WO2024051814A1 - 过滤结构及过滤装置 - Google Patents

过滤结构及过滤装置 Download PDF

Info

Publication number
WO2024051814A1
WO2024051814A1 PCT/CN2023/117701 CN2023117701W WO2024051814A1 WO 2024051814 A1 WO2024051814 A1 WO 2024051814A1 CN 2023117701 W CN2023117701 W CN 2023117701W WO 2024051814 A1 WO2024051814 A1 WO 2024051814A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filtration
liquid
pressure
chamber
Prior art date
Application number
PCT/CN2023/117701
Other languages
English (en)
French (fr)
Inventor
赖林
冯杰
韩维春
李明泽
赵立峰
王光明
吴平
吴申浩
Original Assignee
深圳市真迈生物科技有限公司
深圳市环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市真迈生物科技有限公司, 深圳市环境科学研究院 filed Critical 深圳市真迈生物科技有限公司
Publication of WO2024051814A1 publication Critical patent/WO2024051814A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules

Definitions

  • the present application relates to the technical field of filtering equipment, and more specifically, to a filtering structure and a filtering device.
  • the present application provides a filter structure to improve the safety during liquid filtration; the present application also provides a filter device.
  • a filter structure includes an upper cover and a base, with a chamber enclosed between them;
  • the filtering direction of the filter assembly is arranged from the upper cover to the direction of the base.
  • the side of the filter assembly close to the upper cover has a flow guide with a planar structure. End face.
  • the filtration component includes a filter mesh, and one side in the thickness direction of the filter mesh is used to support the filter membrane.
  • the chamber is a disc-shaped chamber
  • the upper cover is provided with a liquid inlet
  • the base is provided with a liquid outlet
  • a liquid inlet joint extending into the chamber is provided in the liquid inlet, and a plurality of liquid separation holes arranged in the circumferential direction toward the radial direction of the chamber are arranged in the liquid inlet joint.
  • the filter screen includes an upper filter screen and a lower filter screen
  • the upper filter screen includes a plurality of support bars laid in parallel, and a liquid passing gap is formed between adjacent support bars.
  • the lower filter screen is a plate-shaped filter screen with multiple drainage holes.
  • the support bars include a plurality of annular support bars laid in parallel from the middle of the chamber outward and arranged in a concentric structure.
  • annular sealing ring is pressed between the upper cover and the base;
  • the annular sealing ring includes an inner sealing ring that is press-fitted on the upper end face of the filter component, and an outer sealing ring that is press-fitted on the outer ring of the inner sealing ring;
  • the inner sealing ring performs liquid-proof sealing on the circumferential edge of the filter assembly, and the outer sealing ring performs liquid-proof sealing between the upper cover and the base.
  • an overflow channel is provided on the base, the inlet of the overflow channel is located between the inner sealing ring and the outer sealing ring, and the overflow channel communicates with all The liquid outlet of the base.
  • the overflow channel includes a circumferential annular portion surrounding the base, and a plurality of diverting grooves connected from the annular portion to the upper surface of the base.
  • a pressure relief valve is also arranged on the upper cover, and the pressure relief valve has a pressure relief channel arranged along the first direction and connected to the chamber;
  • the pressure relief valve is provided with an up-and-down sliding arrangement and a blocking device that cooperates with the pressure relief channel sealing.
  • the blocking device includes a sliding channel arranged in the pressure relief valve, and a spring seat slidingly arranged in the sliding channel;
  • the spring seat includes a first end and a second end.
  • the first end of the spring seat is adapted to block the pressure relief channel.
  • the second end of the spring seat is arranged to push it tightly against the pressure relief channel.
  • the outer ring of the pressure relief valve is further provided with a sliding lever that drags the spring seat to slide.
  • a filtering device including the filtering structure as described in any one of the above.
  • the above filtration device further includes a power source and a liquid delivery pipeline
  • the filter structure is arranged on the liquid delivery pipeline
  • the power source is used to provide power so that the liquid to be filtered passes through the liquid delivery pipeline.
  • the liquid delivery pipeline flows to the filter structure.
  • the above filtering device also includes a box body, the box body includes a box body cover and a box body, the top of the box body is used to install the filter structure, and the inside of the box body Used to arrange power sources.
  • the power source includes a peristaltic pump
  • the peristaltic pump includes a liquid inlet end and a liquid outlet end
  • the liquid outlet end of the peristaltic pump is connected to the liquid inlet of the filter structure.
  • a coarse filter is provided on the liquid delivery pipeline, and the coarse filter is connected to the liquid inlet end of the peristaltic pump.
  • a pressure flow monitoring device for monitoring the pressure and/or flow rate of the pump liquid is also provided on the liquid delivery pipeline.
  • the above filtration device further includes a control device, which adjusts the peristaltic pump to operate in a high-speed range when the pump fluid pressure is greater than the first pressure and less than the second pressure; and when the pump fluid pressure When the pressure is greater than the second pressure, the peristaltic pump is adjusted to operate in a low-speed range; and when the pump hydraulic pressure is less than the first pressure, an abnormality in the system status is prompted.
  • a control device which adjusts the peristaltic pump to operate in a high-speed range when the pump fluid pressure is greater than the first pressure and less than the second pressure; and when the pump fluid pressure When the pressure is greater than the second pressure, the peristaltic pump is adjusted to operate in a low-speed range; and when the pump hydraulic pressure is less than the first pressure, an abnormality in the system status is prompted.
  • the filter structure provided by this application includes an upper cover and a base, with a chamber enclosed between the two.
  • the filtering direction of the filter assembly is arranged from the upper cover to the base, and the filter assembly is close to the upper cover.
  • One side has a diversion end face with a planar structure.
  • the chamber is surrounded by an upper cover structure and a base structure cover assembly, in which a filter assembly is installed.
  • the filter assembly has a flat paving structure, on which a filter membrane can be paved and arranged.
  • a structure is formed in the chamber along the upper cover through the filter assembly to the base. In the filtration direction, the liquid is filtered through the filter assembly.
  • the filter assembly has a diversion end face with a planar structure.
  • the liquid flows in through the upper cover and flows to the surface of the filter assembly through its planar structure at the diversion end face of the filter assembly, thereby obtaining a larger
  • the filtration area is filtered entirely by the surface of the filter component. As the filter residue accumulates on the filter membrane, a better filtration effect can still be obtained and the filtration failure caused by the reduction of the filtration area can be reduced.
  • Figure 1 is a front view of the filter device provided by this application.
  • FIG. 2 is a schematic diagram of the arrangement and position of the filter components in the filter device provided by this application;
  • Figure 3 is a cross-sectional view of the first arrangement of the filter structure
  • Figure 4 is a schematic structural diagram of the filter
  • Figure 5 is a cross-sectional view of the second arrangement of the filter structure provided by the present application.
  • Figure 6 is a schematic diagram of the base structure of the filter structure in Figure 5;
  • Figure 7 is a schematic structural diagram of the pressure relief valve in the filter structure provided by this application.
  • Figure 8 is a schematic cross-sectional structural view of the pressure relief valve in Figure 7;
  • Figure 9 is a system layout diagram of the filter device provided by this application.
  • This application discloses a filtering structure, which improves the safety during liquid filtration; this application also provides a filtering device.
  • Figure 1 is a front view of the filter device provided by the present application
  • Figure 2 is a schematic diagram of the arrangement position of the filter components in the filter device provided by the present application
  • Figure 3 is a cross-sectional view of the first arrangement of the filter structure.
  • Figure 4 is a schematic structural diagram of the filter.
  • This embodiment provides a filter structure 1, which includes an upper cover 11 and a base 12, with a chamber 13 enclosed between the two.
  • a filter assembly arranged in a pavement in the chamber 13, and the filtering direction of the filter assembly is from the upper cover 11 to the
  • the filter assembly is arranged in the direction of the base 12, and the side of the filter assembly close to the upper cover 11 has a flow guide end surface with a planar structure.
  • the chamber 13 is surrounded by an upper cover 11 structure and a base 12 structure cover assembly.
  • a filter assembly is provided inside the chamber 13.
  • the filter assembly has a flat paving structure, on which a filter membrane can be paved and arranged, and a filter membrane is formed along the upper cover in the chamber 13. 11. The liquid is filtered through the filter assembly in the filtration direction toward the base 12.
  • the filter assembly has a diversion end face with a planar structure.
  • the liquid flows in through the upper cover 11, and flows to the filter through the diversion end face of the filter assembly through its planar structure.
  • the surface of the component is used to obtain a larger filtration area.
  • the entire surface of the filter component is filtered. As the filter residue accumulates on the filter membrane, a better filtration effect can still be obtained and the filtration failure caused by the reduction of the filtration area can be reduced.
  • the diversion end surface of the filter assembly is set as a planar structure
  • the planar structure can be set as a planar surface, or can be set as a bevel surface, a curved surface, a concave surface, a convex surface, a conical surface and other structures with a small angle.
  • the filter assembly includes a filter screen (15, 16), and one side of the filter screen (15, 16) in the thickness direction supports the filter membrane 14.
  • the liquid is introduced through the upper cover 11, passes through the filter membrane 14 and the filters (15, 16) in sequence, and then enters the base 12.
  • the chamber 13 is a disc-shaped chamber, with a liquid inlet in the middle of the upper cover 11 and a liquid outlet in the middle of the base;
  • a liquid inlet joint 17 extending into the chamber 13 is provided in the liquid inlet.
  • the liquid inlet joint 17 is circumferentially arranged with a plurality of liquid separation holes 171 arranged radially toward the chamber 13 .
  • the chamber 13 adopts a disk-shaped chamber, and the liquid inlet is located in the middle of the upper cover 11.
  • a liquid inlet connector 17 is provided at the liquid inlet.
  • the outside of the liquid inlet connector 17 is used to connect the inlet liquid.
  • a plurality of liquid separation holes 171 are provided inside the liquid inlet joint 17.
  • the liquid inlet joint 17 extends into the inside of the upper cover 11.
  • the liquid inlet joint 17 adopts a cylindrical structure with a liquid inlet channel inside, and the liquid separation holes 171 are distributed in The circumferential direction of the liquid inlet joint 17 allows the liquid to be ejected along the radial direction of the chamber 13, preventing the liquid from directly impacting the filter membrane 14, and improving the uniformity of the liquid distribution.
  • the filter screen (15, 16) includes an upper filter screen 15 and a lower filter screen 16.
  • the upper filter screen 15 includes a plurality of support bars laid in parallel, and a liquid gap is formed between adjacent support bars;
  • the filter screen 16 is a plate-shaped filter screen with a plurality of drainage holes distributed therein.
  • the filter assembly is composed of a flat filter screen (15, 16) and a filter membrane 14 laid on the filter screen (15, 16).
  • the filter membrane 14 is the core component of the filtration device, and the main parameters for its selection include filter membrane material, filter membrane outer diameter, filter membrane pore size, etc.
  • the filter membrane 14 is made of acetate fiber or mixed fiber materials.
  • the outer diameter of the filter membrane can be of different specifications such as 47mm, 50mm, 100mm, 150mm, etc. Different outer diameter specifications can also be customized according to different filtration needs.
  • the pore size of the filter membrane is related to the purpose of filtration. In this embodiment, various pore size specifications such as 5um, 1um, 0.45um, and 0.22um can be used.
  • the above parameters are highly related to the filtration speed and filter membrane strength. The larger the outer diameter of the filter membrane and the larger the filter pore size, the faster the filtration speed.
  • the selection of filter membrane parameters needs to be based on the actual application scenario.
  • the flat filter screen (15, 16) plays the role of supporting the filter membrane.
  • the filter screen (15, 16) is distributed with pores, and the filtered liquid will flow away from the pores of the flat plate. Similarly, Pore distribution and area size also affect filtration speed.
  • the filter screen is arranged to include a double-layer structure of an upper filter screen 15 and a lower filter screen 16.
  • the upper filter screen 15 adopts a parallel arrangement of support bars, and the adjacent support bars are arranged in parallel. A liquid gap is formed between them, and the lower filter screen 16 is used to discharge the filtered liquid.
  • the support bars include a plurality of annular support bars laid out in parallel from the middle of the chamber 13 and arranged in a concentric structure.
  • the filters (15, 16) are set as disc-shaped filters, correspondingly the filter membrane 14 adopts a disc-shaped filter membrane, and the support bars are set as multiple annular support bars arranged in concentric circles, Improve the support stability of the filter membrane, ensure the support strength during the filtration process, and form an annular liquid passing gap between adjacent annular support bars, which cooperates with the lower filter screen to ensure the filtration capacity of the filter membrane.
  • Figure 5 is a cross-sectional view of the second arrangement of the filter structure provided by the present application
  • Figure 6 is a schematic view of the base structure of the filter structure in Figure 5.
  • annular sealing ring is pressed between the upper cover 11 and the base 12.
  • the liquid enters the chamber 13 through the multiple liquid distribution holes 171 on the liquid inlet joint 17, and enters the base through the filter assembly.
  • the liquid outlet 18 of 12 flows out, and an annular sealing ring is arranged on the outer periphery of the upper cover 11 and the base 12 to prevent the filtered liquid from flowing out between the two.
  • the annular sealing ring includes an inner sealing ring 51 that is press-fitted on the upper end face of the filter component, and an outer sealing ring 52 that is press-fitted on the outer ring of the inner sealing ring;
  • the inner sealing ring 51 performs liquid-proof sealing on the circumferential edge of the filter assembly, and the outer sealing ring 52 performs liquid-proof sealing between the upper cover 11 and the base 12 .
  • the inner sealing ring 51 is press-fitted on the upper edge of the filter component to prevent liquid from leaking from the edge of the filter component.
  • the inner sealing ring 51 is provided to ensure that the filtrate flows out through the filter component.
  • the outer sealing ring 52 is set to be directly pressed between the upper cover 11 and the base 12 to prevent the liquid from entering the inside of the equipment and causing internal damage. Equipment damaged by immersion.
  • the base 12 is provided with an overflow channel 53.
  • the inlet of the overflow channel 53 is located between the inner sealing ring 51 and the outer sealing ring 52.
  • the overflow channel 53 is connected to the liquid outlet 18 of the base 12;
  • the flow channel 53 includes an annular portion 531 circumferentially surrounding the base 12 and a plurality of distribution grooves 532 .
  • the overflow channel 53 includes an annular portion 531 surrounding the circumference of the base 12, and a plurality of shunt grooves 532 connected from the annular portion 531 to the upper surface of the base 12.
  • the liquid leaked through the inner sealing ring 51 enters the annular portion 531,
  • a plurality of shunt grooves 532 enter the lower part of the chamber 13 to form an overflow channel that directly connects the upper part to the lower part of the chamber 13, thereby ensuring the safety of the filtrate.
  • the inner sealing ring 51 is press-fitted on the upper end face of the filter assembly, and the filter membrane 14 is preferably pressed and fixed.
  • an upper mounting groove for the inner sealing ring 51 is arranged on the upper cover 11, which is fixed on the base. Liquid can only flow out through the filter membrane 14, thereby filtering it.
  • the diameter of the outer sealing ring 51 is larger than the outer diameter of the filter membrane 14, and only seals the upper cover 11 and the base 12.
  • the upper surface of the base 12 is provided with a lower mounting groove for the outer sealing ring 52, and the outer sealing ring 52 falls into the lower mounting groove.
  • the sealing strength of the inner and outer rings is controlled by the amount of compression of the inner sealing ring 51 and the outer sealing ring 52 .
  • the sealing effect of the inner sealing ring 51 is smaller than the sealing effect of the outer sealing ring 52 .
  • an overflow channel 53 is designed on the plane structure between the inner sealing ring 51 and the outer sealing ring 52.
  • the liquid can flow away from the overflow channel 53, thus protecting the filter membrane. 14 will not be broken, and at the same time, due to the protection of the outer sealing ring 52, the instrument will not cause overflow.
  • Figure 7 is a schematic structural diagram of the pressure relief valve in the filter structure provided by the present application
  • Figure 8 is a schematic cross-sectional structural diagram of the pressure relief valve in Figure 7.
  • a pressure relief valve 8 is also arranged on the upper cover 11.
  • the pressure relief valve 8 has a pressure relief channel 80 arranged along the first direction and connected to the chamber 13;
  • the pressure relief valve 8 is provided with a blocking device arranged to slide up and down and cooperate with the sealing of the pressure relief channel 80 .
  • the pressure relief valve 8 protrudes from the upper cover 11 , and the first direction of the pressure relief channel 80 is the installation direction of the pressure relief valve 8 in the thickness direction of the upper cover 11 .
  • the direction in which the pressure relief valve 8 is installed into the upper cover is set as the first direction.
  • the first direction is the axial direction of the installation end of the pressure relief valve 8.
  • the The end of the pressure relief valve 8 extending out of the upper cover changes direction to a second direction that is perpendicular to the first direction or at a certain angle, so that the pressure relief valve 8 consists of two parts consisting of a main structure and an installation end.
  • the pressure relief channel is arranged at the installation end of the pressure relief valve 8 , and the blocking device is arranged in the main structure of the pressure relief valve 8 .
  • the first direction is the axial direction of the pressure relief valve 8 , that is, the pressure relief channel 80 and the blocking device are arranged along the axial direction of the pressure relief valve 8 .
  • the blocking device includes a sliding channel arranged in the pressure relief valve, and a spring seat 84 slidingly arranged in the sliding channel;
  • the first end of the spring seat 84 is sealed and matched with the pressure relief channel 80, and the second end of the spring seat 84 is arranged with an elastic return device 87 that pushes it to press against the pressure relief channel 80;
  • the outer ring of the pressure relief valve 8 is also provided with a sliding lever 86 that drags the spring seat 84 to slide.
  • the pressure relief valve 8 is provided to balance the atmospheric pressure inside and outside the pressure chamber of the filter device. It mainly includes a valve body 81, an outer sealing ring 82, an inner sealing ring 83, a spring seat 84, a spring 87, a spring adjusting screw 85, Slide lever 86.
  • the lower end of the valve body 81 extends out of the installation head.
  • a lower sealing groove 820 is provided at the connection position between the installation head and the valve body 81.
  • the outer sealing ring 82 is inserted into the installation head and falls into the lower sealing groove 820.
  • a sliding channel is provided in the valve body 1, and the spring seat 84 is slidably arranged in the sliding channel.
  • the upper end of the valve body 81 and the spring seat 84 are sealed and matched, and an upper sealing groove 830 is provided.
  • the pressure relief channel 80 extends into the upper sealing groove, so that The upper sealing groove 830 has an annular structure, and the inner sealing ring 83 is inserted into the upper sealing groove 830 .
  • the spring seat 84 is inside the valve body 81 and is arranged in the coaxial sliding channel.
  • the spring seat 84 is in contact with the inner sealing ring 83 .
  • a spring installation groove is provided on the side of the spring seat 84 away from the pressure relief channel 80.
  • the elastic return device 87 preferably uses a compression spring 87.
  • the compression spring 87 is arranged in the spring installation groove of the spring seat 84.
  • An opening is provided at the top of the valve body 81, and the spring is passed through the spring.
  • the adjusting screw 85 is installed into the top opening of the valve body 81 and fitted through threaded installation. The spring adjustment screw 85 and the spring seat 84 compress and contact the two ends of the compression spring 87, and the sliding lever 86 and the spring do 84 cooperate through a thread pair.
  • the pressure relief valve 8 is matched with the upper cover 11 through a thread pair, and is sealed through an outer sealing ring 82; an axial pressure relief channel 80 is provided in the valve body 81, so that the chamber 13 is connected to the spring seat 84; when manually lifted When the lever 86 is slid, the spring seat 84 overcomes the spring force of the compression spring and moves upward, causing the spring seat 84 to separate from the inner sealing ring 83. At this time, the chamber 13 is connected to the atmosphere to relieve pressure; when the hand is loosened When the sliding lever 86 is opened, the spring seat 84 moves downward under the action of the spring force, and presses the inner sealing ring 83 to disconnect the chamber 13 from the atmosphere, thereby achieving a sealing effect. At the same time, the spring force of the compression spring 87 can Adjust according to the needs of the system. When the pressure in the chamber 87 is too high, the spring seat 84 is pushed upward to act as a safety valve.
  • this application also provides a filter device, including a power source, a liquid supply pipeline, and a filter structure 1 arranged on the liquid supply pipeline.
  • the filter structure is as described in any one of the above filter structure;
  • the top of the box body 3 is used to install the filter structure 1, and the inside of the box body 3 is used to arrange a power source.
  • the filter device adopts the filter structure of the above embodiment, please refer to the above embodiment for the beneficial effects brought by the filter structure of the filter device.
  • the filtration structure uses a disc-shaped filter membrane 14 for axial filtration, and the liquid chamber 13 surrounded by the upper cover 11 and the base 12 can obtain a smaller axial occupied space.
  • the filter device is provided with a filter device box, and multiple mounting holes for installing the filter structure 1 are arranged on the top of the box body 3.
  • This embodiment preferably uses two parallel filter structures 1, which are detachably fixed to the box body 3 through screws. top, allowing the installation of multiple filter structures.
  • two sets of filter systems can be arranged in the main body 3 of the box, which can be used simultaneously or independently to meet different filter flux requirements.
  • the interior of the box body 3 is used to install and arrange the power source.
  • the box body 3 is covered by the box cover 2 to realize portability and protection of the filter device.
  • the power source includes a peristaltic pump 4.
  • the peristaltic pump 4 includes a liquid inlet end and a liquid outlet end. The liquid outlet end of the peristaltic pump is connected to the liquid inlet of the filter structure 1.
  • the power source also includes power supply components, etc. Vacuum pumps, peristaltic pumps, diaphragm pumps, etc. can also be used.
  • the peristaltic pump 4 is located at the front end of the filtration structure 1, so it can provide the filtration structure 1 with a larger forward pressure of the liquid flow.
  • the filter membrane 14 and the filter screen (15, 16) support structure of a flat structure are used, which can Effectively improve the liquid filtration rate and ensure the filtration effect.
  • Figure 9 is a system layout diagram of the filter device provided by this application.
  • the front end of the peristaltic pump 4 is also provided with a coarse filter 5 for removing impurities in the liquid.
  • the coarse filter 5 is connected with the liquid inlet end of the peristaltic pump 4 . Considering that the liquid will face very turbid working conditions, the liquid needs to be coarsely filtered at the front end of the peristaltic pump 4. Choose a filter membrane with a large pore size to coarsely filter large impurities to prevent damage to the filtration system.
  • the liquid delivery pipeline 6 is also provided with a pressure flow monitoring device 7 for monitoring the pump liquid pressure and/or flow rate;
  • It also includes a control device that adjusts the peristaltic pump to work in a high-speed range when the pump fluid pressure is greater than the first pressure and less than the second pressure; and adjusts the peristaltic pump to work in a low-speed range when the pump fluid pressure is greater than the second pressure; and If the pump fluid pressure is less than the first pressure, it indicates that the system status is abnormal.
  • the liquid supply pipeline 6 is sequentially connected to the liquid source, the coarse filter 5, the power source and the filter structure 1 to perform liquid filtration.
  • the liquid is driven by the power source to pass through the filter membrane for filtration.
  • the preferred power source is Peristaltic pump.
  • the pressure flow monitoring device 7 is placed in the pipeline system to monitor the system pressure or flow in real time and Feedback:
  • the first pressure is set to P1
  • the second The pressure is P2
  • the pipeline pressure is P.
  • the peristaltic pump is controlled to work at high speed and filter at high speed; when P>P2, the pressure in the pipeline becomes larger. , indicating that the filtration capacity of the filter membrane is reduced.
  • the peristaltic pump is controlled to decelerate and filter at low speed to prevent damage to the filter membrane; when P ⁇ P1, the system status is abnormal, shut down and alarm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本申请涉及一种过滤结构,包括上盖和底座,二者之间围成腔室;腔室内具有铺装布置的过滤组件,过滤组件压装于上盖和底座之间,过滤组件的过滤方向由上盖向底座方向布置,过滤组件靠近上盖的一侧具有平面结构的导流端面。过滤组件具有平面铺装结构,其上可铺装布置滤膜,在腔室内形成沿上盖经过滤组件向底座方向的过滤方向,将液体经过滤组件过滤,过滤组件具有平面结构的导流端面,液体经上盖流入,在过滤组件的导流端面经其平面结构流至过滤组件的表面,从而获得较大的过滤面积,由过滤组件的表面进行整面过滤,随滤渣在滤膜上积累,仍能获得较好的过滤效果,降低过滤面积减少造成的过滤失效情况。本申请还提供了一种过滤装置。

Description

过滤结构及过滤装置
本申请要求于2022年09月09日提交中国专利局、申请号为202222410475.0、实用新型名称为“水质过滤装置及水质过滤结构”上述中国专利申请的优先权,其全部内容通过引用结合在上述申请中。
技术领域
本申请涉及过滤设备技术领域,更具体地说,涉及一种过滤结构及过滤装置。
背景技术
现有过滤设备,多数采用负压抽滤进行过滤,这种过滤方式最大压力为一个大气压,过滤压力很小,过滤速度很慢,难以满足快速过滤的要求。而采用正压压滤进行过滤,理论上过滤压力可达很大,过滤压力大,过滤速度快,但压力太大,容易出现滤膜破损、管路脱落等故障,导致过滤失败。
申请内容
有鉴于此,本申请提供了一种过滤结构,以提高液体过滤过程中的安全性;本申请还提供了一种过滤装置。
为了达到上述目的,本申请提供如下技术方案:
一种过滤结构,包括上盖和底座,二者之间围成腔室;
所述腔室内具有有铺装布置的过滤组件,所述过滤组件的过滤方向由所述上盖向所述底座方向布置,所述过滤组件靠近所述上盖的一侧具有平面结构的导流端面。
优选地,在上述过滤结构中,所述过滤组件包括滤网,所述滤网厚度方向的一侧用于支撑滤膜。
优选地,在上述过滤结构中,所述腔室为盘状腔室,所述上盖设置进液口,所述底座设置出液口;
所述进液口内设置伸入至所述腔室内的进液接头,所述进液接头沿周向布置多个朝向所述腔室的径向布置的分液孔。
优选地,在上述过滤结构中,所述滤网包括上层滤网和下层滤网,所述上层滤网包括并行铺设的多条支撑条,相邻的所述支撑条之间围成过液间隙;
所述下层滤网为分布有多个排液孔的板状滤网。
优选地,在上述过滤结构中,所述支撑条包括由所述腔室的中部向外并行铺设,呈同心圆结构布置的多条环形支撑条。
优选地,在上述过滤结构中,所述上盖和所述底座之间压装有环形密封圈;
所述环形密封圈包括压装于所述过滤组件上端面的内层密封圈,和压装于所述内层密封圈外圈的外层密封圈;
所述内层密封圈对所述过滤组件的周向边缘进行隔液密封,所述外层密封圈对所述上盖和所述底座之间进行隔液密封。
优选地,在上述过滤结构中,所述底座上设置有溢流通道,所述溢流通道的入口位于所述内层密封圈和所述外层密封圈之间,所述溢流通道连通所述底座的出液口。
优选地,在上述过滤结构中,所述溢流通道包括环绕所述底座周向环形部,以及由所述环形部连通至所述底座上表面的多个分流槽。
优选地,在上述过滤结构中,所述上盖上还布置有泄压阀,所述泄压阀内具有沿第一方向布置,并连通所述腔室的泄压通道;
所述泄压阀内设有上下滑移布置,与所述泄压通道封堵配合的封堵装置。
优选地,在上述过滤结构中,所述封堵装置包括布置在所述泄压阀内的滑移通道,滑动布置于所述滑移通道内的弹簧座;
所述弹簧座包括第一端和第二端,所述弹簧座的第一端与所述泄压通道封堵配合,所述弹簧座的第二端布置推动其压紧于所述泄压通道上的弹性复位装置;
优选地,在上述过滤结构中,所述泄压阀的外圈还布置有拖动所述弹簧座滑移的滑移拨杆。
一种过滤装置,包括如上任一项所述的过滤结构。
优选地,在上述过滤装置中,还包括动力源和送液管路,所述过滤结构布置于所述送液管路上,所述动力源用于提供动力,以使待过滤的液体经所述送液管路流至所述过滤结构。
优选地,在上述过滤装置中,还包括箱体,所述箱体包括箱体盖板和箱体主体,所述箱体主体的顶部用于安装所述过滤结构,所述箱体主体的内部用于布置动力源。
优选地,在上述过滤装置中,所述动力源包括蠕动泵,所述蠕动泵包括进液端和出液端,所述蠕动泵的出液端连通至所述过滤结构的进液口。
优选地,在上述过滤装置中,所述送液管路上设置粗滤器,所述粗滤器与所述蠕动泵的进液端连通。
优选地,在上述过滤装置中,所述送液管路上还设置对泵液压力和/或流量进行监测的压力流量监控装置。
优选地,在上述过滤装置中,还包括控制装置,其在所述泵液压力大于第一压力,并小于第二压力时,调节所述蠕动泵工作于高速区间;并在所述泵液压力大于所述第二压力,调节所述蠕动泵工作于低速区间;以及在所述泵液压力小于第一压力,提示系统状态异常。
本申请提供的过滤结构,包括上盖和底座,二者之间围成腔室;腔室内具有铺装布置的过滤组件,过滤组件的过滤方向由上盖向底座方向布置,过滤组件靠近上盖的一侧具有平面结构的导流端面。腔室由上盖结构和底座结构盖装配合围成,其内设置过滤组件,过滤组件具有平面铺装结构,其上可铺装布置滤膜,在腔室内形成沿上盖经过滤组件向底座方向的过滤方向,将液体经过滤组件过滤,过滤组件具有平面结构的导流端面,液体经上盖流入,在过滤组件的导流端面经其平面结构流至过滤组件的表面,从而获得较大的过滤面积,由过滤组件的表面进行整面过滤,随滤渣在滤膜上积累,仍能获得较好的过滤效果,降低过滤面积减少造成的过滤失效情况。
附图说明
通过以下参照附图对本申请实施例的描述,本申请的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1为本申请提供的过滤装置的主视图;
图2为本申请提供的过滤装置中过滤组件的布置位置示意图;
图3为过滤结构的第一布置结构剖视图;
图4为滤网的结构示意图;
图5为本申请提供的过滤结构的第二布置结构剖视图;
图6为图5中过滤结构的底座结构示意图;
图7为本申请提供的过滤结构中泄压阀结构示意图;
图8为图7中泄压阀的剖面结构示意图;
图9为本申请提供的过滤装置的系统布置图。
具体实施方式
以下基于实施例对本申请进行描述,但是本申请并不仅仅限于这些实施例。
本申请公开了一种过滤结构,提高了液体过滤过程中的安全性;本申请还提供了一种过滤装置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1-图4所示,图1为本申请提供的过滤装置的主视图;图2为本申请提供的过滤装置中过滤组件的布置位置示意图;图3为过滤结构的第一布置结构剖视图;图4为滤网的结构示意图。
本实施例提供一种过滤结构1,包括上盖11和底座12,二者之间围成腔室13;腔室13内具有铺装布置的过滤组件,过滤组件的过滤方向由上盖11向底座12方向布置,过滤组件靠近上盖11的一侧具有平面结构的导流端面。腔室13由上盖11结构和底座12结构盖装配合围成,其内设置过滤组件,过滤组件具有平面铺装结构,其上可铺装布置滤膜,在腔室13内形成沿上盖11经过滤组件向底座12方向的过滤方向,将液体经过滤组件过滤,过滤组件具有平面结构的导流端面,液体经上盖11流入,在过滤组件的导流端面经其平面结构流至过滤组件的表面,从而获得较大的过滤面积,由过滤组件的表面进行整面过滤,随滤渣在滤膜上积累,仍能获得较好的过滤效果,降低过滤面积减少造成的过滤失效情况。
可以理解的,过滤组件的导流端面设置为平面结构,该平面结构可以设置为平面表面,也可以设置为具有小角度的斜面表面、曲面表面、凹面表面、凸面表面、锥面表面等结构,用于将液体经过滤组件的导流端面,沿其周向进行 液体的铺开,从而实现在过滤组件的整个表面进行液体过滤。
在本案一具体实施例中,过滤组件包括滤网(15、16),滤网(15、16)厚度方向的一侧对滤膜14进行支撑。液体由上盖11通入,顺序经过滤膜14和滤网(15、16)后进入底座12。
腔室13为盘状腔室,上盖11的中部设置进液口,底座的中部设置出液口;
进液口内设置伸入至腔室13内的进液接头17,进液接头17沿周向布置多个朝向腔室13的径向布置的分液孔171。
腔室13采用盘状腔室,进液口设于上盖11的中部,为避免进液直接冲击滤膜14,在进液口设置进液接头17,进液接头17外部用于连接进液管路,进液接头17的内部设置多个分液孔171,进液接头17伸入上盖11的内部,进液接头17采用圆柱结构,其内开设进液通道,分液孔171分布于进液接头17的周向,从而使得进液沿腔室13的径向喷出,避免进液直接冲击滤膜14,提高进液分布均匀性。
本实施例中,滤网(15、16)包括上层滤网15和下层滤网16,上层滤网15包括并行铺设的多条支撑条,相邻的支撑条之间围成过液间隙;下层滤网16为分布有多个排液孔的板状滤网。
过滤组件由平板状的滤网(15、16)和铺设在滤网(15、16)上的滤膜14组成。滤膜14是过滤装置的核心部件,其选用的主要参数包括滤膜材料、滤膜外径、滤膜孔径等。本实施例中,滤膜14为由醋酸纤维或混合纤维材料制成。适应不同规格的过滤组件,滤膜外径可采用47mm、50mm、100mm、150mm等不同规格,还可以按照不同的过滤需求定制不同外径规格。滤膜孔径和过滤的目的有关,本实施例可采用5um、1um、0.45um、0.22um等多种孔径规格。上述参数与过滤速度、滤膜强度高度相关,滤膜外径越大、过滤孔径越大,过滤速度越快。滤膜参数的选择需要根据实际的应用场景而定。
平板状的滤网(15、16)起到支撑滤膜的作用,本实施例中,滤网(15、16)上分布有孔隙,过滤后的液体会从平板的孔隙中流走,同样,孔隙分布和面积大小也会影响到过滤速度。考虑滤膜受到液体压力朝向滤网方向进行挤压,将滤网设置包括上层滤网15和下层滤网16双层结构,上层滤网15采用支撑条并行布置的方式,相邻的支撑条之间围成过液间隙,下层滤网16用于对过滤后的液体的排出。
优选地,支撑条包括由腔室13的中部向外并行铺设,呈同心圆结构布置的多条环形支撑条。适应腔室13的盘状结构,将滤网(15、16)设置为盘状滤网,对应地滤膜14采用盘状滤膜,将支撑条设置为同心圆布置的多条环形支撑条,提高对滤膜的支撑稳定性,保证过滤过程中的支撑强度,并在相邻的环形支撑条之间形成环形过液间隙,其与下层滤网配合,保证了滤膜的过滤能力。
如图5-图6所示,图5为本申请提供的过滤结构的第二布置结构剖视图;图6为图5中过滤结构的底座结构示意图。
在本申请一具体实施例中,上盖11和底座12之间压装有环形密封圈,液体由进液接头17上的多个分液孔171进入到腔室13,经过滤组件进入到底座12的出液口18流出,设置环形密封圈于上盖11和底座12的外周,避免过滤液体由二者之间流出。
环形密封圈包括压装于过滤组件上端面的内层密封圈51,和压装于内层密封圈外圈的外层密封圈52;
内层密封圈51对过滤组件的周向边缘进行隔液密封,外层密封圈52对上盖11和底座12之间进行隔液密封。
正常工作过程中,液体穿过过滤组件的上端流入下端,完成液体过滤。内层密封圈51压装在过滤组件的上端面边缘,避免液体由过滤组件的边缘泄露,设置内层密封圈51,保证滤液经过滤组件流出。过滤组件超过过滤负荷,液体经内层密封圈51泄露后,应避免液体流入设备内部,设置外层密封圈52直接压紧于上盖11和底座12之间,避免液体进入设备内部,造成内部设备浸入损坏。
极端情况下,在内层密封圈51发生泄露,且过滤组件堵塞后,仍有液体输入造成外层密封圈52泄露,为了避免设备失效,设置保护结构。
本实施例中,底座12上设置有溢流通道53,溢流通道53的入口位于内层密封圈51和外层密封圈52之间,溢流通道53连通底座12的出液口18;溢流通道53包括环绕底座12周向的环形部531和多个分流槽532。
具体地,溢流通道53包括环绕底座12周向的环形部531,以及由环形部531连通至底座12上表面的多个分流槽532,经内层密封圈51泄露的液体进入环形部531,并由多个分流槽532进入腔室13的下部,形成直接连通腔室13的上部至下部的溢流通道,从而保证滤液安全。
内层密封圈51压装在过滤组件的上端面,优选的将滤膜14进行压紧固定,该结构中,上盖11上布置内层密封圈51的上安装槽,其在底座上固定,液体只能通过该滤膜14流出,以此对进行过滤。外层密封圈51直径大于滤膜14外径,只对上盖11和底座12进行密封。该结构中,底座12的上表面设置外层密封圈52的下安装槽,外层密封圈52落于下安装槽内。
通过内层密封圈51和外层密封圈52的压缩量来控制内外圈密封强度,优选地,内层密封圈51密封效果小于外层密封圈52的密封效果。
同时,在内层密封圈51和外层密封圈52之间的平面结构上设计溢流通道53,当内层密封失效的时候,液体可以从溢流通道53流走,这样就可以保护滤膜14不至于被冲破,同时由于外层密封圈52的保护,不会造成仪器溢流。
如图7-图8所示,图7为本申请提供的过滤结构中泄压阀结构示意图;图8为图7中泄压阀的剖面结构示意图。
本实施例中,上盖11上还布置有泄压阀8,泄压阀8内具有沿第一方向布置,并连通腔室13的泄压通道80;
泄压阀8内设有上下滑移布置,与泄压通道80封堵配合的封堵装置。
泄压阀8由上盖11上伸出,泄压通道80的第一方向即为泄压阀8插装于上盖11厚度方向的装入方向。考虑泄压阀8会增加上盖的整体高度,泄压阀8装入上盖的方向设为第一方向,该第一方向为泄压阀8装入端的轴向,为降低高度,可将泄压阀8伸出上盖的一端变向为与第一方向垂直或呈一定角度的第二方向,使得泄压阀8构成由主体结构和装入端组成的两部分。基于泄压阀8的主体结构和装入端的两部分结构,泄压通道布置于泄压阀8的装入端,封堵装置布置于泄压阀8的主体结构内。本实施例一优选结构中,第一方向为泄压阀8的轴向,即将泄压通道80和封堵装置沿泄压阀8的轴向布置。
本实施例中,封堵装置包括布置在泄压阀内的滑移通道,滑动布置于滑移通道内的弹簧座84;
弹簧座84的第一端与泄压通道80封堵配合,弹簧座84的第二端布置推动其压紧于泄压通道80上的弹性复位装置87;
泄压阀8的外圈还布置有拖动弹簧座84滑移的滑移拨杆86。
过滤装置工作时,液体通过泵注入到过滤器的腔室13中,当腔室13体内未注满液体时,会产生压缩气体,即使泵停止运作,腔室13内仍然有压力气 体,常规结构中,一般采用带密封圈的螺丝进行泄压,螺丝锁紧时将腔室密封,螺丝松开时将腔室泄压,泄压过程繁琐费时间,提高了人工成本。
通过设置泄压阀8,用来平衡过滤装置压力腔体内部和外部的大气压力,主要包括阀体81、外密封圈82、内密封圈83、弹簧座84、弹簧87、弹簧调节螺丝85、滑移拨杆86。
阀体81下端伸出安装头,安装头与阀体81连接位置设置下密封槽820,外密封圈82套入安装头并落在下密封槽820内。阀体1内设置滑移通道,弹簧座84滑动布置在滑移通道内,阀体81与弹簧座84封堵配合的上端,设置上密封槽830,泄压通道80伸入上密封槽,使得上密封槽830呈环装结构,内密封圈83套入上密封槽830内。
弹簧座84在阀体81内,并布置于同轴布置滑移通道内,弹簧座84与内密封圈83相抵接。
弹簧座84背离泄压通道80的一侧设置弹簧安装槽,弹性复位装置87优选采用压缩弹簧87,压缩弹簧87设置在弹簧座84的弹簧安装槽内,阀体81的顶部设置开口,通过弹簧调节螺丝85装入阀体81的顶部开口,并通过螺纹安装配合。弹簧调节螺丝85和弹簧座84对压缩弹簧87的两端进行压紧、抵接,滑移拨杆86与弹簧做84通过螺纹副配合。
泄压阀8与上盖11通过螺纹副配合,并通过外密封圈82实现密封;阀体81内设置有一轴向的泄压通道80,使得腔室13与弹簧座84相连通;当手动提起滑移拨杆86时,弹簧座84克服压缩弹簧的弹簧力向上运动,使弹簧座84与内密封圈83分离开,此时腔室13与大气相连通,起到泄压作用;当手松开滑移拨杆86时,则弹簧座84在弹簧力作用下向下运动,并压紧内密封圈83使腔室13与大气断开,起到密封作用,同时压缩弹簧87的弹簧力可根据系统需要进行调节,当腔室87内压力过高时,推动弹簧座84向上运动,起到安全阀作用。
基于上述实施例中提供的过滤结构,本申请还提供了一种过滤装置,包括动力源,送液管路,布置于送液管路上的过滤结构1,该过滤结构为如上任一项所述的过滤结构;
还包括过滤装置箱体,其具有箱体盖板2和箱体主体3,箱体主体3的顶部用于安装过滤结构1,箱体主体3的内部用于布置动力源。
由于该过滤装置采用了上述实施例的过滤结构,所以该过滤装置由过滤结构带来的有益效果请参考上述实施例。
过滤结构采用盘状结构的滤膜14进行轴向过滤,由上盖11和底座12围成的液体腔室13可以获得较小的轴向占用空间。设置过滤装置具有过滤装置箱体,在箱体主体3顶部布置安装过滤结构1的多个安装孔,本实施例优选采用2个并行的过滤结构1,通过螺钉可拆卸固装于箱体主体3顶部,从而可实现对多个过滤结构的安装。
通过设置2个过滤结构1,可在箱体主体3内布置形成两套过滤系统,可以同时使用,也可以独立使用,满足不同过滤通量要求。
箱体主体3的内部用于安装布置动力源,通过箱体盖板2对箱体主体3进行盖装,实现对过滤装置便携携带和防护。
本实施例中,动力源包括蠕动泵4,蠕动泵4包括进液端和出液端,蠕动泵的出液端连通至过滤结构1的进液口。动力源还包括供电组件等,也可以选用真空泵、蠕动泵、隔膜泵等。蠕动泵4设于过滤结构1的前端,因此能够提供给过滤结构1较大的液流正向压力,结合过滤结构采用平铺结构的滤膜14和滤网(15、16)支撑结构,可有效提高液体过滤速率,保证过滤效果。
如图9所示,图9为本申请提供的过滤装置的系统布置图。
蠕动泵4的前端还设置对液体中杂质进行去除的粗滤器5,粗滤器5与蠕动泵4的进液端连通。考虑到液体会面临很浑浊的工况,在蠕动泵4前端需要对液体进行粗滤。选择大孔径的滤膜对大的杂质进行粗滤过滤,防止破坏过滤系统。
本实施例中,送液管路6上还设置对泵液压力和/或流量进行监测的压力流量监控装置7;
还包括控制装置,其在泵液压力大于第一压力,并小于第二压力时,调节蠕动泵工作于高速区间;并在泵液压力大于第二压力,调节蠕动泵工作于低速区间;以及在泵液压力小于第一压力,提示系统状态异常。
过滤装置进行液体过滤时,送液管路6顺序连通液源、粗滤器5、动力源以及过滤结构1等进行液体过滤,液体由动力源驱动通过滤膜进行过滤,本实施例优选动力源采用蠕动泵。
压力流量监控装置7置于管路系统中,对系统压力或流量进行实时监控并 反馈,蠕动泵4工作过程中,随着滤膜上滤渣的堆积,送液管路6内液体压力流量均发生变化,通过对管路压力数据进行实时测量,设置第一压力为P1,第二压力为P2,管路压力为P,当P1<P<P2时,滤膜具有较高的过滤效率,此时控制蠕动泵高速工作,高速过滤;P>P2时,管路内的压力变大,说明滤膜的过滤能力降低,此时控制蠕动泵减速工作,低速过滤,防止滤膜破损;P<P1时,系统状态异常,停机并报警。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种过滤结构,其特征在于,包括上盖和底座,二者之间围成腔室;
    所述腔室内具有铺装布置的过滤组件,所述过滤组件的过滤方向由所述上盖向所述底座方向布置,所述过滤组件靠近所述上盖的一侧具有平面结构的导流端面。
  2. 根据权利要求1所述的过滤结构,其特征在于,所述过滤组件包括滤网,所述滤网厚度方向的一侧用于支撑滤膜。
  3. 根据权利要求2所述的过滤结构,其特征在于,所述腔室为盘状腔室,所述上盖设置进液口,所述底座设置出液口;
    所述进液口内设置伸入至所述腔室内的进液接头,所述进液接头沿周向布置多个朝向所述腔室的径向布置的分液孔。
  4. 根据权利要求3所述的过滤结构,其特征在于,所述滤网包括上层滤网和下层滤网,所述上层滤网包括并行铺设的多条支撑条,相邻的所述支撑条之间围成过液间隙;
    所述下层滤网为分布有多个排液孔的板状滤网。
  5. 根据权利要求4所述的过滤结构,其特征在于,所述支撑条包括由所述腔室的中部向外并行铺设,呈同心圆结构布置的多条环形支撑条。
  6. 根据权利要求1-5任一项所述的过滤结构,其特征在于,所述上盖和所述底座之间压装有环形密封圈;
    所述环形密封圈包括压装于所述过滤组件上端面的内层密封圈,和压装于所述内层密封圈外圈的外层密封圈;
    所述内层密封圈对所述过滤组件的周向边缘进行隔液密封,所述外层密封圈对所述上盖和所述底座之间进行隔液密封。
  7. 根据权利要求6所述的过滤结构,其特征在于,所述底座上设置有溢流通道,所述溢流通道的入口位于所述内层密封圈和所述外层密封圈之间,所述溢流通道连通所述底座的出液口。
  8. 根据权利要求7所述的过滤结构,其特征在于,所述溢流通道包括环绕所述底座周向环形部,以及由所述环形部连通至所述底座上表面的多个分流 槽。
  9. 根据权利要求8所述的过滤结构,其特征在于,所述上盖上还布置有泄压阀,所述泄压阀内具有沿第一方向布置,并连通所述腔室的泄压通道;
    所述泄压阀内设有上下滑移布置,与所述泄压通道封堵配合的封堵装置。
  10. 根据权利要求9所述的过滤结构,其特征在于,所述封堵装置包括布置在所述泄压阀内的滑移通道,滑动布置于所述滑移通道内的弹簧座;
    所述弹簧座包括第一端和第二端,所述弹簧座的第一端与所述泄压通道封堵配合,所述弹簧座的第二端布置推动其压紧于所述泄压通道上的弹性复位装置。
  11. 根据权利要求10所述的过滤结构,其特征在于,所述泄压阀的外圈还布置有拖动所述弹簧座滑移的滑移拨杆。
  12. 一种过滤装置,其特征在于,包括权利要求1-11任一项所述的过滤结构。
  13. 根据权利要求12所述的过滤装置,其特征在于,还包括动力源和送液管路,所述过滤结构布置于所述送液管路上,所述动力源用于提供动力,以使待过滤的液体经所述送液管路流至所述过滤结构。
  14. 根据权利要求13所述的过滤装置,其特征在于,还包括箱体,所述箱体包括箱体盖板和箱体主体,所述箱体主体的顶部用于安装所述过滤结构,所述箱体主体的内部用于布置动力源。
  15. 根据权利要求13或14所述的过滤装置,其特征在于,所述动力源包括蠕动泵,所述蠕动泵包括进液端和出液端,所述蠕动泵的出液端连通至所述过滤结构的进液口。
  16. 根据权利要求15所述的过滤装置,其特征在于,所述送液管路上设置粗滤器,所述粗滤器与所述蠕动泵的进液端连通。
  17. 根据权利要求12-16任一项所述的过滤装置,其特征在于,所述送液管路上还设置对泵液压力和/或流量进行监测的压力流量监控装置。
  18. 根据权利要求17所述的过滤装置,其特征在于,还包括控制装置,其在所述泵液压力大于第一压力,并小于第二压力时,调节所述蠕动泵工作于高速区间;并在所述泵液压力大于所述第二压力,调节所述蠕动泵工作于低速区间;以及在所述泵液压力小于第一压力,提示系统状态异常。
PCT/CN2023/117701 2022-09-09 2023-09-08 过滤结构及过滤装置 WO2024051814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222410475.0 2022-09-09
CN202222410475 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024051814A1 true WO2024051814A1 (zh) 2024-03-14

Family

ID=90192080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117701 WO2024051814A1 (zh) 2022-09-09 2023-09-08 过滤结构及过滤装置

Country Status (1)

Country Link
WO (1) WO2024051814A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2043478A (en) * 1979-02-28 1980-10-08 Baxter Travenol Lab Filter device
CN110960910A (zh) * 2018-09-13 2020-04-07 泰兴市汇辰过滤器制造有限公司 一种平板过滤器
CN114733253A (zh) * 2022-03-30 2022-07-12 中核核电运行管理有限公司 一种降低过滤器危险介质泄漏的结构和方法
CN217067866U (zh) * 2021-11-12 2022-07-29 肇庆东洋新岛不锈钢工程有限公司 一种加压过滤器
CN115400478A (zh) * 2022-07-20 2022-11-29 中国核电工程有限公司 一种用于获取核电厂冷却剂杂质的过滤装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2043478A (en) * 1979-02-28 1980-10-08 Baxter Travenol Lab Filter device
CN110960910A (zh) * 2018-09-13 2020-04-07 泰兴市汇辰过滤器制造有限公司 一种平板过滤器
CN217067866U (zh) * 2021-11-12 2022-07-29 肇庆东洋新岛不锈钢工程有限公司 一种加压过滤器
CN114733253A (zh) * 2022-03-30 2022-07-12 中核核电运行管理有限公司 一种降低过滤器危险介质泄漏的结构和方法
CN115400478A (zh) * 2022-07-20 2022-11-29 中国核电工程有限公司 一种用于获取核电厂冷却剂杂质的过滤装置

Similar Documents

Publication Publication Date Title
WO2024051814A1 (zh) 过滤结构及过滤装置
CN106215523A (zh) 一种新型高效过滤板
CN212632295U (zh) 一种两虫水样自动控制过滤系统
CN210770640U (zh) 一种可拆卸的组合式阀门结构
CN210905206U (zh) 一种农田水利灌溉水管防堵接头
CN208660560U (zh) 一种过滤效果好的伸缩过滤器
CN211025350U (zh) 一种溶剂型胶黏剂过滤灌装装置
CN215172712U (zh) 一种多孔放气阀组件
CN219663011U (zh) 一体式焊接型过滤器
CN221191896U (zh) 一种能够进行水质监控的水处理设备
CN221482149U (zh) 一种不易泄漏的水泵泵体
CN214344709U (zh) 一种便于改造的化学水处理纤维过滤装置
CN219723963U (zh) 一种用于隔膜式多功能控制阀的疏通动作装置
CN221131316U (zh) 高效处理式y型过滤器
CN207996471U (zh) 一种用于高富集度缺酸硝酸铀酰溶液过滤的平板过滤器
CN221230098U (zh) 一种便于拆卸的过滤装置
CN221244231U (zh) 一种压滤装置
CN220736578U (zh) 一种便于安装的可调节玻璃钢过滤器
CN221525559U (zh) 一种防泄漏的燃气阀
CN221230012U (zh) 一种带有布水器的过滤器
CN220396614U (zh) 一种固体发酵罐自动泄压装置
CN215427690U (zh) 一种水务供水管道用过滤装置
CN220802113U (zh) 一种便于更换滤芯的输液过滤装置
CN221131325U (zh) 一种可更换的多级多介质过滤器
CN219300002U (zh) 一种过滤器出口用拆卸式单向阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862508

Country of ref document: EP

Kind code of ref document: A1