示部420、および入力部430を含む。
 通信部310は、データまたは情報を送受信することができる通信インターフェースである。通信部310は、例えば、LANモジュールまたはWi-Fi(登録商標)モジュールなどである。
 光源制御部320は、光源20の動作を制御する。制御装置30は、所定のプログラムを実行することによって、光源制御部320を機能させることができる。例えば、光源制御部320は、情報通信端末40から送信されるユーザ入力情報に基づいて、光源20の電源のオン・オフを制御する。また、光源制御部320は、ユーザ入力情報に基づいて、光源20の光量または色温度を調整する。
 光学素子制御部330は、光学素子10を制御し、照明モード、配光形状、および配光角の階調を変化させる。制御装置30は、所定のプログラムを実行することによって、光学素子制御部330を機能させることができる。例えば、光学素子制御部330は、情報通信端末40から送信されるユーザ入力情報に基づいて、光学素子10を制御する電圧を算出し、算出された電圧を含む信号を液晶セル100に入力する。照明システム1では、照明モードに応じて配光の階調を変えることができる。なお、以下では、照明システムにおける出射光の拡がり度合いを階調と称して説明する。当該階調は、出射光の広がりが最も小さい(出射光の広がりがない、または光源からの出射光がそのまま出射される)場合から最も大きい場合まで多段に階調を設定することができる。階調は8段、16段、32段、64段、128段、または256段等に設定可能である。あるいは、階調ではなく、光の拡がり状態を0%(光の拡がりがない状態、または光源からの光がそのまま照射される状態)~100%(光の拡がりが最大となる状態)で設定する構成も適用可能である。
 照明モードは、例えば、ダウンライトのように広い範囲を照らす広角照明モード、またはスポットライトのように狭い範囲を照らす挟角照明モードなどであるが、これに限られない。なお、光学素子制御部330による配光の階調制御の詳細については、後述する。
 記憶部340は、データまたは情報を保存することができるストレージである。記憶部340は、例えば、ハードディスクドライブ(Hard Disk Drive:HDD)、ソリッドステートドライブ(Solid State Drive:SSD)、リードオンリーメモリ(Read Only Memory:ROM)、ランダムアクセスメモリ(RAM)、またはフラッシュメモリなどである。記憶部340には、複数の照明モードに対応する複数の重み付け係数341が格納されている。
 通信部410は、通信部310と同様の構成であるため、説明を省略する。
 表示部420は、画面を含み、画面に画像などを表示することができる表示インターフェースである。表示部は、例えば、液晶表示装置またはOLED表示装置などである。
 入力部430は、ユーザがデータまたは情報を入力することができるユーザインターフェースである。入力部430は、ユーザ操作を受け付けることができる、例えば、ボタン、キーボード、またはマウスなどである。また、入力部430は、ユーザ操作に基づき、ユーザ入力情報を生成することができる。ユーザ入力情報は、例えば、ユーザが選択した照明モードを含む照明モード情報、およびユーザが選択した階調を含む階調情報などである。なお、入力部430は、表示部420と一体化されたタッチスクリーンであってもよい。
[2.光学素子10の構成]
 図3Aおよび図3Bの各々は、本発明の一実施形態に係る照明システム1の構成を示す模式的な断面図である。具体的には、図3Aは、図1のA1-A2線で切断された光学素子10の断面図であり、図3Bは、図1のB1-B2線で切断された光学素子10の断面図である。
 図3Aおよび図3Bに示すように、第1の液晶セル100-1~第4の液晶セル100-4の各々は、第1の基板110-1、第2の基板110-2、複数の第1の透明電極120-1、複数の第2の透明電極120-2、複数の第3の透明電極120-3、複数の第4の透明電極120-4、第1の配向膜130-1、第2の配向膜130-2、シール材140、および液晶層150を含む。第1の基板110-1上には、第1の透明電極120-1と第2の透明電極120-2とが交互に設けられている。すなわち、複数の第1の透明電極120-1および複数の第2の透明電極120-2は、櫛歯状に配置されている。また、第1の基板110-1上には、第1の透明電極120-1および第2の透明電極120-2を覆うように、第1の配向膜130-1が設けられている。第2の基板110-2上には、第3の透明電極120-3と第4の透明電極120-4とが交互に設けられている。すなわち、複数の第3の透明電極120-1および複数の第4の透明電極120-4は、櫛歯状に配置されている。また、第2の基板110-2上には、第3の透明電極120-3および第4の透明電極120-4を覆うように、第2の配向膜130-2が設けられている。第1の基板110-1と第2の基板110-2とは、第1の透明電極120-1および第2の透明電極120-2と、第3の透明電極120-3および第4の透明電極120-4とが対向するように配置され、第1の基板110-1および第2の基板110-2の周辺部に設けられたシール材140を介して、接着されている。第1の基板110-1(より具体的には、第1の配向膜130-1)、第2の基板110-2(より具体的には、第2の配向膜130-2)、およびシール材140で囲まれた空間には液晶が封入され、第1の基板110-1と第2の基板110-2との間に液晶層150が設けられている。
 第1の液晶セル100-1と第2の液晶セル100-2との間には、光学弾性樹脂層160が設けられている。同様に、第2の液晶セル100-2と第3の液晶セル100-3との間、および第3の液晶セル100-3と第4の液晶セル100-4との間にも、光学弾性樹脂層160が設けられている。光学弾性樹脂層160として、例えば、透光性を有するアクリル樹脂を含む接着剤を用いることができる。すなわち、光学弾性樹脂層160は、隣接する2つの液晶セル100を接着し、固定することができる。
 第1の基板110-1および第2の基板110-2の各々として、例えば、ガラス基板、石英基板、またはサファイア基板などの透光性を有する剛性基板が用いられる。また、第1の基板110-1および第2の基板110-2の各々として、例えば、ポリイミド樹脂基板、アクリル樹脂基板、シロキサン樹脂基板、またはフッ素樹脂基板などの透光性を有する可撓性基板を用いることもできる。
 第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々は、液晶層150に電界を形成するための電極として機能する。第1の透明電極120-1、第2の透明電極120-2、第3の透明電極120-3、および第4の透明電極120-4の各々として、例えば、インジウム・スズ酸化物(ITO)またはインジウム・亜鉛酸化物(IZO)などの透明導電材料が用いられる。
 第1の液晶セル100-1および第2の液晶セル100-2において、第1の透明電極120-1および第2の透明電極120-2はx軸方向に延在し、第3の透明電極120-3および第4の透明電極120-4はy軸方向に延在している。また、第3の液晶セル100-3および第4の液晶セル100-4において、第1の透明電極120-1および第2の透明電極120-2はy軸方向に延在し、第3の透明電極120-3および第4の透明電極120-4はx軸方向に延在している。
 なお、以下では、第1の透明電極120-1~第4の透明電極120-4を特に区別しないときは、透明電極120として説明する場合がある。
 第1の配向膜130-1および第2の配向膜130-2の各々は、液晶層150内の液晶分子を所定の方向に配向させる。第1の配向膜130-1および第2の配向膜130-2の各々として、ポリイミド樹脂などが用いられる。なお、第1の配向膜130-1および第2の配向膜130-2の各々は、ラビング法または光配向法などの配向処理によって配向特性が付与されてもよい。ラビング法は、配向膜の表面を一方向に擦る方法である。また、光配向法は、配向膜に直線偏光の紫外線を照射する方法である。
 第1の配向膜130-1は、第1の透明電極120-1および第2の透明電極120-2の延在方向と直交する方向に、液晶層150の第1の基板110-1側の液晶分子が整列するように配向処理が行われる。また、第2の配向膜130-2は、第3の透明電極120-3および第4の透明電極120-4の延在方向と直交する方向に、液晶層150の第2の基板110-2側の液晶分子が整列するように配向処理が行われる。そのため、第1の液晶セル100-1および第2の液晶セル100-2において、第1の基板110-1側の液晶分子の長軸はy軸方向に配向し、第2の基板110-2側の液晶分子の長軸はx軸方向に配向する。また、第3の液晶セル100-3および第4の液晶セル100-4において、第1の基板110-1側の液晶分子の長軸はx軸方向に配向し、第2の基板110-2側の液晶分子の長軸はy軸方向に配向する。なお、上記では、液晶分子の配向方向と透明電極120の延在方向とが直交しているとして説明したが、液晶分子の配向方向と透明電極120の延在方向とは直交以外の角度、例えば、85度以上90度未満の角度で交差していても構わない。
 シール材140として、エポキシ樹脂またはアクリル樹脂を含む接着材などが用いられる。なお、接着材は、紫外線硬化型であってもよく、熱硬化型であってもよい。
 液晶層150は、液晶分子の配向状態に応じて、透過する光を屈折し、または透過する光の偏光状態を変化させることができる。液晶層150の液晶として、ネマティック液晶などが用いられる。本実施形態で説明する液晶はポジ型であるが、透明電極120に電圧を印加しない状態における液晶分子の配向方向などを変更することによりネガ型を適用する構成も可能である。また、液晶には、液晶分子にねじれを付与するカイラル剤が含まれていることが好ましい。
[3.液晶セル100の電極パターン]
 図4Aおよび図4Bの各々は、本発明の一実施形態に係る照明システム1の光学素子10に含まれる液晶セル100の電極パターンを示す模式的な平面図である。具体的には、図4Aは、第1の液晶セル100-1の第1の基板110-1上に形成される電極パターンを示す平面図であり、図4Bは、第1の液晶セル100-1の第2の基板110-2上に形成される電極パターンを示す平面図である。
 図4Aに示すように、第1の基板110-1上には、第1の接続パッド121-1および第2の接続パッド121-2が設けられている。複数の第1の透明電極120-1は、第1の接続パッド121-1と電気的に接続されている。複数の第2の透明電極120-2は、第2の接続パッド121-2と電気的に接続されている。
 図4Bに示すように、第2の基板110-2上には、第3の接続パッド121-3、第4の接続パッド121-4、第1の端子122-1、第2の端子122-2、第3の端子122-3、および第4の端子122-4が設けられている。複数の第3の透明電極120-3は、第3の端子122-3と電気的に接続されている。複数の第4の透明電極120-4は、第4の端子122-4と電気的に接続されている。また、第3の接続パッド121-3は、第1の端子122-1と電気的に接続されている。第4の接続パッド121-4は、第2の端子122-2と電気的に接続されている。
 第1の基板110-1と第2の基板110-2とが貼り合わせられると、第1の接続パッド121-1および第2の接続パッド121-2は、それぞれ、第3の接続パッド121-3および第4の接続パッド121-4と重畳する。第1の接続パッド121-1と第3の接続パッド121-3との間には、銀ペースト等の導通材が設けられており、第1の接続パッド121-1と第3の接続パッド121-3とは、導通材を介して電気的に接続されている。同様に、第2の接続パッド121-2と第4の接続パッド121-4との間にも、導通材が設けられており、第2の接続パッド121-2と第4の接続パッド121-4とは、導通材を介して電気的に接続されている。したがって、第1の基板110-1上の第1の透明電極120-1および第2の透明電極120-2は、それぞれ、第1の端子122-1および第2の端子122-2と電気的に接続されている。
 第2の液晶セル100-2の電極パターンは、第1の液晶セル100-1の電極パターンと同一である。第3の液晶セル100-3および第4の液晶セル100-4の電極パターンの構成は、透明電極120の延在方向が90°回転している点以外、第1の液晶セル100-1の構成と同様である。
 液晶セル100では、第2の基板110-2上の第1の端子122-1~第4の端子122-4が、第1の基板110-1から露出されている。第1の液晶セル100-1~第4の液晶セル100-4の各々において、露出された第1の端子122-1~第4の端子122-4に、フレキシブルプリント基板(Flexible Printed Circuits:FPCs)170が設けられている(図1参照)。FPCs170は、制御装置30と電気的に接続されている。そのため、制御装置30は、FPCs170を介して、液晶セル100の第1の透明電極120-1~第4の透明電極120-4のそれぞれに信号を入力し、光学素子10を制御することができる。
[4.液晶セル100の光学特性]
 図5Aおよび図5Bの各々は、本発明の一実施形態に係る照明システム1の光学素子10に含まれる液晶セル100の光学特性を説明する模式図である。具体的には、図5Aは、透明電極120に電圧が印加されていない状態の液晶セル100を示し、図5Bは、透明電極120に電圧が印加されている状態の液晶セル100を示す。
 図5Aに示すように、液晶層150の第1の基板110-1側の液晶分子はy軸方向に配向し、液晶層150の第2の基板110-2側の液晶分子はx軸方向に配向している。そのため、第1の透明電極120-1~第4の透明電極120-4のいずれにも電圧が印加されていない状態では、液晶層150内の液晶分子は、第1の基板110-1から第2の基板110-2に向かうにつれてc軸方向に90°捩じれるように配向する。また、液晶層150を透過する光は、液晶分子の配向に従って、偏光面(偏光軸または偏光成分の向き)が90°回転される。より具体的には、当該液晶セル100に入射するP偏光成分が当該液晶セル100の液晶層150を通過することによりS偏光成分となり、当該液晶セル100に入射するS偏光成分がP偏光成分となる。このような偏光成分が遷移する現象を旋光と称してよい。
 一方、隣接する2つの透明電極120間で電位差が生じるように電圧が印加されると、隣接する2つの透明電極120間に電界(以下、「横電界」という。)が発生し、液晶分子の配向が変化する。図5Bに示すように、液晶層150内の液晶分子は、第1の基板110-1から第2の基板110-2に向かうにつれてc軸方向に90°捩じれるように配向しながら、第1の基板110-1側近傍の液晶分子は、第1の透明電極120-1と第2の透明電極120-2との間の横電界によって第1の基板110-1に対して凸円弧状に配列し、第2の基板110-2側近傍の液晶分子は、第3の透明電極120-3と第4の透明電極120-4との間の横電界によって第2の基板110-2に対して凸円弧状に配列する。凸円弧状に配列した液晶分子は屈折率分布を有し、液晶分子の配向方向と同じ偏光方向を有する光が拡散される。なお、第1の基板110-1と第2の基板110-2の間の間隔であるセルギャップdは、隣接する2つの透明電極間の距離よりも十分に大きい(例えば、10μm≦d≦30μm)ため、第1の基板110-1と第2の基板110-2との間の中央近傍に位置する液晶分子の配向はほとんど変化しない。
 光源20から出射された光は、x軸方向の偏光成分(以下、「P偏光成分」という。)およびy軸方向の偏光成分(以下、「S偏光成分」という。)を含むが、以下では、便宜上、光源20から出射された光を、P偏光成分を有する第1の光1000-1とS偏光成分を有する第2の光1000-2とに分けて説明する。
 第1の基板110-1側から入射した第1の光1000-1のP偏光成分は、第1の基板110-1側の液晶分子の配向方向と異なるため、第1の光1000-1は拡散されない(図5B中の(1)参照)。また、第1の光1000-1は、液晶層150を通過する過程で旋光し、偏光成分がP偏光成分からS偏光成分に変化する。第1の光1000-1のS偏光成分は、第2の基板110-2側の液晶分子の配向方向と異なるため、第1の光1000-1は拡散されない(図5B中の(2)参照)。
 第1の基板110-1側から入射した第2の光1000-2のS偏光成分は、第1の基板110-1側の液晶分子の配向方向と同じであるため、第2の光1000-2は、液晶分子の屈折率分布に従ってy軸方向に拡散される(図5B中の(3)参照)。また、第2の光1000-2は、液晶層150を通過する過程で旋光し、偏光成分がS偏光成分からP偏光成分に変化する。第2の光1000-2のP偏光成分は、第2の基板110-2側の液晶分子の配向方向と同じであるため、第2の光1000-2は、液晶分子の屈折率分布に従ってx軸方向に拡散される(図5B中の(4)参照)。
[5.配光制御]
[5-1.配光形状の制御]
 第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4に印加する電圧を制御することにより、光学素子10を透過する光の配光形状を変化させることができる。
 図6A~図6Cの各々は、本発明の一実施形態に係る照明システム1において、配光形状を制御するために光学素子10の透明電極120に入力される信号のタイミングチャートである。以下では、便宜上、High電圧を+αV(または-βV)、High電圧を-αV(またはβV)、および中間電圧を0Vとして説明する。但し、High電圧、Low電圧、および中間電圧はこれに限られない。High電圧は、Low電圧および中間電圧よりも大きい電圧であればよい。また、中間電圧は、High電圧とLow電圧との間の電圧であればよい。例えば、High電圧、Low電圧、および中間電圧は、それぞれ、30V、0V、および15Vであってもよい。
 透明電極120に入力される信号に含まれる電圧は、High電圧とLow電圧とが繰り返される矩形波、または一定の中間電圧であるが、これに限られない。
 図6A~図6Cには、第1の信号S1、第2の信号S2、第3の信号S3、および第4の信号が示されている。第1の信号S1は、第1の液晶セル100-1および第2の液晶セル100-2の第1の透明電極120-1、ならびに第3の液晶セル100-3および第4の液晶セル100-4の第3の透明電極120-3に入力される。第2の信号S2は、第1の液晶セル100-1および第2の液晶セル100-2の第2の透明電極120-2、ならびに第3の液晶セル100-3および第4の液晶セル100-4の第4の透明電極120-4に入力される。第3の信号S3は、第1の液晶セル100-1および第2の液晶セル100-2の第3の透明電極120-3、ならびに第3の液晶セル100-3および第4の液晶セル100-4の第1の透明電極120-1に入力される。第4の信号S4は、第1の液晶セル100-1および第2の液晶セル100-2の第4の透明電極120-4、ならびに第3の液晶セル100-3および第4の液晶セル100-4の第2の透明電極120-2に入力される。
 図6Aに示すタイミングチャートの場合、y軸方向に延在している隣接する2つの透明電極120間で横電界が発生する。この場合、長軸がx軸方向に配向している液晶分子が凸円弧状に配列する。そのため、光学素子10を透過する光は、第1の液晶セル100-1~第4の液晶セル100-4の各々において、x軸方向に拡散される。したがって、図6Aに示すタイミングチャートでは、x軸方向に広がる線形状の配光を得ることができる。
 図6Bに示すタイミングチャートの場合、x軸方向に延在している隣接する2つの透明電極120間で横電界が発生する。この場合、長軸がy軸方向に配向している液晶分子が凸円弧状に配列する。そのため、光学素子10を透過する光は、第1の液晶セル100-1~第4の液晶セル100-4の各々において、y軸方向に拡散される。したがって、図6Bに示すタイミングチャートでは、y軸方向に広がる線形状の配光を得ることができる。
 図6Cに示すタイミングチャートの場合、y軸方向に延在している隣接する2つの透明電極120間およびx軸方向に延在している隣接する2つの透明電極120間で横電界が発生する。この場合、液晶セル100の一方の基板110側における長軸がx軸方向に配向している液晶分子だけでなく、液晶セル100の他方の基板110側における長軸がy軸方向に配向している液晶分子が、凸円弧状に配列する。そのため、光学素子10を透過する光は、第1の液晶セル100-1~第4の液晶セル100-4の各々において、x軸方向およびy軸方向に拡散される。したがって、図6Cに示すタイミングチャートでは、α=βのとき、円形状の配光を得ることができる。また、α<βのとき、x軸方向に長軸を有する楕円形状の配光を得ることができる。また、β>αのとき、y軸方向に長軸を有する楕円形状の配光を得ることができる。
[5-2.配光角の階調制御]
 透明電極120に印加される電圧の大きさを変えると、液晶セル100における光の拡散の程度を変えることができる。そのため、第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4に印加する電圧の大きさを制御することにより、光学素子10を透過する光の配光角の階調を制御することができる。ここで、図7Aおよび図7Bを参照して、配光角の定義について説明する。
 図7Aおよび図7Bは、本発明の一実施形態に係る照明システム1における配光角および半値半幅の定義を説明する模式図である。より具体的には、図7Bは、図7Aの状態をy軸方向から見た場合において、横軸をx軸方向の極角、縦軸を当該照明システム1が照らす面Sの照度とし、極角0°の位置に光源20を設けた場合の極角に対する照度の変化を示すグラフである。
 光源20から出射された光は、光学素子10によって配光が制御され、所定の配光形状を有する光が投影面に投影される。投影面における光の照度は、中心(光源20の直下)が最も大きく、中心から離れるに従って小さくなる。1/2照度角は、実質的には光源20の鉛直方向の線と、光源20の直下の照度に対して50%の照度になる点と光源20とを結ぶ線とのなす角として定義されるが、図7Bにおいては、光源20直下の照度を100%とした場合の照度グラフにおいて、照度が50%である極角である。本明細書において、配光角は1/2照度角に等しく、半値半幅(Half Width at Half Maximum:HWHM)という場合がある。すなわち、配光角は、半値半幅θ°として表すことができる。そのため、以下では、便宜上、配光角の説明として、半値半幅を用いて説明する場合がある。なお、半値半幅の2倍が、半値全幅(Full Width at Half Maximum:FWHM)である。
 図8は、本発明の一実施形態に係る照明システム1における光学素子10の透明電極120に印加する電圧と半値半幅との相関関係を示すグラフである。図8には、作製した照明システム1において測定されたデータ(図8中の黒丸)とその近似曲線が示されている。
 図8に示すように、透明電極120に印加する電圧に対する半値半幅は複雑な曲線を示す。例えば、図8に示す近似曲線の関数f(x)は、2つのシグモイド関数の和として、式(1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、kおよびkは比例定数であり、zは所定の係数である。
 なお、式(1)は一例であり、電圧xに対する半値半幅を算出する関数f(x)は、式(1)に限られるものではない。特に、式(1)の各定数は、光学素子10に含まれる液晶セル100の数、および光源20の種類などによって変わり得る。関数f(x)は、測定したデータに基づいて算出することができ、液晶セル100の透明電極120に印加する電圧xと半値半幅との相関を示す関数であればよい。
 照明システム1の配光の階調制御においては、ユーザ操作によって配光角を変化させることができる。ここで、配光角と電圧の関係は上述の関数f(x)のように複雑であるため、ユーザが操作する階調レベルに対して電圧xを均等に割り当てるのみでは、階調レベルによって配光角の変化が大きい場合と小さい場合とがあり、ユーザの操作感と一致しない場合がある。また、階調レベルによって配光角の微小な調整が難しい場合がある。そこで、照明システム1では、式(2)に示す、階調レベルpと配光角との相関を表す関数g(p)を導入する。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、aおよびcは任意の定数であり、bは重み付け係数である。ここで、定数aおよびcは、a>0かつc>0であり、重み付け係数bは、b≧1である。関数g(p)では、階調レベルpが増加するにつれて配光角は増加する。階調レベルpの数、すなわち階調数は、例えば、256(階調レベル0~255)であるが、これに限られない。また、pmaxは、当該設定した階調数の最大の数であって、階調レベルが0~255の場合、pmaxは255となる。階調数に応じて、pmaxは異なる値となる。例えば、階調数が、16、32、および64(いずれも最小の階調として0を含む)では、pmaxはそれぞれ、15、31、および63を用いる。なお、最小の階調が0を含まない場合、pmaxは、それぞれの階調数に応じて、16、32、64、または256等となることは言うまでもない。
 また、配向状態をn%等パーセンテージで示す場合、g(n)は、式(3)のように定義することも可能である。
Figure JPOXMLDOC01-appb-M000003
 上述したように、配光角と半値半幅は同じものである。以下では、名称を統一するため、半値半幅の用語を用いて説明する。すなわち、f(x)およびg(p)は、ともに半値半幅を算出する式である。そのため、f(x)=g(p)とすると、階調レベルpに対する電圧xを算出することができる。なお、定数cは、階調レベルが0のときの半値半幅に対応する。すなわち、定数cは、電圧x=0Vのときの半値半幅から算出することができる。また、最大階調レベルpmaxおよび最大電圧xmaxのときの半値半幅Amaxを用いると、Amax=a・(pmax/255)+cと表すことができる。そのため、重み付け係数bが決定されれば、定数aを算出することができる。
 式(2)からわかるように、重み付け係数bは、階調レベルpの変化量に対する半値半幅の変化量の割合を決定する値である。重み付け係数bが大きくなると、下位の階調レベルpでの配光角の変化量が小さくなり、上位の階調レベルpでの配光角の変化量が大きくなる。換言すると、重み付け係数bが大きくなると、低階調側の階調数が増加する。したがって、この場合、小さな半値半幅における微調整が容易となる。照明システム1において、照明モードが挟角照明モードであるとき、大きな配光角よりも小さな配光角で使用される場合が多い。この場合、重み付け係数bが大きいことが好ましい。このように、照明システム1では、使用される用途(照明モード)に応じて、重み付け係数bを変えることができる。そのため、記憶部340は、複数の照明モードのそれぞれと対応する複数の重み付け係数341を含む。なお、重み付け係数bは自然数に限られない。
 図9は、本発明の一実施形態に係る照明システム1における階調制御処理を説明するフローチャートである。図9に示すフローチャートは、ステップS110~ステップS150が含まれているが、階調制御処理は、さらに、他のステップが含まれていてもよい。
 ステップS110では、通信部310が、情報通信端末40から送信される照明モード情報を受信する。照明モード情報は、ユーザ入力情報の1つであり、ユーザが、情報通信端末40の入力部430を操作することによって生成される。
 ステップS120では、光学素子制御部330が、照明モード情報に基づき、重み付け係数bを決定する。具体的には、光学素子制御部330は、記憶部340に格納された複数の重み付け係数341の中から、照明モード情報と対応する重み付け係数bを決定する。
 ステップS130では、通信部310が、情報通信端末40から送信される階調情報を受信する。階調情報は、ユーザ入力情報の1つであり、ユーザが情報通信端末40の入力部430を操作することによって生成される。
 ステップS140では、光学素子制御部330が、階調情報に基づき、透明電極120に印加する電圧を算出する。具体的には、光学素子制御部330は、階調情報に基づき、階調レベルpを決定する。また、決定された階調レベルpおよびf(x)=g(p)の関係式から電圧xを算出する。
 ステップS150では、光学素子制御部330が、算出された電圧xを含む信号を、液晶セル100の透明電極120に入力する。
 上述したように、照明システム1では、光学素子制御部330が、階調情報と重み付け係数bに基づいて、第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4に入力される電圧を算出することができる。
[6.重み付け係数bの違いによる階調の違い]
[6-1.重み付け係数b=1の場合]
 図10Aは、本発明の一実施形態に係る照明システム1において、重み付け係数b=1の場合における階調と半値半幅との相関関係を示すグラフである。また、図10Bは、本発明の一実施形態に係る照明システム1において、重み付け係数b=1の場合における階調と透明電極120に印加する電圧との相関関係を示すグラフである。
 図10Aには、式(2)において、重み付け係数b=1としたg(p)=ap+cのグラフが示されている。図10Aに示すグラフからわかるように、階調レベルpの変化量に対する半値半幅の変化量は一定である。しかしながら、投影面における配光形状の面積の変化量は一定ではない。例えば、階調レベル15から階調レベル30に変化する場合、半値半幅の変化量は1.65°であり、配光形状の面積変化率は1.95%である。一方、階調レベル240から階調レベル255に変化する場合、半値半幅の変化量は1.65°であるが、配光形状の面積変化率は1.14%である。すなわち、配光形状の面積変化率による比較においては、上位の階調レベルよりも下位の階調レベルでの変化が大きい。これは、下位の階調レベルにおける面積の増加量が、上位の階調レベルにおける面積の増加量よりも大きいことを意味する。そのため、ユーザは、上位の階調レベルよりも下位の階調レベルにおいて、照明の広がりを感じやすい。
 図10Bには、重み付け係数b=1とした場合において、f(x)=g(p)として算出された階調レベルpと電圧xとの相関関係を示す関係式がグラフとして示されている。照明システム1では、光学素子制御部330が、図10Bに示す関係式に基づいて、階調レベルpを電圧xに換算することができる。
[6-2.重み付け係数b=2の場合]
 図11Aは、本発明の一実施形態に係る照明システム1において、重み付け係数b=2の場合における階調と半値半幅との相関関係を示すグラフである。また、図11Bは、本発明の一実施形態に係る照明システム1において、重み付け係数b=2の場合における階調と透明電極120に印加する電圧との相関関係を示すグラフである。
 図11Aには、式(2)において、重み付け係数b=2としたg(p)=ap+cのグラフが示されている。図11Aに示すグラフからわかるように、階調レベルpの変化量に対する半値半幅の変化量は一定ではない。半値半幅の変化量は、下位の階調レベルよりも上位の階調レベルでより変化する。しかしながら、投影面における配光形状の面積の変化量は、半値半幅の変化量ほど大きくはない。例えば、階調レベル15から階調レベル30に変化する場合、半値半幅の増加量は0.292°であり、配光形状の面積増加率は1.23%である。一方、階調レベル240から階調レベル255に変化する場合、半値半幅の増加量は3.106°であるのに対し、配光形状の面積増加率は1.30%である。下位の階調レベルおよび上位の階調レベルにおいて、配光形状の面積増加率は同程度である。そのため、ユーザは、下位の階調レベルおよび上位の階調レベルにおいて、照明の広がりを同程度に感じることができる。
 図11Bは、重み付け係数b=2とした場合において、f(x)=g(x)として算出された階調レベルpと電圧xとの相関関係を示す関係式がグラフとして示されている。照明システム1では、光学素子制御部330が、図11Bに示す関係式に基づいて、階調レベルpを電圧xに換算することができる。
[6-3.重み付け係数b=3の場合]
 図12Aは、本発明の一実施形態に係る照明システム1において、重み付け係数b=3の場合における階調と半値半幅との相関関係を示すグラフである。また、図12Bは、本発明の一実施形態に係る照明システム1において、重み付け係数b=3の場合における階調と透明電極120に印加する電圧との相関関係を示すグラフである。
 図12Aには、式(2)において、重み付け係数b=3としたg(p)=ap+cのグラフが示されている。図12Aに示すグラフからわかるように、階調レベルpの増加量に対する半値半幅の増加量は一定ではない。b=2の場合と比べると、b=3の場合では、下位の階調レベルにおける半値半幅の変化量が小さく、上位の階調レベルにおける半値半幅の変化量が大きい。そのため、ユーザは、下位の階調レベルにおいて、照明の微小な広がりを調整することができる。
 図12Bは、重み付け係数b=3とした場合において、f(x)=g(p)として算出された階調レベルpと電圧xとの相関関係を示す関係式がグラフとして示されている。照明システム1では、光学素子制御部330が、図12Bに示す関係式に基づいて、階調レベルpを電圧xに換算することができる。
 以上、重み付け係数bが1、2、および3の場合において、階調レベルpと半値半幅との相関関係について説明したが、重み付け係数bが増加すると、半値半幅の小さい場合における階調数を増加させることができる。例えば、照明モードがスポットライトのような挟角照明モードであるとき、大きな半値半幅は必要とせず、小さな半値半幅での微調整が必要となる場合がある。この場合、例えば、重み付け係数bを3として、階調レベルpを電圧xに換算することにより、小さな半値半幅における階調数が増加し、配光の階調の微調整が可能となる。
 以上説明したように、本実施形態に係る照明システム1では、式(2)を導入し、光学素子制御部330が透明電極120に印加する電圧xを算出することにより、算出された電圧xに基づいて、配光角が単調増加(または単調減少)するように階調を制御することができる。すなわち、照明システム1は、配光の階調制御が容易である。また、式(2)は重み付け係数bを含み、重み付け係数bを変化させることによりユーザが使用する用途(照明モード)に合わせた配光の階調制御が可能である。そのため、照明システム1では、配光の階調を照明モードに合わせて制御することができる。
<第2実施形態>
 図13を参照して、本発明の一実施形態に係る照明システム1Aについて説明する。以下では、照明システム1Aの構成が照明システム1の構成と同様であるとき、照明システム1Aの構成の説明を省略する場合がある。
 図13は、本発明の一実施形態に係る照明システム1Aを説明するブロック図である。制御装置30は、通信部310、光源制御部320、光学素子制御部330A、および記憶部340を含む。記憶部340には、複数の照明モードに対応する複数の重み付け係数341が格納されている。また、記憶部340には、さらに、複数の重み付け係数341に対応する複数のルックアップテーブル(LUT)342Aが格納されている。
 ルックアップテーブル342Aでは、式(1)および式(2)から算出された、階調レベルpの各々における第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4の電圧xが割り当てられている。すなわち、ルックアップテーブル342Aでは、配光角の階調レベル、重み付け係数、第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4の電圧xが関連付けられている。
 光学素子制御部330Aは、光学素子10を制御するための信号を生成し、第1の液晶セル100-1~第4の液晶セル100-4に生成された信号を入力することができる。これにより、配光の形状および階調を制御することができる。
 具体的には、光学素子制御部330Aは、情報通信端末40から送信された照明モード情報に基づき、記憶部340に格納された複数の重み付け係数341の中から、照明モード情報と対応する重み付け係数bを決定する。光学素子制御部330Aは、情報通信端末40から送信された階調情報に基づき、階調レベルを決定する。光学素子制御部330Aは、記憶部340に格納された複数のルックアップテーブル342Aの中から、重み付け係数bに対応するルックアップテーブルを取得する。光学素子制御部330Aは、取得されたルックアップテーブルに基づき、階調レベルに対応する第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4の電圧を取得する。光学素子制御部330Aは、取得された電圧を含む信号を、第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4に入力する。これにより、光源20から出射された光は、ユーザが所望する階調を有する配光に制御される。
 以上説明したように、本実施形態に係る照明システム1Aでは、複数のルックアップテーブル342Aを格納し、光学素子制御部330Aが所定のルックアップテーブルを取得することにより、取得されたルックアップテーブルに基づいて、配光角が増加(または減少)するように階調を制御することができる。すなわち、照明システム1は、配光の階調制御が容易である。また、式(2)は重み付け係数bを含み、重み付け係数bを変化させることによりユーザが使用する用途(照明モード)に合わせた配光の階調制御が可能である。そのため、照明システム1Aでは、配光の階調を照明モードに合わせて制御することができる。
<第3実施形態>
 図14を参照して、本発明の一実施形態に係る照明システム1Bについて説明する。以下では、照明システム1Bの構成が照明システム1の構成と同様であるとき、照明システム1Bの構成の説明を省略する場合がある。
 図14は、本発明の一実施形態に係る照明システム1Bを説明するブロック図である。制御装置30は、通信部310、光源制御部320、および光学素子制御部330Bを含む。また、情報通信端末40は、通信部410、表示部420、入力部430、演算部440B、および記憶部450Bを含む。記憶部450Bには、複数の照明モードに対応する重み付け係数451Bが格納されている。
 演算部440Bは、例えば、コンピュータである。演算部440Bは、光学素子10の制御に必要な階調データを生成することができる。具体的には、演算部440Bは、入力部430が生成した照明モード情報に基づき、記憶部450Bに格納された複数の重み付け係数451Bの中から、照明モード情報と対応する重み付け係数bを決定する。演算部440Bは、入力部430が生成した階調情報に基づき、階調レベルを決定する。演算部440Bは、決定された階調レベルおよびf(x)=g(x)の関係式から、透明電極120に印加する電圧を算出する。なお、電圧は、第1の液晶セル100-1~第4の液晶セル100-4の各々の第1の透明電極120-1~第4の透明電極120-4の全てについて算出される。算出された電圧を含む階調データは、通信部410を介して、制御装置30に送信される。
 光学素子制御部330Bは、送信された階調データに基づき光学素子10を制御するための信号を生成し、第1の液晶セル100-1~第4の液晶セル100-4に生成された信号を入力することができる。これにより、配光の形状および階調を制御することができる。
 以上説明したように、本実施形態に係る照明システム1Bでは、ユーザの情報通信端末40にプログラムをインストールし、演算部440Bが式(2)を用いて透明電極120に印加する電圧xを算出する。算出された電圧xは、制御装置30に送信され、光学素子制御部330Bは、送信された電圧xに基づいて、配光角が単調増加(または単調減少)するように階調を制御することができる。すなわち、照明システム1Aは、配光の階調制御が容易である。
 本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に相当し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。例えば、上述の各実施形態に対して、当業者が適宜、構成要素の追加、削除もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、各実施形態によりもたらされる他の作用効果について本明細書の記載から明らかなもの、または当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。
1、1A、1B:照明システム、 10:光学素子、 20:光源、 30:制御装置、 40:情報通信端末、 100:液晶セル、 110:基板、 120:透明電極、 121:接続パッド、 122:端子、 130:第1の配向膜、 140:シール材、 150:液晶層、 160:光学弾性樹脂層、 170:フレキシブルプリント基板(FPCs)、 310:通信部、 320:光源制御部、 330、330A:光学素子制御部、 340:記憶部、 342A:ルックアップテーブル、 410:通信部、 420:表示部、 430:入力部、 440B:演算部、 450B:記憶部、 1000-1:第1の光、 1000-2:第2の光

Claims (6)

  1.  光源と、
     前記光源から出射された光の配光角を変化させる液晶セルと、
     前記配光角の階調を制御する制御装置と、を含み、
     前記液晶セルは、
      各々が第1の方向に延在する第1の透明電極および第2の透明電極が交互に設けられた第1の基板と、
      各々が前記第1の方向と交差する第2の方向に延在する第3の透明電極および第4の透明電極が交互に設けられた第2の基板と、
      前記第1の基板と前記第2の基板との間の液晶層と、を含み、
     前記制御装置は、
      情報通信端末から前記配光角の階調情報を受信する通信部と、
      前記配光角の階調の変化に対して前記配光角の変化量を関連付ける重み付け係数を格納する記憶部と、
      前記階調情報と前記重み付け係数とに基づいて、前記第1の透明電極に入力される第1の電圧、前記第2の透明電極に入力される第2の電圧、前記第3の透明電極に入力される第3の電圧、および前記第4の透明電極に入力される第4の電圧を算出する制御部と、を含む、照明システム。
  2.  前記記憶部は、複数の照明モードに対応する複数の前記重み付け係数を含む、請求項1に記載の照明システム。
  3.  前記記憶部は、前記配光角の階調レベル、前記重み付け係数、前記第1の電圧、前記第2の電圧、前記第3の電圧、および前記第4の電圧が関連付けられたルックアップテーブルを含む、請求項1に記載の照明システム。
  4.  前記記憶部は、複数の前記重み付け係数に対応する複数の前記ルックアップテーブルを含む、請求項3に記載の照明システム。
  5.  前記ルックアップテーブルは、測定データに基づき算出された電圧xと配光角fとの相関を表す第1の関数f(x)と、階調レベルpを配光角gに変換する第2の関数g(p)=a(p/pmax+c(ここで、aおよびcは任意の定数であり、bは前記重み付け係数であり、pmaxは、設定した階調レベルのうち最大の値である。)とにおいて、前記第2の関数g(p)から定まる前記配光角gが前記第1の関数f(x)から定まる前記配光角fとが一致する(g(x)=f(x)とする。)ことに基づいて、前記階調レベルpに対応する前記電圧xが関連付けられている、請求項3に記載の照明システム。
  6.  前記重み付け係数bは、1以上である、請求項5に記載の照明システム。
PCT/JP2023/027922 2022-09-05 2023-07-31 照明システム WO2024053283A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140638 2022-09-05
JP2022140638 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053283A1 true WO2024053283A1 (ja) 2024-03-14

Family

ID=90192379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027922 WO2024053283A1 (ja) 2022-09-05 2023-07-31 照明システム

Country Status (1)

Country Link
WO (1) WO2024053283A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014980A (ja) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp 照明器具
JP2019129443A (ja) * 2018-01-25 2019-08-01 キヤノン株式会社 投影装置及びその制御方法
JP2019186170A (ja) * 2018-04-17 2019-10-24 三菱電機株式会社 照明器具
WO2022176360A1 (ja) * 2021-02-18 2022-08-25 株式会社ジャパンディスプレイ 光学素子および照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014980A (ja) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp 照明器具
JP2019129443A (ja) * 2018-01-25 2019-08-01 キヤノン株式会社 投影装置及びその制御方法
JP2019186170A (ja) * 2018-04-17 2019-10-24 三菱電機株式会社 照明器具
WO2022176360A1 (ja) * 2021-02-18 2022-08-25 株式会社ジャパンディスプレイ 光学素子および照明装置

Similar Documents

Publication Publication Date Title
US11874994B2 (en) Electronic device, image display method, program, and display system
US7758206B2 (en) Backlight assembly with a metal container having differently distant regions from a virtual plane of lamps and LCD apparatus having the same
JP4471729B2 (ja) 液晶レンズ付き発光装置
JP4608637B2 (ja) フルカラーoledバックライトを有する半透過型ディスプレイ
TW201824220A (zh) 顯示面板、顯示裝置、輸入輸出裝置、資料處理裝置
EP2953116A1 (en) Display apparatus and device
WO2019003839A1 (ja) 電子機器
US20040085498A1 (en) Transflective liquid crystal display
US20070153157A1 (en) Liquid crystal display device and method for driving the same
CN114035360A (zh) 显示装置及其投影显示装置
WO2024053283A1 (ja) 照明システム
US20240117955A1 (en) Lighting device
KR20180022570A (ko) 전자 기기 시스템
US20230375159A1 (en) Optical element and lighting device
JP6769501B2 (ja) 電気光学装置、電子機器、および電気光学装置の製造方法
US20110157514A1 (en) Photoflash
US11750295B2 (en) Communication device and communication method
US20190204665A1 (en) Display assembly and electronic apparatus
US20220075230A1 (en) Backlight unit and display device including the same
CN110956934A (zh) 显示器及显示器的显示亮度调整方法
WO2024089971A1 (ja) 照明装置
CN113053323A (zh) 一种显示装置及其色坐标调节方法
JP2021092673A (ja) 電気光学装置および電子機器
JP6045441B2 (ja) 調色装置及び調色素子
US20220373833A1 (en) Electronic device and display projection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862826

Country of ref document: EP

Kind code of ref document: A1