WO2024053222A1 - Semiconductor laser element - Google Patents

Semiconductor laser element Download PDF

Info

Publication number
WO2024053222A1
WO2024053222A1 PCT/JP2023/024337 JP2023024337W WO2024053222A1 WO 2024053222 A1 WO2024053222 A1 WO 2024053222A1 JP 2023024337 W JP2023024337 W JP 2023024337W WO 2024053222 A1 WO2024053222 A1 WO 2024053222A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
contact electrode
laser device
insulating film
ridge
Prior art date
Application number
PCT/JP2023/024337
Other languages
French (fr)
Japanese (ja)
Inventor
雄馬 村上
靖智 光井
学 西川
茂生 林
昇 井上
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Publication of WO2024053222A1 publication Critical patent/WO2024053222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present disclosure relates to a semiconductor laser device.
  • a semiconductor laser element having a ridge is known (for example, Patent Document 1).
  • an insulating film having an opening at a position corresponding to the upper surface of the ridge is disposed above the semiconductor stack.
  • a contact electrode made of Pd is placed on the top surface of the ridge, and a barrier metal layer made of Pt is placed on the contact electrode.
  • such a barrier metal layer is used to suppress diffusion of impurities into the contact electrode. In other words, an attempt is made to suppress an increase in electrical resistance caused by diffusion of impurities into the contact electrode.
  • a slit may be formed in the barrier metal layer covering the vicinity of the side surface. Impurities can diffuse into the contact electrode through such slits. As described above, in conventional semiconductor laser devices, the barrier metal layer covering the contact electrode does not have a sufficient impurity diffusion suppressing function.
  • the present disclosure aims to solve such problems, and to provide a semiconductor laser device that can suppress diffusion of impurities into contact electrodes.
  • a semiconductor laser device that emits laser light, which includes a first semiconductor layer of a first conductivity type, and an upper part of the first semiconductor layer. an active layer disposed above the active layer, a second semiconductor layer of a second conductivity type different from the first conductivity type, and an insulating film disposed above the second semiconductor layer; a contact electrode disposed above the second semiconductor layer and in contact with the second semiconductor layer; and a barrier metal layer disposed above the contact electrode, the second semiconductor layer being configured to propagate the laser beam.
  • the insulating film has an opening disposed at a position corresponding to the upper surface of the ridge; the contact electrode is disposed in the opening; A side surface located at a lateral end perpendicular to the propagation direction of the laser beam and the stacking direction of the contact electrode is inclined toward the inside of the contact electrode with respect to a direction perpendicular to the upper surface of the ridge.
  • the side surface located at the lateral end of the opening is perpendicular to the upper surface of the ridge.
  • the barrier metal layer is inclined outward, and covers the entire upper surface of the contact electrode, and continuously covers from the upper surface of the contact electrode to the upper surface of the insulating film.
  • FIG. 1 is a schematic plan view showing the overall configuration of a semiconductor laser device according to an embodiment.
  • FIG. 1 is a first schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to an embodiment.
  • FIG. 2 is a second schematic cross-sectional view showing the overall configuration of the semiconductor laser device according to the embodiment.
  • FIG. 1 is a schematic cross-sectional view showing an example of a method for mounting a semiconductor laser device according to an embodiment.
  • 1 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to an embodiment is mounted.
  • 3 is an enlarged view of the inside of the broken line frame V shown in FIG. 2.
  • FIG. 4 is an enlarged view of the inside of the broken line frame VI shown in FIG. 3.
  • FIG. 1 is a schematic plan view showing the overall configuration of a semiconductor laser device according to an embodiment.
  • FIG. 1 is a first schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to an embodiment.
  • FIG. 4 is an enlarged view of the inside of the broken line frame VII shown in FIG. 3.
  • FIG. FIG. 2 is a schematic cross-sectional view showing a first step of a method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a second step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a third step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a resist forming step in a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 7 is a schematic cross-sectional view showing an opening forming step in a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a contact electrode forming step in the fourth step of the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 2 is a first schematic cross-sectional view showing the direction of incidence of the vapor deposition material at the first rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 2 is a first schematic cross-sectional view showing the incident direction of the vapor deposition material at the second rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 6 is a schematic first cross-sectional view showing the direction of incidence of the vapor deposition material at the third rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a schematic first cross-sectional view showing the incident direction of the vapor deposition material at the fourth rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a second schematic cross-sectional view showing the incident direction of the vapor deposition material at the first rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a second schematic cross-sectional view showing the direction of incidence of the evaporation material at the second rotational position of planetary evaporation in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a second schematic cross-sectional view showing the direction of incidence of the vapor deposition material at the third rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a second schematic cross-sectional view showing the incident direction of the vapor deposition material at the fourth rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a fifth step of the method for manufacturing a semiconductor laser device according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to Modification 1 of the embodiment.
  • 25 is an enlarged view of the inside of the broken line frame XXV shown in FIG. 24.
  • FIG. FIG. 7 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to a second modification of the embodiment.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to a second modification of the embodiment is mounted.
  • FIG. 7 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to a third modification of the embodiment.
  • 29 is an enlarged view of the inside of the broken line frame XXIX shown in FIG. 28.
  • FIG. FIG. 7 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to a third modification of the embodiment is mounted.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scale etc. in each figure are not necessarily the same.
  • symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
  • the terms “upper” and “lower” do not refer to vertically above and vertically downward in absolute spatial recognition, but are defined by relative positional relationships based on the order of stacking in a stacked structure. This term is used as a term that refers to Additionally, the terms “above” and “below” are used not only when two components are spaced apart and there is another component between them; This also applies when they are placed in contact with each other.
  • FIG. 1 is a schematic plan view showing the overall configuration of a semiconductor laser device 10 according to this embodiment.
  • 2 and 3 are schematic cross-sectional views showing the overall configuration of the semiconductor laser device 10 according to this embodiment.
  • FIG. 2 shows a cross section of the semiconductor laser device 10 taken along line II-II in FIG.
  • FIG. 3 shows a cross section of the semiconductor laser device 10 taken along line III--III in FIG. 1.
  • each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other.
  • the X, Y, and Z axes are a right-handed Cartesian coordinate system.
  • the stacking direction of the semiconductor laser element 10 is parallel to the Z-axis direction, and the main emission direction of light (laser light in this embodiment) is parallel to the Y-axis direction.
  • the semiconductor laser device 10 includes a semiconductor stack 10S, and an end face 10F (see FIG. 1) in a direction perpendicular to the stacking direction (that is, the Z-axis direction) of the semiconductor stack 10S. Emit laser light from.
  • the semiconductor laser device 10 is a nitride semiconductor laser device having two end faces 10F and 10R forming a resonator, as shown in FIG.
  • the end surface 10F is a front end surface that emits laser light
  • the end surface 10R is a rear end surface that has a higher reflectance than the end surface 10F.
  • the reflectances of end faces 10F and 10R are 15% and 98%, respectively.
  • the semiconductor laser element 10 has a waveguide formed between the end face 10F and the end face 10R.
  • the cavity length (that is, the distance between the end face 10F and the end face 10R) of the semiconductor laser device 10 according to this embodiment is about 1200 ⁇ m.
  • the semiconductor laser element 10 emits blue light having a peak wavelength in the 445 nm band, for example.
  • the semiconductor laser device 10 includes a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, a barrier metal layer 50, a pad electrode 60, and an N-side and an electrode 70.
  • the substrate 21 is a plate-like member that serves as a base for the semiconductor laser device 10.
  • substrate 21 is an N-type GaN substrate.
  • the semiconductor stack 10S is a stack including semiconductor layers.
  • the semiconductor stack 10S has a plurality of semiconductor layers stacked in the stacking direction.
  • the semiconductor stack 10S includes an N-side semiconductor layer 22, an active layer 23, and a P-side semiconductor layer 24.
  • the N-side semiconductor layer 22 is an example of a first conductivity type first semiconductor layer disposed above the substrate 21 and below the active layer 23.
  • N-side semiconductor layer 22 includes a nitride semiconductor.
  • the N-side semiconductor layer 22 includes an N-type cladding layer having a lower refractive index than the active layer 23.
  • the N-side semiconductor layer 22 is, for example, an N-type AlGaN layer. Note that the N-side semiconductor layer 22 may include layers other than the N-type cladding layer.
  • the N-side semiconductor layer 22 may include, for example, a buffer layer, a light guide layer, and the like.
  • the active layer 23 is a light emitting layer placed above the N-side semiconductor layer 22.
  • active layer 23 includes a nitride semiconductor and has a quantum well structure.
  • the active layer 23 may have a single quantum well or a plurality of quantum wells.
  • the active layer 23 includes a plurality of barrier layers made of InGaN and a plurality of well layers made of InGaN.
  • the P-side semiconductor layer 24 is an example of a second semiconductor layer that is disposed above the active layer 23 and has a second conductivity type different from the first conductivity type.
  • P-side semiconductor layer 24 includes a nitride semiconductor.
  • P-side semiconductor layer 24 includes a P-type cladding layer having a lower refractive index than active layer 23.
  • the P-side semiconductor layer 24 is, for example, a P-type AlGaN layer.
  • the P-side semiconductor layer 24 may include layers other than the P-type cladding layer.
  • the P-side semiconductor layer 24 may include, for example, a light guide layer, an electron barrier layer, a contact layer, and the like. Further, the P-side semiconductor layer 24 may have a superlattice structure.
  • the P-side semiconductor layer 24 has a ridge 24R extending in the propagation direction of the laser beam.
  • the ridge 24R is a portion of the P-side semiconductor layer 24 that protrudes in the Z-axis direction.
  • two grooves 24T are formed in the P-side semiconductor layer 24, which are arranged along the ridge 24R and extend in the Y-axis direction.
  • the ridge width (that is, the dimension of the ridge 24R in the X-axis direction) is approximately 45 ⁇ m.
  • the dotted line indicating the boundary between the ridge 24R and the groove 24T in FIG.
  • wing portions 24W made of a P-side semiconductor layer are formed on both sides of the trench 24T.
  • the wing portion 24W is a portion of the P-side semiconductor layer 24 that protrudes in the Z-axis direction, and extends in the laser beam propagation direction.
  • the insulating film 30 is a layer placed above the P-side semiconductor layer 24 (that is, the second semiconductor layer).
  • the insulating film 30 is an electrically insulating layer that is disposed between the semiconductor stack 10S and the barrier metal layer 50.
  • the insulating film 30 has an opening 30a located at a position corresponding to the upper surface 24Rt of the ridge 24R.
  • the insulating film 30 is disposed on the upper surface of the P-side semiconductor layer 24 in a region other than the central portion of the upper surface 24Rt of the ridge 24R.
  • a part of the upper surface 24Rt of the ridge 24R, the side surface of the ridge 24R, the bottom surface of the groove 24T, the side surface of the wing portion 24W, the upper surface of the wing portion 24W, and the side surface of the P-side semiconductor layer 24 are continuously covered.
  • This provides electrical insulation between the barrier metal layer 50 disposed on the insulating film 30 and the pad electrode 60 disposed above the barrier metal layer 50, and the opening 30a with the side surface of the P-side semiconductor layer 24. can be secured.
  • the current flowing from the barrier metal layer 50 and the pad electrode 60 to the vicinity of the side surface of the ridge 24R via the insulating film 30 can be suppressed.
  • the material forming the insulating film 30 is not particularly limited as long as it is an insulating material.
  • the insulating film 30 is a silicon oxide film with a thickness of 300 nm. The detailed structure and effects of the insulating film 30 will be described later.
  • the contact electrode 40 is an electrode placed above the P-side semiconductor layer 24 and in contact with the P-side semiconductor layer 24.
  • the contact electrode 40 faces and is in contact with the P-side semiconductor layer 24 above the ridge 24R of the P-side semiconductor layer 24.
  • the contact electrode 40 is arranged in the opening 30a of the insulating film 30. Contact electrode 40 and insulating film 30 are spaced apart.
  • Contact electrode 40 may include Pd or indium tin oxide (ITO). Thereby, the contact resistance between the contact electrode 40 and the P-side semiconductor layer 24 can be reduced, so that the operating voltage of the semiconductor laser element 10 can be reduced. Further, the contact electrode 40 is a single layer film or a multilayer film formed of at least one of Pd, Pt, Ni, and Ag, or ITO, indium zinc oxide (IZO), zinc oxide (ZnO), InGaZnO x ( It may also be made of a conductive metal oxide such as IGZO). In this embodiment, contact electrode 40 is a single layer film. More specifically, the contact electrode 40 is a Pd layer with a thickness of 40 nm.
  • ITO indium tin oxide
  • the barrier metal layer 50 is a metal layer placed above the contact electrode 40.
  • Barrier metal layer 50 has a function of suppressing diffusion of impurities into contact electrode 40 .
  • impurities include oxygen atoms.
  • the semiconductor laser element 10 is junction-down (flip-chip) mounted (that is, when the pad electrode 60 is bonded to a mounting board or the like)
  • the Sn element contained in the solder used as the bonding material is It can become an impurity that diffuses into 40.
  • the barrier metal layer 50 covers the entire upper surface of the contact electrode 40 and continuously covers from the upper surface of the contact electrode 40 to the upper surface of the insulating film 30.
  • the barrier metal layer 50 continuously covers the upper surface of the contact electrode 40 to the upper surface of the insulating film 30 disposed outside the ridge 24R. More specifically, as shown in FIG. 2, the barrier metal layer 50 is continuously disposed above the left wing portion 24W, the left groove 24T, and a portion of the upper surface of the ridge 24R.
  • the barrier metal layer 50 also has a function of increasing the adhesion between the pad electrode 60 and the insulating film 30.
  • the barrier metal layer 50 is made of Cr or Ti, for example.
  • the barrier metal layer 50 contains Cr or Ti and the insulating film 30 is an oxide, the adhesion between the insulating film 30 and the barrier metal layer 50 can be further improved. This is because when the insulating film 30 is an oxide, the insulating film 30 and the barrier metal layer 50 will be strongly bonded if the barrier metal layer 50 is made of a material that easily forms an oxide.
  • the barrier metal layer 50 is a Cr layer with a thickness of 100 nm. Note that if the Cr film is too thick, cracks or peeling may occur due to large internal stress. For example, the thickness of barrier metal layer 50 may be 200 nm or less.
  • the thickness of the contact electrode 40 is thinner than the thickness of the barrier metal layer 50. Further, the combined thickness of the contact electrode 40 and the barrier metal layer 50 is thinner than the thickness of the insulating film.
  • the pad electrode 60 is a conductive layer arranged above the insulating film 30 and the contact electrode 40 and electrically connected to the contact electrode 40.
  • the pad electrode 60 is formed in the same planar shape as the barrier metal layer 50 on the upper surface of the barrier metal layer 50 using the same mask as that used for forming the barrier metal layer 50 .
  • Pad electrode 60 contains Au.
  • the pad electrode 60 is an Au layer with a thickness of about 2000 nm.
  • the N-side electrode 70 is a conductive layer arranged on the lower surface of the substrate 21 (that is, the main surface of the substrate 21 opposite to the main surface on which the semiconductor stack 10S is arranged).
  • the N-side electrode 70 may be, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, and Pt.
  • the N-side electrode 70 has a Ti layer with a thickness of 10 nm in contact with the substrate 21, a Pt layer with a thickness of 35 nm in contact with the Ti layer, and an Au layer with a thickness of 300 nm in contact with the Pt layer.
  • FIG. 4A is a schematic cross-sectional view showing an example of a method for mounting the semiconductor laser device 10 according to this embodiment.
  • FIG. 4B is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11 in which the semiconductor laser element 10 according to the present embodiment is mounted. 4A and 4B, similarly to FIG. 2, a cross section of the semiconductor laser device 10 perpendicular to the propagation direction of the laser beam is shown.
  • FIG. 4A An example of a method for mounting the semiconductor laser element 10 will be described using FIG. 4A.
  • a junction-down mounting method will be described as an example of a mounting method.
  • the semiconductor laser element 10 and the submount 80 on which the bonding material 90 is laminated are prepared.
  • the submount 80 is a base on which the semiconductor laser element 10 is mounted.
  • a ceramic substrate, a polycrystalline substrate, a single crystalline substrate, or the like made of a material such as alumina, AlN, SiC, or diamond can be used.
  • the bonding material 90 is a member that bonds the semiconductor laser element 10 and the submount 80.
  • bonding material 90 includes AuSn solder.
  • the semiconductor laser element 10 is placed on the bonding material 90.
  • the submount 80 is heated to a temperature T higher than the melting point Tm of the bonding material 90. Then, the bonding material 90 is melted. Here, in the heating process, the submount 80 is maintained at the temperature T for about 10 seconds.
  • the temperature of the submount 80 is lowered to a temperature below the melting point Tm of the bonding material 90.
  • the pad electrode 60 of the semiconductor laser element 10 is bonded to the submount 80 via the bonding material 90. That is, the semiconductor laser element 10 is junction-down mounted on the submount 80, and a semiconductor laser device 11 as shown in FIG. 4B can be manufactured.
  • the semiconductor laser device 11 includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, and a barrier metal layer 50. , a pad electrode 60a, a bonding material 90a, and a submount 80.
  • the pad electrode 60a is an electrode formed by joining the pad electrode 60 made of an Au layer and a bonding material 90 containing AuSn solder, and is an Au layer containing Sn element diffused from the bonding material 90. .
  • the concentration of Sn element in the pad electrode 60a is, for example, about 3%. Note that the Sn element concentration in the pad electrode 60a may not be uniform. For example, the Sn element concentration in the pad electrode 60a may increase as it approaches the bonding material 90a.
  • the bonding material 90a is a layer formed by bonding the bonding material 90 containing AuSn solder and the pad electrode 60 made of an Au layer, and is an AuSn layer containing the Au element diffused from the pad electrode 60. .
  • the concentration of Sn element in the bonding material 90a is, for example, about 20%. Note that the Sn element concentration in the bonding material 90a may not be uniform. For example, the Sn element concentration in the bonding material 90a may decrease as it approaches the pad electrode 60a.
  • the Sn element contained in the bonding material 90 is transferred to the pad electrode 60 of the semiconductor laser device 10.
  • the electrical resistance of the contact electrode 40 increases.
  • a barrier metal layer 50 that can suppress the diffusion of Sn element
  • the manner in which the semiconductor laser device 10 is mounted is not limited to this.
  • the semiconductor laser device 10 may be mounted in a junction-up manner.
  • FIG. 5 is an enlarged view of the inside of the broken line frame V shown in FIG. 6 and 7 are enlarged views of the interior of the dashed line frame VI and the dashed line frame VII shown in FIG. 3, respectively.
  • the barrier metal layer 50 covers the entire upper surface 40t of the contact electrode 40 (see FIGS. 2 and 3), and The area from the upper surface 40t to the upper surface 30t of the insulating film 30 is continuously covered. Specifically, the barrier metal layer 50 covers the upper surface 24Rt of the ridge 24R located between the contact electrode 40 and the right insulating film 30. Since the thickness of the barrier metal layer 50 in the Z-axis direction is approximately equal, the inclination angle of the barrier metal layer 50 formed on the sloped portions of the contact electrode 40 and the insulating film 30 is approximately the same as that of the sloped portions of the respective bases. Same angle of inclination.
  • the inclination angle of the barrier metal layer 50 disposed on the corner of the contact electrode 40 and the insulating film 30 may be different from the inclination angle of the corner of the base.
  • the barrier metal layer 50 disposed on the corners of the contact electrode 40 and the insulating film 30 may not have a corner (that is, the inclination angle changes smoothly depending on the position in the X-axis direction). be.
  • the pad electrode 60 of the semiconductor laser device 10 is made of a material containing Sn element such as AuSn solder. When connected, it is possible to suppress the Sn element from diffusing into the contact electrode 40 via the pad electrode 60.
  • the barrier metal layer 50 continuously covers not only the contact electrode 40 but also the upper surface 30t of the insulating film 30 that is spaced apart from the contact electrode 40, the peripheral edge of the barrier metal layer 50 where the film thickness can be reduced. can be separated from the contact electrode 40. Thereby, the thickness of the barrier metal layer 50 covering the contact electrode 40 can be suppressed from becoming thinner. Therefore, it is possible to more reliably suppress impurities from diffusing into the contact electrode 40 via the barrier metal layer 50.
  • the side surface 40s of the contact electrode 40 located at the end in the lateral direction (that is, the (that is, the Z-axis direction), it is inclined toward the inside of the contact electrode 40.
  • the side surface of the contact electrode 40 is perpendicular to the upper surface 24Rt of the ridge 24R.
  • the angle between the upper surface 40t of the contact electrode 40 and the side surface is about 90 degrees. Accordingly, it becomes difficult to uniformly form the barrier metal layer 50 at the boundary between the upper surface 40t and the side surface 40s of the contact electrode 40. Therefore, a slit-shaped void extending from the boundary toward the surface of the barrier metal layer 50 is likely to be formed in the barrier metal layer 50 disposed at the boundary between the top surface 40t and the side surface 40s. When such a gap is formed, impurities can diffuse into the contact electrode 40 through the gap.
  • the side surface 40s of the contact electrode 40 is inclined, so the angle between the top surface 40t of the contact electrode 40 and the side surface 40s is less than 90 degrees. This makes it easier to uniformly form the barrier metal layer 50 at the boundary between the top surface 40t and the side surface 40s. Therefore, formation of slit-like voids in the barrier metal layer 50 can be suppressed. Therefore, diffusion of impurities into the contact electrode 40 can be suppressed.
  • the side surface 30s located at the lateral end of the opening 30a is oriented toward the opening 30a with respect to the direction perpendicular to the upper surface 24Rt of the ridge 24R. slopes towards the outside.
  • the angle of inclination of the side surface 30s of the insulating film 30 with respect to the upper surface 24Rt of the ridge 24R is 90 degrees or less.
  • the side surface 30s of the insulating film 30 may have a two-step inclined surface. In other words, the inclination angle of the side surface 30s near the top surface of the ridge 24R may be different from the inclination angle of the side surface 30s near the top surface 30t of the insulating film 30.
  • slit-shaped voids are formed in the barrier metal layer 50 disposed at the boundary between the upper surface 30t and the side surface 30s of the insulating film 30, similarly to the barrier metal layer 50 disposed on the upper surface 40t and side surface 40s of the contact electrode 40. can be suppressed from forming. Therefore, it is possible to suppress impurities from diffusing into the contact electrode 40 through the gap and the boundary between the barrier metal layer 50 and the upper surface 24Rt of the ridge 24R.
  • an insulating film 30 is provided between the contact electrode 40 and the end faces 10F and 10R of the semiconductor laser device 10 in the laser beam propagation direction. Placed. Further, the barrier metal layer 50 continuously covers the upper surface 40t of the contact electrode 40 to the upper surface 30t of the insulating film 30 in the propagation direction of the laser beam.
  • the barrier metal layer 50 covering the upper surface 40t and side surface 40s of the contact electrode 40 can be prevented from becoming thinner at the end in the propagation direction of the laser beam as well as at the end in the lateral direction of the contact electrode 40. . This can suppress impurities from diffusing into the contact electrode 40 via the barrier metal layer 50.
  • the side surface 40s of the contact electrode 40 located at the end in the laser beam propagation direction and the contact electrode 40 in the laser beam propagation direction is located inside the contact electrode 40 with respect to the direction perpendicular to the upper surface 24Rt of the ridge 24R. is sloping towards.
  • the side surface 30s located at the end of the opening 30a in the propagation direction of the laser beam is in a direction perpendicular to the upper surface 24Rt of the ridge 24R. It is inclined toward the outside of the opening 30a.
  • the distance Df between the insulating film 30 and the contact electrode 40 at the front end of the semiconductor laser element 10 in the propagation direction of the laser beam is longer than the distance Dr between the insulating film 30 and the contact electrode 40 at the rear end of the semiconductor laser device 10.
  • the thermal conductivity of Cr forming the barrier metal layer 50 and Au forming the pad electrode 60 is higher than that of silicon oxide forming the insulating film 30 and Pd forming the contact electrode 40. Higher than each thermal conductivity. Therefore, the heat dissipation characteristics from the top surface of the semiconductor stack 10S are best in the region where the barrier metal layer 50 is in contact with the top surface of the semiconductor stack 10S, that is, in the region between the contact electrode 40 and the insulating film 30. Therefore, by making the dimensions of such a region with good heat dissipation properties larger at the front end of the semiconductor laser device 10, which generates a large amount of heat, than at the rear end, the front end of the semiconductor laser device 10 can be made larger. It is possible to improve the heat dissipation characteristics in the parts.
  • the front end surface 10F of the contact electrode 40 and the semiconductor laser element 10 is The film thickness Tf of the barrier metal layer 50 disposed on the side surface 30s located between the barrier metal layer 50 and the barrier metal layer 50 disposed on the side surface 30s located between the contact electrode 40 and the rear end surface 10R of the semiconductor laser element 10 is It is thinner than the film thickness Tr of the layer 50.
  • the thermal conductivity of Au forming the pad electrode 60 is higher than that of Cr forming the barrier metal layer 50. Therefore, by making the film thickness Tf of the barrier metal layer 50 at the front end where a large amount of heat is generated smaller than the film thickness Tr at the rear end, heat dissipation characteristics at the front end of the semiconductor laser element 10 are improved. can be increased.
  • the angle of inclination of the side surface 40s located at the end of the contact electrode 40 in the laser beam propagation direction with respect to the upper surface 24Rt of the ridge 24R is larger on the front side of the semiconductor laser element 10 than on the rear side. . That is, the inclination angle ⁇ f of the front side surface 40s shown in FIG. 6 is larger than the inclination angle ⁇ r of the rear side surface 40s shown in FIG.
  • the length of the front side surface 40s in the Y-axis direction can be made shorter than the length of the rear side surface 40s in the Y-axis direction. Therefore, the distance Df between the insulating film 30 and the contact electrode 40 at the front end of the semiconductor laser device 10 is changed from the distance Df between the insulating film 30 and the contact electrode 40 at the rear end of the semiconductor laser device 10. It is easier to make the distance Dr longer than the distance Dr. Therefore, it is easier to improve the heat dissipation characteristics at the front end of the semiconductor laser element 10, which generates a large amount of heat, than the heat dissipation characteristics at the rear end.
  • the inclination angle of at least a portion of the side surface 40s of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is 30 degrees or less.
  • the angle of inclination of the side surface 40s of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is smaller than the angle of inclination of the side surface 30s of the insulating film 30 with respect to the upper surface 24Rt of the ridge 24R.
  • the barrier metal layer 50 is formed of Cr.
  • the barrier metal layer 50 may be formed of Ti, which is difficult to alloy with Sn element like Cr.
  • the contact electrode 40 is a single layer film. Thereby, the side surface 40s of the contact electrode 40 can be easily inclined.
  • 8 to 23 are schematic cross-sectional views showing each step of the method for manufacturing the semiconductor laser device 10 according to this embodiment.
  • 8 to 14 and 23 show a cross section similar to that in FIG. 2, and
  • FIGS. 15 to 18 show a part of the same cross section as in FIG. 2.
  • 19 to 22 show a portion of a cross section similar to that in FIG. 3.
  • an N-side semiconductor layer 22 is formed as a first semiconductor layer of a first conductivity type above a substrate 21, an active layer 23 is formed above the N-side semiconductor layer 22, A P-side semiconductor layer 24 is formed as a second semiconductor layer above the active layer 23 .
  • the substrate 21 is prepared.
  • a wafer made of N-type GaN (GaN substrate) is prepared as the substrate 21.
  • an N-side semiconductor layer 22, an active layer 23, and a P-side semiconductor layer 24 are sequentially stacked on the substrate 21 by an epitaxial growth technique using MOCVD (Metal Organic Chemical Vapor Deposition) method. Thereby, the semiconductor stacked body 10S can be formed.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • a ridge 24R, a wing portion 24W, a groove 24T, and an element isolation groove 10D for dividing the semiconductor laser element 10 into individual pieces are formed.
  • the device isolation grooves 10D are formed at positions corresponding to both ends of the semiconductor laser device 10 in the X-axis direction.
  • the element isolation trench 10D reaches from the top surface of the semiconductor stack 10S to the inside of the N-side semiconductor layer 22.
  • the ridge 24R and the wing portion 24W are formed by forming two grooves 24T.
  • the two grooves 24T are formed in the P-side semiconductor layer 24 and do not reach the active layer 23.
  • the method of forming the element isolation groove 10D, ridge 24R, wing portion 24W, and groove 24T is not particularly limited.
  • the element isolation groove 10D, the ridge 24R, the wing portion 24W, and the groove 24T may be formed using, for example, photolithography and etching, or may be formed by laser processing.
  • an insulating film 30 is formed above the P-side semiconductor layer 24.
  • a silicon oxide film is formed as the insulating film 30 using a low pressure CVD method or the like. Atmospheric pressure CVD may be used to form the silicon oxide film.
  • an opening 30a is formed at a position corresponding to the upper surface 24Rt of the ridge 24R, and a contact electrode 40 in contact with the P-side semiconductor layer 24 is formed in the opening 30a of the insulating film 30. This step will be explained in detail below using FIGS. 12 to 14.
  • a resist 95 is formed in a region other than the region corresponding to the opening 30a of the insulating film 30.
  • a region of the insulating film 30 corresponding to the opening 30a is removed by etching.
  • the side surface 30s of the insulating film 30 can be inclined with respect to the upper surface 24Rt of the ridge 24R.
  • the etching method is not particularly limited. As the etching, dry etching or wet etching can be used.
  • a contact electrode 40 in contact with the P-side semiconductor layer 24 is formed in the opening 30a of the insulating film 30.
  • a Pd layer is formed as the contact electrode 40.
  • the resist 95 is removed.
  • contact electrode 40 is formed using planetary deposition. Planetary vapor deposition involves rotating and revolving a dome or flat plate on which the substrate to be vapor-deposited is attached relative to the source of the vapor-depositing material, thereby changing the direction of incidence of the vapor-depositing material on the substrate. This is a method of vapor deposition.
  • FIGS. 15 to 22 show cross sections perpendicular to the propagation direction of the laser beam
  • FIGS. 19 to 22 show cross sections parallel to the stacking direction of each semiconductor layer and the propagation direction of the laser beam. ing.
  • straight arrows indicate the direction of incidence of the vapor deposition material.
  • the axis of rotation of the dome that rotates around itself is inclined with respect to the axis of revolution, and the object to be deposited (in this embodiment, the semiconductor stack 10S, etc.) is separated from the center of rotation of the dome. It is installed in a location.
  • the inclination angle of the side surface of the deposited film depends on the direction (in other words, in which direction the side surface is located with respect to the center of the opening) ) has the characteristic of being different.
  • the manufacturing method will be explained in detail below.
  • the position of the dome closest to the center of revolution in one cycle of rotation is defined as the first rotational position.
  • the front side of the element that is, the positive side of the Y axis of the substrate 21 is on the outside of the dome (the side far from the center of rotation), and the rear side, that is, the negative side of the Y axis of the substrate 21 is on the inside of the dome (away from the center of rotation).
  • the substrate 21 is installed in the dome so that it is located on the dome (near side).
  • 15 and 19 show the incident direction of the vapor deposition material at the first rotational position of the dome in which the substrate 21 and the like are placed, in a cross section perpendicular to the Y axis and a cross section perpendicular to the X axis, respectively.
  • 16 and 20 show the direction of incidence of the vapor deposition material at a second rotational position rotated by 90 degrees (that is, rotated) from the first rotational position of the dome.
  • FIGS. 17 and 21 show the direction of incidence of the vapor deposition material at the third rotational position, which is further rotated by 90 degrees from the second rotational position of the dome.
  • FIGS. 18 and 22 show the direction of incidence of the vapor deposition material at a fourth rotational position which is further rotated by 90 degrees from the third rotational position of the dome.
  • the direction of incidence of the deposition material is relative to the X-axis direction, as shown in FIGS. 15 and 19. is perpendicular to the Y-axis direction, and is slightly inclined (for example, about 10 degrees) with respect to the Y-axis direction.
  • the evaporation material in the X-axis direction, the evaporation material is uniformly deposited at a position directly below the opening, and in the Y-axis direction, it is deposited at a position shifted to the left (front direction) from the opening (in the positive direction). Evenly deposited at different positions). Since the inclination of the incident direction of the vapor deposition material with respect to the Y-axis direction at the first rotational position is relatively small, the amount of deviation is relatively small.
  • the incident direction of the vapor deposition material is moderately ( For example, it is inclined (about 23 degrees) and is perpendicular to the Y-axis direction.
  • the evaporation material in the X-axis direction, the evaporation material is uniformly deposited at a position shifted to the left of the opening (position shifted in the negative direction), and in the Y-axis direction, it is deposited immediately below the opening. Deposited uniformly on location. Since the inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the second rotational position is moderate, the amount of deviation is moderate.
  • the incident direction of the vapor deposition material is perpendicular to the X-axis direction at the third rotation position, as shown in FIGS. 17 and 21. , is tilted significantly (for example, about 45 degrees) with respect to the Y-axis direction. Note that the direction of inclination of the incident direction of the vapor deposition material with respect to the Y-axis direction at the third rotational position is opposite to the direction of inclination at the first rotational position.
  • the incident direction of the vapor deposition material is intermediate to the (for example, about 23 degrees), and is perpendicular to the Y-axis direction.
  • the direction of inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the fourth rotational position is opposite to the direction of inclination at the first rotational position.
  • it is uniformly deposited at a position shifted to the right from the opening in the X-axis direction, and uniformly deposited at a position directly below the opening in the Y-axis direction. Since the inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the fourth rotational position is moderate, the amount of deviation is moderate (the amount of deviation is symmetrical with respect to the second rotational position).
  • vapor deposition when vapor deposition is continued while rotating the dome from the fourth rotation position, it returns to the first rotation position.
  • vapor deposition is performed while periodically changing the direction of incidence of the vapor deposition material, and the amount of change is different in the X-axis direction and the Y-axis direction.
  • the vapor deposition is performed while periodically shifting the vapor deposition region vertically and horizontally when viewed from above of the opening, and the amount of shift is different in the X-axis direction and the Y-axis direction.
  • the side surface 40s of the contact electrode 40 can be inclined. Specifically, in the X-axis direction, since the left and right deviations are approximately the same, the inclination angle of the side surface 40s located at the lateral end of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is as shown in FIG. As such, both are of the same degree. In addition, in the Y-axis direction, the inclination angle of the side surface 40s of the contact electrode 40 located at the end in the laser beam propagation direction with respect to the upper surface 24Rt of the ridge 24R is changed from the front side to the rear side as shown in FIG. Can be made larger.
  • a barrier metal layer 50 and a pad electrode 60 are formed. Specifically, a barrier metal layer 50 made of a Cr film and a pad electrode 60 made of an Au film are formed on the insulating film 30 using photolithography and planetary deposition. Barrier metal layer 50 covers the entire upper surface of contact electrode 40 and continuously covers from the upper surface of contact electrode 40 to the upper surface of insulating film 30 . Note that a plating method may be used to form the pad electrode 60.
  • the barrier metal layer 50 and pad electrode 60 using planetary vapor deposition similarly to the formation of the contact electrode 40, the barrier metal layer 50 and the pad electrode 60 are deposited while periodically repeating the first rotation position to the fourth rotation position in order.
  • the film thickness of the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 is The side surface 30s at the end in the positive axis direction and the side surface 30s at the end in the negative X-axis direction are equal.
  • the first rotational position shown in FIG. 19 is larger in the Y-axis positive direction of the incident direction of the vapor deposition material than the second rotational position shown in FIG. 20 and the fourth rotational position shown in FIG. 22.
  • a small increase in the component occurs, and a small decrease in the negative Y-axis component occurs.
  • the third rotational position shown in FIG. 21 compared to the second rotational position shown in FIG. 20 and the fourth rotational position shown in FIG.
  • a significant decrease in the Y-axis negative direction component occurs.
  • the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 located at the end in the Y-axis positive direction of the semiconductor laser element 10 is heated.
  • the film thickness Tf is thinner than the film thickness Tr of the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 located at the end of the semiconductor laser device 10 in the Y-axis negative direction. That is, the film thickness Tf of the barrier metal layer 50 disposed on the side surface 30s located between the contact electrode 40 and the front end surface 10F of the semiconductor laser device 10 is the same as that between the contact electrode 40 and the rear end surface 10F of the semiconductor laser device 10. It is thinner than the film thickness Tr of the barrier metal layer 50 disposed on the side surface 30s located between the end surface 10R and the side surface 30s.
  • the thickness of the substrate 21 is reduced by polishing and etching the lower surface of the substrate 21, and then, as shown in FIG. 2, the N-side electrode 70 is formed on the lower surface of the substrate 21.
  • the N-side electrode 70 is formed by sequentially forming a Ti film, a Pt film, and an Au film using a photolithography technique and a vapor deposition method.
  • the semiconductor laser device 10 according to this embodiment can be manufactured by the manufacturing method described above.
  • a semiconductor laser device 10A according to a first modification of the present embodiment will be described.
  • the semiconductor laser device according to this modification differs from the semiconductor laser device 10 according to the embodiment mainly in the shape of the ridge 24R and the shape of the insulating film 30.
  • the semiconductor laser device according to this modification will be described below with reference to FIGS. 24 and 25, focusing on the differences from the semiconductor laser device 10 according to the embodiment.
  • FIG. 24 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10A according to this modification.
  • FIG. 24 shows a cross section similar to FIG. 2.
  • FIG. 25 is an enlarged view of the inside of the broken line frame XXV shown in FIG. 24.
  • the ridge 24R is located at the end of the upper surface 24Rt of the ridge 24R in the direction perpendicular to the laser beam propagation direction (X-axis direction).
  • it has a protrusion 24Rp that protrudes from the side surface 24Rs of the ridge 24R. That is, the protruding portion 24Rp protrudes from the side surface 24Rs of the ridge 24R in the X-axis direction.
  • the recess 24Rd is formed in the side surface 24Rs of the ridge 24R.
  • a constriction is formed on the side surface 24Rs of the ridge 24R.
  • the protrusion 24Rp By forming the protrusion 24Rp on the ridge 24R in this way, the area of the upper surface 24Rt of the ridge 24R can be expanded while maintaining the current confinement effect by the ridge 24R. Therefore, the area for arranging the contact electrode 40 can be expanded on the upper surface 24Rt of the ridge 24R.
  • a recess 30d is formed on the surface of the portion of the insulating film 30 that covers the protrusion 24Rp, and the recess 30d is located above the protrusion 24Rp. .
  • the positions of the protrusion 24Rp and the recess 30d are different in the vertical direction, it is possible to prevent the protrusion 24Rp and the recess 30d from coming close to each other. That is, it is possible to suppress the formation of locally thin portions in the insulating film 30 due to the protrusion 24Rp and the recess 30d coming close to each other. Therefore, deterioration of the insulation performance of the insulation film 30 can be suppressed.
  • the ridge 24R of the semiconductor laser device 10A is formed by first etching in which the etched ridge 24R has a reverse taper shape (a shape in which the width of the ridge narrows from the top to the bottom of the ridge); It can be formed by performing a second etching process in which the shape becomes a forward taper (a shape in which the ridge width becomes wider from the top to the bottom of the ridge).
  • etching method for forming the ridge 24R an example using an ICP (Inductively Coupled Plasma) method with a frequency of 13.56 MHz will be described.
  • top power is 150 W
  • bias power is 15 W
  • gas pressure is 2 Pa
  • gas species is Cl 2 (flow rate 50 sccm).
  • the conditions that the top power is 150 W, the bias power is 20 W, the gas pressure is 4 Pa, and the gas species is Cl 2 (flow rate 50 sccm) can be adopted.
  • anisotropic etching can be achieved due to the low gas pressure, so the shape of the ridge 24R can be made into a reverse taper.
  • the gas pressure is high, so that isotropic etching can be achieved, so that the shape of the ridge 24R can be made into a forward taper.
  • the ridge 24R of the semiconductor laser device 10A according to this modification can be formed.
  • FIG. 26 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10B according to this modification.
  • FIG. 26 shows a cross section similar to FIG. 2.
  • the semiconductor laser device 10B includes a first metal layer 61 and a second metal layer 62 in addition to the semiconductor laser device 10.
  • the first metal layer 61 is a metal layer placed above the pad electrode 60.
  • the first metal layer 61 covers the upper surface of the pad electrode 60 and has a function of suppressing diffusion of impurities into the pad electrode 60.
  • the first metal layer 61 may be a single layer film or a multilayer film made of at least one of Cr, Ti, and Pt, for example.
  • the first metal layer 61 includes a 10 nm thick Ti layer in contact with the pad electrode 60 and a 35 nm thick Pt layer in contact with the Ti layer.
  • the second metal layer 62 is a metal layer placed above the first metal layer 61.
  • the second metal layer 62 covers the upper surface of the first metal layer 61 and contains Au.
  • the second metal layer 62 is an Au layer with a thickness of 300 nm.
  • the semiconductor laser device 10B according to the present modification includes the first metal layer 61, it is possible to suppress the diffusion of impurities to the pad electrode 60, so that the diffusion of impurities from the pad electrode 60 to the contact electrode 40 can be further suppressed. It can be suppressed.
  • FIG. 27 is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11B in which a semiconductor laser element 10B according to this modification is mounted.
  • FIG. 27 shows a cross section similar to FIG. 4B.
  • the semiconductor laser device 11B includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, and a barrier metal layer 50. , a pad electrode 60, a first metal layer 61, a bonding material 90b, and a submount 80.
  • the bonding material 90b is a member formed by alloying the second metal layer 62 and the bonding material 90.
  • the bonding material 90b is an AuSn layer.
  • the Sn element is almost uniformly diffused throughout the bonding material 90b (that is, the Sn element concentration is uniform).
  • the Sn element concentration of the bonding material 90b is, for example, about 20%.
  • the semiconductor laser device 11B according to this modification can be manufactured by the same mounting method as the semiconductor laser device 11 according to the embodiment. That is, in the method for mounting the semiconductor laser device 11 according to the embodiment described above, the semiconductor laser device 11B can be manufactured by using the semiconductor laser device 10B instead of the semiconductor laser device 10.
  • the semiconductor laser element 10B since the semiconductor laser element 10B includes the first metal layer 61, diffusion of Sn element from the bonding material 90 containing AuSn solder to the pad electrode 60 can be suppressed, and as a result, the contact electrode Diffusion of Sn element into 40 can be further suppressed. Therefore, an increase in the electrical resistance of the contact electrode 40 can be further suppressed. Further, since the diffusion of Au from the pad electrode 60 to the bonding material 90 is also suppressed, there is no change in the composition ratio due to the mounting of the pad electrode 60.
  • FIG. 28 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10C according to this modification.
  • FIG. 28 shows a cross section similar to FIG. 2.
  • FIG. 29 is an enlarged view of the inside of the broken line frame XXIX shown in FIG. 28.
  • a semiconductor laser device 10C includes an insulating film 30C.
  • the insulating film 30C has an opening 30Ca located at a position corresponding to the upper surface 24Rt of the ridge 24R.
  • the side surface 30Cs located at the periphery of the opening 30Ca of the insulating film 30 includes a lower side surface region 31 and an upper side surface region 32 disposed above the lower side surface region 31. has.
  • the lower side surface region 31 and the upper side surface region 32 have different inclination angles with respect to the upper surface 24Rt of the ridge. That is, the inclination angle ⁇ 1 of the lower side surface area 31 with respect to the upper surface 24Rt of the ridge is different from the inclination angle ⁇ 2 of the lower side surface area 31 with respect to the upper surface 24Rt of the ridge.
  • the inclination angle ⁇ 1 is larger than the inclination angle ⁇ 2.
  • the side surface 30Cs of the insulating film 30C has a lower side surface region 31 and an upper side surface region 32, and the lower side surface region 31 and the upper side surface region 32 have different inclination angles with respect to the upper surface 24Rt of the ridge.
  • the width of the slope region can be reduced compared to when the entire side surface 30Cs is formed with a small slope angle (for example, slope angle ⁇ 2). Therefore, in this modification, the area of the opening 30Ca can be increased while ensuring the thickness on the end portion of the insulating film 30C disposed on the upper surface 24Rt of the ridge 24R of the insulating film 30C. This makes it possible to increase the area of the contact electrode 40. Accordingly, since the area of the current injection region can be increased, the operating voltage of the semiconductor laser device 10C can be reduced.
  • the inclination angle of the lower side surface region 31 with respect to the upper surface 24Rt of the ridge 24R is the same as the inclination angle of the upper step side region 32 with respect to the upper surface 24Rt of the ridge 24R (the inclination angle ⁇ 1 shown in FIG. 29).
  • angle ⁇ 2 the width of the lower side surface region 31, which has a small film thickness and low insulation resistance, can be reduced, so that the insulation properties of the insulating film 30C can be further improved.
  • the inclination angle of the ridge 24R of the upper side surface region 32 with respect to the upper surface 24Rt may be less than 90 degrees.
  • the inclination angle of the upper side surface region 32 may be greater than or equal to 40 degrees and less than or equal to 60 degrees. In this case, it was possible to both increase the contact area due to the inclination and avoid cracking at the corners, and the effect was greatest at 45 degrees.
  • the contact area between the upper end of the insulating film 30C located on the upper surface 24Rt of the ridge 24R and the barrier metal layer 50 can be increased. Therefore, the adhesion between the insulating film 30C and the barrier metal layer 50 can be improved.
  • the inclination angle of the ridge 24R of the lower side surface region 31 with respect to the upper surface 24Rt may be 90 degrees or less.
  • the risk of voids occurring between the insulating film 30C and the barrier metal layer 50 can be reduced.
  • the inclination angle of the lower side surface region 31 may be greater than or equal to 65 degrees and less than or equal to 85 degrees. In this case, it was possible to both increase the contact area due to the inclination and avoid the generation of voids, and the effect was greatest at 75 degrees. In this way, by increasing the inclination angle of the lower side surface region 31, the area of the opening 30Ca of the insulating film 30C can be increased. Therefore, since the area of the current injection region can be increased, the operating voltage of the semiconductor laser device 10C can be further reduced.
  • the method for manufacturing the insulating film 30C according to this modification differs from the method for manufacturing the insulating film 30 according to the embodiment in the step of forming the opening 30Ca.
  • the step of forming the opening 30Ca in the insulating film 30C includes a first etching step of etching a region corresponding to the opening 30Ca in the insulating film 30C by a first film thickness using a first etching method, and after the first etching step, and a second etching step of etching the region by a second thickness using a second etching method different from the first etching method.
  • the first etching method is, for example, dry etching. Specifically, a resist is formed in a region other than the region corresponding to the opening 30Ca, and the region of the insulating film 30C not covered with the resist is etched using dry etching.
  • the first film thickness is, for example, 150 nm.
  • the dry etching method for example, an ICP method with a frequency of 13.56 MHz can be used.
  • the processing conditions used in dry etching for example, the following conditions can be adopted: top power is 120 W, bias power is 40 W, gas pressure is 1 Pa, and gas type is CHF 3 (flow rate 35 sccm).
  • the second etching method is, for example, wet etching. Specifically, the region of the insulating film 30C that is not covered with the resist is etched using wet etching.
  • the second film thickness is, for example, 150 nm.
  • a wet etching method for example, a dip treatment method using BHF (buffered hydrofluoric acid) can be used. After the wet etching process, the device including the processed semiconductor stack 10S is washed with pure water and then spin-dried.
  • the insulating film 30 can be formed in which the side surface 30Cs located at the periphery of the opening 30Ca has a lower side surface region 31 and an upper side surface region 32.
  • FIG. 30 is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11C in which a semiconductor laser element 10C according to this modification is mounted.
  • FIG. 30 shows a cross section similar to FIG. 4B.
  • a semiconductor laser device 11C includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30C, a contact electrode 40, and a barrier metal layer 50. , a bonding material 90c, and a submount 80.
  • the bonding material 90c is a member formed by alloying the pad electrode 60 and the bonding material 90.
  • the bonding material 90c is an AuSn layer.
  • the Sn element is almost uniformly diffused throughout the bonding material 90c (that is, the Sn element concentration is uniform).
  • the Sn element concentration of the bonding material 90c is, for example, about 20%.
  • the semiconductor laser device 11C according to this modification can be manufactured by the same mounting method as the semiconductor laser device 11 according to the embodiment. That is, in the method for mounting the semiconductor laser device 11 according to the embodiment described above, the semiconductor laser device 11C can be manufactured by using the semiconductor laser device 10C instead of the semiconductor laser device 10. However, in mounting the semiconductor laser device 10C according to this modification, the heating process time (time to maintain the temperature T) is extended to about 30 seconds compared to the case of mounting the semiconductor laser device 10 according to the embodiment. ing. As a result, the diffusion of the Sn element from the bonding material 90 containing AuSn solder to the pad electrode 60 made of the Au layer progresses sufficiently, so that the pad electrode 60 and the bonding material 90 are almost uniformly alloyed. A material 90c is formed.
  • the insulating film 30 is disposed between the end faces 10F and 10R of the semiconductor laser element and the contact electrode 40, but the configuration of the insulating film 30 is not limited to this.
  • the opening 30a of the insulating film 30 may have a slit shape. That is, the opening 30a may extend to at least one of the end faces 10F and 10R of the semiconductor laser element.
  • the semiconductor laser device emits blue light, but the band of the light emitted by the semiconductor laser device is not limited to this.
  • the semiconductor laser element may emit visible light including blue-violet light and red light, ultraviolet light, or infrared light.
  • a semiconductor laser element using a nitride semiconductor is shown as the material for the semiconductor stack and the substrate, but the material is not limited to this.
  • the semiconductor laser device may be a semiconductor laser device using AlGaInAs or AlGaInP.
  • junction-down mounting is shown as an example of the mounting mode, but the mounting mode of the semiconductor laser element is not limited to this.
  • the semiconductor laser device may be mounted in a junction-up manner.
  • the nitride semiconductor laser device of the present disclosure can be applied, for example, to a light source for a processing machine as a highly efficient light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This semiconductor laser element (10) is provided with a first semiconductor layer, an active layer (23), an insulating film (30), a contact electrode (40) and a barrier metal layer (50). A second semiconductor layer has a ridge (24R); the insulating film (30) has an opening part (30a) which is arranged in a position that corresponds to the upper surface (24Rt) of the ridge (24R); the contact electrode (40) is arranged in the opening part (30a); the lateral surface (40s) of the contact electrode (40) is inclined towards the inside of the contact electrode (40); the lateral surface (30s) of the insulating film (30) is inclined towards the outside of the opening part (30a); and the barrier metal layer (50) covers the entirety of the upper surface (40t) of the contact electrode (40), and continuously covers the area from the upper surface (40t) of the contact electrode (40) to the upper surface (30t) of the insulating film (30).

Description

半導体レーザ素子semiconductor laser device
 本開示は、半導体レーザ素子に関する。 The present disclosure relates to a semiconductor laser device.
 従来、リッジを有する半導体レーザ素子が知られている(例えば、特許文献1など)。特許文献1に記載された半導体レーザ素子においては、リッジの上面に対応する位置に開口部を有する絶縁膜が、半導体積層体の上方に配置される。リッジの上面に、Pdで形成されたコンタクト電極が配置され、コンタクト電極上にPtで形成されたバリア金属層が配置される。特許文献1に記載された半導体レーザ素子においては、このようなバリア金属層により、不純物がコンタクト電極へ拡散することを抑制しようとしている。つまり、コンタクト電極に不純物が拡散することに起因する電気抵抗の増大を抑制しようとしている。 Conventionally, a semiconductor laser element having a ridge is known (for example, Patent Document 1). In the semiconductor laser device described in Patent Document 1, an insulating film having an opening at a position corresponding to the upper surface of the ridge is disposed above the semiconductor stack. A contact electrode made of Pd is placed on the top surface of the ridge, and a barrier metal layer made of Pt is placed on the contact electrode. In the semiconductor laser device described in Patent Document 1, such a barrier metal layer is used to suppress diffusion of impurities into the contact electrode. In other words, an attempt is made to suppress an increase in electrical resistance caused by diffusion of impurities into the contact electrode.
国際公開第2020/110783号International Publication No. 2020/110783
 しかしながら、特許文献1に記載された半導体レーザ素子では、特に、コンタクト電極の周縁部を覆うバリア金属層が薄いため、不純物が、コンタクト電極へ拡散し得る。 However, in the semiconductor laser device described in Patent Document 1, since the barrier metal layer covering the peripheral edge of the contact electrode is particularly thin, impurities can diffuse into the contact electrode.
 また、コンタクト電極の側面が半導体積層体の上面に対してほぼ垂直である場合には、当該側面付近を覆うバリア金属層にスリットが形成されることがある。このようなスリットを介して不純物がコンタクト電極へ拡散し得る。以上のように、従来の半導体レーザ素子においては、コンタクト電極を覆うバリア金属層による不純物拡散抑制機能が十分でない。 Further, when the side surface of the contact electrode is substantially perpendicular to the top surface of the semiconductor stack, a slit may be formed in the barrier metal layer covering the vicinity of the side surface. Impurities can diffuse into the contact electrode through such slits. As described above, in conventional semiconductor laser devices, the barrier metal layer covering the contact electrode does not have a sufficient impurity diffusion suppressing function.
 本開示は、このような課題を解決するものであり、コンタクト電極への不純物の拡散を抑制できる半導体レーザ素子を提供することを目的とする。 The present disclosure aims to solve such problems, and to provide a semiconductor laser device that can suppress diffusion of impurities into contact electrodes.
 上記課題を解決するために、本開示に係る半導体レーザ素子の一態様は、レーザ光を出射する半導体レーザ素子であって、第一導電型の第一半導体層と、前記第一半導体層の上方に配置される活性層と、前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二半導体層と、前記第二半導体層の上方に配置される絶縁膜と、前記第二半導体層の上方に配置され、前記第二半導体層と接するコンタクト電極と、前記コンタクト電極の上方に配置されるバリア金属層とを備え、前記第二半導体層は、前記レーザ光の伝搬方向に延在するリッジを有し、前記絶縁膜は、前記リッジの上面に対応する位置に配置される開口部を有し、前記コンタクト電極は、前記開口部に配置され、前記コンタクト電極の、前記レーザ光の伝搬方向及び前記コンタクト電極の積層方向に垂直な横方向の端部に位置する側面は、前記リッジの上面に垂直な方向に対して、前記コンタクト電極の内側に向かって傾斜しており、前記絶縁膜の前記開口部の周縁に位置する側面のうち、前記開口部の前記横方向の端部に位置する側面は、前記リッジの上面に垂直な方向に対して、前記開口部の外側に向かって傾斜しており、前記バリア金属層は、前記コンタクト電極の上面全体を覆い、かつ、前記コンタクト電極の上面から前記絶縁膜の上面までを連続して覆う。 In order to solve the above problems, one embodiment of a semiconductor laser device according to the present disclosure is a semiconductor laser device that emits laser light, which includes a first semiconductor layer of a first conductivity type, and an upper part of the first semiconductor layer. an active layer disposed above the active layer, a second semiconductor layer of a second conductivity type different from the first conductivity type, and an insulating film disposed above the second semiconductor layer; a contact electrode disposed above the second semiconductor layer and in contact with the second semiconductor layer; and a barrier metal layer disposed above the contact electrode, the second semiconductor layer being configured to propagate the laser beam. the insulating film has an opening disposed at a position corresponding to the upper surface of the ridge; the contact electrode is disposed in the opening; A side surface located at a lateral end perpendicular to the propagation direction of the laser beam and the stacking direction of the contact electrode is inclined toward the inside of the contact electrode with respect to a direction perpendicular to the upper surface of the ridge. Among the side surfaces of the insulating film located at the periphery of the opening, the side surface located at the lateral end of the opening is perpendicular to the upper surface of the ridge. The barrier metal layer is inclined outward, and covers the entire upper surface of the contact electrode, and continuously covers from the upper surface of the contact electrode to the upper surface of the insulating film.
 本開示によれば、コンタクト電極への不純物の拡散を抑制できる半導体レーザ素子を提供できる。 According to the present disclosure, it is possible to provide a semiconductor laser element that can suppress diffusion of impurities into contact electrodes.
実施の形態に係る半導体レーザ素子の全体構成を示す模式的な平面図である。FIG. 1 is a schematic plan view showing the overall configuration of a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の全体構成を示す模式的な第一の断面図である。FIG. 1 is a first schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の全体構成を示す模式的な第二の断面図である。FIG. 2 is a second schematic cross-sectional view showing the overall configuration of the semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の実装方法の一例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a method for mounting a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子が実装された半導体レーザ装置の構成を示す模式的な断面図である。1 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to an embodiment is mounted. 図2に示される破線枠Vの内部の拡大図である。3 is an enlarged view of the inside of the broken line frame V shown in FIG. 2. FIG. 図3に示される破線枠VIの内部の拡大図である。4 is an enlarged view of the inside of the broken line frame VI shown in FIG. 3. FIG. 図3に示される破線枠VIIの内部の拡大図である。4 is an enlarged view of the inside of the broken line frame VII shown in FIG. 3. FIG. 実施の形態に係る半導体レーザ素子の製造方法の第一工程を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a first step of a method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第二工程を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a second step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第三工程を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a third step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第四工程を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第四工程におけるレジスト形成工程を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing a resist forming step in a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第四工程における開口部形成工程を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing an opening forming step in a fourth step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第四工程におけるコンタクト電極形成工程を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing a contact electrode forming step in the fourth step of the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第一回転位置における蒸着材料の入射方向を示す模式的な第一の断面図である。FIG. 2 is a first schematic cross-sectional view showing the direction of incidence of the vapor deposition material at the first rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第二回転位置における蒸着材料の入射方向を示す模式的な第一の断面図である。FIG. 2 is a first schematic cross-sectional view showing the incident direction of the vapor deposition material at the second rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第三回転位置における蒸着材料の入射方向を示す模式的な第一の断面図である。FIG. 6 is a schematic first cross-sectional view showing the direction of incidence of the vapor deposition material at the third rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第四回転位置における蒸着材料の入射方向を示す模式的な第一の断面図である。FIG. 7 is a schematic first cross-sectional view showing the incident direction of the vapor deposition material at the fourth rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第一回転位置における蒸着材料の入射方向を示す模式的な第二の断面図である。FIG. 7 is a second schematic cross-sectional view showing the incident direction of the vapor deposition material at the first rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第二回転位置における蒸着材料の入射方向を示す模式的な第二の断面図である。FIG. 7 is a second schematic cross-sectional view showing the direction of incidence of the evaporation material at the second rotational position of planetary evaporation in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第三回転位置における蒸着材料の入射方向を示す模式的な第二の断面図である。FIG. 7 is a second schematic cross-sectional view showing the direction of incidence of the vapor deposition material at the third rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法のプラネタリ蒸着の第四回転位置における蒸着材料の入射方向を示す模式的な第二の断面図である。FIG. 7 is a second schematic cross-sectional view showing the incident direction of the vapor deposition material at the fourth rotational position of planetary vapor deposition in the method for manufacturing a semiconductor laser device according to the embodiment. 実施の形態に係る半導体レーザ素子の製造方法の第五工程を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing a fifth step of the method for manufacturing a semiconductor laser device according to an embodiment. 実施の形態の変形例1に係る半導体レーザ素子の全体構成を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to Modification 1 of the embodiment. 図24に示される破線枠XXVの内部の拡大図である。25 is an enlarged view of the inside of the broken line frame XXV shown in FIG. 24. FIG. 実施の形態の変形例2に係る半導体レーザ素子の全体構成を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to a second modification of the embodiment. 実施の形態の変形例2に係る半導体レーザ素子が実装された半導体レーザ装置の構成を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to a second modification of the embodiment is mounted. 実施の形態の変形例3に係る半導体レーザ素子の全体構成を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device according to a third modification of the embodiment. 図28に示される破線枠XXIXの内部の拡大図である。29 is an enlarged view of the inside of the broken line frame XXIX shown in FIG. 28. FIG. 実施の形態の変形例3に係る半導体レーザ素子が実装された半導体レーザ装置の構成を示す模式的な断面図である。FIG. 7 is a schematic cross-sectional view showing the configuration of a semiconductor laser device in which a semiconductor laser element according to a third modification of the embodiment is mounted.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the embodiments described below each represent a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement positions and connection forms of the components shown in the following embodiments are merely examples and do not limit the present disclosure.
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, the scale etc. in each figure are not necessarily the same. In addition, in each figure, the same code|symbol is attached to the substantially the same structure, and the overlapping description is omitted or simplified.
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における鉛直上方及び鉛直下方を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。 In addition, in this specification, the terms "upper" and "lower" do not refer to vertically above and vertically downward in absolute spatial recognition, but are defined by relative positional relationships based on the order of stacking in a stacked structure. This term is used as a term that refers to Additionally, the terms "above" and "below" are used not only when two components are spaced apart and there is another component between them; This also applies when they are placed in contact with each other.
 (実施の形態)
 実施の形態に係る半導体レーザ素子及びその製造方法について説明する。
(Embodiment)
A semiconductor laser device and a manufacturing method thereof according to an embodiment will be described.
 [1-1.全体構成]
 まず、本実施の形態に係る半導体レーザ素子の全体構成について図1~図3を用いて説明する。図1は、本実施の形態に係る半導体レーザ素子10の全体構成を示す模式的な平面図である。図2及び図3は、本実施の形態に係る半導体レーザ素子10の全体構成を示す模式的な断面図である。図2には、図1のII-II線における半導体レーザ素子10の断面が示されている。図3には、図1のIII-III線における半導体レーザ素子10の断面が示されている。なお、各図には、互いに直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は、右手系の直交座標系である。半導体レーザ素子10の積層方向は、Z軸方向に平行であり、光(本実施の形態では、レーザ光)の主な出射方向は、Y軸方向に平行である。
[1-1. overall structure]
First, the overall configuration of the semiconductor laser device according to this embodiment will be explained using FIGS. 1 to 3. FIG. 1 is a schematic plan view showing the overall configuration of a semiconductor laser device 10 according to this embodiment. 2 and 3 are schematic cross-sectional views showing the overall configuration of the semiconductor laser device 10 according to this embodiment. FIG. 2 shows a cross section of the semiconductor laser device 10 taken along line II-II in FIG. FIG. 3 shows a cross section of the semiconductor laser device 10 taken along line III--III in FIG. 1. Note that each figure shows an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other. The X, Y, and Z axes are a right-handed Cartesian coordinate system. The stacking direction of the semiconductor laser element 10 is parallel to the Z-axis direction, and the main emission direction of light (laser light in this embodiment) is parallel to the Y-axis direction.
 半導体レーザ素子10は、図2及び図3に示されるように、半導体積層体10Sを備え、半導体積層体10Sの積層方向(つまり、Z軸方向)に垂直な方向の端面10F(図1参照)からレーザ光を出射する。本実施の形態では、半導体レーザ素子10は、図1に示されるように、共振器を形成する二つの端面10F及び10Rを有する窒化物半導体レーザ素子である。端面10Fは、レーザ光を出射するフロント側の端面であり、端面10Rは、端面10Fより反射率が高いリア側の端面である。本実施の形態では、端面10F及び10Rの反射率は、それぞれ、15%及び98%である。また、半導体レーザ素子10は、端面10Fと端面10Rとの間に形成された導波路を有する。本実施の形態に係る半導体レーザ素子10の共振器長(つまり、端面10Fと端面10Rとの間の距離)は1200μm程度である。また、半導体レーザ素子10は、例えば、445nm帯にピーク波長を有する青色光を出射する。 As shown in FIGS. 2 and 3, the semiconductor laser device 10 includes a semiconductor stack 10S, and an end face 10F (see FIG. 1) in a direction perpendicular to the stacking direction (that is, the Z-axis direction) of the semiconductor stack 10S. Emit laser light from. In this embodiment, the semiconductor laser device 10 is a nitride semiconductor laser device having two end faces 10F and 10R forming a resonator, as shown in FIG. The end surface 10F is a front end surface that emits laser light, and the end surface 10R is a rear end surface that has a higher reflectance than the end surface 10F. In this embodiment, the reflectances of end faces 10F and 10R are 15% and 98%, respectively. Further, the semiconductor laser element 10 has a waveguide formed between the end face 10F and the end face 10R. The cavity length (that is, the distance between the end face 10F and the end face 10R) of the semiconductor laser device 10 according to this embodiment is about 1200 μm. Further, the semiconductor laser element 10 emits blue light having a peak wavelength in the 445 nm band, for example.
 図2及び図3に示されるように、半導体レーザ素子10は、基板21と、半導体積層体10Sと、絶縁膜30と、コンタクト電極40と、バリア金属層50と、パッド電極60と、N側電極70とを備える。 As shown in FIGS. 2 and 3, the semiconductor laser device 10 includes a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, a barrier metal layer 50, a pad electrode 60, and an N-side and an electrode 70.
 基板21は、半導体レーザ素子10の基台となる板状部材である。本実施の形態では、基板21は、N型GaN基板である。 The substrate 21 is a plate-like member that serves as a base for the semiconductor laser device 10. In this embodiment, substrate 21 is an N-type GaN substrate.
 半導体積層体10Sは、半導体層を含む積層体である。半導体積層体10Sは、積層方向に積層された複数の半導体層を有する。本実施の形態では、半導体積層体10Sは、N側半導体層22と、活性層23と、P側半導体層24とを有する。 The semiconductor stack 10S is a stack including semiconductor layers. The semiconductor stack 10S has a plurality of semiconductor layers stacked in the stacking direction. In this embodiment, the semiconductor stack 10S includes an N-side semiconductor layer 22, an active layer 23, and a P-side semiconductor layer 24.
 N側半導体層22は、基板21の上方であって、活性層23の下方に配置される第一導電型の第一半導体層の一例である。本実施の形態では、N側半導体層22は、窒化物半導体を含む。また、N側半導体層22は、活性層23より屈折率が低いN型クラッド層を含む。N側半導体層22は、例えば、N型AlGaN層である。なお、N側半導体層22は、N型クラッド層以外の層を含んでもよい。N側半導体層22は、例えば、バッファ層、光ガイド層などを含んでもよい。 The N-side semiconductor layer 22 is an example of a first conductivity type first semiconductor layer disposed above the substrate 21 and below the active layer 23. In this embodiment, N-side semiconductor layer 22 includes a nitride semiconductor. Further, the N-side semiconductor layer 22 includes an N-type cladding layer having a lower refractive index than the active layer 23. The N-side semiconductor layer 22 is, for example, an N-type AlGaN layer. Note that the N-side semiconductor layer 22 may include layers other than the N-type cladding layer. The N-side semiconductor layer 22 may include, for example, a buffer layer, a light guide layer, and the like.
 活性層23は、N側半導体層22の上方に配置される発光層である。本実施の形態では、活性層23は、窒化物半導体を含み、量子井戸構造を有する。活性層23は、単一の量子井戸を有していてもよいし、複数の量子井戸を有していてもよい。本実施の形態では、活性層23は、InGaNからなる複数のバリア層と、InGaNからなる複数のウェル層と有する。 The active layer 23 is a light emitting layer placed above the N-side semiconductor layer 22. In this embodiment, active layer 23 includes a nitride semiconductor and has a quantum well structure. The active layer 23 may have a single quantum well or a plurality of quantum wells. In this embodiment, the active layer 23 includes a plurality of barrier layers made of InGaN and a plurality of well layers made of InGaN.
 P側半導体層24は、活性層23の上方に配置され、第一導電型と異なる第二導電型の第二半導体層の一例である。P側半導体層24は、窒化物半導体を含む。本実施の形態では、P側半導体層24は、活性層23より屈折率が低いP型クラッド層を含む。P側半導体層24は、例えば、P型AlGaN層である。なお、P側半導体層24は、P型クラッド層以外の層を含んでもよい。P側半導体層24は、例えば、光ガイド層、電子障壁層、コンタクト層などを含んでもよい。また、P側半導体層24は、超格子構造を有してもよい。 The P-side semiconductor layer 24 is an example of a second semiconductor layer that is disposed above the active layer 23 and has a second conductivity type different from the first conductivity type. P-side semiconductor layer 24 includes a nitride semiconductor. In this embodiment, P-side semiconductor layer 24 includes a P-type cladding layer having a lower refractive index than active layer 23. The P-side semiconductor layer 24 is, for example, a P-type AlGaN layer. Note that the P-side semiconductor layer 24 may include layers other than the P-type cladding layer. The P-side semiconductor layer 24 may include, for example, a light guide layer, an electron barrier layer, a contact layer, and the like. Further, the P-side semiconductor layer 24 may have a superlattice structure.
 図2に示されるように、P側半導体層24は、レーザ光の伝搬方向に延在するリッジ24Rを有する。リッジ24Rは、P側半導体層24のうち、Z軸方向に突出する部分である。本実施の形態では、P側半導体層24には、リッジ24Rに沿って配置され、Y軸方向に延びる二つの溝24Tが形成されている。本実施の形態では、リッジ幅(つまり、リッジ24RのX軸方向の寸法)は、45μm程度である。図1におけるリッジ24Rと溝24Tとの境界を示す点線は、リッジ24Rの上面24RtのX軸方向端部(半導体レーザ素子10の上面からは見えない)の位置に対応する。また、図1における溝24Tを示す点線のうち、リッジ24Rから遠い方の点線は、溝24TのX軸方向端部(半導体レーザ素子10の上面からは見えない)の位置に対応する。さらに、溝24Tの両側にはP側半導体層からなるウィング部24Wが形成されている。ウィング部24Wは、P側半導体層24のうち、Z軸方向に突出する部分であり、レーザ光の伝搬方向に延在する。 As shown in FIG. 2, the P-side semiconductor layer 24 has a ridge 24R extending in the propagation direction of the laser beam. The ridge 24R is a portion of the P-side semiconductor layer 24 that protrudes in the Z-axis direction. In this embodiment, two grooves 24T are formed in the P-side semiconductor layer 24, which are arranged along the ridge 24R and extend in the Y-axis direction. In this embodiment, the ridge width (that is, the dimension of the ridge 24R in the X-axis direction) is approximately 45 μm. The dotted line indicating the boundary between the ridge 24R and the groove 24T in FIG. 1 corresponds to the position of the end of the upper surface 24Rt of the ridge 24R in the X-axis direction (not visible from the upper surface of the semiconductor laser element 10). Furthermore, among the dotted lines indicating the groove 24T in FIG. 1, the dotted line farther from the ridge 24R corresponds to the position of the end of the groove 24T in the X-axis direction (not visible from the top surface of the semiconductor laser element 10). Furthermore, wing portions 24W made of a P-side semiconductor layer are formed on both sides of the trench 24T. The wing portion 24W is a portion of the P-side semiconductor layer 24 that protrudes in the Z-axis direction, and extends in the laser beam propagation direction.
 絶縁膜30は、P側半導体層24(つまり、第二半導体層)の上方に配置される層である。本実施の形態では、絶縁膜30は、半導体積層体10Sとバリア金属層50との間に配置され、電気的に絶縁性を有する層である。絶縁膜30は、リッジ24Rの上面24Rtに対応する位置に配置される開口部30aを有する。本実施の形態では、絶縁膜30は、P側半導体層24の上面のうち、リッジ24Rの上面24Rtの中央部以外の領域に配置される。具体的には、リッジ24Rの上面24Rtの一部、リッジ24Rの側面、溝24Tの底面、ウィング部24Wの側面、ウィング部24Wの上面、P側半導体層24の側面(つまり、X軸方向の端面)、活性層23の側面、N側半導体層22の側面の一部を連続して覆う。これにより、絶縁膜30上に配置されるバリア金属層50、及びバリア金属層50の上方に配置されるパッド電極60と、開口部30aをP側半導体層24の側面との間の電気的絶縁を確保できる。このため、バリア金属層50及びパッド電極60から、絶縁膜30を介してリッジ24Rの側面付近に流れる電流を抑制できる。これにより、リッジ24Rの側面付近の光密度が高くなることを抑制できる。したがって、光密度が高くなることに起因するホールバーニング現象によって光の増幅利得が低下することを抑制できる。 The insulating film 30 is a layer placed above the P-side semiconductor layer 24 (that is, the second semiconductor layer). In this embodiment, the insulating film 30 is an electrically insulating layer that is disposed between the semiconductor stack 10S and the barrier metal layer 50. The insulating film 30 has an opening 30a located at a position corresponding to the upper surface 24Rt of the ridge 24R. In this embodiment, the insulating film 30 is disposed on the upper surface of the P-side semiconductor layer 24 in a region other than the central portion of the upper surface 24Rt of the ridge 24R. Specifically, a part of the upper surface 24Rt of the ridge 24R, the side surface of the ridge 24R, the bottom surface of the groove 24T, the side surface of the wing portion 24W, the upper surface of the wing portion 24W, and the side surface of the P-side semiconductor layer 24 (that is, in the X-axis direction (end surface), the side surface of the active layer 23, and part of the side surface of the N-side semiconductor layer 22 are continuously covered. This provides electrical insulation between the barrier metal layer 50 disposed on the insulating film 30 and the pad electrode 60 disposed above the barrier metal layer 50, and the opening 30a with the side surface of the P-side semiconductor layer 24. can be secured. Therefore, the current flowing from the barrier metal layer 50 and the pad electrode 60 to the vicinity of the side surface of the ridge 24R via the insulating film 30 can be suppressed. Thereby, it is possible to suppress the light density from increasing near the side surface of the ridge 24R. Therefore, it is possible to suppress a decrease in the optical amplification gain due to the hole burning phenomenon caused by the increase in optical density.
 絶縁膜30を形成する材料は、絶縁材料であれば特に限定されない。本実施の形態では、絶縁膜30は、膜厚300nmの酸化シリコン膜である。絶縁膜30の詳細な構成及び効果については、後述する。 The material forming the insulating film 30 is not particularly limited as long as it is an insulating material. In this embodiment, the insulating film 30 is a silicon oxide film with a thickness of 300 nm. The detailed structure and effects of the insulating film 30 will be described later.
 コンタクト電極40は、P側半導体層24の上方に配置され、P側半導体層24と接する電極である。コンタクト電極40は、P側半導体層24のリッジ24Rの上方において、P側半導体層24と対向し、かつ、P側半導体層24と接する。本実施の形態では、コンタクト電極40は、絶縁膜30の開口部30aに配置される。コンタクト電極40と、絶縁膜30とは離間している。 The contact electrode 40 is an electrode placed above the P-side semiconductor layer 24 and in contact with the P-side semiconductor layer 24. The contact electrode 40 faces and is in contact with the P-side semiconductor layer 24 above the ridge 24R of the P-side semiconductor layer 24. In this embodiment, the contact electrode 40 is arranged in the opening 30a of the insulating film 30. Contact electrode 40 and insulating film 30 are spaced apart.
 コンタクト電極40は、Pd又は酸化インジウムスズ(ITO)を含んでもよい。これにより、コンタクト電極40と、P側半導体層24との間のコンタクト抵抗を低減できるため、半導体レーザ素子10の動作電圧を低減できる。また、コンタクト電極40は、Pd、Pt、Ni、及びAgの少なくとも一つで形成された単層膜若しくは多層膜、又は、ITO、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、InGaZnOx(IGZO)等の導電性の金属酸化物などからなってもよい。本実施の形態では、コンタクト電極40は、単層膜である。より具体的には、コンタクト電極40は、膜厚40nmのPd層である。 Contact electrode 40 may include Pd or indium tin oxide (ITO). Thereby, the contact resistance between the contact electrode 40 and the P-side semiconductor layer 24 can be reduced, so that the operating voltage of the semiconductor laser element 10 can be reduced. Further, the contact electrode 40 is a single layer film or a multilayer film formed of at least one of Pd, Pt, Ni, and Ag, or ITO, indium zinc oxide (IZO), zinc oxide (ZnO), InGaZnO x ( It may also be made of a conductive metal oxide such as IGZO). In this embodiment, contact electrode 40 is a single layer film. More specifically, the contact electrode 40 is a Pd layer with a thickness of 40 nm.
 バリア金属層50は、コンタクト電極40の上方に配置される金属層である。バリア金属層50は、コンタクト電極40への不純物の拡散を抑制する機能を有する。不純物として、例えば、酸素原子などが挙げられる。また、例えば、半導体レーザ素子10をジャンクションダウン(フリップチップ)実装する場合(つまり、パッド電極60を実装基板などに接合する場合)、接合材として使用される半田に含まれるSn元素が、コンタクト電極40へ拡散する不純物となり得る。 The barrier metal layer 50 is a metal layer placed above the contact electrode 40. Barrier metal layer 50 has a function of suppressing diffusion of impurities into contact electrode 40 . Examples of impurities include oxygen atoms. Furthermore, for example, when the semiconductor laser element 10 is junction-down (flip-chip) mounted (that is, when the pad electrode 60 is bonded to a mounting board or the like), the Sn element contained in the solder used as the bonding material is It can become an impurity that diffuses into 40.
 バリア金属層50は、コンタクト電極40の上面全体を覆い、かつ、コンタクト電極40の上面から絶縁膜30の上面までを連続して覆う。本実施の形態では、バリア金属層50は、コンタクト電極40の上面からリッジ24Rの外側に配置された絶縁膜30の上面までを連続して覆う。より具体的には、バリア金属層50は、図2に示されるように、左側のウィング部24Wの上方と左側の溝24Tとリッジ24Rの上面の一部の上方とに連続的に配置された絶縁膜30の上面、左側の絶縁膜30とコンタクト電極40との間に位置するリッジ24Rの上面、コンタクト電極40の上面、コンタクト電極40と右側の絶縁膜30との間に位置するリッジ24Rの上面、及び、リッジ24Rの上面の一部の上方と右側の溝24Tと右側のウィング部24W右の上方とに連続的に配置された絶縁膜30の上面を連続して覆っている。 The barrier metal layer 50 covers the entire upper surface of the contact electrode 40 and continuously covers from the upper surface of the contact electrode 40 to the upper surface of the insulating film 30. In this embodiment, the barrier metal layer 50 continuously covers the upper surface of the contact electrode 40 to the upper surface of the insulating film 30 disposed outside the ridge 24R. More specifically, as shown in FIG. 2, the barrier metal layer 50 is continuously disposed above the left wing portion 24W, the left groove 24T, and a portion of the upper surface of the ridge 24R. The upper surface of the insulating film 30, the upper surface of the ridge 24R located between the left insulating film 30 and the contact electrode 40, the upper surface of the contact electrode 40, and the ridge 24R located between the contact electrode 40 and the right insulating film 30. It continuously covers the upper surface of the insulating film 30 that is continuously disposed above the upper surface, a part of the upper surface of the ridge 24R, the right groove 24T, and the right upper portion of the right wing portion 24W.
 また、バリア金属層50は、パッド電極60と絶縁膜30との間の密着性を高める機能も有する。バリア金属層50は、例えば、Cr又はTiで形成される。バリア金属層50がCr又はTiを含み、絶縁膜30が酸化物である場合には、絶縁膜30とバリア金属層50との密着性をより一層高めることができる。絶縁膜30が酸化物の場合、バリア金属層50が酸化物を形成しやすい材料であると、絶縁膜30とバリア金属層50とが強力に結合するからである。本実施の形態では、バリア金属層50は、膜厚100nmのCr層である。なお、Cr膜の厚さは、厚すぎると大きな内部応力のためクラックや剥離が発生するおそれがある。例えば、バリア金属層50の厚さは、200nm以下であってもよい。 The barrier metal layer 50 also has a function of increasing the adhesion between the pad electrode 60 and the insulating film 30. The barrier metal layer 50 is made of Cr or Ti, for example. When the barrier metal layer 50 contains Cr or Ti and the insulating film 30 is an oxide, the adhesion between the insulating film 30 and the barrier metal layer 50 can be further improved. This is because when the insulating film 30 is an oxide, the insulating film 30 and the barrier metal layer 50 will be strongly bonded if the barrier metal layer 50 is made of a material that easily forms an oxide. In this embodiment, the barrier metal layer 50 is a Cr layer with a thickness of 100 nm. Note that if the Cr film is too thick, cracks or peeling may occur due to large internal stress. For example, the thickness of barrier metal layer 50 may be 200 nm or less.
 本実施の形態では、コンタクト電極40の膜厚は、バリア金属層50の膜厚よりも薄い。また、コンタクト電極40の膜厚とバリア金属層50の膜厚とを合わせた膜厚は、絶縁膜の膜厚よりも薄い。 In this embodiment, the thickness of the contact electrode 40 is thinner than the thickness of the barrier metal layer 50. Further, the combined thickness of the contact electrode 40 and the barrier metal layer 50 is thinner than the thickness of the insulating film.
 パッド電極60は、絶縁膜30及びコンタクト電極40の上方に配置され、コンタクト電極40と電気的に接続される導電層である。ここで、パッド電極60は、バリア金属層50形成と同じマスクを用い、バリア金属層50の上面に、バリア金属層50と同じ平面形状で形成される。パッド電極60は、Auを含む。本実施の形態では、パッド電極60は、膜厚約2000nmのAu層である。 The pad electrode 60 is a conductive layer arranged above the insulating film 30 and the contact electrode 40 and electrically connected to the contact electrode 40. Here, the pad electrode 60 is formed in the same planar shape as the barrier metal layer 50 on the upper surface of the barrier metal layer 50 using the same mask as that used for forming the barrier metal layer 50 . Pad electrode 60 contains Au. In this embodiment, the pad electrode 60 is an Au layer with a thickness of about 2000 nm.
 N側電極70は、基板21の下面(つまり、基板21の半導体積層体10Sが配置される主面の反対側の主面)に配置される導電層である。N側電極70は、例えば、Cr、Ti、Ni、Pd及びPtの少なくとも一つで形成された単層膜又は多層膜であってもよい。本実施の形態では、N側電極70は、基板21と接する膜厚10nmのTi層と、Ti層と接する膜厚35nmのPt層と、Pt層と接する膜厚300nmのAu層とを有する。 The N-side electrode 70 is a conductive layer arranged on the lower surface of the substrate 21 (that is, the main surface of the substrate 21 opposite to the main surface on which the semiconductor stack 10S is arranged). The N-side electrode 70 may be, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, and Pt. In this embodiment, the N-side electrode 70 has a Ti layer with a thickness of 10 nm in contact with the substrate 21, a Pt layer with a thickness of 35 nm in contact with the Ti layer, and an Au layer with a thickness of 300 nm in contact with the Pt layer.
 [1-2.半導体レーザ素子の実装態様]
 本実施の形態に係る半導体レーザ素子10の実装態様の一例について、図4A及び図4Bを用いて説明する。図4Aは、本実施の形態に係る半導体レーザ素子10の実装方法の一例を示す模式的な断面図である。図4Bは、本実施の形態に係る半導体レーザ素子10が実装された半導体レーザ装置11の構成を示す模式的な断面図である。図4A及び図4Bには、図2と同様に、半導体レーザ素子10のレーザ光の伝搬方向に対して垂直な断面が示されている。
[1-2. Mounting mode of semiconductor laser element]
An example of a mounting aspect of the semiconductor laser device 10 according to this embodiment will be described using FIGS. 4A and 4B. FIG. 4A is a schematic cross-sectional view showing an example of a method for mounting the semiconductor laser device 10 according to this embodiment. FIG. 4B is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11 in which the semiconductor laser element 10 according to the present embodiment is mounted. 4A and 4B, similarly to FIG. 2, a cross section of the semiconductor laser device 10 perpendicular to the propagation direction of the laser beam is shown.
 図4Aを用いて半導体レーザ素子10の実装方法の一例について説明する。ここでは、実装方法の一例としてジャンクションダウン実装の方法について説明する。 An example of a method for mounting the semiconductor laser element 10 will be described using FIG. 4A. Here, a junction-down mounting method will be described as an example of a mounting method.
 まず、半導体レーザ素子10と、接合材90が積層されたサブマウント80とを準備する。 First, the semiconductor laser element 10 and the submount 80 on which the bonding material 90 is laminated are prepared.
 サブマウント80は、半導体レーザ素子10が実装される基体である。サブマウント80は、例えば、アルミナ、AlN、SiC、ダイヤモンドなどの材料で構成されるセラミック基板、多結晶基板、単結晶基板などを用いることができる。 The submount 80 is a base on which the semiconductor laser element 10 is mounted. For the submount 80, for example, a ceramic substrate, a polycrystalline substrate, a single crystalline substrate, or the like made of a material such as alumina, AlN, SiC, or diamond can be used.
 接合材90は、半導体レーザ素子10とサブマウント80とを接合する部材である。本実施の形態では、接合材90は、AuSn半田を含む。 The bonding material 90 is a member that bonds the semiconductor laser element 10 and the submount 80. In this embodiment, bonding material 90 includes AuSn solder.
 続いて、図4Aに示されるように、半導体レーザ素子10を接合材90上に載置する。 Subsequently, as shown in FIG. 4A, the semiconductor laser element 10 is placed on the bonding material 90.
 半導体レーザ素子10を接合材90上に載置した後(つまり、半導体レーザ素子10が接合材90に接する状態となった後)、サブマウント80を接合材90の融点Tmより高い温度Tまで加熱し接合材90を溶融する。ここで、加熱工程において、サブマウント80は温度Tに10秒程度維持する。 After the semiconductor laser device 10 is placed on the bonding material 90 (that is, after the semiconductor laser device 10 is in contact with the bonding material 90), the submount 80 is heated to a temperature T higher than the melting point Tm of the bonding material 90. Then, the bonding material 90 is melted. Here, in the heating process, the submount 80 is maintained at the temperature T for about 10 seconds.
 加熱工程の後に、サブマウント80の温度を接合材90の融点Tm未満の温度まで降下させる。 After the heating process, the temperature of the submount 80 is lowered to a temperature below the melting point Tm of the bonding material 90.
 以上のような工程により、サブマウント80には、接合材90を介して半導体レーザ素子10のパッド電極60が接合される。つまり、半導体レーザ素子10は、サブマウント80にジャンクションダウン実装され、図4Bに示されるような半導体レーザ装置11を製造することができる。 Through the steps described above, the pad electrode 60 of the semiconductor laser element 10 is bonded to the submount 80 via the bonding material 90. That is, the semiconductor laser element 10 is junction-down mounted on the submount 80, and a semiconductor laser device 11 as shown in FIG. 4B can be manufactured.
 図4Bに示されるように、本実施の形態に係る半導体レーザ装置11は、N側電極70と、基板21と、半導体積層体10Sと、絶縁膜30と、コンタクト電極40と、バリア金属層50と、パッド電極60aと、接合材90aと、サブマウント80とを備える。 As shown in FIG. 4B, the semiconductor laser device 11 according to the present embodiment includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, and a barrier metal layer 50. , a pad electrode 60a, a bonding material 90a, and a submount 80.
 パッド電極60aは、Au層からなるパッド電極60と、AuSn半田を含む接合材90とが接合されることで形成される電極であり、接合材90から拡散されたSn元素を含むAu層である。パッド電極60aにおけるSn元素の濃度は、例えば、3%程度である。なお、パッド電極60aにおけるSn元素濃度は、一様でなくてもよい。パッド電極60aにおけるSn元素濃度は、例えば、接合材90aに近づくにしたがって増大してもよい。 The pad electrode 60a is an electrode formed by joining the pad electrode 60 made of an Au layer and a bonding material 90 containing AuSn solder, and is an Au layer containing Sn element diffused from the bonding material 90. . The concentration of Sn element in the pad electrode 60a is, for example, about 3%. Note that the Sn element concentration in the pad electrode 60a may not be uniform. For example, the Sn element concentration in the pad electrode 60a may increase as it approaches the bonding material 90a.
 接合材90aは、AuSn半田を含む接合材90と、Au層からなるパッド電極60とが接合されることで形成される層であり、パッド電極60から拡散されたAu元素を含むAuSn層である。接合材90aにおけるSn元素の濃度は、例えば、20%程度である。なお、接合材90aにおけるSn元素濃度は、一様でなくてもよい。接合材90aにおけるSn元素濃度は、例えば、パッド電極60aに近づくにしたがって減少してもよい。 The bonding material 90a is a layer formed by bonding the bonding material 90 containing AuSn solder and the pad electrode 60 made of an Au layer, and is an AuSn layer containing the Au element diffused from the pad electrode 60. . The concentration of Sn element in the bonding material 90a is, for example, about 20%. Note that the Sn element concentration in the bonding material 90a may not be uniform. For example, the Sn element concentration in the bonding material 90a may decrease as it approaches the pad electrode 60a.
 図4Bに示されるように、半導体レーザ素子10と、サブマウント80とをAuSn半田を含む接合材90で接合することにより、接合材90に含まれるSn元素が半導体レーザ素子10のパッド電極60に拡散する。ここで、Sn元素がコンタクト電極40へ拡散することで、コンタクト電極40の電気抵抗が増大する。本実施の形態では、Sn元素の拡散を抑制できるバリア金属層50でコンタクト電極40を覆うことで、コンタクト電極40の電気抵抗の増大を抑制できる。 As shown in FIG. 4B, by bonding the semiconductor laser device 10 and the submount 80 with the bonding material 90 containing AuSn solder, the Sn element contained in the bonding material 90 is transferred to the pad electrode 60 of the semiconductor laser device 10. Spread. Here, as the Sn element diffuses into the contact electrode 40, the electrical resistance of the contact electrode 40 increases. In this embodiment, by covering the contact electrode 40 with a barrier metal layer 50 that can suppress the diffusion of Sn element, an increase in the electrical resistance of the contact electrode 40 can be suppressed.
 なお、以上では、半導体レーザ素子10をジャンクションダウン実装する構成を示したが、半導体レーザ素子10の実装態様は、これに限定されない。例えば、半導体レーザ素子10はジャンクションアップ実装されてもよい。 Note that although the configuration in which the semiconductor laser device 10 is mounted in a junction-down manner has been described above, the manner in which the semiconductor laser device 10 is mounted is not limited to this. For example, the semiconductor laser device 10 may be mounted in a junction-up manner.
 [1-3.半導体レーザ素子の詳細構成及び効果]
 本実施の形態に係る半導体レーザ素子10の詳細構成及び効果について主に図5~図7を用いて説明する。図5は、図2に示される破線枠Vの内部の拡大図である。図6及び図7は、それぞれ、図3に示される破線枠VI及び破線枠VIIの内部の拡大図である。
[1-3. Detailed configuration and effects of semiconductor laser device]
The detailed configuration and effects of the semiconductor laser device 10 according to this embodiment will be explained mainly using FIGS. 5 to 7. FIG. 5 is an enlarged view of the inside of the broken line frame V shown in FIG. 6 and 7 are enlarged views of the interior of the dashed line frame VI and the dashed line frame VII shown in FIG. 3, respectively.
 本実施の形態に係る半導体レーザ素子10において、図5に示されるように、バリア金属層50は、コンタクト電極40の上面40t全体を覆い(図2及び図3参照)、かつ、コンタクト電極40の上面40tから絶縁膜30の上面30tまでを連続して覆う。具体的には、バリア金属層50は、コンタクト電極40と右側の絶縁膜30との間に位置するリッジ24Rの上面24Rtを覆う。バリア金属層50のZ軸方向の厚さは概均等であるため、コンタクト電極40及び絶縁膜30の傾斜部上に形成されたバリア金属層50の傾斜角度は、それぞれの下地の傾斜部とほぼ同じ傾斜角度である。ただし、コンタクト電極40及び絶縁膜30の角部上に配置されるバリア金属層50の傾斜角度は、下地の角部の傾斜角度と異なり得る。例えば、コンタクト電極40及び絶縁膜30の角部上に配置されるバリア金属層50には、角部は形成されない(つまり、傾斜角度が、X軸方向位置に応じて滑らかに変化する)場合がある。 In the semiconductor laser device 10 according to the present embodiment, as shown in FIG. 5, the barrier metal layer 50 covers the entire upper surface 40t of the contact electrode 40 (see FIGS. 2 and 3), and The area from the upper surface 40t to the upper surface 30t of the insulating film 30 is continuously covered. Specifically, the barrier metal layer 50 covers the upper surface 24Rt of the ridge 24R located between the contact electrode 40 and the right insulating film 30. Since the thickness of the barrier metal layer 50 in the Z-axis direction is approximately equal, the inclination angle of the barrier metal layer 50 formed on the sloped portions of the contact electrode 40 and the insulating film 30 is approximately the same as that of the sloped portions of the respective bases. Same angle of inclination. However, the inclination angle of the barrier metal layer 50 disposed on the corner of the contact electrode 40 and the insulating film 30 may be different from the inclination angle of the corner of the base. For example, the barrier metal layer 50 disposed on the corners of the contact electrode 40 and the insulating film 30 may not have a corner (that is, the inclination angle changes smoothly depending on the position in the X-axis direction). be.
 このようにバリア金属層50が、コンタクト電極40を覆うことで、酸素原子などの不純物がコンタクト電極40へ拡散することを抑制できる。例えば、図4Bに示される半導体レーザ素子10の実装態様のように、半導体レーザ素子10がジャンクションダウン実装される場合には、半導体レーザ素子10のパッド電極60にAuSn半田などのSn元素を含む部材が接続される際に、パッド電極60を介してコンタクト電極40へSn元素が拡散することを抑制できる。また、バリア金属層50が、コンタクト電極40上だけでなく、コンタクト電極40から離間された絶縁膜30の上面30tまで連続して覆うことで、膜厚が薄くなり得るバリア金属層50の周縁部をコンタクト電極40から離間することができる。これにより、コンタクト電極40を覆うバリア金属層50の膜厚が、薄くなることを抑制できる。したがって、バリア金属層50を介して不純物がコンタクト電極40へ拡散することをより確実に抑制できる。 By covering the contact electrode 40 with the barrier metal layer 50 in this manner, diffusion of impurities such as oxygen atoms into the contact electrode 40 can be suppressed. For example, when the semiconductor laser device 10 is mounted junction-down as in the mounting mode of the semiconductor laser device 10 shown in FIG. 4B, the pad electrode 60 of the semiconductor laser device 10 is made of a material containing Sn element such as AuSn solder. When connected, it is possible to suppress the Sn element from diffusing into the contact electrode 40 via the pad electrode 60. Furthermore, since the barrier metal layer 50 continuously covers not only the contact electrode 40 but also the upper surface 30t of the insulating film 30 that is spaced apart from the contact electrode 40, the peripheral edge of the barrier metal layer 50 where the film thickness can be reduced. can be separated from the contact electrode 40. Thereby, the thickness of the barrier metal layer 50 covering the contact electrode 40 can be suppressed from becoming thinner. Therefore, it is possible to more reliably suppress impurities from diffusing into the contact electrode 40 via the barrier metal layer 50.
 また、コンタクト電極40の、レーザ光の伝搬方向及びコンタクト電極40の積層方向に垂直な横方向(つまり、X軸方向)の端部に位置する側面40sは、リッジ24Rの上面24Rtに垂直な方向(つまり、Z軸方向)に対して、コンタクト電極40の内側に向かって傾斜している。 Further, the side surface 40s of the contact electrode 40 located at the end in the lateral direction (that is, the (that is, the Z-axis direction), it is inclined toward the inside of the contact electrode 40.
 ここで、比較例として、コンタクト電極40の側面がリッジ24Rの上面24Rtに垂直である場合について検討する。この場合、コンタクト電極40の上面40tと、側面とのなす角が90度程度となる。これに伴い、コンタクト電極40の上面40tと、側面40sとの境界部分に一様にバリア金属層50を形成することが難しくなる。このため、上面40tと、側面40sとの境界部分に配置されるバリア金属層50に、当該境界部分からバリア金属層50の表面に向かって延在するスリット状の空隙が形成されやすくなる。このような空隙が形成された場合、空隙を介して不純物がコンタクト電極40へ拡散し得る。 Here, as a comparative example, a case will be considered in which the side surface of the contact electrode 40 is perpendicular to the upper surface 24Rt of the ridge 24R. In this case, the angle between the upper surface 40t of the contact electrode 40 and the side surface is about 90 degrees. Accordingly, it becomes difficult to uniformly form the barrier metal layer 50 at the boundary between the upper surface 40t and the side surface 40s of the contact electrode 40. Therefore, a slit-shaped void extending from the boundary toward the surface of the barrier metal layer 50 is likely to be formed in the barrier metal layer 50 disposed at the boundary between the top surface 40t and the side surface 40s. When such a gap is formed, impurities can diffuse into the contact electrode 40 through the gap.
 これに対して、本実施の形態では、上述したように、コンタクト電極40の側面40sが傾斜しているため、コンタクト電極40の上面40tと、側面40sとのなす角が90度未満となる。これにより、上面40tと、側面40sとの境界部分にバリア金属層50を一様に形成しやすくなる。このため、バリア金属層50に、スリット状の空隙が形成されることを抑制できる。したがって、不純物のコンタクト電極40への拡散を抑制できる。 On the other hand, in the present embodiment, as described above, the side surface 40s of the contact electrode 40 is inclined, so the angle between the top surface 40t of the contact electrode 40 and the side surface 40s is less than 90 degrees. This makes it easier to uniformly form the barrier metal layer 50 at the boundary between the top surface 40t and the side surface 40s. Therefore, formation of slit-like voids in the barrier metal layer 50 can be suppressed. Therefore, diffusion of impurities into the contact electrode 40 can be suppressed.
 また、絶縁膜30の開口部30aの周縁に位置する側面のうち、開口部30aの横方向の端部に位置する側面30sは、リッジ24Rの上面24Rtに垂直な方向に対して、開口部30aの外側に向かって傾斜している。本実施の形態では、絶縁膜30の側面30sの、リッジ24Rの上面24Rtに対する傾斜角度は90度以下である。なお、絶縁膜30の側面30sは、二段階傾斜面を有していてもよい。言い換えると、リッジ24Rの上面付近における側面30sの傾斜角度が、絶縁膜30の上面30t付近における側面30sの傾斜角度と異なっていてもよい。 Further, among the side surfaces located at the periphery of the opening 30a of the insulating film 30, the side surface 30s located at the lateral end of the opening 30a is oriented toward the opening 30a with respect to the direction perpendicular to the upper surface 24Rt of the ridge 24R. slopes towards the outside. In this embodiment, the angle of inclination of the side surface 30s of the insulating film 30 with respect to the upper surface 24Rt of the ridge 24R is 90 degrees or less. Note that the side surface 30s of the insulating film 30 may have a two-step inclined surface. In other words, the inclination angle of the side surface 30s near the top surface of the ridge 24R may be different from the inclination angle of the side surface 30s near the top surface 30t of the insulating film 30.
 これにより、コンタクト電極40の上面40t及び側面40sに配置されるバリア金属層50と同様に、絶縁膜30の上面30tと側面30sとの境界部分に配置されるバリア金属層50にスリット状の空隙が形成されることを抑制できる。したがって、空隙、及び、バリア金属層50とリッジ24Rの上面24Rtとの境界部分を介して、不純物がコンタクト電極40へ拡散することを抑制できる。 As a result, slit-shaped voids are formed in the barrier metal layer 50 disposed at the boundary between the upper surface 30t and the side surface 30s of the insulating film 30, similarly to the barrier metal layer 50 disposed on the upper surface 40t and side surface 40s of the contact electrode 40. can be suppressed from forming. Therefore, it is possible to suppress impurities from diffusing into the contact electrode 40 through the gap and the boundary between the barrier metal layer 50 and the upper surface 24Rt of the ridge 24R.
 また、本実施の形態では、図3、図6、及び図7に示されるように、半導体レーザ素子10のレーザ光の伝搬方向の端面10F及び10Rとコンタクト電極40との間に絶縁膜30が配置される。また、バリア金属層50は、レーザ光の伝搬方向において、コンタクト電極40の上面40tから絶縁膜30の上面30tまでを連続して覆う。 Further, in this embodiment, as shown in FIGS. 3, 6, and 7, an insulating film 30 is provided between the contact electrode 40 and the end faces 10F and 10R of the semiconductor laser device 10 in the laser beam propagation direction. Placed. Further, the barrier metal layer 50 continuously covers the upper surface 40t of the contact electrode 40 to the upper surface 30t of the insulating film 30 in the propagation direction of the laser beam.
 これにより、コンタクト電極40の横方向の端部と同様に、レーザ光の伝搬方向の端部においても、コンタクト電極40の上面40t及び側面40sを覆うバリア金属層50が、薄くなることを抑制できる。これにより、バリア金属層50を介して不純物がコンタクト電極40へ拡散することを抑制できる。 As a result, the barrier metal layer 50 covering the upper surface 40t and side surface 40s of the contact electrode 40 can be prevented from becoming thinner at the end in the propagation direction of the laser beam as well as at the end in the lateral direction of the contact electrode 40. . This can suppress impurities from diffusing into the contact electrode 40 via the barrier metal layer 50.
 また、コンタクト電極40の、レーザ光の伝搬方向及びコンタクト電極40のレーザ光の伝搬方向の端部に位置する側面40sは、リッジ24Rの上面24Rtに垂直な方向に対して、コンタクト電極40の内側に向かって傾斜している。 Further, the side surface 40s of the contact electrode 40 located at the end in the laser beam propagation direction and the contact electrode 40 in the laser beam propagation direction is located inside the contact electrode 40 with respect to the direction perpendicular to the upper surface 24Rt of the ridge 24R. is sloping towards.
 これにより、コンタクト電極40の上面40tと側面40sとの境界部分に配置されるバリア金属層50に、スリット状の空隙が形成されることを抑制できる。したがって、不純物のコンタクト電極40への拡散を抑制できる。 Thereby, it is possible to suppress the formation of slit-shaped voids in the barrier metal layer 50 disposed at the boundary between the top surface 40t and the side surface 40s of the contact electrode 40. Therefore, diffusion of impurities into the contact electrode 40 can be suppressed.
 また、絶縁膜30の開口部30aの周縁に位置する側面のうち、開口部30aのレーザ光の伝搬方向の端部に位置する側面30sは、リッジ24Rの上面24Rtに垂直な方向に対して、開口部30aの外側に向かって傾斜している。 Further, among the side surfaces located at the periphery of the opening 30a of the insulating film 30, the side surface 30s located at the end of the opening 30a in the propagation direction of the laser beam is in a direction perpendicular to the upper surface 24Rt of the ridge 24R. It is inclined toward the outside of the opening 30a.
 これにより、絶縁膜30の上面30tと側面30sとの境界部分に配置されるバリア金属層50にスリット状の空隙が形成されることを抑制できる。したがって、空隙、及び、バリア金属層50とリッジ24Rの上面24Rtとの境界部分を介して、不純物がコンタクト電極40へ拡散することを抑制できる。 Thereby, it is possible to suppress the formation of slit-like voids in the barrier metal layer 50 disposed at the boundary between the top surface 30t and the side surface 30s of the insulating film 30. Therefore, it is possible to suppress impurities from diffusing into the contact electrode 40 through the gap and the boundary between the barrier metal layer 50 and the upper surface 24Rt of the ridge 24R.
 また、本実施の形態では、図6及び図7に示されるように、レーザ光の伝搬方向において、半導体レーザ素子10のフロント側の端部における絶縁膜30とコンタクト電極40との間の距離Dfは、半導体レーザ素子10のリア側の端部における絶縁膜30とコンタクト電極40との間の距離Drより長い。 In addition, in this embodiment, as shown in FIGS. 6 and 7, the distance Df between the insulating film 30 and the contact electrode 40 at the front end of the semiconductor laser element 10 in the propagation direction of the laser beam is longer than the distance Dr between the insulating film 30 and the contact electrode 40 at the rear end of the semiconductor laser device 10.
 本実施の形態では、バリア金属層50を形成するCr、及びパッド電極60を形成するAuの熱伝導率の方が、絶縁膜30を形成する酸化シリコン、及び、コンタクト電極40を形成するPdの各熱伝導率より高い。このため、半導体積層体10S上面からの放熱特性は、半導体積層体10Sの上面にバリア金属層50が接している領域、つまり、コンタクト電極40と絶縁膜30との間の領域において最も良い。したがって、このような放熱特性が良い領域の寸法を、発熱量の多い半導体レーザ素子10のフロント側の端部において、リア側の端部より大きくすることで、半導体レーザ素子10のフロント側の端部における放熱特性を高めることができる。 In this embodiment, the thermal conductivity of Cr forming the barrier metal layer 50 and Au forming the pad electrode 60 is higher than that of silicon oxide forming the insulating film 30 and Pd forming the contact electrode 40. Higher than each thermal conductivity. Therefore, the heat dissipation characteristics from the top surface of the semiconductor stack 10S are best in the region where the barrier metal layer 50 is in contact with the top surface of the semiconductor stack 10S, that is, in the region between the contact electrode 40 and the insulating film 30. Therefore, by making the dimensions of such a region with good heat dissipation properties larger at the front end of the semiconductor laser device 10, which generates a large amount of heat, than at the rear end, the front end of the semiconductor laser device 10 can be made larger. It is possible to improve the heat dissipation characteristics in the parts.
 また、本実施の形態では、図6及び図7に示されるように、絶縁膜30の開口部30aの周縁に位置する側面30sのうち、コンタクト電極40と半導体レーザ素子10のフロント側の端面10Fとの間に位置する側面30sに配置されるバリア金属層50の膜厚Tfは、コンタクト電極40と半導体レーザ素子10のリア側の端面10Rとの間に位置する側面30sに配置されるバリア金属層50の膜厚Trより薄い。 In addition, in the present embodiment, as shown in FIGS. 6 and 7, among the side surfaces 30s located at the periphery of the opening 30a of the insulating film 30, the front end surface 10F of the contact electrode 40 and the semiconductor laser element 10 is The film thickness Tf of the barrier metal layer 50 disposed on the side surface 30s located between the barrier metal layer 50 and the barrier metal layer 50 disposed on the side surface 30s located between the contact electrode 40 and the rear end surface 10R of the semiconductor laser element 10 is It is thinner than the film thickness Tr of the layer 50.
 本実施の形態では、バリア金属層50を形成するCrの熱伝導率より、パッド電極60を形成するAuの熱伝導率の方が高い。このため、発熱量の多いフロント側の端部におけるバリア金属層50の膜厚Tfをリア側の端部における膜厚Trより薄くすることで、半導体レーザ素子10のフロント側の端部における放熱特性を高めることができる。 In this embodiment, the thermal conductivity of Au forming the pad electrode 60 is higher than that of Cr forming the barrier metal layer 50. Therefore, by making the film thickness Tf of the barrier metal layer 50 at the front end where a large amount of heat is generated smaller than the film thickness Tr at the rear end, heat dissipation characteristics at the front end of the semiconductor laser element 10 are improved. can be increased.
 また、本実施の形態では、コンタクト電極40のレーザ光の伝搬方向の端部に位置する側面40sの、リッジ24Rの上面24Rtに対する傾斜角度は、半導体レーザ素子10のフロント側において、リア側より大きい。つまり、図6に示されるフロント側の側面40sの傾斜角度θfは、図7に示されるリア側の側面40sの傾斜角度θrより大きい。 Further, in this embodiment, the angle of inclination of the side surface 40s located at the end of the contact electrode 40 in the laser beam propagation direction with respect to the upper surface 24Rt of the ridge 24R is larger on the front side of the semiconductor laser element 10 than on the rear side. . That is, the inclination angle θf of the front side surface 40s shown in FIG. 6 is larger than the inclination angle θr of the rear side surface 40s shown in FIG.
 これにより、フロント側の側面40sのY軸方向における長さを、リア側の側面40sのY軸方向における長さより短くできる。このため、半導体レーザ素子10のフロント側の端部における絶縁膜30とコンタクト電極40との間の距離Dfを、半導体レーザ素子10のリア側の端部における絶縁膜30とコンタクト電極40との間の距離Drより長くしやすくなる。したがって、半導体レーザ素子10の発熱量の多いフロント側の端部における放熱特性を、リア側の端部の放熱特性より高めやすくなる。 Thereby, the length of the front side surface 40s in the Y-axis direction can be made shorter than the length of the rear side surface 40s in the Y-axis direction. Therefore, the distance Df between the insulating film 30 and the contact electrode 40 at the front end of the semiconductor laser device 10 is changed from the distance Df between the insulating film 30 and the contact electrode 40 at the rear end of the semiconductor laser device 10. It is easier to make the distance Dr longer than the distance Dr. Therefore, it is easier to improve the heat dissipation characteristics at the front end of the semiconductor laser element 10, which generates a large amount of heat, than the heat dissipation characteristics at the rear end.
 また、本実施の形態において、コンタクト電極40の側面40sの少なくとも一部の、リッジ24Rの上面24Rtに対する傾斜角度は、30度以下である。 Furthermore, in this embodiment, the inclination angle of at least a portion of the side surface 40s of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is 30 degrees or less.
 これにより、コンタクト電極40の上面40tと、側面40sとの境界部分にバリア金属層50をより一層、一様に形成しやすくなる。このため、バリア金属層50に、スリット状の空隙が形成されることを抑制できる。したがって、不純物のコンタクト電極40への拡散をより一層抑制できる。なお、本実施の形態では、コンタクト電極40の側面40sの、リッジ24Rの上面24Rtに対する傾斜角度は、絶縁膜30の側面30sの、リッジ24Rの上面24Rtに対する傾斜角度より小さい。 This makes it easier to more uniformly form the barrier metal layer 50 at the boundary between the top surface 40t and the side surface 40s of the contact electrode 40. Therefore, formation of slit-like voids in the barrier metal layer 50 can be suppressed. Therefore, diffusion of impurities into the contact electrode 40 can be further suppressed. In this embodiment, the angle of inclination of the side surface 40s of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is smaller than the angle of inclination of the side surface 30s of the insulating film 30 with respect to the upper surface 24Rt of the ridge 24R.
 また、本実施の形態において、バリア金属層50は、Crで形成される。Sn元素と合金化しにくいCrで形成されたバリア金属層50でコンタクト電極40を覆うことにより、半導体レーザ素子10がジャンクションダウン実装される場合に、Sn元素のコンタクト電極40への拡散を抑制できる。なお、バリア金属層50は、Crと同様にSn元素と合金化しにくいTiで形成されてもよい。 Furthermore, in this embodiment, the barrier metal layer 50 is formed of Cr. By covering the contact electrode 40 with the barrier metal layer 50 made of Cr, which is difficult to alloy with the Sn element, diffusion of the Sn element into the contact electrode 40 can be suppressed when the semiconductor laser element 10 is junction-down mounted. Note that the barrier metal layer 50 may be formed of Ti, which is difficult to alloy with Sn element like Cr.
 また、本実施の形態において、コンタクト電極40は、単層膜である。これにより、コンタクト電極40の側面40sを容易に傾斜させることができる。 Furthermore, in this embodiment, the contact electrode 40 is a single layer film. Thereby, the side surface 40s of the contact electrode 40 can be easily inclined.
 [1-4.製造方法]
 本実施の形態に係る半導体レーザ素子10の製造方法について図8~図23を用いて説明する。
[1-4. Production method]
A method for manufacturing the semiconductor laser device 10 according to this embodiment will be explained using FIGS. 8 to 23.
 図8~図23は、本実施の形態に係る半導体レーザ素子10の製造方法の各工程を示す模式的な断面図である。図8~図14、図23には、図2と同様の断面が示されており、図15~図18には、図2と同様の断面の一部が示されている。図19~図22には、図3と同様の断面の一部が示されている。 8 to 23 are schematic cross-sectional views showing each step of the method for manufacturing the semiconductor laser device 10 according to this embodiment. 8 to 14 and 23 show a cross section similar to that in FIG. 2, and FIGS. 15 to 18 show a part of the same cross section as in FIG. 2. 19 to 22 show a portion of a cross section similar to that in FIG. 3.
 まず、図8に示されるように、基板21の上方に第一導電型の第一半導体層としてN側半導体層22を形成し、N側半導体層22の上方に、活性層23を形成し、活性層23の上方に、第二半導体層としてP側半導体層24を形成する。より具体的には、まず、基板21を準備する。本実施の形態では、基板21として、N型GaNからなるウエハ(GaN基板)を準備する。続いて、基板21の上に、MOCVD(Metal Organic Chemical Vapor Deposition)法によるエピタキシャル成長技術により、N側半導体層22と、活性層23と、P側半導体層24とを順に積層する。これにより、半導体積層体10Sを形成することができる。 First, as shown in FIG. 8, an N-side semiconductor layer 22 is formed as a first semiconductor layer of a first conductivity type above a substrate 21, an active layer 23 is formed above the N-side semiconductor layer 22, A P-side semiconductor layer 24 is formed as a second semiconductor layer above the active layer 23 . More specifically, first, the substrate 21 is prepared. In this embodiment, a wafer made of N-type GaN (GaN substrate) is prepared as the substrate 21. Subsequently, an N-side semiconductor layer 22, an active layer 23, and a P-side semiconductor layer 24 are sequentially stacked on the substrate 21 by an epitaxial growth technique using MOCVD (Metal Organic Chemical Vapor Deposition) method. Thereby, the semiconductor stacked body 10S can be formed.
 続いて、図9に示されるように、リッジ24R、ウィング部24W、及び溝24T、並びに、半導体レーザ素子10を個片化するための素子分離溝10Dを形成する。 Subsequently, as shown in FIG. 9, a ridge 24R, a wing portion 24W, a groove 24T, and an element isolation groove 10D for dividing the semiconductor laser element 10 into individual pieces are formed.
 素子分離溝10Dは、半導体レーザ素子10のX軸方向の両端部に対応する位置に形成される。本実施の形態では、素子分離溝10Dは、半導体積層体10Sの上面からN側半導体層22の内部にまで到達する。 The device isolation grooves 10D are formed at positions corresponding to both ends of the semiconductor laser device 10 in the X-axis direction. In this embodiment, the element isolation trench 10D reaches from the top surface of the semiconductor stack 10S to the inside of the N-side semiconductor layer 22.
 本実施の形態では、リッジ24R及びウィング部24Wは、二つの溝24Tを形成することで形成される。二つの溝24Tは、P側半導体層24に形成され、活性層23には到達しない。 In this embodiment, the ridge 24R and the wing portion 24W are formed by forming two grooves 24T. The two grooves 24T are formed in the P-side semiconductor layer 24 and do not reach the active layer 23.
 素子分離溝10D、リッジ24R、ウィング部24W、及び溝24Tの形成方法は特に限定されない。素子分離溝10D、リッジ24R、ウィング部24W、及び溝24Tは、例えば、フォトリソグラフィ技術及びエッチングを用いて形成されてもよいし、レーザ加工によって形成されてもよい。 The method of forming the element isolation groove 10D, ridge 24R, wing portion 24W, and groove 24T is not particularly limited. The element isolation groove 10D, the ridge 24R, the wing portion 24W, and the groove 24T may be formed using, for example, photolithography and etching, or may be formed by laser processing.
 続いて、図10に示されるように、P側半導体層24の上方に絶縁膜30を形成する。本実施の形態では、絶縁膜30として酸化シリコン膜を、減圧CVD法などを用いて形成する。酸化シリコン膜の形成には常圧CVD法を用いてもよい。 Subsequently, as shown in FIG. 10, an insulating film 30 is formed above the P-side semiconductor layer 24. In this embodiment, a silicon oxide film is formed as the insulating film 30 using a low pressure CVD method or the like. Atmospheric pressure CVD may be used to form the silicon oxide film.
 続いて、図11に示されるように、リッジ24Rの上面24Rtに対応する位置に開口部30aを形成し、絶縁膜30の開口部30aにP側半導体層24と接するコンタクト電極40を形成する。以下、この工程について、図12~図14を用いて詳細に説明する。 Subsequently, as shown in FIG. 11, an opening 30a is formed at a position corresponding to the upper surface 24Rt of the ridge 24R, and a contact electrode 40 in contact with the P-side semiconductor layer 24 is formed in the opening 30a of the insulating film 30. This step will be explained in detail below using FIGS. 12 to 14.
 図12に示されるように、絶縁膜30の開口部30aに対応する領域以外の領域に、レジスト95を形成する。 As shown in FIG. 12, a resist 95 is formed in a region other than the region corresponding to the opening 30a of the insulating film 30.
 続いて、図13に示されるように、絶縁膜30における開口部30aに対応する領域をエッチングによって除去する。これにより、絶縁膜30の側面30sをリッジ24Rの上面24Rtに対して傾斜させることができる。エッチングの方法は、特に限定されない。エッチングとして、ドライエッチング、又はウェットエッチングを利用できる。 Subsequently, as shown in FIG. 13, a region of the insulating film 30 corresponding to the opening 30a is removed by etching. Thereby, the side surface 30s of the insulating film 30 can be inclined with respect to the upper surface 24Rt of the ridge 24R. The etching method is not particularly limited. As the etching, dry etching or wet etching can be used.
 続いて、図14に示されるように、絶縁膜30の開口部30aにP側半導体層24と接するコンタクト電極40を形成する。本実施の形態では、コンタクト電極40として、Pd層を形成する。コンタクト電極40を形成した後、レジスト95を除去する。本実施の形態では、コンタクト電極40は、プラネタリ蒸着を用いて形成される。プラネタリ蒸着は、蒸着を行う対象である基材を装着したドーム又は平板を、蒸着材料源に対して、自転しながら公転させることで、基材に対して、蒸着材料の入射方向を変化させながら蒸着を行う方法である。 Subsequently, as shown in FIG. 14, a contact electrode 40 in contact with the P-side semiconductor layer 24 is formed in the opening 30a of the insulating film 30. In this embodiment, a Pd layer is formed as the contact electrode 40. After forming the contact electrode 40, the resist 95 is removed. In this embodiment, contact electrode 40 is formed using planetary deposition. Planetary vapor deposition involves rotating and revolving a dome or flat plate on which the substrate to be vapor-deposited is attached relative to the source of the vapor-depositing material, thereby changing the direction of incidence of the vapor-depositing material on the substrate. This is a method of vapor deposition.
 以下、プラネタリ蒸着を用いたコンタクト電極40の形成方法について、図15~図22を用いて説明する。図15~図18には、レーザ光の伝搬方向に垂直な断面が示されており、図19~図22には、各半導体層の積層方向及びレーザ光の伝搬方向に平行な断面が示されている。図15~図22において、直線矢印は、蒸着材料の入射方向を示す。 Hereinafter, a method for forming the contact electrode 40 using planetary vapor deposition will be explained using FIGS. 15 to 22. 15 to 18 show cross sections perpendicular to the propagation direction of the laser beam, and FIGS. 19 to 22 show cross sections parallel to the stacking direction of each semiconductor layer and the propagation direction of the laser beam. ing. In FIGS. 15 to 22, straight arrows indicate the direction of incidence of the vapor deposition material.
 本実施の形態のプラネタリ蒸着では、自公転するドームの自転軸が公転軸に対して傾斜しており、被蒸着物(本実施の形態では、半導体積層体10Sなど)はドームの自転中心から離れた場所に設置されている。この蒸着法では、蒸着マスクの開口部が蒸着対象位置から離れている場合に、蒸着膜の側面の傾斜角度が方向によって(つまり、開口部の中心に対してどの方向に位置する側面であるかによって)異なるという特徴を持つ。以下、その製法を詳細に説明する。ここで、自転の1周期において公転中心に一番近いドームの位置を第一回転位置とする。第一回転位置において素子のフロント側すなわち基板21のY軸の正方向側がドームの外側(自転中心から遠い側)に、リア側すなわち基板21のY軸の負方向側がドームの内側(自転中心に近い側)に位置するように、基板21をドームに設置する。 In the planetary deposition of this embodiment, the axis of rotation of the dome that rotates around itself is inclined with respect to the axis of revolution, and the object to be deposited (in this embodiment, the semiconductor stack 10S, etc.) is separated from the center of rotation of the dome. It is installed in a location. In this deposition method, when the opening of the deposition mask is far from the deposition target position, the inclination angle of the side surface of the deposited film depends on the direction (in other words, in which direction the side surface is located with respect to the center of the opening) ) has the characteristic of being different. The manufacturing method will be explained in detail below. Here, the position of the dome closest to the center of revolution in one cycle of rotation is defined as the first rotational position. At the first rotational position, the front side of the element, that is, the positive side of the Y axis of the substrate 21 is on the outside of the dome (the side far from the center of rotation), and the rear side, that is, the negative side of the Y axis of the substrate 21 is on the inside of the dome (away from the center of rotation). The substrate 21 is installed in the dome so that it is located on the dome (near side).
 図15及び図19は、それぞれ、Y軸に垂直な断面及びX軸に垂直な断面における、基板21などを配置されたドームの第一回転位置における蒸着材料の入射方向を示す。図16及び図20は、当該ドームの第一回転位置から90度回転(つまり、自転)した第二回転位置における蒸着材料の入射方向を示す。図17及び図21は、当該ドームの第二回転位置からさらに90度回転した第三回転位置における蒸着材料の入射方向を示す。図18及び図22は、当該ドームの第三回転位置からさらに90度回転した第四回転位置における蒸着材料の入射方向を示す。 15 and 19 show the incident direction of the vapor deposition material at the first rotational position of the dome in which the substrate 21 and the like are placed, in a cross section perpendicular to the Y axis and a cross section perpendicular to the X axis, respectively. 16 and 20 show the direction of incidence of the vapor deposition material at a second rotational position rotated by 90 degrees (that is, rotated) from the first rotational position of the dome. FIGS. 17 and 21 show the direction of incidence of the vapor deposition material at the third rotational position, which is further rotated by 90 degrees from the second rotational position of the dome. FIGS. 18 and 22 show the direction of incidence of the vapor deposition material at a fourth rotational position which is further rotated by 90 degrees from the third rotational position of the dome.
 このように基板21をドームに設置してプラネタリ蒸着を行うことにより、例えば、第一回転位置においては、図15及び図19に示されるように、蒸着材料の入射方向は、X軸方向に対して垂直で、Y軸方向に対して小さく(例えば、10度程度)傾斜している。このような蒸着材料の入射方向の場合、X軸方向においては、開口部の直下の位置に均一に蒸着され、Y軸方向においては、開口部より左(フロント方向)にずれた位置(正方向にずれた位置)に均一に蒸着される。第一回転位置における蒸着材料の入射方向のY軸方向に対する傾斜は比較的小さいため、ずれ量は比較的小さくなる。 By installing the substrate 21 in the dome and performing planetary deposition, for example, at the first rotation position, the direction of incidence of the deposition material is relative to the X-axis direction, as shown in FIGS. 15 and 19. is perpendicular to the Y-axis direction, and is slightly inclined (for example, about 10 degrees) with respect to the Y-axis direction. In the case of such an incident direction of the evaporation material, in the X-axis direction, the evaporation material is uniformly deposited at a position directly below the opening, and in the Y-axis direction, it is deposited at a position shifted to the left (front direction) from the opening (in the positive direction). Evenly deposited at different positions). Since the inclination of the incident direction of the vapor deposition material with respect to the Y-axis direction at the first rotational position is relatively small, the amount of deviation is relatively small.
 第一回転位置からドームを回転させながら蒸着を続けると、第二回転位置においては、図16及び図20に示されるように、蒸着材料の入射方向は、X軸方向に対して中程度に(例えば、23度程度)傾斜しており、Y軸方向に対して垂直となる。このような蒸着材料の入射方向の場合、X軸方向においては、開口部より左にずれた位置(負方向にずれた位置)に均一に蒸着され、Y軸方向においては、開口部の直下の位置に均一に蒸着される。第二回転位置における蒸着材料の入射方向のX軸方向に対する傾斜は中程度であるため、ずれ量は中程度となる。 When vapor deposition is continued while rotating the dome from the first rotation position, at the second rotation position, as shown in FIGS. 16 and 20, the incident direction of the vapor deposition material is moderately ( For example, it is inclined (about 23 degrees) and is perpendicular to the Y-axis direction. In the case of such an incident direction of the evaporation material, in the X-axis direction, the evaporation material is uniformly deposited at a position shifted to the left of the opening (position shifted in the negative direction), and in the Y-axis direction, it is deposited immediately below the opening. Deposited uniformly on location. Since the inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the second rotational position is moderate, the amount of deviation is moderate.
 さらに、第二回転位置からドームを回転させながら蒸着を続けると、第三回転位置においては、図17及び図21に示されるように、蒸着材料の入射方向は、X軸方向に対して垂直で、Y軸方向に対して大きく(例えば、45度程度)傾斜している。なお、ここで、第三回転位置における蒸着材料の入射方向のY軸方向に対する傾斜の向きは、第一回転位置における傾斜の向きとは逆である。このような蒸着材料の入射方向の場合、X軸方向においては、開口部の直下の位置に均一に蒸着され、Y軸方向においては、開口部より右(リア方向)にずれた位置に均一に蒸着される。第三回転位置における蒸着材料の入射方向のY軸方向に対する傾斜は比較的大きいため、ずれ量は比較的大きくなる。 Furthermore, when vapor deposition is continued while rotating the dome from the second rotation position, the incident direction of the vapor deposition material is perpendicular to the X-axis direction at the third rotation position, as shown in FIGS. 17 and 21. , is tilted significantly (for example, about 45 degrees) with respect to the Y-axis direction. Note that the direction of inclination of the incident direction of the vapor deposition material with respect to the Y-axis direction at the third rotational position is opposite to the direction of inclination at the first rotational position. In the case of such an incident direction of the evaporation material, in the X-axis direction, it is deposited uniformly at a position directly below the opening, and in the Y-axis direction, it is uniformly deposited at a position shifted to the right (rear direction) from the opening. Deposited. Since the inclination of the incident direction of the vapor deposition material with respect to the Y-axis direction at the third rotation position is relatively large, the amount of deviation is relatively large.
 さらに、第三回転位置からドームを回転させながら蒸着を続けると、第四回転位置においては、図18及び図22に示されるように、蒸着材料の入射方向は、X軸方向に対して中程度に(例えば、23度程度)傾斜しており、Y軸方向に対して垂直となる。なお、ここで、第四回転位置における蒸着材料の入射方向のX軸方向に対する傾斜の向きは、第一回転位置における傾斜の向きとは逆である。このような蒸着材料の入射方向の場合、X軸方向においては、開口部より右にずれた位置に均一に蒸着され、Y軸方向においては、開口部の直下の位置に均一に蒸着される。第四回転位置における蒸着材料の入射方向のX軸方向に対する傾斜は中程度であるため、ずれ量は中程度(第二回転位置とは左右対称のずれ量)となる。 Furthermore, when vapor deposition is continued while rotating the dome from the third rotation position, at the fourth rotation position, as shown in FIGS. 18 and 22, the incident direction of the vapor deposition material is intermediate to the (for example, about 23 degrees), and is perpendicular to the Y-axis direction. Note that the direction of inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the fourth rotational position is opposite to the direction of inclination at the first rotational position. In the case of such an incident direction of the vapor deposition material, it is uniformly deposited at a position shifted to the right from the opening in the X-axis direction, and uniformly deposited at a position directly below the opening in the Y-axis direction. Since the inclination of the incident direction of the vapor deposition material with respect to the X-axis direction at the fourth rotational position is moderate, the amount of deviation is moderate (the amount of deviation is symmetrical with respect to the second rotational position).
 さらに、第四回転位置からドームを回転させながら蒸着を続けると、第一回転位置に戻る。このようにドームを回転させることで、蒸着材料の入射方向を周期的に変化させながら蒸着を行うこととなり、その変化量はX軸方向とY軸方向とでは異なってくる。言い換えると、蒸着領域を開口部の上面視において上下左右に周期的にずらしながら蒸着を行うことになり、そのずれ量はX軸方向とY軸方向とでは異なってくる。 Further, when vapor deposition is continued while rotating the dome from the fourth rotation position, it returns to the first rotation position. By rotating the dome in this manner, vapor deposition is performed while periodically changing the direction of incidence of the vapor deposition material, and the amount of change is different in the X-axis direction and the Y-axis direction. In other words, the vapor deposition is performed while periodically shifting the vapor deposition region vertically and horizontally when viewed from above of the opening, and the amount of shift is different in the X-axis direction and the Y-axis direction.
 以上のように、本実施の形態の素子配置の下でプラネタリ蒸着を行うことで、コンタクト電極40の側面40sを傾斜させることができる。具体的には、X軸方向においては、左右のずれ量がほぼ同じであるのでコンタクト電極40の横方向の端部に位置する側面40sの、リッジ24Rの上面24Rtに対する傾斜角度は、図18のようにどちらも同程度となる。また、Y軸方向においては、また、コンタクト電極40のレーザ光の伝搬方向の端部に位置する側面40sの、リッジ24Rの上面24Rtに対する傾斜角度を、図22のようにフロント側において、リア側より大きくすることができる。 As described above, by performing planetary deposition under the element arrangement of this embodiment, the side surface 40s of the contact electrode 40 can be inclined. Specifically, in the X-axis direction, since the left and right deviations are approximately the same, the inclination angle of the side surface 40s located at the lateral end of the contact electrode 40 with respect to the upper surface 24Rt of the ridge 24R is as shown in FIG. As such, both are of the same degree. In addition, in the Y-axis direction, the inclination angle of the side surface 40s of the contact electrode 40 located at the end in the laser beam propagation direction with respect to the upper surface 24Rt of the ridge 24R is changed from the front side to the rear side as shown in FIG. Can be made larger.
 続いて、図23に示されるように、バリア金属層50及びパッド電極60を形成する。具体的には、絶縁膜30の上に、フォトリソグラフィ技術及びプラネタリ蒸着法を用いて、Cr膜からなるバリア金属層50と、Au膜からなるパッド電極60とを形成する。バリア金属層50は、コンタクト電極40の上面全体を覆い、かつ、コンタクト電極40の上面から絶縁膜30の上面までを連続して覆う。なお、パッド電極60の形成にはメッキ法を用いてもよい。 Subsequently, as shown in FIG. 23, a barrier metal layer 50 and a pad electrode 60 are formed. Specifically, a barrier metal layer 50 made of a Cr film and a pad electrode 60 made of an Au film are formed on the insulating film 30 using photolithography and planetary deposition. Barrier metal layer 50 covers the entire upper surface of contact electrode 40 and continuously covers from the upper surface of contact electrode 40 to the upper surface of insulating film 30 . Note that a plating method may be used to form the pad electrode 60.
 以下、プラネタリ蒸着を用いたバリア金属層50及びパッド電極60の形成方法について、図15~図22を用いて説明する。本実施の形態では、コンタクト電極40の形成と同様に、第一回転位置から第四回転位置を順に周期的に繰り返しながらバリア金属層50及びパッド電極60を蒸着する。 Hereinafter, a method for forming the barrier metal layer 50 and pad electrode 60 using planetary vapor deposition will be described with reference to FIGS. 15 to 22. In this embodiment, similarly to the formation of the contact electrode 40, the barrier metal layer 50 and the pad electrode 60 are deposited while periodically repeating the first rotation position to the fourth rotation position in order.
 X軸方向に注目すると、図16に示す第二回転位置では、図15に示す第一回転位置及び図17に示す第三回転位置と比べて、蒸着材料の入射方向のX軸負方向成分の増加が中程度発生し、X軸正方向成分の減少が中程度発生する。また、図18に示す第四回転位置では、図15に示す第一回転位置及び図17に示す第三回転位置と比べて、蒸着材料の入射方向のX軸正方向成分の増加が中程度発生し、X軸負方向成分の減少が中程度発生する。よって、第一回転位置~第四回転位置の状態の周期的繰り返しにより、蒸着量の違いは打ち消しあい、絶縁膜30の側面30sに配置されるバリア金属層50の膜厚は左右(つまり、X軸正方向端部の側面30s及びX軸負方向端部の側面30s)で等しくなる。 Focusing on the X-axis direction, at the second rotational position shown in FIG. 16, compared to the first rotational position shown in FIG. 15 and the third rotational position shown in FIG. A moderate increase occurs, and a moderate decrease in the X-axis positive direction component occurs. Furthermore, at the fourth rotational position shown in FIG. 18, compared to the first rotational position shown in FIG. 15 and the third rotational position shown in FIG. However, a moderate decrease in the negative direction component of the X-axis occurs. Therefore, by periodically repeating the states from the first rotation position to the fourth rotation position, the difference in the amount of vapor deposition is canceled out, and the film thickness of the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 is The side surface 30s at the end in the positive axis direction and the side surface 30s at the end in the negative X-axis direction are equal.
 また、Y軸方向に注目すると、図19に示す第一回転位置では、図20に示す第二回転位置及び図22に示す第四回転位置と比べて、蒸着材料の入射方向のY軸正方向成分の小幅な増加が発生し、Y軸負方向成分の小幅な減少が発生する。また、図21に示す第三回転位置では、図20に示す第二回転位置及び図22に示す第四回転位置と比べて、蒸着材料の入射方向のY軸負方向成分の大幅な増加が発生し、Y軸負方向成分の大幅な減少が発生する。よって、第一回転位置~第四回転位置の状態の周期的な繰り返しにより、半導体レーザ素子10のY軸正方向の端部に位置する絶縁膜30の側面30sに配置されるバリア金属層50の膜厚Tfが、半導体レーザ素子10のY軸負方向の端部に位置する絶縁膜30の側面30sに配置されるバリア金属層50の膜厚Trより薄くなる。すなわち、コンタクト電極40と半導体レーザ素子10のフロント側の端面10Fとの間に位置する側面30sに配置されるバリア金属層50の膜厚Tfが、コンタクト電極40と半導体レーザ素子10のリア側の端面10Rとの間に位置する側面30sに配置されるバリア金属層50の膜厚Trより薄くなる。 In addition, when paying attention to the Y-axis direction, the first rotational position shown in FIG. 19 is larger in the Y-axis positive direction of the incident direction of the vapor deposition material than the second rotational position shown in FIG. 20 and the fourth rotational position shown in FIG. 22. A small increase in the component occurs, and a small decrease in the negative Y-axis component occurs. Furthermore, at the third rotational position shown in FIG. 21, compared to the second rotational position shown in FIG. 20 and the fourth rotational position shown in FIG. However, a significant decrease in the Y-axis negative direction component occurs. Therefore, by periodically repeating the states from the first rotational position to the fourth rotational position, the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 located at the end in the Y-axis positive direction of the semiconductor laser element 10 is heated. The film thickness Tf is thinner than the film thickness Tr of the barrier metal layer 50 disposed on the side surface 30s of the insulating film 30 located at the end of the semiconductor laser device 10 in the Y-axis negative direction. That is, the film thickness Tf of the barrier metal layer 50 disposed on the side surface 30s located between the contact electrode 40 and the front end surface 10F of the semiconductor laser device 10 is the same as that between the contact electrode 40 and the rear end surface 10F of the semiconductor laser device 10. It is thinner than the film thickness Tr of the barrier metal layer 50 disposed on the side surface 30s located between the end surface 10R and the side surface 30s.
 続いて、基板21の下面を研磨及びエッチングすることで、基板21の厚さを削減した後、図2に示されるように、基板21の下面にN側電極70を形成する。具体的には、フォトリソグラフィ技術及び蒸着法を用いて、Ti膜、Pt膜、及び、Au膜を順に形成したN側電極70を形成する。 Subsequently, the thickness of the substrate 21 is reduced by polishing and etching the lower surface of the substrate 21, and then, as shown in FIG. 2, the N-side electrode 70 is formed on the lower surface of the substrate 21. Specifically, the N-side electrode 70 is formed by sequentially forming a Ti film, a Pt film, and an Au film using a photolithography technique and a vapor deposition method.
 以上のような製造方法により、本実施の形態に係る半導体レーザ素子10を製造できる。 The semiconductor laser device 10 according to this embodiment can be manufactured by the manufacturing method described above.
 [1-5.変形例1]
 本実施の形態の変形例1に係る半導体レーザ素子10Aについて説明する。本変形例に係る半導体レーザ素子は、主に、リッジ24Rの形状、及び絶縁膜30の形状において、実施の形態に係る半導体レーザ素子10と異なる。以下、本変形例に係る半導体レーザ素子について、実施の形態に係る半導体レーザ素子10との相違点を中心に図24及び図25を用いて説明する。
[1-5. Modification example 1]
A semiconductor laser device 10A according to a first modification of the present embodiment will be described. The semiconductor laser device according to this modification differs from the semiconductor laser device 10 according to the embodiment mainly in the shape of the ridge 24R and the shape of the insulating film 30. The semiconductor laser device according to this modification will be described below with reference to FIGS. 24 and 25, focusing on the differences from the semiconductor laser device 10 according to the embodiment.
 図24は、本変形例に係る半導体レーザ素子10Aの全体構成を示す模式的な断面図である。図24には、図2と同様の断面が示されている。図25は、図24に示される破線枠XXVの内部の拡大図である。 FIG. 24 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10A according to this modification. FIG. 24 shows a cross section similar to FIG. 2. FIG. 25 is an enlarged view of the inside of the broken line frame XXV shown in FIG. 24.
 図25に示されるように、本変形例に係る半導体レーザ素子10Aにおいて、リッジ24Rは、リッジ24Rの上面24Rtのレーザ光の伝搬方向に対して垂直な方向(X軸方向)の端部に位置し、リッジ24Rの側面24Rsから突出する突出部24Rpを有する。つまり、突出部24Rpは、リッジ24Rの側面24RsからX軸方向に突出する。言い換えると、リッジ24Rの側面24Rsには、凹部24Rdが形成されている。さらに言い換えると、リッジ24Rの側面24Rsには、くびれが形成されている。 As shown in FIG. 25, in the semiconductor laser device 10A according to this modification, the ridge 24R is located at the end of the upper surface 24Rt of the ridge 24R in the direction perpendicular to the laser beam propagation direction (X-axis direction). However, it has a protrusion 24Rp that protrudes from the side surface 24Rs of the ridge 24R. That is, the protruding portion 24Rp protrudes from the side surface 24Rs of the ridge 24R in the X-axis direction. In other words, the recess 24Rd is formed in the side surface 24Rs of the ridge 24R. In other words, a constriction is formed on the side surface 24Rs of the ridge 24R.
 このように、リッジ24Rに突出部24Rpが形成されていることで、リッジ24Rによる電流狭窄効果を維持しながら、リッジ24Rの上面24Rtの面積を拡大することができる。したがって、リッジ24Rの上面24Rtにおいて、コンタクト電極40を配置するための領域を拡大できる。 By forming the protrusion 24Rp on the ridge 24R in this way, the area of the upper surface 24Rt of the ridge 24R can be expanded while maintaining the current confinement effect by the ridge 24R. Therefore, the area for arranging the contact electrode 40 can be expanded on the upper surface 24Rt of the ridge 24R.
 また、本変形例に係る半導体レーザ素子10Aにおいては、絶縁膜30のうち、突出部24Rpを覆う部分の表面に、凹部30dが形成されており、凹部30dは、突出部24Rpより上方に位置する。このように、突出部24Rpと凹部30dとの上下方向の位置が異なることで、突出部24Rpと、凹部30dとが近づくことを抑制できる。つまり、突出部24Rpと、凹部30dとが近づくことに起因して、絶縁膜30において、局所的に膜厚が小さい部分が形成されることを抑制できる。したがって、絶縁膜30における絶縁性能の低下を抑制できる。 Furthermore, in the semiconductor laser device 10A according to this modification, a recess 30d is formed on the surface of the portion of the insulating film 30 that covers the protrusion 24Rp, and the recess 30d is located above the protrusion 24Rp. . In this way, since the positions of the protrusion 24Rp and the recess 30d are different in the vertical direction, it is possible to prevent the protrusion 24Rp and the recess 30d from coming close to each other. That is, it is possible to suppress the formation of locally thin portions in the insulating film 30 due to the protrusion 24Rp and the recess 30d coming close to each other. Therefore, deterioration of the insulation performance of the insulation film 30 can be suppressed.
 本変形例に係る半導体レーザ素子10Aのリッジ24Rは、エッチングによるリッジ24Rの形状が逆テーパ(リッジの上方から下方に向かってリッジ幅が狭くなる形状)となる第一のエッチングと、リッジ24Rの形状が順テーパ(リッジの上方から下方に向かってリッジ幅が広くなる形状)となる第二のエッチングとを行うことで形成できる。以下では、リッジ24Rを形成するためのエッチング方法の一例として、周波数13.56MHzのICP(Inductively Coupled Plasma)方式を用いる例を説明する。 The ridge 24R of the semiconductor laser device 10A according to this modification is formed by first etching in which the etched ridge 24R has a reverse taper shape (a shape in which the width of the ridge narrows from the top to the bottom of the ridge); It can be formed by performing a second etching process in which the shape becomes a forward taper (a shape in which the ridge width becomes wider from the top to the bottom of the ridge). Below, as an example of the etching method for forming the ridge 24R, an example using an ICP (Inductively Coupled Plasma) method with a frequency of 13.56 MHz will be described.
 第一のエッチングの条件として、例えば、トップパワーが150Wであり、バイアスパワーが15Wであり、ガス圧が2Paであり、ガス種がCl2(流量50sccm)であるという条件を採用できる。 As the conditions for the first etching, for example, the following conditions can be adopted: top power is 150 W, bias power is 15 W, gas pressure is 2 Pa, and gas species is Cl 2 (flow rate 50 sccm).
 第二のエッチングの条件として、例えば、トップパワーが150Wであり、バイアスパワーが20Wであり、ガス圧が4Paであり、ガス種がCl2(流量50sccm)であるという条件を採用できる。 As conditions for the second etching, for example, the conditions that the top power is 150 W, the bias power is 20 W, the gas pressure is 4 Pa, and the gas species is Cl 2 (flow rate 50 sccm) can be adopted.
 上述した第一のエッチングの条件によれば、ガス圧が低いことで、異方性エッチングを実現できるため、リッジ24Rの形状を逆テーパとすることができる。上述した第二のエッチングの条件によれば、ガス圧が高いことで、等方性エッチングを実現できるため、リッジ24Rの形状を順テーパとすることができる。 According to the first etching conditions described above, anisotropic etching can be achieved due to the low gas pressure, so the shape of the ridge 24R can be made into a reverse taper. According to the second etching conditions described above, the gas pressure is high, so that isotropic etching can be achieved, so that the shape of the ridge 24R can be made into a forward taper.
 このようなエッチング方法を採用することで、本変形例に係る半導体レーザ素子10Aのリッジ24Rを形成できる。 By employing such an etching method, the ridge 24R of the semiconductor laser device 10A according to this modification can be formed.
 [1-6.変形例2]
 本実施の形態の変形例2に係る半導体レーザ素子について説明する。本変形例に係る半導体レーザ素子は、パッド電極60上にさらに金属層を備える点において、実施の形態に係る半導体レーザ素子10と異なる。以下、本変形例に係る半導体レーザ素子について、実施の形態に係る半導体レーザ素子10との相違点を中心に図26を用いて説明する。図26は、本変形に係る半導体レーザ素子10Bの全体構成を示す模式的な断面図である。図26には、図2と同様の断面が示されている。
[1-6. Modification 2]
A semiconductor laser device according to a second modification of the present embodiment will be described. The semiconductor laser device according to this modification differs from the semiconductor laser device 10 according to the embodiment in that a metal layer is further provided on the pad electrode 60. The semiconductor laser device according to this modification will be described below with reference to FIG. 26, focusing on the differences from the semiconductor laser device 10 according to the embodiment. FIG. 26 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10B according to this modification. FIG. 26 shows a cross section similar to FIG. 2.
 図26に示されるように、本変形例に係る半導体レーザ素子10Bは、半導体レーザ素子10に加えて、第一金属層61と、第二金属層62とを備える。 As shown in FIG. 26, the semiconductor laser device 10B according to this modification includes a first metal layer 61 and a second metal layer 62 in addition to the semiconductor laser device 10.
 第一金属層61は、パッド電極60の上方に配置される金属層である。第一金属層61は、パッド電極60の上面を覆い、パッド電極60への不純物の拡散を抑制する機能を有する。第一金属層61は、例えばCr、Ti及びPtの少なくとも一つで形成された単層膜又は多層膜であってもよい。本変形例では、第一金属層61は、パッド電極60と接する膜厚10nmのTi層と、Ti層と接する膜厚35nmのPt層とを有する。 The first metal layer 61 is a metal layer placed above the pad electrode 60. The first metal layer 61 covers the upper surface of the pad electrode 60 and has a function of suppressing diffusion of impurities into the pad electrode 60. The first metal layer 61 may be a single layer film or a multilayer film made of at least one of Cr, Ti, and Pt, for example. In this modification, the first metal layer 61 includes a 10 nm thick Ti layer in contact with the pad electrode 60 and a 35 nm thick Pt layer in contact with the Ti layer.
 第二金属層62は、第一金属層61の上方に配置される金属層である。第二金属層62は、第一金属層61の上面を覆い、Auを含む。本変形例では、第二金属層62は、膜厚300nmのAu層である。 The second metal layer 62 is a metal layer placed above the first metal layer 61. The second metal layer 62 covers the upper surface of the first metal layer 61 and contains Au. In this modification, the second metal layer 62 is an Au layer with a thickness of 300 nm.
 本変形例に係る半導体レーザ素子10Bにおいても、実施の形態に係る半導体レーザ素子10と同様の効果が奏される。 The same effects as the semiconductor laser device 10 according to the embodiment can also be achieved in the semiconductor laser device 10B according to this modification.
 また、本変形例に係る半導体レーザ素子10Bは、第一金属層61備えることで、パッド電極60への不純物の拡散を抑制できるため、パッド電極60からコンタクト電極40へ拡散する不純物の拡散をさらに抑制できる。 In addition, since the semiconductor laser device 10B according to the present modification includes the first metal layer 61, it is possible to suppress the diffusion of impurities to the pad electrode 60, so that the diffusion of impurities from the pad electrode 60 to the contact electrode 40 can be further suppressed. It can be suppressed.
 次に、本変形例に係る半導体レーザ素子10Bの実装態様の一例について、図27を用いて説明する。図27は、本変形例に係る半導体レーザ素子10Bが実装された半導体レーザ装置11Bの構成を示す模式的な断面図である。図27には、図4Bと同様の断面が示されている。 Next, an example of a mounting mode of the semiconductor laser device 10B according to this modification will be described using FIG. 27. FIG. 27 is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11B in which a semiconductor laser element 10B according to this modification is mounted. FIG. 27 shows a cross section similar to FIG. 4B.
 図27に示されるように、本変形例に係る半導体レーザ装置11Bは、N側電極70と、基板21と、半導体積層体10Sと、絶縁膜30と、コンタクト電極40と、バリア金属層50と、パッド電極60と、第一金属層61と、接合材90bと、サブマウント80とを備える。 As shown in FIG. 27, the semiconductor laser device 11B according to this modification includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30, a contact electrode 40, and a barrier metal layer 50. , a pad electrode 60, a first metal layer 61, a bonding material 90b, and a submount 80.
 接合材90bは、第二金属層62と、接合材90とが合金化されることで形成される部材である。接合材90bは、AuSn層である。本変形例では、Sn元素は、接合材90b全体においてほぼ一様に拡散されている(つまり、Sn元素濃度は一様である)。接合材90bのSn元素濃度は、例えば、20%程度である。 The bonding material 90b is a member formed by alloying the second metal layer 62 and the bonding material 90. The bonding material 90b is an AuSn layer. In this modification, the Sn element is almost uniformly diffused throughout the bonding material 90b (that is, the Sn element concentration is uniform). The Sn element concentration of the bonding material 90b is, for example, about 20%.
 本変形例に係る半導体レーザ装置11Bは、実施の形態に係る半導体レーザ装置11と同様の実装方法によって製造することができる。つまり、上述した実施の形態に係る半導体レーザ装置11の実装方法において、半導体レーザ素子10に代えて、半導体レーザ素子10Bを用いることで、半導体レーザ装置11Bを製造することができる。 The semiconductor laser device 11B according to this modification can be manufactured by the same mounting method as the semiconductor laser device 11 according to the embodiment. That is, in the method for mounting the semiconductor laser device 11 according to the embodiment described above, the semiconductor laser device 11B can be manufactured by using the semiconductor laser device 10B instead of the semiconductor laser device 10.
 本変形例に係る半導体レーザ装置11Bでは、半導体レーザ素子10Bが第一金属層61を備えるため、AuSn半田を含む接合材90からパッド電極60へのSn元素の拡散を抑制でき、その結果コンタクト電極40へのSn元素の拡散をさらに抑制できる。したがって、コンタクト電極40の電気抵抗の増大をより一層抑制できる。また、パッド電極60から接合材90へのAuの拡散も抑制されるため、パッド電極60の実装に伴う組成比の変化はない。 In the semiconductor laser device 11B according to this modification, since the semiconductor laser element 10B includes the first metal layer 61, diffusion of Sn element from the bonding material 90 containing AuSn solder to the pad electrode 60 can be suppressed, and as a result, the contact electrode Diffusion of Sn element into 40 can be further suppressed. Therefore, an increase in the electrical resistance of the contact electrode 40 can be further suppressed. Further, since the diffusion of Au from the pad electrode 60 to the bonding material 90 is also suppressed, there is no change in the composition ratio due to the mounting of the pad electrode 60.
 [1-7.変形例3]
 本実施の形態の変形例3に係る半導体レーザ素子について説明する。本変形例に係る半導体レーザ素子は、絶縁膜の構成において実施の形態に係る半導体レーザ素子10と異なる。以下、本変形例に係る半導体レーザ素子について、実施の形態に係る半導体レーザ素子10との相違点を中心に図28及び図29を用いて説明する。図28は、本変形に係る半導体レーザ素子10Cの全体構成を示す模式的な断面図である。図28には、図2と同様の断面が示されている。図29は、図28に示される破線枠XXIXの内部の拡大図である。
[1-7. Modification 3]
A semiconductor laser device according to a third modification of the present embodiment will be described. The semiconductor laser device according to this modification differs from the semiconductor laser device 10 according to the embodiment in the structure of the insulating film. The semiconductor laser device according to this modification will be described below with reference to FIGS. 28 and 29, focusing on the differences from the semiconductor laser device 10 according to the embodiment. FIG. 28 is a schematic cross-sectional view showing the overall configuration of a semiconductor laser device 10C according to this modification. FIG. 28 shows a cross section similar to FIG. 2. FIG. 29 is an enlarged view of the inside of the broken line frame XXIX shown in FIG. 28.
 図28に示されるように、本変形例に係る半導体レーザ素子10Cは、絶縁膜30Cを備える。絶縁膜30Cは、リッジ24Rの上面24Rtに対応する位置に配置される開口部30Caを有する。 As shown in FIG. 28, a semiconductor laser device 10C according to this modification includes an insulating film 30C. The insulating film 30C has an opening 30Ca located at a position corresponding to the upper surface 24Rt of the ridge 24R.
 図29に示されるように、本変形例に係る絶縁膜30の開口部30Caの周縁に位置する側面30Csは、下段側面領域31と、下段側面領域31の上方に配置される上段側面領域32とを有する。下段側面領域31と、上段側面領域32とは、リッジの上面24Rtに対する傾斜角度が異なる。つまり、下段側面領域31のリッジの上面24Rtに対する傾斜角度θ1は、下段側面領域31のリッジの上面24Rtに対する傾斜角度θ2と異なる。本変形例では、傾斜角度θ1は、傾斜角度θ2より大きい。 As shown in FIG. 29, the side surface 30Cs located at the periphery of the opening 30Ca of the insulating film 30 according to this modification includes a lower side surface region 31 and an upper side surface region 32 disposed above the lower side surface region 31. has. The lower side surface region 31 and the upper side surface region 32 have different inclination angles with respect to the upper surface 24Rt of the ridge. That is, the inclination angle θ1 of the lower side surface area 31 with respect to the upper surface 24Rt of the ridge is different from the inclination angle θ2 of the lower side surface area 31 with respect to the upper surface 24Rt of the ridge. In this modification, the inclination angle θ1 is larger than the inclination angle θ2.
 上述したように絶縁膜30Cの側面30Csは、下段側面領域31と、上段側面領域32とを有し、下段側面領域31と、上段側面領域32とは、リッジの上面24Rtに対する傾斜角度が異なる。 As described above, the side surface 30Cs of the insulating film 30C has a lower side surface region 31 and an upper side surface region 32, and the lower side surface region 31 and the upper side surface region 32 have different inclination angles with respect to the upper surface 24Rt of the ridge.
 これにより、側面30Cs全体が、小さい傾斜角度(例えば、傾斜角度θ2)で形成される場合より、傾斜領域の幅を低減できる。したがって、本変形例では、絶縁膜30Cのリッジ24Rの上面24Rtに配置される絶縁膜30Cの端部上の厚さを確保しながら、開口部30Caの面積を増大できる。これにより、コンタクト電極40の面積を増大することが可能となる。これに伴い、電流注入領域の面積を増大できるため、半導体レーザ素子10Cの動作電圧を低減できる。 Thereby, the width of the slope region can be reduced compared to when the entire side surface 30Cs is formed with a small slope angle (for example, slope angle θ2). Therefore, in this modification, the area of the opening 30Ca can be increased while ensuring the thickness on the end portion of the insulating film 30C disposed on the upper surface 24Rt of the ridge 24R of the insulating film 30C. This makes it possible to increase the area of the contact electrode 40. Accordingly, since the area of the current injection region can be increased, the operating voltage of the semiconductor laser device 10C can be reduced.
 本変形例では、下段側面領域31のリッジ24Rの上面24Rtに対する傾斜角度(図29に示される傾斜角度θ1)は、上段側面領域32のリッジ24Rの上面24Rtに対する傾斜角度(図29に示される傾斜角度θ2)より大きい。これにより、膜厚の小さく、絶縁抵抗の低い下段側面領域31の幅を小さくすることできるため、絶縁膜30Cの絶縁性をより一層高めることができる。 In this modification, the inclination angle of the lower side surface region 31 with respect to the upper surface 24Rt of the ridge 24R (the inclination angle θ1 shown in FIG. 29) is the same as the inclination angle of the upper step side region 32 with respect to the upper surface 24Rt of the ridge 24R (the inclination angle θ1 shown in FIG. 29). angle θ2). Thereby, the width of the lower side surface region 31, which has a small film thickness and low insulation resistance, can be reduced, so that the insulation properties of the insulating film 30C can be further improved.
 ここで、上段側面領域32のリッジ24Rの上面24Rtに対する傾斜角度は、90度未満であってもよい。この場合、絶縁膜30Cの上へのバリア金属層50の形成において、絶縁膜30Cの角部上のバリア金属層50に割れが生じる危険性を低減できる。また、上段側面領域32の傾斜角度は、40度以上60度以下であってもよい。この場合、傾斜に伴う接触面積増加と角部の割れ回避の両立ができ、45度で最もその効果が大きかった。このように、上段側面領域32の傾斜角度を小さくすることで、リッジ24Rの上面24Rt上に位置する絶縁膜30Cの上端部と、バリア金属層50との接触面積を増大することができる。したがって、絶縁膜30Cとバリア金属層50との密着性を高めることができる。 Here, the inclination angle of the ridge 24R of the upper side surface region 32 with respect to the upper surface 24Rt may be less than 90 degrees. In this case, in forming the barrier metal layer 50 on the insulating film 30C, it is possible to reduce the risk of cracks occurring in the barrier metal layer 50 on the corners of the insulating film 30C. Further, the inclination angle of the upper side surface region 32 may be greater than or equal to 40 degrees and less than or equal to 60 degrees. In this case, it was possible to both increase the contact area due to the inclination and avoid cracking at the corners, and the effect was greatest at 45 degrees. By reducing the inclination angle of the upper side surface region 32 in this way, the contact area between the upper end of the insulating film 30C located on the upper surface 24Rt of the ridge 24R and the barrier metal layer 50 can be increased. Therefore, the adhesion between the insulating film 30C and the barrier metal layer 50 can be improved.
 ここで、下段側面領域31のリッジ24Rの上面24Rtに対する傾斜角度は、90度以下であってもよい。この場合、絶縁膜30Cの上へのバリア金属層50の形成において、絶縁膜30Cとバリア金属層50との間にボイドが発生する危険性を低減できる。また下段側面領域31の傾斜角度65度以上85度以下であってもよい。この場合、傾斜に伴う接触面積増加とボイド発生の回避の両立ができ、75度で最もその効果が大きかった。このように、下段側面領域31の傾斜角度を大きくすることで、絶縁膜30Cの開口部30Caの面積を増大できる。したがって、電流注入領域の面積を増大できるため、半導体レーザ素子10Cの動作電圧をより一層低減できる。 Here, the inclination angle of the ridge 24R of the lower side surface region 31 with respect to the upper surface 24Rt may be 90 degrees or less. In this case, in forming the barrier metal layer 50 on the insulating film 30C, the risk of voids occurring between the insulating film 30C and the barrier metal layer 50 can be reduced. Further, the inclination angle of the lower side surface region 31 may be greater than or equal to 65 degrees and less than or equal to 85 degrees. In this case, it was possible to both increase the contact area due to the inclination and avoid the generation of voids, and the effect was greatest at 75 degrees. In this way, by increasing the inclination angle of the lower side surface region 31, the area of the opening 30Ca of the insulating film 30C can be increased. Therefore, since the area of the current injection region can be increased, the operating voltage of the semiconductor laser device 10C can be further reduced.
 本変形例に係る絶縁膜30Cの製造方法は、開口部30Caを形成する工程において、実施の形態に係る絶縁膜30の製造方法と異なる。 The method for manufacturing the insulating film 30C according to this modification differs from the method for manufacturing the insulating film 30 according to the embodiment in the step of forming the opening 30Ca.
 絶縁膜30Cの開口部30Caを形成する工程は、絶縁膜30Cにおける開口部30Caに対応する領域を第一膜厚だけ第一エッチング方法によってエッチングする第一エッチング工程と、第一エッチング工程の後に、当該領域を第二膜厚だけ第一エッチング方法と異なる第二エッチング方法によってエッチングする第二エッチング工程とを含む。 The step of forming the opening 30Ca in the insulating film 30C includes a first etching step of etching a region corresponding to the opening 30Ca in the insulating film 30C by a first film thickness using a first etching method, and after the first etching step, and a second etching step of etching the region by a second thickness using a second etching method different from the first etching method.
 第一エッチング方法は、例えば、ドライエッチングである。具体的には、開口部30Caに対応する領域以外の領域にレジストを形成し、絶縁膜30Cのレジストで覆われていない領域を、ドライエッチングを用いてエッチングする。第一膜厚は、例えば150nmである。ドライエッチングの方式として、例えば、周波数13.56MHzのICP方式を用いることができる。ドライエッチングにおいて用いられる処理条件として、例えば、トップパワーが120Wであり、バイアスパワーが40Wであり、ガス圧が1Paであり、ガス種がCHF3(流量35sccm)であるという条件を採用できる。 The first etching method is, for example, dry etching. Specifically, a resist is formed in a region other than the region corresponding to the opening 30Ca, and the region of the insulating film 30C not covered with the resist is etched using dry etching. The first film thickness is, for example, 150 nm. As the dry etching method, for example, an ICP method with a frequency of 13.56 MHz can be used. As the processing conditions used in dry etching, for example, the following conditions can be adopted: top power is 120 W, bias power is 40 W, gas pressure is 1 Pa, and gas type is CHF 3 (flow rate 35 sccm).
 第二エッチング方法は、例えば、ウェットエッチングである。具体的には、絶縁膜30Cのレジストで覆われていない領域を、ウェットエッチングを用いてエッチングする。第二膜厚は、例えば150nmである。ウェットエッチングの方式として、例えば、BHF(バッファードフッ酸)を用いたディップ処理方式を用いることができる。ウェットエッチング処理後には、処理された半導体積層体10Sを含む素子は、純水洗浄された後、スピン乾燥される。 The second etching method is, for example, wet etching. Specifically, the region of the insulating film 30C that is not covered with the resist is etched using wet etching. The second film thickness is, for example, 150 nm. As a wet etching method, for example, a dip treatment method using BHF (buffered hydrofluoric acid) can be used. After the wet etching process, the device including the processed semiconductor stack 10S is washed with pure water and then spin-dried.
 これにより、開口部30Caの周縁に位置する側面30Csが下段側面領域31及び上段側面領域32を有する絶縁膜30を形成できる。 Thereby, the insulating film 30 can be formed in which the side surface 30Cs located at the periphery of the opening 30Ca has a lower side surface region 31 and an upper side surface region 32.
 本変形例に係る半導体レーザ素子10Cにおいても、実施の形態に係る半導体レーザ素子10と同様の効果が奏される。 The same effects as the semiconductor laser device 10 according to the embodiment can also be achieved in the semiconductor laser device 10C according to this modification.
 次に、本変形例に係る半導体レーザ素子10Cの実装態様の一例について、図30を用いて説明する。図30は、本変形例に係る半導体レーザ素子10Cが実装された半導体レーザ装置11Cの構成を示す模式的な断面図である。図30には、図4Bと同様の断面が示されている。 Next, an example of a mounting aspect of the semiconductor laser device 10C according to this modification will be described using FIG. 30. FIG. 30 is a schematic cross-sectional view showing the configuration of a semiconductor laser device 11C in which a semiconductor laser element 10C according to this modification is mounted. FIG. 30 shows a cross section similar to FIG. 4B.
 図30に示されるように、本変形例に係る半導体レーザ装置11Cは、N側電極70と、基板21と、半導体積層体10Sと、絶縁膜30Cと、コンタクト電極40と、バリア金属層50と、接合材90cと、サブマウント80とを備える。 As shown in FIG. 30, a semiconductor laser device 11C according to this modification includes an N-side electrode 70, a substrate 21, a semiconductor stack 10S, an insulating film 30C, a contact electrode 40, and a barrier metal layer 50. , a bonding material 90c, and a submount 80.
 接合材90cは、パッド電極60と、接合材90とが合金化されることで形成される部材である。接合材90cは、AuSn層である。本変形例では、Sn元素は、接合材90c全体においてほぼ一様に拡散されている(つまり、Sn元素濃度は一様である)。接合材90cのSn元素濃度は、例えば、20%程度である。 The bonding material 90c is a member formed by alloying the pad electrode 60 and the bonding material 90. The bonding material 90c is an AuSn layer. In this modification, the Sn element is almost uniformly diffused throughout the bonding material 90c (that is, the Sn element concentration is uniform). The Sn element concentration of the bonding material 90c is, for example, about 20%.
 本変形例に係る半導体レーザ装置11Cは、実施の形態に係る半導体レーザ装置11と同様の実装方法によって製造することができる。つまり、上述した実施の形態に係る半導体レーザ装置11の実装方法において、半導体レーザ素子10に代えて、半導体レーザ素子10Cを用いることで、半導体レーザ装置11Cを製造することができる。ただし、本変形例に係る半導体レーザ素子10Cの実装においては、実施の形態に係る半導体レーザ素子10の実装の場合より、加熱工程の時間(温度Tに維持する時間)を30秒程度に延長している。これにより、Au層からなるパッド電極60へAuSn半田を含む接合材90からのSn元素の拡散が十分に進行することで、パッド電極60と接合材90とがほぼ一様に合金化された接合材90cが形成される。 The semiconductor laser device 11C according to this modification can be manufactured by the same mounting method as the semiconductor laser device 11 according to the embodiment. That is, in the method for mounting the semiconductor laser device 11 according to the embodiment described above, the semiconductor laser device 11C can be manufactured by using the semiconductor laser device 10C instead of the semiconductor laser device 10. However, in mounting the semiconductor laser device 10C according to this modification, the heating process time (time to maintain the temperature T) is extended to about 30 seconds compared to the case of mounting the semiconductor laser device 10 according to the embodiment. ing. As a result, the diffusion of the Sn element from the bonding material 90 containing AuSn solder to the pad electrode 60 made of the Au layer progresses sufficiently, so that the pad electrode 60 and the bonding material 90 are almost uniformly alloyed. A material 90c is formed.
 本変形例では、バリア金属層50に割れ回避ができているので、パッド電極60が接合材90と一体化された場合においても、本変形例に係る半導体レーザ装置11Cにおいては、バリア金属層50によって、Sn元素などの不純物がコンタクト電極40へ拡散することを抑制できる。 In this modification, since cracks in the barrier metal layer 50 can be avoided, even when the pad electrode 60 is integrated with the bonding material 90, in the semiconductor laser device 11C according to this modification, the barrier metal layer 50 Therefore, diffusion of impurities such as Sn element into the contact electrode 40 can be suppressed.
 (変形例など)
 以上、本開示に係る半導体レーザ素子などについて、実施の形態及び変形性に基づいて説明したが、本開示は、上記実施の形態及び変形例に限定されるものではない。
(Variations, etc.)
Although the semiconductor laser device and the like according to the present disclosure have been described above based on the embodiments and deformability, the present disclosure is not limited to the above embodiments and modifications.
 上記実施の形態及び変形例では、半導体レーザ素子の端面10F及び10Rと、コンタクト電極40との間に絶縁膜30が配置されるが、絶縁膜30の構成はこれに限定されない。例えば、絶縁膜30の開口部30aは、スリット状であってもよい。つまり、開口部30aは、半導体レーザ素子の端面10F及び10Rの少なくとも一方まで延在してもよい。 In the above embodiments and modifications, the insulating film 30 is disposed between the end faces 10F and 10R of the semiconductor laser element and the contact electrode 40, but the configuration of the insulating film 30 is not limited to this. For example, the opening 30a of the insulating film 30 may have a slit shape. That is, the opening 30a may extend to at least one of the end faces 10F and 10R of the semiconductor laser element.
 また、上記各実施の形態においては、半導体レーザ素子は、青色光を出射したが、半導体レーザ素子の出射光の帯域は、これに限定されない。例えば、半導体レーザ素子は、青紫光や赤色光を含む可視光、あるいは紫外光、もしくは赤外光を出射してもよい。 Furthermore, in each of the above embodiments, the semiconductor laser device emits blue light, but the band of the light emitted by the semiconductor laser device is not limited to this. For example, the semiconductor laser element may emit visible light including blue-violet light and red light, ultraviolet light, or infrared light.
 また、上記各実施の形態においては、半導体積層体や基板の材料として、窒化物半導体を用いた半導体レーザ素子を示したが、材料はこれに限定されない。例えば、半導体レーザ素子は、AlGaInAsやAlGaInPを用いた半導体レーザ素子でもよい。 Further, in each of the above embodiments, a semiconductor laser element using a nitride semiconductor is shown as the material for the semiconductor stack and the substrate, but the material is not limited to this. For example, the semiconductor laser device may be a semiconductor laser device using AlGaInAs or AlGaInP.
 また、上記変形例2及び変形例3においては、実装態様の一例として、ジャンクションダウン実装が示されたが、半導体レーザ素子の実装態様は、これに限定されない。例えば、半導体レーザ素子はジャンクションアップ実装されてもよい。 Further, in the above-described modifications 2 and 3, junction-down mounting is shown as an example of the mounting mode, but the mounting mode of the semiconductor laser element is not limited to this. For example, the semiconductor laser device may be mounted in a junction-up manner.
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it can be realized by making various modifications to the above embodiments by those skilled in the art, or by arbitrarily combining the constituent elements and functions of the above embodiments without departing from the spirit of the present disclosure. The present disclosure also includes forms in which:
 本開示の窒化物半導体レーザ素子などは、例えば、高効率な光源として加工機用の光源などに適用できる。 The nitride semiconductor laser device of the present disclosure can be applied, for example, to a light source for a processing machine as a highly efficient light source.
 10、10A、10B、10C 半導体レーザ素子
 10D 素子分離溝
 10F、10R 端面
 10S 半導体積層体
 11、11B、11C 半導体レーザ装置
 21 基板
 22 N側半導体層
 23 活性層
 24 P側半導体層
 24R リッジ
 24Rd、30d 凹部
 24Rp 突出部
 24Rs、30s、30Cs、40s 側面
 24Rt、30t、40t 上面
 24T 溝
 24W ウィング部
 30、30C 絶縁膜
 30a、30Ca 開口部
 31 下段側面領域
 32 上段側面領域
 40 コンタクト電極
 50 バリア金属層
 60、60a パッド電極
 61 第一金属層
 62 第二金属層
 70 N側電極
 80 サブマウント
 90、90a、90b、90c 接合材
 95 レジスト
10, 10A, 10B, 10C semiconductor laser element 10D element isolation trench 10F, 10R end face 10S semiconductor stack 11, 11B, 11C semiconductor laser device 21 substrate 22 N-side semiconductor layer 23 active layer 24 P-side semiconductor layer 24R ridge 24Rd, 30d Concave portion 24Rp Projection portion 24Rs, 30s, 30Cs, 40s Side surface 24Rt, 30t, 40t Top surface 24T Groove 24W Wing portion 30, 30C Insulating film 30a, 30Ca Opening portion 31 Lower side surface region 32 Upper side surface region 40 Contact electrode 50 Barrier metal layer 60, 60a Pad electrode 61 First metal layer 62 Second metal layer 70 N-side electrode 80 Submount 90, 90a, 90b, 90c Bonding material 95 Resist

Claims (11)

  1.  レーザ光を出射する半導体レーザ素子であって、
     第一導電型の第一半導体層と、
     前記第一半導体層の上方に配置される活性層と、
     前記活性層の上方に配置され、前記第一導電型と異なる第二導電型の第二半導体層と、
     前記第二半導体層の上方に配置される絶縁膜と、
     前記第二半導体層の上方に配置され、前記第二半導体層と接するコンタクト電極と、
     前記コンタクト電極の上方に配置されるバリア金属層とを備え、
     前記第二半導体層は、前記レーザ光の伝搬方向に延在するリッジを有し、
     前記絶縁膜は、前記リッジの上面に対応する位置に配置される開口部を有し、
     前記コンタクト電極は、前記開口部に配置され、
     前記コンタクト電極の、前記レーザ光の伝搬方向及び前記コンタクト電極の積層方向に垂直な横方向の端部に位置する側面は、前記リッジの上面に垂直な方向に対して、前記コンタクト電極の内側に向かって傾斜しており、
     前記絶縁膜の前記開口部の周縁に位置する側面のうち、前記開口部の前記横方向の端部に位置する側面は、前記リッジの上面に垂直な方向に対して、前記開口部の外側に向かって傾斜しており、
     前記バリア金属層は、前記コンタクト電極の上面全体を覆い、かつ、前記コンタクト電極の上面から前記絶縁膜の上面までを連続して覆う
     半導体レーザ素子。
    A semiconductor laser element that emits laser light,
    a first semiconductor layer of a first conductivity type;
    an active layer disposed above the first semiconductor layer;
    a second semiconductor layer disposed above the active layer and having a second conductivity type different from the first conductivity type;
    an insulating film disposed above the second semiconductor layer;
    a contact electrode disposed above the second semiconductor layer and in contact with the second semiconductor layer;
    a barrier metal layer disposed above the contact electrode,
    The second semiconductor layer has a ridge extending in the propagation direction of the laser beam,
    the insulating film has an opening disposed at a position corresponding to the upper surface of the ridge;
    the contact electrode is arranged in the opening,
    A side surface of the contact electrode located at a lateral end perpendicular to the propagation direction of the laser beam and the stacking direction of the contact electrode is located inside the contact electrode with respect to a direction perpendicular to the upper surface of the ridge. It is sloping towards
    Among the side surfaces of the insulating film located at the periphery of the opening, the side surface located at the lateral end of the opening is located on the outside of the opening with respect to the direction perpendicular to the upper surface of the ridge. It is sloping towards
    The barrier metal layer covers the entire upper surface of the contact electrode and continuously covers from the upper surface of the contact electrode to the upper surface of the insulating film.
  2.  前記バリア金属層は、前記コンタクト電極の上面から前記リッジの外側に配置された前記絶縁膜の上面までを連続して覆う
     請求項1に記載の半導体レーザ素子。
    The semiconductor laser device according to claim 1, wherein the barrier metal layer continuously covers from the upper surface of the contact electrode to the upper surface of the insulating film disposed outside the ridge.
  3.  前記半導体レーザ素子の前記レーザ光の伝搬方向の端面と前記コンタクト電極との間に前記絶縁膜が配置され、
     前記バリア金属層は、前記レーザ光の伝搬方向において、前記コンタクト電極の上面から前記絶縁膜の上面までを連続して覆う
     請求項1又は2に記載の半導体レーザ素子。
    The insulating film is disposed between the end face of the semiconductor laser element in the propagation direction of the laser light and the contact electrode,
    3. The semiconductor laser device according to claim 1, wherein the barrier metal layer continuously covers from the upper surface of the contact electrode to the upper surface of the insulating film in the propagation direction of the laser beam.
  4.  前記レーザ光の伝搬方向において、前記半導体レーザ素子のフロント側の端部における前記絶縁膜と前記コンタクト電極との間の距離は、前記半導体レーザ素子のリア側の端部における前記絶縁膜と前記コンタクト電極との間の距離より長い
     請求項1~3のいずれか1項に記載の半導体レーザ素子。
    In the propagation direction of the laser beam, the distance between the insulating film and the contact electrode at the front end of the semiconductor laser element is equal to the distance between the insulating film and the contact electrode at the rear end of the semiconductor laser element. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is longer than the distance between the semiconductor laser device and the electrode.
  5.  前記絶縁膜の前記開口部の周縁に位置する側面のうち、前記コンタクト電極と前記半導体レーザ素子のフロント側の端面との間に位置する側面に配置される前記バリア金属層の膜厚は、前記コンタクト電極と前記半導体レーザ素子のリア側の端面との間に位置する側面に配置される前記バリア金属層の膜厚より薄い
     請求項1~4のいずれか1項に記載の半導体レーザ素子。
    The thickness of the barrier metal layer disposed on the side surface located between the contact electrode and the front end surface of the semiconductor laser element among the side surfaces located at the periphery of the opening of the insulating film is as follows: The semiconductor laser device according to any one of claims 1 to 4, wherein the thickness is thinner than that of the barrier metal layer disposed on a side surface located between a contact electrode and a rear end surface of the semiconductor laser device.
  6.  前記コンタクト電極の前記レーザ光の伝搬方向の端部に位置する側面の、前記リッジの上面に対する傾斜角度は、前記半導体レーザ素子のフロント側において、リア側より大きい
     請求項1~5のいずれか1項に記載の半導体レーザ素子。
    Any one of claims 1 to 5, wherein the angle of inclination of the side surface of the contact electrode located at the end in the propagation direction of the laser beam with respect to the upper surface of the ridge is larger on the front side of the semiconductor laser element than on the rear side. The semiconductor laser device described in .
  7.  前記コンタクト電極の側面の少なくとも一部の、前記リッジの上面に対する傾斜角度は、30度以下である
     請求項1~6のいずれか1項に記載の半導体レーザ素子。
    7. The semiconductor laser device according to claim 1, wherein the angle of inclination of at least part of the side surface of the contact electrode with respect to the upper surface of the ridge is 30 degrees or less.
  8.  前記バリア金属層は、Cr又はTiで形成される
     請求項1~7のいずれか1項に記載の半導体レーザ素子。
    The semiconductor laser device according to claim 1, wherein the barrier metal layer is made of Cr or Ti.
  9.  前記コンタクト電極は、単層膜である
     請求項1~8のいずれか1項に記載の半導体レーザ素子。
    The semiconductor laser device according to claim 1, wherein the contact electrode is a single layer film.
  10.  前記リッジは、前記リッジの上面の前記レーザ光の伝搬方向に対して垂直な方向の端部に位置し、前記リッジの側面から突出する突出部を有する
     請求項1~9のいずれか1項に記載の半導体レーザ素子。
    The ridge is located at an end of the upper surface of the ridge in a direction perpendicular to the propagation direction of the laser beam, and has a protrusion that protrudes from a side surface of the ridge. The semiconductor laser device described above.
  11.  前記絶縁膜のうち、前記突出部を覆う部分の表面に、凹部が形成されており、前記凹部は、前記突出部より上方に位置する
     請求項10に記載の半導体レーザ素子。
    11. The semiconductor laser device according to claim 10, wherein a recess is formed in a surface of a portion of the insulating film that covers the protrusion, and the recess is located above the protrusion.
PCT/JP2023/024337 2022-09-08 2023-06-30 Semiconductor laser element WO2024053222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143000 2022-09-08
JP2022143000 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053222A1 true WO2024053222A1 (en) 2024-03-14

Family

ID=90192350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024337 WO2024053222A1 (en) 2022-09-08 2023-06-30 Semiconductor laser element

Country Status (1)

Country Link
WO (1) WO2024053222A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033021A (en) * 2003-07-04 2005-02-03 Sumitomo Electric Ind Ltd Semiconductor optical element and method for manufacturing the same
JP2006278661A (en) * 2005-03-29 2006-10-12 Opnext Japan Inc Optical semiconductor element and its manufacturing method, and optical semiconductor device
JP2009170708A (en) * 2008-01-17 2009-07-30 Sharp Corp Semiconductor light-emitting device and semiconductor light-emitting apparatus using the same
JP2009177141A (en) * 2007-12-28 2009-08-06 Mitsubishi Electric Corp Method of manufacturing semiconductor light-emitting device
JP2011211240A (en) * 2011-07-25 2011-10-20 Opnext Japan Inc Method of manufacturing optical semiconductor element
JP2011222927A (en) * 2010-03-23 2011-11-04 Ntt Electornics Corp Ridge-type semiconductor optical device and method of manufacturing ridge-type semiconductor optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033021A (en) * 2003-07-04 2005-02-03 Sumitomo Electric Ind Ltd Semiconductor optical element and method for manufacturing the same
JP2006278661A (en) * 2005-03-29 2006-10-12 Opnext Japan Inc Optical semiconductor element and its manufacturing method, and optical semiconductor device
JP2009177141A (en) * 2007-12-28 2009-08-06 Mitsubishi Electric Corp Method of manufacturing semiconductor light-emitting device
JP2009170708A (en) * 2008-01-17 2009-07-30 Sharp Corp Semiconductor light-emitting device and semiconductor light-emitting apparatus using the same
JP2011222927A (en) * 2010-03-23 2011-11-04 Ntt Electornics Corp Ridge-type semiconductor optical device and method of manufacturing ridge-type semiconductor optical device
JP2011211240A (en) * 2011-07-25 2011-10-20 Opnext Japan Inc Method of manufacturing optical semiconductor element

Similar Documents

Publication Publication Date Title
JP5894293B2 (en) Semiconductor laser diode
CN100524986C (en) Integrated semiconductor laser diode module and manufacturing method of the same
US8861561B2 (en) Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method
US11626707B2 (en) Semiconductor laser diode
US7476903B2 (en) Semiconductor light-emitting device
JP2002353563A (en) Semiconductor light-emitting element and manufacturing method therefor
KR20100036617A (en) Light emitting device and method of fabricating the same
JP2010541216A (en) Optoelectronic semiconductor body
JP2020524407A (en) Semiconductor laser diode
JP2004079972A (en) Surface-emitting type light emitting element
US20110121337A1 (en) Semiconductor light-emitting device
JP5391425B2 (en) Semiconductor light emitting device
JP2000114664A (en) Nitride semiconductor laser element
JP2012028773A (en) Semiconductor light-emitting element and manufacturing method of the same
JP2004152841A (en) Nitride semiconductor laser device
WO2021233273A1 (en) Light-emitting diode flip chip and manufacturing method therefor
TW201031066A (en) Semiconductor light-emitting element and method for manufacturing the same
WO2020026573A1 (en) Surface emitting semiconductor laser
WO2024053222A1 (en) Semiconductor laser element
US20080298411A1 (en) Nitride-based semiconductor laser device and method of manufacturing the same
WO2022019054A1 (en) Semiconductor laser and semiconductor laser device
JP2000261097A (en) Laser diode and manufacture of the laser diode
US20220131341A1 (en) Semiconductor laser diode and method for producing a semiconductor laser diode
WO2023223859A1 (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP2006100369A (en) Semiconductor laser device and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862767

Country of ref document: EP

Kind code of ref document: A1