WO2024051777A1 - 近眼显示光机和近眼显示设备 - Google Patents

近眼显示光机和近眼显示设备 Download PDF

Info

Publication number
WO2024051777A1
WO2024051777A1 PCT/CN2023/117461 CN2023117461W WO2024051777A1 WO 2024051777 A1 WO2024051777 A1 WO 2024051777A1 CN 2023117461 W CN2023117461 W CN 2023117461W WO 2024051777 A1 WO2024051777 A1 WO 2024051777A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
imaging
illumination
eye display
Prior art date
Application number
PCT/CN2023/117461
Other languages
English (en)
French (fr)
Inventor
张倩
陈杭
胡增新
Original Assignee
浙江舜为科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211103194.9A external-priority patent/CN117706777A/zh
Application filed by 浙江舜为科技有限公司 filed Critical 浙江舜为科技有限公司
Publication of WO2024051777A1 publication Critical patent/WO2024051777A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • the present application relates to the field of near-eye display technology, and in particular, to a near-eye display optical machine, a near-eye display device, and a near-eye display method.
  • near-eye display technologies such as augmented reality (English Augmented reality, referred to as AR) and virtual reality (English Virtual Reality, referred to as VR) have become increasingly popular.
  • AR augmented reality
  • VR virtual reality
  • LED technology and micro display chip technology projection displays are becoming more and more miniaturized, making wearable near-eye display systems attract much attention. People are pursuing small size and high resolution, and they are comfortable to wear. The degree requirements are also getting higher and higher.
  • the near-eye display system usually adjusts the corresponding state according to the needs of adapting to the appearance of the glasses, but this also brings a series of problems to the image display.
  • the outgoing light also enters the human eye at a certain angle, eventually causing the display image to deviate.
  • the center of the human eye's field of view may be displayed with a certain tilt (distortion), which seriously affects the overall image display effect and the wearing experience of the near-eye display system.
  • the relevant technical solution is usually to adjust the relative position of the display screen 11P and the projection lens 12P to realize that the main projection light ray emerges at a certain angle to ensure that the light on the optical axis of the projection lens 12P is transmitted through the display device 2P as shown in Figure 2
  • the main light can enter the human eye vertically, so that the display image of the near-eye display device adapted to different glasses appearances is always presented in the center of the human eye's field of view, which is conducive to binocular imaging and ensures the image display effect and the wearing experience of the near-eye display system.
  • the biggest problem with this solution is that in order to adjust the image to the center of the field of view, this solution is achieved by translating the display 11p.
  • a near-eye display light engine for projecting image light to a waveguide device for near-eye display.
  • the near-eye display light engine includes: an image source component, an imaging component and a deflection prism group.
  • the imaging component is disposed on the light-emitting side of the image source component and is used to modulate the image light emitted through the image source component for imaging;
  • the deflection prism group is movably disposed on the imaging side of the imaging component , used to deflect the image light modulated by the imaging component to adjust the exit direction and angle of the image light to couple into the waveguide device.
  • the deflection prism group has a first rotation axis parallel to the exit direction of the imaging component and a second rotation axis perpendicular to the first rotation axis.
  • the deflection prism group rotates around When the first rotation axis rotates, the deflection prism group is used to deflect the image light emitted from the imaging component to change the emission direction of the image chief ray; when the deflection prism group rotates around the second rotation axis
  • the deflection prism group is used to deflect the image light emitted from the imaging component to change the exit angle of the main light ray of the image.
  • the first rotation axis of the deflection prism group coincides with the exit optical axis of the imaging component.
  • the deflection prism group includes a first angle prism and a second angle prism sequentially arranged along the exit optical axis of the imaging component, and the first angle prism is glued to the second angle prism. , and the refractive index of the first angle prism is different from the refractive index of the second angle prism.
  • the image source component includes a lighting module, a relay component, and a display chip.
  • the relay component is located in the optical path between the lighting module and the display chip, and the deflection component
  • the second rotation axis of the prism group is parallel to the display surface of the display chip.
  • the near-eye display light engine further includes a front aperture, and the front aperture is disposed on the light exit side of the deflection prism group.
  • the image source component includes an illumination module, a relay component, and an LCoS chip.
  • the relay component is located in the optical path between the illumination module and the LCoS chip;
  • the imaging component It includes a polarizing element, a polarizing beam splitting prism, an imaging lens group and a polarizing reflection assembly.
  • the polarizing reflection assembly includes a phase retardation element and a curved surface mirror.
  • the polarizing element is located in the optical path between the polarizing beam splitting prism and the relay assembly. In Located in the optical path between the polarizing beam splitter prism and the curved reflector.
  • the imaging lens group is located in the optical path between the polarizing beam splitter prism and the LCoS chip, and the optical axis of the imaging lens group is coaxial with the optical axis of the curved reflector.
  • the imaging lens group includes a first imaging lens group located in the optical path between the polarizing beam splitting prism and the LCoS chip and an optical path located between the polarizing beam splitting prism and the deflection prism group. the second imaging lens group.
  • the image source component includes an illumination module, a relay component and a DMD chip, and the relay component is located in the optical path between the illumination module and the DMD chip; the imaging component It is a TIR optical element set or an RTIR optical element set.
  • the near-eye display light engine includes a deflection module
  • the deflection module includes the deflection prism group
  • the image source component includes an illumination module and a module for modulating the first polarized illumination light into
  • the display chip of the second polarized image light, the illumination module, the imaging component and the deflection module are arranged in sequence along the optical axis of the illumination module.
  • the imaging component includes an illumination end dichroic prism, an imaging end dichroic prism and a polarization reflection component for converting the second polarized image light into the first polarized image light;
  • the illumination end dichroic prism is located between the illumination module and the In the light path between the display chips, and the illumination end dichroic prism has an illumination light splitting surface arranged obliquely with respect to the optical axis, for reflecting the first polarized illumination light emitted through the illumination module and polarized to propagate to the display chip, and transmit the second polarized image light modulated by the display chip to propagate to the imaging end beam splitting prism;
  • the imaging end beam splitting prism is located between the polarization reflection component and the deflection mode In the optical path between groups, the imaging end dichroic prism has an imaging splitting surface facing the illumination splitting surface, and the angle between the imaging splitting surface and the optical axis is greater than 45°, for transmission via The second polarized image light transmitted by the illumination splitting surface is propagated to the polar
  • the imaging component further includes an imaging lens group, which includes a first imaging lens group located in the optical path between the illumination end dichroic prism and the display chip and a first imaging lens group located in the imaging lens group. a second imaging lens group in the optical path between the end dichroic prism and the deflection prism group; the second imaging lens group modulates the first polarized image light emitted through the imaging end dichroic prism to form an image; the deflection prism The second imaging lens group is configured to deflect image light modulated via the second imaging lens group.
  • the deflection module further includes a polarization filter element; the polarization filter element is disposed in the optical path between the second imaging lens group and the imaging end beam splitting prism.
  • the imaging end beam splitting prism is a special-shaped prism, wherein the special-shaped prism has a first side facing the illumination splitting surface, a second side facing the polarizing reflection component, and a second side facing the deflection mode.
  • the third side of the group; the first side of the special-shaped prism is provided with a light splitting film as the imaging splitting surface; the second side of the special-shaped prism is parallel to the optical axis; the special-shaped prism The third side is relatively inclined to the optical axis.
  • an optical medium is filled between the illumination light-splitting surface of the illumination-end dichroic prism and the imaging light-splitting surface of the imaging-side dichroic prism.
  • the display chip is an LCoS chip;
  • the lighting end beam splitting prism is a 45° right-angle prism, and the A light-splitting film is provided on the inclined surface of the 45° right-angle prism to serve as the illumination light-splitting surface.
  • the illumination module includes an illumination light source, a collimation element and a uniform light element; the imaging component includes a polarizing element; the collimation element is disposed between the illumination light source and the uniform light element.
  • the uniform light element is arranged in the optical path between the collimating element and the polarizing element; the polarizing element is arranged between the uniform light element and the illumination end In the light path between the dichroic prisms; the illumination module further includes a color combination element and an illumination lens; the color combination element is arranged in the light path between a plurality of the collimation elements and the light uniformity element;
  • the illumination lens is disposed in the optical path between the light uniformizing element and the polarizing element.
  • the lighting module includes a plurality of illumination light sources, light rod groups, color combination elements and light uniformity elements; the imaging component includes a polarizing element; the light rod group is disposed on multiple The light path between the illumination light source and the color combination element is used to fully reflect the illumination light emitted by the illumination light source to homogenize and mix the illumination light of different colors; the light uniformity element is arranged on the color combination element. in the optical path between the color element and the polarizing element.
  • the color combination element is a color combination wedge prism, a color combination reflection prism, a dichroic right angle prism or a cross dichroic color combination prism; or, the color combination element includes a first right angle prism, a third color combination prism. Two right-angled prisms and a color-combination wedge prism glued between the inclined surface of the first right-angled prism and the inclined surface of the second right-angled prism.
  • the projection deflection angle of the near-eye display light engine is greater than or equal to 35°; the volume of the near-eye display light engine is less than or equal to 1cc.
  • This embodiment also provides a near-eye display device, including: the near-eye display light engine as described above and a waveguide device.
  • the waveguide device is disposed on the light projection side of the near-eye display light engine and is used to transmit light via the near-eye display light engine.
  • the image light projected by the near-eye display light machine is transmitted to the human eye for imaging.
  • Figure 1 is a schematic structural diagram of a related art near-eye display glasses.
  • FIG. 2 shows a schematic diagram of the optical path before and after the display screen is translated in the near-eye display glasses of the related art.
  • Figure 3 is a schematic structural diagram of a near-eye display device according to some embodiments.
  • Figure 4 shows a schematic structural diagram of a near-eye display optical engine in a near-eye display device according to some embodiments.
  • Figure 5 shows another perspective view of a near-eye display light engine according to some embodiments.
  • FIG. 6 shows a schematic diagram of a state in which the near-eye display light engine rotates the deflection prism group around the first rotation axis according to some embodiments.
  • Figure 7 shows a schematic diagram of a state in which the near-eye display light engine rotates the deflection prism group around the second rotation axis according to some embodiments.
  • Figure 8 shows a schematic structural diagram of a near-eye display optical engine in a near-eye display device according to some embodiments.
  • Figure 9 shows a schematic structural diagram of a near-eye display optical engine in a near-eye display device according to some embodiments.
  • Figure 10 shows a schematic structural diagram of a near-eye display optical engine in a near-eye display device according to some embodiments.
  • Figure 11 is a schematic structural diagram of a near-eye display device according to some embodiments.
  • Figure 12 shows a schematic diagram of an optical path of a near-eye display device according to some embodiments.
  • Figure 13 shows a schematic structural diagram of a near-eye display optical engine in a near-eye display device according to some embodiments.
  • Figure 14 shows a schematic structural diagram of a near-eye display light engine according to some embodiments.
  • Figure 15 shows a schematic structural diagram of a near-eye display light engine according to some embodiments.
  • Figure 16 is a schematic structural diagram of a near-eye display light engine according to some embodiments.
  • Figure 17 shows a schematic structural diagram of a near-eye display light engine according to some embodiments.
  • Figure 18 shows a schematic structural diagram of a near-eye display light engine according to some embodiments.
  • the term "a” in the claims and description should be understood as “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element may be Can be multiple. Unless the disclosure of the present application explicitly indicates that the number of the element is only one, the term “a” cannot be understood as being unique or single, and the term “a” cannot be understood as limiting the number.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
  • the relevant solution not only adjusts the image to the center of the field of view by moving the display screen, but also eliminates the dark edge by moving the display screen to compensate for the lighting installation error; therefore, when the display required to compensate for the dark edge
  • the direction of screen movement is opposite to the direction of movement of the display screen required for binocular imaging, there will be irreconcilable contradictions in the relevant solutions, resulting in no way to adapt to the appearance requirements of different glasses in order to eliminate dark edges.
  • This application creatively proposes a near-eye display optical machine, a near-eye display device and a near-eye display method, which can flexibly adapt to the needs of different glasses appearance while ensuring that the display image is always presented in the center of the human eye's field of view, and improve the capacity of the system. Poor ability.
  • an embodiment of the present application provides a near-eye display device 1, which may include a near-eye display optical engine 10 and a waveguide device 20.
  • the waveguide device 20 The light projection provided in the near-eye display light machine 10 side, used to transmit the image light projected through the near-eye display light engine 10 to the human eye for near-eye display, so that the user can obtain a VR/AR experience.
  • the near-eye display device 1 of the present application can be, but is not limited to, implemented as near-eye display glasses, that is, the near-eye display device 1 has the appearance of glasses, which is convenient for users to obtain VR/AR and other near-eye display experiences by wearing glasses. .
  • the near-eye display light engine 10 may include an image source component 11 for emitting image light, an imaging component 12 and a deflection prism group 13 .
  • the imaging component 12 is disposed on the light-emitting side of the image source component 11 and is used to modulate the image light emitted through the image source component 11 for imaging.
  • the deflection prism group 13 is movably disposed on the imaging side of the imaging component 12 for deflecting the image light modulated by the imaging component 12 to adjust the exit direction and angle of the image light to couple into the waveguide device 20 .
  • the deflection prism group 13 of the present application since the deflection prism group 13 of the present application is positionably disposed in the optical path between the imaging component 12 and the waveguide device 20, it can deflect the image light to adjust its exit direction and angle. Therefore, the near-eye display device 1 of the present application can make the image light couple into the waveguide device 20 at the required exit direction and angle without adjusting the image source component (such as a mobile display screen), so that the near-eye display The display image of device 1 is always presented in the center of the human eye's field of view. It can not only flexibly adapt to the needs of different glasses appearance, greatly increase the adjustable space of the module, but also better realize the angle error during the assembly process.
  • This application does not need to use expensive materials or complex structures. It not only provides a simple near-eye display light engine, near-eye display equipment and near-eye display method, but also adds the near-eye display light engine, near-eye display equipment and near-eye display. Practicality and reliability of the method.
  • the deflection prism group 13 is adjustably disposed in the optical path between the imaging component 12 and the waveguide device 20 , which means that the position of the deflection prism group 13 is adjustable relative to the imaging component 12 and the waveguide device 20 , that is, the deflection prism
  • the group 13 is movably arranged in the optical path between the imaging component 12 and the waveguide device 20 .
  • the deflection prism group 13 has a first rotation axis 1301 parallel to the exit direction of the imaging component 12 and a second rotation axis 1302 perpendicular to the first rotation axis 1301 . As shown in FIG.
  • the deflection prism group 13 when the deflection prism group 13 rotates around the first rotation axis 1301 , the deflection prism group 13 is used to deflect the image light emitted from the imaging component 12 to change the emission direction of the image principal ray, so as to facilitate Flexibly adjust the position of the optical machine to flexibly adapt to the needs of different glasses appearance; as shown in Figure 7, when the deflection prism group 13 rotates around the second rotation axis 1302, the deflection prism group 13 is used for The image light emitted from the imaging component 12 is deflected to change the exit angle of the main light ray of the image, so as to better achieve binocular imaging.
  • the exit direction of the main light ray of the image can be arbitrarily changed within the cone at a certain angle with the first rotation axis 1301, so as to flexibly adjust the optical machine position; in addition, Unlike related solutions that change the angle of the outgoing light rays by translating or adjusting the position of the display screen to achieve binocular fusion, this application does not need to change the position of the display screen, but only rotates the deflection prism group 13 around the second rotation axis 1302. It can change the angle of the outgoing light, thereby better achieving binocular fusion, binocular imaging and system error compensation.
  • the main ray of the image refers to the main ray in the image light.
  • the first rotation axis 1301 of the deflection prism group 13 coincides with the exit optical axis of the imaging component 12 to better adjust the exit angle of the image chief ray.
  • the exit optical axis of the imaging component 12 in this application may refer to the exit optical path of the chief ray in the image light modulated by the imaging component 12 .
  • the deflection prism group 13 may include a first angle prism 131 and a second angle prism 132 sequentially arranged along the exit optical axis of the imaging component 12 .
  • the first angle prism 131 is glued to
  • the second angle prism 132 and the refractive index of the first angle prism 131 are different from the refractive index of the second angle prism 132 to better improve system chromatic aberration and astigmatism introduced by off-axis tilt elements.
  • the first angle prism 131 and the second angle prism 132 in the deflection prism group 13 of the present application are both off-axis tilt elements.
  • the near-eye display light engine can use glued prisms to flexibly adjust the direction and angle of the outcoupled light to adapt to the appearance requirements of different glasses.
  • the near-eye display light engine 10 may further include a front aperture 14 disposed on the light exit side of the deflection prism group 13 so that the front aperture 14
  • the diaphragm 14 is located in the optical path between the deflection prism group 13 and the waveguide device 20 to eliminate the influence of stray light.
  • the deflection prism group 13 is located between the imaging component 12 and the front light
  • the image light modulated by the imaging component 12 is first deflected by the deflection prism group 13, and then passes through the front aperture 14 and then coupled into the waveguide device 20 to prevent other stray light (i.e.
  • the pre-diaphragm 14 is located in the optical path between the deflection prism group 13 and the coupling area 21 of the waveguide device 20 , that is, the pre-diaphragm 14 is located on the exit side of the deflection prism group 13 , used to limit the size of the projected field of view of image light.
  • the waveguide device 20 may be, but is not limited to, implemented as a planar optical waveguide; of course, in other examples of this application, the waveguide device 20 may also be implemented as a curved optical waveguide, which will not be described again in this application.
  • the image source component 11 of the near-eye display light engine 10 may include a lighting module 111 , a relay component 112 and a display chip 113 .
  • the relay component 112 is located between the lighting module 111 and the display chip 113 .
  • the illumination light emitted by the lighting module 111 is transmitted to the display chip 113 through the relay component 112 to be modulated into image light.
  • the second rotation axis 1302 of the deflection prism group 13 is optionally parallel to the display surface of the display chip 113 . It can be understood that the first rotation axis 1301 of the deflection prism group 13 can be parallel to the display surface of the display chip 113 or perpendicular to the display surface of the display chip 113, which will not be described again in this application.
  • the display chip 113 is implemented as an LCoS (Liquid Crystal on Silicon) chip 1131; correspondingly, the imaging of the near-eye display optical machine 10
  • the component 12 may include a polarizing element 114, a polarizing beam splitter prism 120, an imaging lens group 123 and a polarizing reflective component 124.
  • the polarizing reflective component 124 includes a phase retardation element 1241 and a curved reflector 1242; the polarizing element 114 is located in the optical path between the polarizing beam splitting prism 120 and the relay component 112, and is used to convert the illuminating light from the lighting module 111
  • the illumination light is polarized to enter the polarizing beam splitting prism 120; the curved reflector 1242 and the LCoS chip 1131 are located on opposite sides of the polarizing beam splitting prism 120, and the imaging lens group 123 is located on the LCoS chip 1131 and the deflection prism.
  • the phase retardation element 1241 is located in the optical path between the polarizing beam splitting prism 120 and the curved surface mirror 1242 .
  • the imaging lens group 123 is located in the optical path between the polarizing beam splitter prism 120 and the LCoS chip 1131 , and the optical axis of the imaging lens group 123 is consistent with the optical axis of the curved mirror 1242 Coaxiality ensures the coaxiality between each imaging lens, so as to improve the optical axis alignment problem between each lens during the assembly process and improve the lens tolerance performance.
  • the polarized illumination light polarized by the polarizing element 114 is first reflected by the polarizing beam splitter prism 120 to propagate to the imaging lens group 123, and then is modulated by the LCoS chip 1131 into the second image after being modulated by the imaging lens group 123.
  • the second polarized image light modulated by the LCoS chip 1131 is first modulated by the imaging lens group 123, and then passes through the polarizing beam splitting prism 120 and the phase retardation element 1241 to be reflected by the curved surface reflection mirror 1242 It is reflected back to the phase retardation element 1241 to convert the second polarized image light into the first polarized image light through the phase retardation element 1241 and then propagates back to the polarization beam splitting prism 120 .
  • the first polarization image light is passed by the polarization beam splitting prism 120 Reflected to emit towards the deflection prism group 13 .
  • the first rotation axis 1301 of the deflection prism group 13 may be parallel to the z-axis as shown in Figure 5; correspondingly, the second rotation axis 1301 of the deflection prism group 13 1302 may be parallel to the x-axis as shown in Figure 5. It can be understood that in this example of the present application, the display surface of the LCoS chip 1131 is perpendicular to the y-axis as shown in FIG. 4 .
  • the polarizing beam splitting prism 120 can be implemented as a PBS prism; the polarizing element 114 can be implemented as an S-polarizing plate for allowing S-polarized light to pass through.
  • the illumination light from the illumination module 111 is converted into S illumination light after passing through the polarizing element 114 to be incident on the polarizing beam splitting prism 120 .
  • the polarization state of the first polarized image light mentioned in this application is the same as the polarization state of the polarized illumination light, but different from the polarization state of the second polarized image light; for example, the first polarized image light and the polarization state of the second polarized image light are different.
  • the polarized illumination light is respectively implemented as S image light and S illumination light
  • the second polarized image light may be implemented as P image light.
  • the phase retardation element 1241 is implemented as a 1/4 wave plate and is used to convert the polarization state of the polarized image light, so that the second polarized image light is converted into the second polarized image light after passing through the 1/4 wave plate twice.
  • a polarized image light is implemented as a 1/4 wave plate and is used to convert the polarization state of the polarized image light, so that the second polarized image light is converted into the second polarized image light after passing through the 1/4 wave plate twice.
  • a polarized image light is implemented as a 1/4 wave plate and is used to convert the polarization state of the polarized image light, so that the second polarized image light is converted into the second polarized image light after passing through the 1/4 wave plate twice.
  • the lighting module 111 of the image source assembly 11 of the present application can include multiple illumination light sources 111A, multiple collimation elements 112A, color combination Element 115 and uniform light element 113A; the color combination element 115 is located on the light emitting side of a plurality of the illumination light sources 111A, and the collimation element 112A is correspondingly disposed in the light path between the illumination light source 111A and the color combination element 115, The light uniforming element 113A is disposed in the light path between the color combining element 115 and the relay component 112 .
  • the plurality of monochromatic illumination lights emitted by the plurality of illumination light sources 111A are first collimated by the corresponding collimating elements 112A, and then synthesized into one combined color illumination light by the color combining element 115, and then are uniformed by the light uniforming element 113A. propagated to the relay component 112.
  • the illumination light source 111A may be, but is not limited to, implemented as an LED light emitting element.
  • the collimating element 112A can be implemented as, but is not limited to, a condenser lens, a monolithic aspherical lens or a TIR (total internal reflection) collimating lens, so as to make the illumination module 111 compact.
  • the collimation element 112A is made of anti-UV yellowing material, which makes the structure compact and the cost controllable.
  • the collimating element 112A can be made of anti-UV yellowing materials, which helps to increase the service life of the collimating element 112A and facilitate cost control.
  • the color combination element 115 may be implemented as, but is not limited to, a dichroic color combination prism or a cross dichroic color combination prism (ie, X-cube) or the like.
  • the uniform light element 113A may be implemented as, but is not limited to, a compound eye element or a nanoimprinted microlens array.
  • the uniform light element 113A can also be implemented as a binary uniform light device with an angle modulation function.
  • the relay component 112 may include a reflective element 1121 and a relay lens 1122 .
  • the reflective element 1121 is located on the lighting side of the lighting module 111 .
  • the relay lens 1122 is disposed on the reflective module 111 .
  • the reflective side of the element 1121 is located in the optical path between the reflective element 1121 and the imaging component 12 . In this way, the illumination light emitted through the lighting module 111 is reflected by the reflective element 1121 to propagate to the relay lens 1122, and then propagates to the polarizing element 114 of the imaging component 12 after being modulated by the relay lens 1122.
  • the near-eye display optical engine 10 can use an imaging lens based on a 0.14-inch LCoS chip, a field of view of 21°, and an entrance pupil diameter of 3mm. Specifically, 5 lenses can be used.
  • the imaging structure composed of a spherical lens has good performance in terms of cost, tolerance and imaging performance; however, in other examples of this application, the imaging component 12 in the near-eye display optical machine 10
  • the specific architecture is not limited to the above examples.
  • the lenses in the imaging lens group 123 can complete the required imaging functions at different positions, and can also include different design architectures.
  • the imaging lens group 123 may include a first imaging lens group 1231 located in the optical path between the polarizing beam splitter prism 120 and the LCoS chip 1131 and a first imaging lens group 1231 located in the optical path between the polarizing beam splitter prism 120 and the LCoS chip 1131
  • the second imaging lens group 1232 in the optical path between the polarizing beam splitter prism 120 and the deflection prism group 13 .
  • the polarized illumination light reflected by the polarizing beam splitter prism 120 is first modulated by the first imaging lens group 1231, and then propagates to the LCoS chip 1131 to be modulated into the first polarized image light; the third polarized image light modulated by the LCoS chip 1131 A polarized image light is first modulated through the first imaging lens group 1231 and then propagates to the polarizing beam splitting prism 120; at the same time, the second polarized image light emitted from the polarizing beam splitting prism 120 will first pass through the second imaging lens group 1232 is modulated and then propagated to the deflection prism group 13.
  • the near-eye display light engine 10 of the present application can not only use LCoS chip as the display chip, but also use DMD chip (Digital Micromirror Device) as the display chip. It only needs to configure the corresponding lighting and imaging architecture. As the light engine of this application to achieve the required near-eye display.
  • the display chip 113 in the image source component 11 is implemented as a DMD chip 1132
  • the The imaging component 12 is implemented as a TIR optical element group 1201 , that is, as an imaging lens based on a TIR architecture.
  • at least one imaging lens in the imaging lens group in the TIR optical element group 1201 can be located in the optical path between the DMD chip 1132 and the TIR prism to reduce the overall height of the system. It can be understood that other imaging lenses in the imaging lens group in the TIR optical element group 1201 can be located in the optical path between the TIR prism and the deflection prism group 13, which will not be described again in this application.
  • the imaging component 12 can also be implemented as an RTIR (Refraction Total Internal Reflection) optical element group 1202 , that is, as an imaging lens based on an RTIR architecture.
  • the imaging lens group in the RTIR optical element group 1202 can be located in the optical path between the RTIR prism and the deflection prism group 13 .
  • TIR architecture and RTIR architecture are commonly used imaging lens architectures in DLP (Digital Light Processing) projection technology. This application is This will not be described again.
  • the deflection prism group 13 in the near-eye display light engine 10 is movably disposed in the optical path between the imaging component 12 and the waveguide device 20 , in order to achieve better binocular imaging and compensate for system errors by rotating the deflection prism group 13; and after the near-eye display device 1 is calibrated, the deflection prism group 13 in the near-eye display light engine 10 It can be, but is not limited to, fixed in the optical path between the imaging component 12 and the waveguide device 20 by dispensing glue to ensure that a good near-eye display effect is maintained for a long time.
  • one embodiment of the present application further provides a near-eye display method, which may include steps S100 to S100.
  • S200 Modulate the image light through the imaging component to form an image
  • S300 Deflect the modulated image light through the deflection prism group to adjust the emission direction and angle of the image light;
  • step S300 of the near-eye display method of the present application may include steps S310 to S320.
  • S310 Rotate the deflection prism group around a first rotation axis to change the exit direction of the image chief ray in the image light, where the first rotation axis is parallel to the exit direction of the imaging component;
  • S320 Rotate the deflection prism group around a second rotation axis perpendicular to the first rotation axis to change the exit angle of the image chief ray in the image light.
  • an embodiment of the present application provides a near-eye display device 1, which may include a near-eye display optical engine 10, a waveguide device 20 and a spectacle frame 30;
  • the spectacle frame 30 includes a spectacle frame 31 on which the waveguide device 20 is mounted and a pair of temple legs 32 connected to the spectacle frame 31; the near-eye display light engine 10 is correspondingly installed on the temple legs 32 for obliquely projecting image light to
  • the coupling area 21 of the waveguide device 20 enables the image light transmitted through the waveguide device 20 to be coupled out from the coupling area 22 to be vertically incident on the human eye for near-eye display, preventing the displayed image from deviating from the center of the human eye's field of view. Improve the overall image display effect and wearing experience.
  • the image source assembly 11 includes an illumination module 111 and a display chip 113 for modulating the first polarized illumination light into a second polarized image light.
  • the deflection module 130 includes a deflection prism. Group 13. Among them, the illumination module 111, the imaging component 12 and the deflection module 130 are arranged in sequence along the optical axis 100.
  • the imaging component 12 includes an illumination end dichroic prism 121, an imaging end dichroic prism 122, and a polarization reflection component 124 for converting the second polarized image light into the first polarized image light.
  • the illumination end dichroic prism 121 is located in the optical path between the illumination module 111 and the display chip 113 , and the illumination end dichroic prism 121 has an illumination light splitting surface 1210 arranged obliquely with respect to the optical axis 100 , used to reflect the polarized first polarized illumination light emitted through the lighting module 111 to propagate to the display chip 113, and to transmit the second polarized image light modulated by the display chip 113 to propagate to the imaging end.
  • Beam splitting prism 122 is located in the optical path between the illumination end beam splitting prism 121 and the illumination module 111.
  • the illumination light from the illumination module 111 propagates to the polarizing element 114 of the imaging component 12 and is polarized into first polarized illumination.
  • the light enters the illumination end dichroic prism 121.
  • the imaging end beam splitting prism 122 is located in the optical path between the polarization reflection component 124 and the deflection module 130 , wherein the imaging end beam splitting prism 122 has an imaging beam splitting surface 1220 facing the illumination beam splitting surface 1210 , and the imaging beam splitting surface 1220
  • the angle ⁇ between the optical axis 100 and the optical axis 100 is greater than 45°, which is used to transmit the second polarized image light transmitted through the illumination splitting surface 1210 to propagate to the polarized reflective component 124 and reflect it through the polarized reflective component 124 and convert it into The first polarization image of The light propagates obliquely to the deflection module 130 with respect to the optical axis 100 and is projected obliquely.
  • the first polarized illumination light mentioned in this application refers to the light that has a first polarization state and does not carry image information and is used for illumination;
  • the first polarized image light mentioned in this application refers to The light that has a first polarization state and carries image information, and
  • the second polarized image light mentioned in this application refers to the light that has a second polarization state and carries image information.
  • the polarization direction of the first polarization state is orthogonal to the polarization direction of the second polarization state; for example, when the light with the first polarization state is P light, the light with the second polarization state is S light; vice versa.
  • the optical axis 100 mentioned in this application may refer to the emission optical axis of the lighting module 111 , which corresponds to the length direction of the near-eye display light engine 10 .
  • the angle between the temples 32 and the frame 31 is often greater than 90°, so that the optical axis 100 of the near-eye display light engine 10 installed on the temples 32 is in contact with the lens.
  • the included angle between the waveguide device 20 installed on the mirror frame 31 is also greater than 90°; and because the included angle ⁇ between the imaging splitting surface 1220 of the imaging end beam splitting prism 122 of the present application and the optical axis 100 is greater than 45° , so that the first polarized image light emitted through the imaging end dichroic prism 122 will propagate to the deflection module 130 obliquely with respect to the optical axis 100 for imaging, so the near-eye display light engine 10 of the present application can display without translation.
  • the image light is projected obliquely with respect to the optical axis 100 to the coupling region 21 of the waveguide device 20 to ensure that the image light transmitted through the waveguide device 20 can be coupled out from the coupling region 22 to be vertically incident.
  • the human eye for near-eye display preventing the displayed image from deviating from the center of the human eye's field of view, and improving the overall image display effect and wearing experience.
  • the near-eye display light engine 10 of the present application can eliminate the need to use a larger-sized mirror or reflective prism. Reflecting mirrors or reflecting prisms only need to make the angle ⁇ between the imaging light splitting surface 1220 and the optical axis 100 greater than 45° to achieve a larger angle of light deflection, while also taking into account the compression of the system volume, and in It has good performance in terms of tolerance and imaging performance, and well meets the optical performance and appearance ID (Industrial Design) needs of various AR glasses.
  • the near-eye display light engine 10 can flexibly adjust the direction and angle of the light emitted by the light engine while ensuring that the light engine has a small size, so as to maximize the range of light deflection angles and flexibly adapt to different glasses. Appearance ID requirements.
  • the imaging lens group 123 includes a first imaging lens group 1231 located in the optical path between the illumination end dichroic prism 121 and the display chip 113 and a first imaging lens group 1231 located at the imaging end.
  • the second imaging lens group 1232 in the optical path between the dichroic prism 122 and the deflection prism group 13;
  • the second imaging lens group 1232 is disposed in the optical path between the imaging end dichroic prism 122 and the deflection prism group 13, It is used to modulate the first polarized image light emitted through the imaging end dichroic prism 122 for imaging;
  • the deflection prism group 13 is used to deflect the image light modulated through the second imaging lens group 1232, so that the deflection prism group 13 deflects
  • the angle ⁇ between the image chief ray and the optical axis 100 is greater than the angle between the first polarized image chief ray emitted through the imaging end dichroic prism 122 and the optical axis 100 , so that the image light can be tilted to a greater angle.
  • the imaging lens group 123 may also include multiple second imaging lens groups 1232, which will not be described again in this application.
  • the deflection prism group 13 is implemented as a transmissive deflection prism 1320 so as to further deflect light while saving front-end space to a great extent, easing the pressure of chromatic aberration correction and reducing design difficulty.
  • the final deflection angle ⁇ of the image light projected by the near-eye display light engine 10 of the present application is determined by the wedge angles ⁇ and ⁇ of the transmissive deflection prism 1320.
  • the transmissive deflection The placement space angle ⁇ of the prism 1320 and the angle ⁇ between the illumination splitting surface 1210 and the imaging splitting surface 1220 are jointly determined, and can be jointly designed and adjusted according to specific demand parameters.
  • the near-eye display light engine 10 of the present application can flexibly adjust the direction and angle of the light coming out of the light engine by introducing the transmissive deflection prism 1320 to jointly design the main light exit angle of the imaging end beam splitting prism 122.
  • the near-eye display light engine 10 of the present application does not need to adjust the position of the display chip, can better compensate for structural processing and assembly errors, and improve the tolerance capability of the system.
  • the transmissive deflection prism alone can deflect light to a certain extent, its deflection angle can usually only be less than 20°; if a larger angle of deflection needs to be achieved, corresponding Increasing the size and volume of the transmissive deflection prism is not conducive to the compactness and miniaturization of the optical machine. At the same time, it will further destroy the symmetry of the light structure and increase the chromatic aberration of the system.
  • This application is nearly
  • the eye display light engine 10 can jointly design and adjust the angle ⁇ between the illumination light splitting surface 1210 and the imaging light splitting surface 1220 and the angle of the transmissive deflection prism 1320, so that the light emitted by the light engine can produce a larger deflection angle. .
  • the projection deflection angle ⁇ of the near-eye display light engine 10 of the present application can be greater than or equal to 35°; that is, the angle between the image light projected through the near-eye display light engine 10 and the optical axis 100 of the near-eye display light engine 10
  • the included angle is greater than or equal to 35° in order to better adapt and take into account the appearance needs of different glasses.
  • the display chip 113 can be implemented as an LCoS chip 1131; the illumination end beam splitting prism 121 is correspondingly implemented as a 45° right-angle prism 1211, and the A dichroic film is provided on the inclined surface of the 45° right-angle prism 1211 as the illumination dichroic surface 1210.
  • the two right-angled surfaces of the 45° right-angled prism 1211 correspond to the lighting module 111 and the display chip 113 respectively, and the angle between the lighting splitting surface 1210 and the optical axis 100 may be equal to 45°.
  • the illumination light splitting surface 1210 mentioned in this application can be, but is not limited to, coating a PBS (phosphate belanced solution) dielectric light splitting film or attaching a 3M polarizing light splitting film on the inclined surface of the 45° right-angle prism 1211. prepared, which will not be described in detail in this application.
  • PBS phosphate belanced solution
  • the main illumination light i.e., the first polarized illumination light
  • the main illumination light emitted through the illumination module 111 first vertically enters the 45° right-angle prism 1211, and then vertically emits out of the 45° right-angle prism 1211 after being reflected by the illumination splitting surface 1210.
  • light vertically entering or exiting the 45° right-angle prism 1211 can reduce light energy loss and improve the overall light energy utilization of the system.
  • the imaging end dichroic prism 122 can be implemented as a special-shaped prism 1221 , wherein the special-shaped prism 1221 has a first side 12211 facing the illumination splitting surface 1210 and a third side facing the polarization reflection component 124 .
  • the second side surface 12212 of the special-shaped prism 1221 is parallel to the Optical axis 100;
  • the third side surface 12213 of the special-shaped prism 1221 is relatively inclined to the optical axis 100.
  • the main image light ray (second polarized image light) transmitted through the illumination light splitting surface 1210 can first be transmitted by the imaging light splitting surface 1220 to enter the special-shaped prism 1221, and then vertically emit from the special-shaped prism 1221 from the second side surface 12212.
  • the image principal light (first polarized image light) converted by the polarized reflective component 124 can first be vertically incident on the special-shaped prism 1221 from the second side 12212, and then be imaged by the After reflection by the light splitting surface 1220, the special-shaped prism 1221 vertically emits from the third side 12213 to propagate to the deflection module 130, so as to further improve the overall light energy utilization efficiency of the system.
  • the space between the illumination light-splitting surface 1210 of the illumination-side dichroic prism 121 and the imaging-side dichroic surface 1220 of the imaging-side dichroic prism 122 can be filled with the material of the illumination-end dichroic prism 121 and the imaging-side dichroic prism 122
  • the same optical medium 125 prevents the image light from being refracted when it exits the illumination end dichroic prism 121 from the illumination dichroic surface 1210 and enters the imaging end dichroic prism 122 from the imaging dichroic surface 1220, so that the image light can maintain its original shape.
  • Propagation direction so as to emit or inject vertically from the third side 12213.
  • the space between the illumination light-splitting surface 1210 of the illumination-side dichroic prism 121 and the imaging-side light-splitting surface 1220 of the imaging-side dichroic prism 122 may be air, or may be filled with other optical media. This application will not go into details.
  • the polarization reflection component 124 may include a phase retardation element 1241 and a curved surface mirror 1242 .
  • the phase retardation element 1241 is disposed between the imaging end dichroic prism 122 and the curved surface mirror 1242 .
  • the second polarized image light emitted through the imaging end dichroic prism 122 first passes through the phase retardation element 1241 to propagate to the curved mirror 1242, and then passes through the curved mirror 1242 for the second time. After passing through the phase retardation element 1241, it is converted into first polarized image light and then enters the imaging end dichroic prism 122.
  • the curved reflector 1242 mentioned in this application can also serve as an imaging lens to modulate the image light while reflecting the image light, which helps to reduce the second imaging lens required for the deflection module 130 Number of groups 1232.
  • the first imaging lens group 1231 is disposed in the optical path between the display chip 113 and the illumination end dichroic prism 121 for modulating the first image emitted from the illumination end dichroic prism 121 .
  • polarized illumination light and modulated via the display chip 113 modulated into a second polarized image light.
  • the first imaging lens group 1231 of the present application is a component that shares the illumination light path and the imaging light path, which facilitates further compression of the size and volume of the optical engine.
  • the transmissive deflection prism 1320 in the deflection module 130 may include a first angle prism 131 and a lens located in the optical path between the first angle prism 131 and the second imaging lens group 1232
  • the second angle prism 132 in which the first angle prism 131 is glued to the second angle prism 132, and the wedge angle ⁇ of the first angle prism 131 is different from the wedge angle ⁇ of the second angle prism 132, is used in a certain
  • the propagation direction and angle of the image light modulated through the second imaging lens group 1232 are adjusted within the range.
  • the deflection module 130 may further include a polarization filter element 133 , which is disposed in the optical path between the second imaging lens group 1232 and the imaging end dichroic prism 122 . , used to filter the first polarized image light emitted from the imaging end dichroic prism 122 to eliminate stray light in the first polarized image light, which helps to improve imaging quality.
  • the polarization filter element 133 mentioned in this application may be, but is not limited to, implemented as an absorptive linear polarizer corresponding to the polarization state of the first polarized image light, so as to better filter stray light.
  • the illumination module 111 may include an illumination light source 111A, a collimating element 112A, and a uniform light element 113A, and the imaging component 12 includes a polarizing element 114 .
  • the collimating element 112A is disposed in the optical path between the illuminating light source 111A and the uniform light element 113A, and is used to collimate the illumination light emitted by the illumination light source 111A to propagate to the uniform light element 113A;
  • the uniform light element 113A is disposed in the optical path between the collimating element 112A and the polarizing element 114, and is used to perform uniform light processing on the illumination light collimated by the collimating element 112A, so as to propagate to the polarizing element 114;
  • the polarizing element 114 is disposed in the optical path between the light-diffusing element 113A and the illumination-end dichroic prism 121 for converting the illumination light uniformed by the light-diffusing element 113A into first polarized illuminating light for propagation to the Illumination end beam splitter prism 121.
  • the polarizing element 114 may be, but is not limited to, implemented as an absorptive linear polarizer for absorbing the second polarized illumination light and transmitting the first polarized illumination light.
  • the lighting module 111 of the present application may further include a color combining element 115 .
  • the color element 115 is disposed in the optical path between the plurality of collimating elements 112A and the light-diffusing element 113A, and is used to first combine the colors of the collimated illumination light, and then propagate it to the light-diffusing element 113A for uniformity. light in order to achieve color near-eye display.
  • the color combination element 115 may include a first right-angle prism 1151 , a second right-angle prism 1152 , and a bevel glued between the first right-angle prism 1151 and the second right-angle prism 1152 .
  • the lighting module 111 may further include an lighting lens 116 , which is disposed in the light path between the uniform light element 113A and the polarizing element 114 for shaping the light passing through The illumination beam after the uniform light element 113A uniformly diffuses the light beam, so as to match the display chip 113 .
  • the illumination lens 116 mentioned in this application may be, but is not limited to, implemented as a single-piece aspherical lens, or may be a binary optical device such as a Fresnel lens, in order to compress the optical machine volume as much as possible.
  • the near-eye display light engine 10 of the present application can achieve the design requirement of a deflection angle of the projected light reaching more than 35°, while taking into account the compression of the system volume, so that the volume of the light engine can be less than 1cc (i.e. 1 cubic centimeter), and has good performance in terms of tolerance and imaging performance, which well meets the optical performance and appearance ID needs of various AR glasses.
  • 1cc i.e. 1 cubic centimeter
  • FIG. 14 shows a second example of the near-eye display light engine 10 according to the present application.
  • the difference of the near-eye display light engine 10 according to the second example of the present application is that the color combining element 115 in the lighting module 111 may only include the color combining wedge.
  • the prism 1153 is used to achieve the color combination function while reducing the weight of the lighting module 111, thereby reducing the overall weight of the optical machine.
  • Figure 15 shows a third example of a near-eye display light engine 10 according to the present application.
  • the difference of the near-eye display light engine 10 according to the third example of the present application is that the color combination element 115 in the lighting module 111 is implemented as a cross dichroic color combination.
  • Color prism 1154 can still achieve the desired color combination effect.
  • FIG. 16 to FIG. 18 illustrate a modified embodiment of the near-eye display light engine 10 according to the present application.
  • the lighting module 111 can use a light rod group 117 to replace the above-mentioned collimating element 112A for full use. Reflect illumination light to homogenize and mix different colors of illumination light.
  • the color combination element 115 is implemented as a color combination reflection prism 1155 matching the light rod group 117;
  • the light rod group 117 includes a first light rod 1171 and a second light rod 1172;
  • the first light rod 1171 is disposed in the light path between the plurality of illumination light sources 111A and the color combination reflection prism 1155 for homogenization and mixing.
  • the illumination light emitted by the plurality of illumination light sources 111A propagates to the color combination reflection prism 1155 and is reflected;
  • the second light rod 1172 is disposed in the optical path between the color combination reflection prism 1155 and the light uniformity element 113A.
  • the color combination reflection prism 1155 can be implemented as a total reflection prism or a right-angle prism coated with a high-reflection coating, as long as it can reflect illumination lights of different colors at the same time. The application will not go into details here.
  • the color combination element 115 can also be implemented as a dichroic right-angle prism 1156 matching the light rod group 117; the light rod The group 117 includes two first light rods 1171 and one second light rod 1172; the two first light rods 1171 are respectively located in the light path between different illumination light sources 111A and the dichroic right-angle prism 1156, and the third The dichroic rod 1172 is located in the light path between the dichroic right-angle prism 1156 and the light-diffusing element 113A, and can also achieve the required lighting color combination effect.
  • the color combination element 115 is implemented as the above-mentioned cross dichroic color combination prism 1154;
  • the light rod group 117 may include three three first light rods 1171 and one second light rod 1172; the three first light rods 1171 are respectively located in the light path between the three illumination light sources 111A and the cross dichroic color combining prism 1154, and the second The light rod 1172 is located in the light path between the cross dichroic color combination prism 1154 and the light uniformity element 113A, and can still achieve the required lighting color combination effect, which will not be described again in this application.
  • the uniform light element 113A mentioned in this application can be, but is not limited to, implemented as a diffuser or other binary device with a microstructure, as long as uniform light and mixed light can be achieved, this application does not Again.
  • the waveguide device 20 of the present application may, but is not limited to, include a diffraction optical waveguide to couple light into or out of the waveguide through diffraction. It can be understood that in other examples of the present application, the waveguide device 20 may also include auxiliary structures such as coupling prisms to assist in coupling the image beam projected by the near-eye display light engine 10 into the diffractive optical waveguide. This will not be described again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种近眼显示光机(10)和近眼显示设备(1)。近眼显示光机(10)用于投射图像光至波导器件(20)以进行近眼显示,近眼显示光机(10)包括:图像源组件(11)、成像组件(12)和偏转棱镜组(13)。成像组件(12)被设置于图像源组件(11)的发光侧,用于调制经由图像源组件(11)发射的图像光以成像;偏转棱镜组(13)被可活动地设置于成像组件(12)的成像侧,用于偏转经由成像组件(12)调制的图像光,以调整该图像光的出射方向及角度而耦入该波导器件(20)。

Description

近眼显示光机和近眼显示设备
相关申请
本申请要求2023年5月26日申请的,申请号为202310608625.5,发明名称为“斜投式显示光机和近眼显示眼镜”的中国专利申请的优先权,以及2022年9月9日申请的,申请号为202211103194.9,发明名称为“近眼显示光机、近眼显示设备以及近眼显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及近眼显示技术领域,特别是涉及一种近眼显示光机、近眼显示设备以及近眼显示方法。
背景技术
近年来,诸如增强现实(英文Augmented reality,简称AR)和虚拟现实(英文Virtual Reality,简称VR)等近眼显示(英文Near-eye display,简称NED)技术越发火热。伴随着LED技术和微型显示芯片技术的发展,投影显示越来越趋于小型化,使得可穿戴的近眼显示系统备受关注,人们在追求小体积、高分辨率的基础上,对其佩戴舒适度的要求也越来越高。
然而,为了满足市场需求,近眼显示系统通常会根据适配眼镜外观的需求进行相应状态的调整,但也会对图像显示带来一系列的问题。例如,如图1所示,投影光引擎1P与显示器件2P及显示器件2P与人眼之间可能存在一定的角度,也就是说投影光引擎1P的光轴与显示器件2P不再垂直;或者说投影光引擎1P的光轴上的光线不再垂直进入显示器件2P,而是相对于显示器件2P以一定角度的入射,此时出射光线同样以一定角度进入人眼,最终造成显示图像会偏离人眼视野中心,或伴随一定倾斜(畸变)显示,严重影响整体图像显示效果和近眼显示系统的佩戴体验。
目前,相关的技术方案通常是通过调整显示屏11P与投影镜头12P的相对位置,实现投影主光线以一定角度出射,以保证如图2所示投影镜头12P光轴上的光线通过显示器件2P传输后,主光线能够垂直进入人眼,使得适配不同眼镜外观的近眼显示设备的显示图像始终呈现在人眼视野中心,利于双目合像,保证图像显示效果及近眼显示系统的佩戴体验。但这种方案存在的最大问题在于:为了将图像调整到视场中央,该方案是通过平移显示屏11p的方式来实现的,而当投影光引擎因装配误差出现暗边时,通常也是通过移动显示屏11p来补偿照明安装误差的方式来消除暗边;因此,当消除暗边所需的显示屏11p移动方向与双目合像所需的显示屏移动方向相反时,这种方案就会出现不可调和的矛盾,造成为了消除暗边就没有办法适配不同眼镜的外观需求的问题。
发明内容
根据本申请的各种实施例,提供一种近眼显示光机,用于投射图像光至波导器件以进行近眼显示,所述近眼显示光机包括:图像源组件、成像组件和偏转棱镜组。所述成像组件被设置于所述图像源组件的发光侧,用于调制经由所述图像源组件发射的图像光以成像;所述偏转棱镜组被可活动地设置于所述成像组件的成像侧,用于偏转经由所述成像组件调制的图像光,以调整该图像光的出射方向及角度而耦入该波导器件。
在其中一些实施例中,所述偏转棱镜组具有平行于所述成像组件的出射方向的第一旋转轴线和垂直于所述第一旋转轴线的第二旋转轴线,当所述偏转棱镜组绕着所述第一旋转轴线转动时,所述偏转棱镜组用于偏转从所述成像组件出射的图像光以改变图像主光线的出射方向;当所述偏转棱镜组绕着所述第二旋转轴线转动时,所述偏转棱镜组用于偏转从所述成像组件出射的图像光以改变图像主光线的出射角度。
在其中一些实施例中,所述偏转棱镜组的所述第一旋转轴线重合于所述成像组件的出射光轴。
在其中一些实施例中,所述偏转棱镜组包括沿着所述成像组件的出射光轴依次布设的第一角度棱镜和第二角度棱镜,所述第一角度棱镜胶合于所述第二角度棱镜,并且所述第一角度棱镜的折射率不同于所述第二角度棱镜的折射率。
在其中一些实施例中,所述图像源组件包括照明模组、中继组件以及显示芯片,所述中继组件位于所述照明模组和所述显示芯片之间的光路中,并且所述偏转棱镜组的所述第二旋转轴线平行于所述显示芯片的显示面。
在其中一些实施例中,所述近眼显示光机进一步包括前置光阑,所述前置光阑被设置于所述偏转棱镜组的出光侧。
在其中一些实施例中,所述图像源组件包括照明模组、中继组件以及LCoS芯片,所述中继组件位于所述照明模组和所述LCoS芯片之间的光路中;所述成像组件包括起偏元件、偏振分光棱镜、成像镜组和偏振反射组件,偏振反射组件包括相位延迟元件和曲面反射镜,所述起偏元件位于所述偏振分光棱镜和所述中继组件之间的光路中,所述曲面反射镜和所述LCoS芯片位于所述偏振分光棱镜的相对两侧,所述成像镜组位于所述LCoS芯片和所述偏转棱镜组之间的光路中,所述相位延迟元件位于所述偏振分光棱镜和所述曲面反射镜之间的光路中。
在其中一些实施例中,所述成像镜组位于所述偏振分光棱镜和所述LCoS芯片之间的光路中,并且所述成像镜组的光轴与所述曲面反射镜的光轴共轴。
在其中一些实施例中,所述成像镜组包括位于所述偏振分光棱镜和所述LCoS芯片之间光路中的第一成像透镜组和位于所述偏振分光棱镜和所述偏转棱镜组之间光路中的第二成像透镜组。
在其中一些实施例中,所述图像源组件包括照明模组、中继组件以及DMD芯片,所述中继组件位于所述照明模组和所述DMD芯片之间的光路中;所述成像组件为TIR式光学元件组或RTIR式光学元件组。
在其中一些实施例中,所述近眼显示光机包括偏转模组,所述偏转模组包括所述偏转棱镜组,所述图像源组件包括照明模组和用于将第一偏振照明光调制成第二偏振图像光的显示芯片,所述照明模组、所述成像组件以及所述偏转模组沿照明模组的光轴依次排布。
所述成像组件包括照明端分光棱镜、成像端分光棱镜以及用于将该第二偏振图像光转换成第一偏振图像光的偏振反射组件;所述照明端分光棱镜位于所述照明模组和所述显示芯片之间的光路中,并且所述照明端分光棱镜具有相对于所述光轴倾斜布置的照明分光面,用于反射经由所述照明模组发射并经偏振后的第一偏振照明光以传播至所述显示芯片,并透射经由所述显示芯片调制成的第二偏振图像光以传播至所述成像端分光棱镜;所述成像端分光棱镜位于所述偏振反射组件和所述偏转模组之间的光路中,其中所述成像端分光棱镜具有面向所述照明分光面的成像分光面,并且所述成像分光面与所述光轴之间的夹角大于45°,用于透射经由所述照明分光面透射的第二偏振图像光以传播至所述偏振反射组件,并反射经由所述偏振反射组件转换成的第一偏振图像光以相对于所述光轴倾斜地传播至所述偏转模组。
在其中一些实施例中,所述成像组件还包括成像镜组,所述成像镜组包括位于所述照明端分光棱镜和所述显示芯片之间光路中的第一成像透镜组和位于所述成像端分光棱镜和所述偏转棱镜组之间光路中的第二成像透镜组;所述第二成像透镜组于调制经由所述成像端分光棱镜出射的第一偏振图像光以成像;所述偏转棱镜组用于偏转经由所述第二成像透镜组调制的图像光。
在其中一些实施例中,所述偏转模组进一步包括偏振过滤元件;所述偏振过滤元件被设置于所述第二成像透镜组和所述成像端分光棱镜之间的光路中。
在其中一些实施例中,所述成像端分光棱镜为异形棱镜,其中所述异形棱镜具有面向所述照明分光面的第一侧面、面向所述偏振反射组件的第二侧面以及面向所述偏转模组的第三侧面;所述异形棱镜的所述第一侧面上设有分光膜以作为所述成像分光面;所述异形棱镜的所述第二侧面平行于所述光轴;所述异形棱镜的所述第三侧面相对倾斜于所述光轴。
在其中一些实施例中,所述照明端分光棱镜的所述照明分光面和所述成像端分光棱镜的所述成像分光面之间填充光学介质。
在其中一些实施例中,所述显示芯片为LCoS芯片;所述照明端分光棱镜为45°直角棱镜,并且所 述45°直角棱镜的斜面上设有分光膜以作为所述照明分光面。
在其中一些实施例中,所述照明模组包括照明光源、准直元件以及匀光元件;所述成像组件包括起偏元件;所述准直元件被设置于所述照明光源和所述匀光元件之间的光路中;所述匀光元件被设置于所述准直元件和所述起偏元件之间的光路中;所述起偏元件被设置于所述匀光元件和所述照明端分光棱镜之间的光路中;所述照明模组进一步包括合色元件和照明透镜;所述合色元件被设置于多个所述准直元件和所述匀光元件之间的光路中;所述照明透镜被设置于所述匀光元件和所述起偏元件之间的光路中。
在其中一些实施例中,所述照明模组包括多个照明光源、光棒组、合色元件以及匀光元件;所述成像组件包括起偏元件;所述光棒组被设置于多个所述照明光源和所述合色元件之间的光路中,用于全反射经由所述照明光源发射的照明光以匀化并混合不同颜色的照明光;所述匀光元件被设置于所述合色元件和所述起偏元件之间的光路中。
在其中一些实施例中,所述合色元件为合色楔形棱镜、合色反射棱镜、二向色直角棱镜或十字二向色合色棱镜;或者,所述合色元件包括第一直角棱镜、第二直角棱镜以及胶合于所述第一直角棱镜的斜面和所述第二直角棱镜的斜面之间的合色楔形棱镜。
在其中一些实施例中,所述近眼显示光机的投射偏转角大于等于35°;所述近眼显示光机的体积小于等于1cc。
本实施例还提供了一种近眼显示设备,包括:如上所述的近眼显示光机以及波导器件,所述波导器件被设置于所述近眼显示光机的投光侧,用于将经由所述近眼显示光机投射的图像光传输至人眼以成像。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1是相关技术的近眼显示眼镜的结构示意图。
图2示出了相关技术的近眼显示眼镜中显示屏被平移前后的光路示意图。
图3是根据一些实施例的近眼显示设备的结构示意图。
图4示出了根据一些实施例的近眼显示设备中近眼显示光机的结构示意图。
图5示出了根据一些实施例的近眼显示光机的另一视角示意图。
图6示出了根据一些实施例的近眼显示光机在绕第一旋转轴线转动偏转棱镜组的状态示意图。
图7示出了根据一些实施例的近眼显示光机在绕第二旋转轴线转动偏转棱镜组的状态示意图。
图8示出了根据一些实施例的近眼显示设备中近眼显示光机的结构示意图。
图9示出了根据一些实施例的近眼显示设备中近眼显示光机的结构示意图。
图10示出了根据一些实施例的近眼显示设备中近眼显示光机的结构示意图。
图11是根据一些实施例的近眼显示设备的结构示意图。
图12示出了根据一些实施例的近眼显示设备的光路示意图。
图13示出了根据一些实施例的近眼显示设备中近眼显示光机的结构示意图。
图14示出了根据一些实施例的近眼显示光机的结构示意图。
图15示出了根据一些实施例的近眼显示光机的结构示意图。
图16是根据一些实施例的近眼显示光机的结构示意图。
图17示出了根据一些实施例的近眼显示光机的结构示意图。
图18示出了根据一些实施例的近眼显示光机的结构示意图。
主要元件符号说明:1、近眼显示设备;10、近眼显示光机;100、光轴;11、图像源组件;111、 照明模组;111A、照明光源;112A、准直元件;113A、匀光元件;115、合色元件;1151、第一直角棱镜;1152、第二直角棱镜;1153、合色楔形棱镜;1154、十字二向色合色棱镜;1155、合色反射棱镜;1156、二向色直角棱镜;116、照明透镜;117、光棒组;1171、第一光棒;1172、第二光棒;112、中继组件;1121、反射元件;1122、中继透镜;113、显示芯片;1130、LCoS芯片;1131、DMD芯片;12、成像组件;114、起偏元件;120、偏振分光棱镜;121、照明端分光棱镜;1210、照明分光面;1211、45°直角棱镜;122、成像端分光棱镜;1220、成像分光面;1221、异形棱镜;12211、第一侧面;12212、第二侧面;12213、第三侧面;123、成像镜组;1231、第一成像透镜组;1232、第二成像透镜组;124、偏振反射组件;1241、相位延迟元件;1242、曲面反射镜;125、光学介质;1201、TIR式光学元件组;1202、RTIR式光学元件组;130、偏转模组;13、偏转棱镜组;1320、透射式偏转棱镜;131、第一角度棱镜;132、第二角度棱镜;133、偏振过滤元件;1301、第一旋转轴线;1302、第二旋转轴线;131、第一角度棱镜;132、第二角度棱镜;14、前置光阑;20、波导器件;21、耦入区;22、耦出区;30、眼镜架;31、镜框;32、镜腿。
以上主要元件符号说明结合附图及具体实施方式对本申请作进一步详细的说明。
具体实施方式
以下描述用于揭露本申请以使本领域技术人员能够实现本申请。以下描述中的可选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本申请的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本申请的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本申请的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本申请的限制。
在本申请中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本申请的揭露中明确示意该元件的数量只有一个,否则术语“一”并不能理解为唯一或单一,术语“一”不能理解为对数量的限制。
在本申请的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本申请的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
考虑到相关方案不仅是通过平移显示屏的方式来将图像调整到视场中央的,而且也是通过移动显示屏来补偿照明安装误差的方式来消除暗边的;故当补偿暗边所需的显示屏移动方向与双目合像所需的显示屏移动方向相反时,相关方案就会出现不可调和的矛盾,造成为了消除暗边就没有办法适配不同眼镜的外观需求。本申请创造性地提出了一种近眼显示光机、近眼显示设备以及近眼显示方法,其能够在确保显示图像始终呈现在人眼视野中心的同时,灵活适配不同眼镜外观的需求,提升系统的容差能力。
具体地,参考本申请的说明书附图之图3至图7,根据本申请的一个实施例提供了一种近眼显示设备1,其可以包括近眼显示光机10和波导器件20,该波导器件20被设置于该近眼显示光机10的投光 侧,用于将经由该近眼显示光机10投射的图像光传输至人眼,以进行近眼显示,使得用户获得VR/AR体验。可以理解的是,本申请的该近眼显示设备1可以但不限于被实施为近眼显示眼镜,即该近眼显示设备1具有眼镜外观,便于用户以佩戴眼镜的方式来获得VR/AR等近眼显示体验。
更具体地,如图3所示,该近眼显示光机10可以包括用于发射图像光的图像源组件11、成像组件12以及偏转棱镜组13。该成像组件12被设置于该图像源组件11的发光侧,用于调制经由该图像源组件11发射的图像光以成像。该偏转棱镜组13被可活动地设置于该成像组件12的成像侧,用于偏转经由该成像组件12调制的图像光,以调整该图像光的出射方向及角度而耦入该波导器件20。
值得注意的是,由于本申请的该偏转棱镜组13被可调位地设置于该成像组件12和该波导器件20之间的光路中,其能够偏转图像光以调整其出射方向和角度大小,因此本申请的该近眼显示设备1能够在不调整图像源组件(如移动显示屏)的情况下,就能够使图像光以所需的出射方向及角度耦入该波导器件20,使得该近眼显示设备1的显示图像始终呈现在人眼的视野中心,不仅能够灵活地适配不同眼镜外观的需求,能够极大地增加模组的可调节空间,而且也能够更好地实现装配过程中的角度误差补偿及双目融合,补偿结构加工以及装配误差,提升系统的容差能力,具有良好的公差表现,便于量产,这对于近眼显示产品更快地向消费类产品转换具有重大意义。本申请中不需要采用昂贵的材料或复杂的结构,不只提供一种简单的近眼显示光机、近眼显示设备以及近眼显示方法,同时还增加了所述近眼显示光机、近眼显示设备以及近眼显示方法的实用性和可靠性。其中,偏转棱镜组13被可调位地设置于该成像组件12和该波导器件20之间的光路中,是指偏转棱镜组13相对于成像组件12和波导器件20位置可调,即偏转棱镜组13被可活动地设置于成像组件12和该波导器件20之间的光路中。
示例性地,如图4和图5所示,该偏转棱镜组13具有平行于该成像组件12的出射方向的第一旋转轴线1301和垂直于该第一旋转轴线1301的第二旋转轴线1302。如图6所示,当该偏转棱镜组13绕着该第一旋转轴线1301转动时,该偏转棱镜组13用于偏转从该成像组件12出射的图像光以改变图像主光线的出射方向,便于灵活调整光机的摆放位置,以灵活地适配不同眼镜外观的需求;如图7所示,当该偏转棱镜组13绕着该第二旋转轴线1302转动时,该偏转棱镜组13用于偏转从该成像组件12出射的图像光以改变图像主光线的出射角度,以便更好地实现双目合像。换言之,通过绕第一旋转轴线1301旋转该偏转棱镜组13,可以在与第一旋转轴线1301成一定角度的锥面内任意改变图像主光线的出射方向,以便灵活地调整光机位置;此外,不同于相关方案中通过平移或调整显示屏的位置来改变出射光线的角度以实现双目融合,本申请不需要改变显示屏的位置,仅通过绕第二旋转轴线1302旋转该偏转棱镜组13就能够改变出射光线的角度,从而更好地实现双目融合,实现双目合像及系统误差的补偿。需要说明的是,图像主光线指的是图像光中的主光线。
可选地,该偏转棱镜组13的该第一旋转轴线1301重合于该成像组件12的出射光轴,以便更好地调整图像主光线的出射角度。可以理解的是,本申请的成像组件12的出射光轴可以指的是经由该成像组件12调制后的图像光中主光线的出射光路。
可选地,如图4所示,该偏转棱镜组13可以包括沿着该成像组件12的出射光轴依次布设的第一角度棱镜131和第二角度棱镜132,该第一角度棱镜131胶合于该第二角度棱镜132,并且该第一角度棱镜131的折射率不同于该第二角度棱镜132的折射率,以便更好地改善系统色差及因离轴倾斜元件而引入的像散。可以理解的是,本申请的偏转棱镜组13中的第一角度棱镜131和第二角度棱镜132均为离轴倾斜元件,若被胶合在一起的两个角度棱镜的折射率(材质)完全一样,则会引入像散而导致近眼显示效果变差,但本申请能够很好地解决像散和色差问题,获得较好的近眼显示效果。近眼显示光机能够利用胶合棱镜的方式,灵活的调整耦出光线的方向及角度,以适配不同眼镜的外观需求。
根据本申请的上述实施例,如图3所示,该近眼显示光机10可以进一步包括前置光阑14,该前置光阑14被设置于该偏转棱镜组13的出光侧,使得该前置光阑14位于该偏转棱镜组13和该波导器件20之间的光路中,便于消除杂散光的影响。换言之,该偏转棱镜组13位于该成像组件12和该前置光 阑14之间的光路中,使得经由该成像组件12调制的图像光先通过该偏转棱镜组13偏转,再通过该前置光阑14后耦入该波导器件20,防止其他杂散光(即非图像光)耦入该波导器件20而影响近眼显示效果。如图13所示,该前置光阑14位于该偏转棱镜组13和该波导器件20的耦入区21之间的光路中,即该前置光阑14位于该偏转棱镜组13的出射侧,用于限制图像光的投射视场大小。
可选地,该波导器件20可以但不限于被实施为平面光波导;当然,在本申请的其他示例中,该波导器件20还可以被实施为曲面光波导,本申请对此不再赘述。
具体地,如图3所示,该近眼显示光机10的该图像源组件11可以包括照明模组111、中继组件112以及显示芯片113,该中继组件112位于该照明模组111和该显示芯片113之间的光路中,使得经由该照明模组111发射的照明光经由该中继组件112被传输至该显示芯片113以被调制成图像光。
值得注意的是,该偏转棱镜组13的该第二旋转轴线1302可选地平行于该显示芯片113的显示面。可以理解的是,该偏转棱镜组13的该第一旋转轴线1301可以平行于该显示芯片113的显示面,也可以垂直于该显示芯片113的显示面,本申请对此不再赘述。
更具体地,在本申请的一个示例中,如图4和图5所示,该显示芯片113被实施为LCoS(Liquid Crystal on Silicon)芯片1131;对应地,该近眼显示光机10的该成像组件12可以包括起偏元件114、偏振分光棱镜120、成像镜组123和偏振反射组件124。偏振反射组件124包括相位延迟元件1241以及曲面反射镜1242;该起偏元件114位于该偏振分光棱镜120和该中继组件112之间的光路中,用于将来自该照明模组111的照明光起偏成偏振照明光以射入该偏振分光棱镜120;该曲面反射镜1242和该LCoS芯片1131位于该偏振分光棱镜120的相对两侧,该成像镜组123位于该LCoS芯片1131和该偏转棱镜组13之间的光路中,该相位延迟元件1241位于该偏振分光棱镜120和该曲面反射镜1242之间的光路中。
可选地,如图4所示,该成像镜组123位于该偏振分光棱镜120和该LCoS芯片1131之间的光路中,并且该成像镜组123的光轴与该曲面反射镜1242的光轴共轴,便于保证各个成像透镜之间的同轴度,以便改善组立过程中各镜片间的光轴对准问题,提升镜头公差表现。这样,经由该起偏元件114起偏的偏振照明光先被该偏振分光棱镜120反射以传播至该成像镜组123,再在被该成像镜组123调制后被该LCoS芯片1131调制成第二偏振图像光;之后,经由该LCoS芯片1131调制成的第二偏振图像光先被该成像镜组123调制,再先后穿过该偏振分光棱镜120和该相位延迟元件1241以被该曲面反射镜1242反射回该相位延迟元件1241,以通过该相位延迟元件1241将第二偏振图像光转换成第一偏振图像光而传播回该偏振分光棱镜120,最后该第一偏振图像光被该偏振分光棱镜120反射以朝向该偏转棱镜组13出射。
值得注意的是,在本申请的这一示例中,该偏转棱镜组13的第一旋转轴线1301可以平行于如图5所示的z轴;相应地,该偏转棱镜组13的第二旋转轴线1302可以平行于如图5所示的x轴。可以理解的是,在本申请的这一示例中,该LCoS芯片1131的显示面垂直于如图4所示的y轴。
可选地,该偏振分光棱镜120可以被实施为PBS棱镜;该起偏元件114可以被实施为S偏振片,用于允许S偏振光透过。换言之,来自该照明模组111的照明光在通过该起偏元件114后被转换成S照明光以入射至该偏振分光棱镜120。可以理解的是,本申请所提及的第一偏振图像光的偏振态与偏振照明光的偏振态相同,而与第二偏振图像光的偏振态不同;例如,该第一偏振图像光和该偏振照明光分别被实施为S图像光和S照明光,而该第二偏振图像光则可以被实施为P图像光。
可选地,该相位延迟元件1241被实施为1/4波片,用于转换偏振图像光的偏振态,使得第二偏振图像光在往返两次穿过1/4波片后被转换成第一偏振图像光。
值得注意的是,为了实现彩色显示,如图4和图5所示,本申请的该图像源组件11的该照明模组111可以包括多个照明光源111A、多个准直元件112A、合色元件115以及匀光元件113A;该合色元件115位于多个该照明光源111A的发光侧,该准直元件112A被对应地设置于该照明光源111A和该合色元件115之间的光路中,该匀光元件113A被设置于该合色元件115和该中继组件112之间的光路中。 这样,经由多个照明光源111A发射的多种单色照明光先经由对应地准直元件112A准直后被该合色元件115合成一路合色照明光,再经由该匀光元件113A匀光后传播至该中继组件112。
可选地,该照明光源111A可以但不限于被实施为LED发光元件。
可选地,该准直元件112A可以但不限于被实施为集光镜、单片式非球面透镜或TIR(total internal reflection)准直镜,便于使照明模组111的结构紧凑。准直元件112A采用抗紫外黄化材料,使得结构紧凑,成本可控。与此同时,该准直元件112A可以采用抗紫外黄化材料制备而成,有助于提高准直元件112A的使用寿命,便于控制成本。
可选地,该合色元件115可以但不限于被实施为二向色合色棱镜或十字二向色合色棱镜(即X-立方体)等。
可选地,该匀光元件113A可以但不限于被实施为复眼元件或纳米压印的微透镜阵列。当然,在本申请的其他示例中,该匀光元件113A还可以被实施为具有角度调制功能的二元匀光器件。
可选地,如图4所示,该中继组件112可以包括反射元件1121和中继透镜1122,该反射元件1121位于该照明模组111的照明侧,该中继透镜1122被设置于该反射元件1121的反射侧,以位于该反射元件1121和该成像组件12之间的光路中。这样,经由该照明模组111发射的照明光被该反射元件1121反射以传播至该中继透镜1122,再在被该中继透镜1122调制后传播至该成像组件12的该起偏元件114。
可选地,该反射元件1121可以但不限于被实施为45度反射棱镜;该中继透镜1122可以但不限于被实施为单片非球面透镜,便于尽量压缩光机体积。
值得注意的是,虽然在本申请的上述示例中,该近眼显示光机10可以采用基于0.14英寸的LCoS芯片、21°的视场角以及3mm的入射瞳孔径的成像镜头,具体可以采用5片式球面透镜组成的成像架构,从而不论从成本方面,还是从公差和成像性能等方面,均具有良好的表现;但在本申请的其他示例中,该近眼显示光机10中的成像组件12的具体架构并不局限于上述示例,例如成像镜组123中的镜片在不同位置均可以完成所需的成像功能,也可以包含不同的设计架构。
例如,在本申请的第一变形示例中,如图8所示,该成像镜组123可以包括位于该偏振分光棱镜120和该LCoS芯片1131之间光路中的第一成像透镜组1231和位于该偏振分光棱镜120和该偏转棱镜组13之间光路中的第二成像透镜组1232。这样,经由该偏振分光棱镜120反射的偏振照明光先经由该第一成像透镜组1231调制,再传播至该LCoS芯片1131以被调制成第一偏振图像光;经由该LCoS芯片1131调制成的第一偏振图像光先经由该第一成像透镜组1231调制,再传播至该偏振分光棱镜120;与此同时,从该偏振分光棱镜120出射的第二偏振图像光将先经由该第二成像透镜组1232调制后再传播至该偏转棱镜组13。
值得注意的是,本申请的该近眼显示光机10除了能够采用LCoS芯片作为显示芯片之外,还可以采用DMD芯片(Digital Micromirror Device)作为显示芯片,只需要配置对应的照明和成像架构就能够作为本申请的光引擎以实现所需的近眼显示。
例如,相比于根据本申请的上述第一变形示例,如图9所示,在本申请的第二变形示例中该图像源组件11中的该显示芯片113被实施为DMD芯片1132,并且该成像组件12被实施为TIR式光学元件组1201,即被实施为基于TIR架构的成像镜头。可选地,该TIR式光学元件组1201中成像镜组中的至少一片成像透镜可以位于该DMD芯片1132和TIR棱镜之间的光路中,以减小系统整体高度。可以理解的是,该TIR式光学元件组1201中成像镜组中的其他成像透镜可以位于TIR棱镜和该偏转棱镜组13之间的光路中,本申请对此不再赘述。
或者,如图10所示,在本申请的第三变形示例中,该成像组件12还可以被实施为RTIR(Refraction Total Internal Reflection)式光学元件组1202,即被实施为基于RTIR架构的成像镜头。可选地,RTIR式光学元件组1202中的成像镜组可以位于RTIR棱镜和该偏转棱镜组13之间的光路中。可以理解的是,TIR架构和RTIR架构作为DLP(Digital Light Processing)投影技术中常用的成像镜头架构,本申请对 此不再赘述。
值得一提的是,在该近眼显示设备1被调校之前,该近眼显示光机10中的该偏转棱镜组13被可活动地设置于该成像组件12和该波导器件20之间的光路中,以便通过旋转该偏转棱镜组13的方式来实现较好的双目合像和补偿系统误差;而在该近眼显示设备1被调校之后,该近眼显示光机10中的该偏转棱镜组13可以但不限于通过点胶的方式被固定在该成像组件12和该波导器件20之间的光路中,以便确保长时间维持较好的近眼显示效果。
根据本申请的另一方面,本申请的一个实施例进一步提供了一种近眼显示方法,可以包括步骤S100至S100。
S100:通过图像源组件,发射图像光;
S200:通过成像组件,调制该图像光以成像;
S300:通过偏转棱镜组,偏转调制后的图像光,以调整该图像光的出射方向及角度;
S400:通过波导器件,传输偏转后的图像光至人眼以成像。
值得注意的是,本申请的该近眼显示方法的该步骤S300,可以包括步骤S310至S320。
S310:绕着第一旋转轴线旋转该偏转棱镜组,以改变图像光中图像主光线的出射方向,其中该第一旋转轴线平行于该成像组件的出射方向;
S320:绕着垂直于该第一旋转轴线的第二旋转轴线旋转偏转棱镜组,以改变图像光中图像主光线的出射角度。
考虑到相关的技术方案不仅在显示芯片因补偿暗边所需的移动方向与因配合眼镜外观所需的移动方向相反时,会出现不可调和的矛盾;而且,由于通过移动显示芯片的方式来实现对投影主光线出射角度的调节量是非常有限的,因此当需要实现的角度调节量很大时,这种方案就行不通了。虽然在显示光机的前端加入反射镜或反射棱镜能够实现出射光线较大的偏转角,但是为了保证所有的光线都能够正常通过反射镜或反射棱镜,其尺寸就需要很大,这不仅对光机前端的空间要求非常高,与光机紧凑型的设计目标相违背,而且还会导致光线的光程很长,随之引入了很大的色散。
具体地,参考本申请的说明书附图之图11和图12,根据本申请的一个实施例提供了一种近眼显示设备1,其可以包括近眼显示光机10、波导器件20以及眼镜架30;该眼镜架30包括安装该波导器件20的镜框31和与该镜框31连接的一对镜腿32;该近眼显示光机10被对应地安装于该镜腿32,用于倾斜地投射图像光线至该波导器件20的耦入区21,使得经由该波导器件20传输的图像光线能够从耦出区22耦出以垂直地入射至人眼而进行近眼显示,防止显示图像偏离人眼的视野中心,改善整体图像显示效果和佩戴体验。
更具体地,如图12至图15所示,图像源组件11包括照明模组111和用于将第一偏振照明光调制成第二偏振图像光的显示芯片113,偏转模组130包括偏转棱镜组13。其中,照明模组111、成像组件12以及偏转模组130沿光轴100依次排布。该成像组件12包括照明端分光棱镜121、成像端分光棱镜122以及用于将该第二偏振图像光转换成第一偏振图像光的偏振反射组件124。
如图13所示,该照明端分光棱镜121位于该照明模组111和该显示芯片113之间的光路中,并且该照明端分光棱镜121具有相对于该光轴100倾斜布置的照明分光面1210,用于反射经由该照明模组111发射并经偏振后的第一偏振照明光以传播至该显示芯片113,并透射经由该显示芯片113调制成的第二偏振图像光以传播至该成像端分光棱镜122。其中,起偏元件114位于照明端分光棱镜121和照明模组111之间的光路中,来自照明模组111的照明光传播至成像组件12的该起偏元件114,起偏成第一偏振照明光以射入该照明端分光棱镜121。该成像端分光棱镜122位于该偏振反射组件124和该偏转模组130之间的光路中,其中该成像端分光棱镜122具有面向该照明分光面1210的成像分光面1220,并且该成像分光面1220与该光轴100之间的夹角δ大于45°,用于透射经由该照明分光面1210透射的第二偏振图像光以传播至该偏振反射组件124,并反射经由该偏振反射组件124转换成的第一偏振图像 光以相对于该光轴100倾斜地传播至该偏转模组130而被倾斜地投射。可以理解的是,本申请所提及的第一偏振照明光指的是具有第一偏振态且未携带图像信息的光线,用于照明;本申请所提及的第一偏振图像光指的是具有第一偏振态且携带有图像信息的光线,本申请所提及的第二偏振图像光指的是具有第二偏振态且携带有图像信息的光线。与此同时,该第一偏振态的偏振方向正交于该第二偏振态的偏振方向;例如,当具有该第一偏振态的光线为P光时,具有该第二偏振态的光线则为S光;反之亦然。
值得注意的是,本申请所提及的光轴100可以指的是该照明模组111的发射光轴,其对应于该近眼显示光机10的长度方向。为了提高近眼显示设备1的佩戴舒适性,该镜腿32与该镜框31之间的夹角往往大于90°,使得被安装于该镜腿32的该近眼显示光机10的光轴100与被安装于该镜框31的该波导器件20之间的夹角也大于90°;而由于本申请的该成像端分光棱镜122的成像分光面1220与该光轴100之间的夹角δ大于45°,使得经由该成像端分光棱镜122出射的第一偏振图像光会相对于该光轴100倾斜地传播至该偏转模组130以成像,因此本申请的该近眼显示光机10能够在不平移显示芯片的前提下,相对于该光轴100倾斜地投射图像光至该波导器件20的耦入区21,以便确保经由该波导器件20传输的图像光线能够从耦出区22耦出以垂直地入射至人眼而进行近眼显示,防止显示图像偏离人眼的视野中心,改善整体图像显示效果和佩戴体验。
此外,相比于相关技术中采用在显示光机的前端加入较大尺寸的反射镜或反射棱镜来实现较大偏转角的方案,本申请的该近眼显示光机10能够无需利用较大尺寸的反射镜或反射棱镜,仅需使该成像分光面1220与该光轴100之间的夹角δ大于45°就能够实现较大角度的光线偏转,同时也兼顾了对系统体积的压缩,并且在公差及成像性能等方面均具有良好的表现,很好地满足了各类AR眼镜光学性能及外观ID(Industrlal Design,工业设计)的需求。近眼显示光机10能够在确保光机具有较小体积的情况下,灵活地调整光机出射光线的方向和角度大小,以最大程度地扩大光线偏转角度的实现范围,以便灵活地适配不同眼镜外观ID的需求。
根据本申请的上述实施例,如图13所示,成像镜组123包括位于所述照明端分光棱镜121和所述显示芯片113之间光路中的第一成像透镜组1231和位于所述成像端分光棱镜122和所述偏转棱镜组13之间光路中的第二成像透镜组1232;该第二成像透镜组1232被设置于该成像端分光棱镜122和该偏转棱镜组13之间的光路中,用于调制经由该成像端分光棱镜122出射的第一偏振图像光以成像;该偏转棱镜组13用于偏转经由该第二成像透镜组1232调制的图像光,使得经由该偏转棱镜组13偏转的图像主光线与该光轴100之间的夹角θ大于经由该成像端分光棱镜122出射的第一偏振图像主光线与该光轴100之间的夹角,以便将图像光以更大的倾斜角度投射至该波导器件20的耦入区21,更灵活地适配各类眼镜的整机外观需求。可以理解的是,在本申请的其他示例中,该成像镜组123也可以包括多片第二成像透镜组1232,本申请对此不再赘述。
可选地,该偏转棱镜组13被实施为透射式偏转棱镜1320,以便在对光线进行进一步偏转的同时,很大程度上节省前端空间,并缓解色差校正的压力,降低设计难度。
值得注意的是,如图13所示,本申请的该近眼显示光机10所投射的图像光最终产生的偏转角θ是由该透射式偏转棱镜1320的楔角γ、β,该透射式偏转棱镜1320的放置空间角度ψ以及该照明分光面1210和该成像分光面1220之间的夹角α所共同决定的,可以根据具体的需求参数来进行联合设计和调整。换言之,本申请的近眼显示光机10通过引入该透射式偏转棱镜1320对该成像端分光棱镜122的主光线出射角度进行联合设计,可以灵活地调整光机出射光线的方向及角度大小,同时也最大程度地扩大了可实现的光线偏转角度范围,以便很好地适配和兼顾不同的眼镜外观需求。与此同时,本申请的近眼显示光机10不必调节显示芯片的位置,能够更好地补偿结构加工以及装配误差,提升系统的容差能力。
可以理解的是,虽然单独采用透射式偏转棱镜也能够在一定程度上实现对光线的偏转,但其偏转角通常只能做到小于20°;如果需要实现更大角度的偏转,则仍需要相应地加大透射式偏转棱镜的尺寸和体积,不利于光机的紧凑级小型化,同时也会更加破坏光线结构对称性及加重系统色差。而本申请的近 眼显示光机10能够通过联合设计和调节该照明分光面1210与该成像分光面1220之间的夹角α及该透射式偏转棱镜1320的角度,使得光机出射光线能够产生更大的偏转角。
可选地,本申请的该近眼显示光机10的投射偏转角θ可以大于等于35°;即经由该近眼显示光机10投射的图像光与该近眼显示光机10的光轴100之间的夹角大于等于35°,以便更好地适配和兼顾不同眼镜外观的需求。
示例性地,在本申请的第一示例中,如图13所示,该显示芯片113可以被实施为LCoS芯片1131;该照明端分光棱镜121被对应地实施为45°直角棱镜1211,并且该45°直角棱镜1211的斜面上设有分光膜以作为该照明分光面1210。此时,该45°直角棱镜1211的两个直角面分别对应于该照明模组111和该显示芯片113,该照明分光面1210与该光轴100之间的夹角可以等于45°。可以理解的是,本申请所提及的照明分光面1210可以但不限于通过在该45°直角棱镜1211的斜面上镀设PBS(phosphate belanced solution)介质分光膜或贴设3M偏振分光膜的方式制备而成,本申请对此不再赘述。
这样,经由该照明模组111发射的照明主光线(即第一偏振照明光)先垂直射入该45°直角棱镜1211,再在被该照明分光面1210反射后垂直射出该45°直角棱镜1211,以传播至该LCoS芯片1131而被调制成图像光;之后,经由该LCoS芯片1131调制成的图像主光线(即第二偏振图像光)又会先垂直射入该45°直角棱镜1211,再在被该照明分光面1210透射后传播至该成像端分光棱镜122的成像分光面1220。可以理解的是,光线在垂直射入或射出该45°直角棱镜1211能够减少光能损失,提高系统的整体光能利用率。
可选地,如图13所示,该成像端分光棱镜122可以被实施为异形棱镜1221,其中该异形棱镜1221具有面向该照明分光面1210的第一侧面12211、面向该偏振反射组件124的第二侧面12212以及面向该偏转模组130的第三侧面12213;该异形棱镜1221的第一侧面12211上设有分光膜以作为该成像分光面1220;该异形棱镜1221的第二侧面12212平行于该光轴100;该异形棱镜1221的第三侧面12213相对倾斜于该光轴100。
这样,经由该照明分光面1210透射的图像主光线(第二偏振图像光)能够先被该成像分光面1220透射以射入该异形棱镜1221,再从该第二侧面12212垂直射出该异形棱镜1221以传播至该偏振反射组件124;之后,经由该偏振反射组件124转换成的图像主光线(第一偏振图像光)能够先从该第二侧面12212垂直入射该异形棱镜1221,再在被该成像分光面1220反射后从该第三侧面12213垂直射出该异形棱镜1221以传播至该偏转模组130,以便进一步提高系统的整体光能利用率。
可选地,如图13所示,该照明端分光棱镜121的照明分光面1210和该成像端分光棱镜122的成像分光面1220之间可以填充与照明端分光棱镜121和成像端分光棱镜122材质相同的光学介质125,防止图像光在从该照明分光面1210射出该照明端分光棱镜121和从该成像分光面1220射入该成像端分光棱镜122时发生折射,使得图像光能够保持原有的传播方向,以便从该第三侧面12213垂直地射出或射入。可以理解的是,在本申请的其他示例中,该照明端分光棱镜121的照明分光面1210和该成像端分光棱镜122的成像分光面1220之间可以是空气,也可以填充其他的光学介质,本申请对此不再赘述。
可选地,如图13所示,该偏振反射组件124可以包括相位延迟元件1241和曲面反射镜1242,该相位延迟元件1241被设置于该成像端分光棱镜122和该曲面反射镜1242之间的光路中。这样,经由该成像端分光棱镜122射出的第二偏振图像光先第一次穿过该相位延迟元件1241以传播至该曲面反射镜1242,再在被该曲面反射镜1242反射后第二次穿过该相位延迟元件1241,以被转换成第一偏振图像光而射入该成像端分光棱镜122。可以理解的是,本申请所提及的曲面反射镜1242在反射图像光的同时,还能够充当成像透镜以对图像光进行调制,有助于减少该偏转模组130所需的第二成像透镜组1232的数量。
可选地,如图13所示,第一成像透镜组1231被设置于该显示芯片113和该照明端分光棱镜121之间的光路中,用于调制从该照明端分光棱镜121射出的第一偏振照明光,并调制经由该显示芯片113 调制成的第二偏振图像光。换言之,本申请的第一成像透镜组1231为照明光路和成像光路共同复用的元件,便于进一步压缩光机的尺寸、体积。
可选地,如图13所示,该偏转模组130中的透射式偏转棱镜1320可以包括第一角度棱镜131及位于该第一角度棱镜131和该第二成像透镜组1232之间光路中的第二角度棱镜132,其中该第一角度棱镜131胶合于该第二角度棱镜132,并且该第一角度棱镜131的楔角γ不同于该第二角度棱镜132的楔角β,用于在一定范围内调整经由该第二成像透镜组1232调制的图像光的传播方向及角度大小。
可选地,如图13所示,该偏转模组130可以进一步包括偏振过滤元件133,该偏振过滤元件133被设置于该第二成像透镜组1232和该成像端分光棱镜122之间的光路中,用于过滤从该成像端分光棱镜122出射的第一偏振图像光,以消除该第一偏振图像光中的杂散光,有助于提高成像质量。可以理解的是,本申请所提及的该偏振过滤元件133可以但不限于被实施为与该第一偏振图像光的偏振态对应的吸收型线偏振片,以便更好地过滤杂散光。
在本申请的上述第一示例中,如图13所示,该照明模组111可以包括照明光源111A、准直元件112A以及匀光元件113A,成像组件12包括起偏元件114。该准直元件112A被设置于该照明光源111A和该匀光元件113A之间的光路中,用于准直经由该照明光源111A发射的照明光以传播至该匀光元件113A;该匀光元件113A被设置于该准直元件112A和该起偏元件114之间的光路中,用于对经由该准直元件112A准直的照明光进行匀光处理,以传播至该起偏元件114;该起偏元件114被设置于该匀光元件113A和该照明端分光棱镜121之间的光路中,用于将经由该匀光元件113A匀光的照明光转换成第一偏振照明光以传播至该照明端分光棱镜121。
可选地,该起偏元件114可以但不限于被实施为吸收型线偏振片,用于吸收第二偏振照明光,并透射第一偏振照明光。
可选地,如图13所示,当该照明模组111包括多个照明光源111A和多个准直元件112A时,本申请的该照明模组111还可以进一步包括合色元件115,该合色元件115被设置于多个准直元件112A和该匀光元件113A之间的光路中,用于先将被准直后的照明光进行合色,再传播至该匀光元件113A以进行匀光,以便实现彩色近眼显示。
可选地,如图13所示,该合色元件115可以包括第一直角棱镜1151、第二直角棱镜1152以及胶合于该第一直角棱镜1151的斜面和第二直角棱镜1152的斜面之间的合色楔形棱镜1153;该合色楔形棱镜1153的两侧面设有不同颜色的选择性透过膜,用于将不同颜色的多束照明光合成一束合色光。
可选地,如图13所示,该照明模组111可以进一步包括照明透镜116,该照明透镜116被设置于该匀光元件113A和该起偏元件114之间的光路中,用于整形经由该匀光元件113A匀光后的照明光束,以便匹配该显示芯片113。可以理解的是,本申请所提及的照明透镜116可以但不限于被实施为单片非球面透镜,也可以是菲涅尔透镜等二元光学器件,以尽量压缩光机体积。
值得注意的是,本申请的近眼显示光机10可以实现投射光线的偏转角度达到35°以上的设计需求,同时兼顾了对系统体积的压缩,使得光机的体积可以做到小于1cc(即1立方厘米),并能够在公差及成像性能锋方面均具有良好的表现,很好地满足了各类AR眼镜光学性能及外观ID的需求。
值得一提的是,附图14示出了根据本申请的近眼显示光机10的第二示例。相比于根据本申请的上述第一示例,根据本申请的第二示例的近眼显示光机10的不同之处在于:该照明模组111中的该合色元件115可以只包括该合色楔形棱镜1153,以便在实现合色功能的同时,减少该照明模组111的重量,进而减少光机的整体重量。
附图15示出了根据本申请的近眼显示光机10的第三示例。相比于根据本申请的上述第一示例,根据本申请的第三示例的近眼显示光机10的不同之处在于:该照明模组111中的该合色元件115被实施为十字二向色合色棱镜1154,仍能够实现所需的合色效果。
值得注意的是,附图16至附图18示出了根据本申请的近眼显示光机10的一个变形实施例,相比 于根据本申请的上述实施例,根据本申请的变形实施例的近眼显示光机10的不同之处在于:该照明模组111可以采用光棒组117来替换上述准直元件112A,用于全反射照明光以匀化并混合不同颜色的照明光。
示例性地,在本申请的上述变形实施例的第一示例中,如图16所示,该合色元件115被实施为与该光棒组117匹配的合色反射棱镜1155;该光棒组117包括一个第一光棒1171和一个第二光棒1172;该第一光棒1171被设置于多个该照明光源111A和该合色反射棱镜1155之间的光路中,用于匀化并混合经由多个该照明光源111A发出的照明光以传播至该合色反射棱镜1155而被反射;该第二光棒1172被设置于该合色反射棱镜1155和该匀光元件113A之间的光路中,用于进一步匀化并混合经由该合色反射棱镜1155反射的照明光以形成传播至该匀光元件113A的一束合色光。可以理解的是,在本申请的这一示例中,该合色反射棱镜1155可以被实施为全反射棱镜或镀有高反膜的直角棱镜,只要能够同时反射不同颜色的照明光即可,本申请对此不再赘述。
此外,在本申请的上述变形实施例的第二示例中,如图17所示,该合色元件115还可以被实施为与该光棒组117匹配的二向色直角棱镜1156;该光棒组117包括两个第一光棒1171和一个第二光棒1172;两个该第一光棒1171分别位于不同的照明光源111A和该二向色直角棱镜1156之间的光路中,并且该第二光棒1172位于该二向色直角棱镜1156和该匀光元件113A之间的光路中,也能够实现所需的照明合色效果。
值得注意的是,在本申请的上述变形实施例的第三示例中,如图18所示,该合色元件115被实施为上述十字二向色合色棱镜1154;该光棒组117可以包括三个第一光棒1171和一个第二光棒1172;三个该第一光棒1171分别对应地位于三个照明光源111A和该十字二向色合色棱镜1154之间的光路中,并且该第二光棒1172位于该十字二向色合色棱镜1154和该匀光元件113A之间的光路中,仍能够实现所需的照明合色效果,本申请对此不再赘述。
可以理解的是,本申请所提及的匀光元件113A可以但不限于被实施为扩散片或其他带有微结构的二元器件,只要能够实现匀光混光即可,本申请对此不再赘述。
此外,根据本申请的上述实施例,本申请的该波导器件20可以但不限于包括衍射光波导,以通过衍射的方式将光线耦入或耦出波导。可以理解的是,在本申请的其他示例中,该波导器件20还可以包括耦入棱镜等辅助结构,以将该近眼显示光机10投射的图像光束辅助耦入该衍射光波导,本申请对此不再赘述。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种近眼显示光机,用于投射图像光至波导器件以进行近眼显示,其特征在于,所述近眼显示光机包括:
    图像源组件;
    成像组件,所述成像组件被设置于所述图像源组件的发光侧,用于调制经由所述图像源组件发射的图像光以成像;以及
    偏转棱镜组,所述偏转棱镜组被可活动地设置于所述成像组件的成像侧,用于偏转经由所述成像组件调制的图像光,以调整该图像光的出射方向及角度而耦入该波导器件。
  2. 根据权利要求1所述的近眼显示光机,其中,所述偏转棱镜组具有平行于所述成像组件的出射方向的第一旋转轴线和垂直于所述第一旋转轴线的第二旋转轴线,当所述偏转棱镜组绕着所述第一旋转轴线转动时,所述偏转棱镜组用于偏转从所述成像组件出射的图像光以改变图像主光线的出射方向;当所述偏转棱镜组绕着所述第二旋转轴线转动时,所述偏转棱镜组用于偏转从所述成像组件出射的图像光以改变图像主光线的出射角度。
  3. 根据权利要求2所述的近眼显示光机,其中,所述偏转棱镜组的所述第一旋转轴线重合于所述成像组件的出射光轴。
  4. 根据权利要求1所述的近眼显示光机,其中,所述偏转棱镜组包括沿着所述成像组件的出射光轴依次布设的第一角度棱镜和第二角度棱镜,所述第一角度棱镜胶合于所述第二角度棱镜,并且所述第一角度棱镜的折射率不同于所述第二角度棱镜的折射率。
  5. 根据权利要求2所述的近眼显示光机,其中,所述图像源组件包括照明模组、中继组件以及显示芯片,所述中继组件位于所述照明模组和所述显示芯片之间的光路中,并且所述偏转棱镜组的所述第二旋转轴线平行于所述显示芯片的显示面。
  6. 根据权利要求1所述的近眼显示光机,其中,所述近眼显示光机进一步包括前置光阑,所述前置光阑被设置于所述偏转棱镜组的出光侧。
  7. 根据权利要求1所述的近眼显示光机,其中,所述图像源组件包括照明模组、中继组件以及LCoS芯片,所述中继组件位于所述照明模组和所述LCoS芯片之间的光路中;所述成像组件包括起偏元件、偏振分光棱镜、成像镜组和偏振反射组件,偏振反射组件包括相位延迟元件和曲面反射镜,所述起偏元件位于所述偏振分光棱镜和所述中继组件之间的光路中,所述曲面反射镜和所述LCoS芯片位于所述偏振分光棱镜的相对两侧,所述成像镜组位于所述LCoS芯片和所述偏转棱镜组之间的光路中,所述相位延迟元件位于所述偏振分光棱镜和所述曲面反射镜之间的光路中。
  8. 根据权利要求7所述的近眼显示光机,其中,所述成像镜组位于所述偏振分光棱镜和所述LCoS芯片之间的光路中,并且所述成像镜组的光轴与所述曲面反射镜的光轴共轴。
  9. 根据权利要求7所述的近眼显示光机,其中,所述成像镜组包括位于所述偏振分光棱镜和所述LCoS芯片之间光路中的第一成像透镜组和位于所述偏振分光棱镜和所述偏转棱镜组之间光路中的第二成像透镜组。
  10. 根据权利要求1所述的近眼显示光机,其中,所述图像源组件包括照明模组、中继组件以及DMD芯片,所述中继组件位于所述照明模组和所述DMD芯片之间的光路中;所述成像组件为TIR式光学元件组或RTIR式光学元件组。
  11. 根据权利要求1所述的近眼显示光机,其中,包括偏转模组,所述偏转模组包括所述偏转棱镜组,所述图像源组件包括照明模组和用于将第一偏振照明光调制成第二偏振图像光的显示芯片,所述照 明模组、所述成像组件以及所述偏转模组沿照明模组的光轴依次排布;
    所述成像组件包括照明端分光棱镜、成像端分光棱镜以及用于将该第二偏振图像光转换成第一偏振图像光的偏振反射组件;
    所述照明端分光棱镜位于所述照明模组和所述显示芯片之间的光路中,并且所述照明端分光棱镜具有相对于所述光轴倾斜布置的照明分光面,用于反射经由所述照明模组发射并经偏振后的第一偏振照明光以传播至所述显示芯片,并透射经由所述显示芯片调制成的第二偏振图像光以传播至所述成像端分光棱镜;
    所述成像端分光棱镜位于所述偏振反射组件和所述偏转模组之间的光路中,其中所述成像端分光棱镜具有面向所述照明分光面的成像分光面,并且所述成像分光面与所述光轴之间的夹角大于45°,用于透射经由所述照明分光面透射的第二偏振图像光以传播至所述偏振反射组件,并反射经由所述偏振反射组件转换成的第一偏振图像光以相对于所述光轴倾斜地传播至所述偏转模组。
  12. 根据权利要求11所述的近眼显示光机,其中,所述成像组件还包括成像镜组,所述成像镜组包括位于所述照明端分光棱镜和所述显示芯片之间光路中的第一成像透镜组和位于所述成像端分光棱镜和所述偏转棱镜组之间光路中的第二成像透镜组;
    所述第二成像透镜组于调制经由所述成像端分光棱镜出射的第一偏振图像光以成像;所述偏转棱镜组用于偏转经由所述第二成像透镜组调制的图像光。
  13. 根据权利要求12所述的近眼显示光机,其中,所述偏转模组进一步包括偏振过滤元件;所述偏振过滤元件被设置于所述第二成像透镜组和所述成像端分光棱镜之间的光路中。
  14. 根据权利要求11所述的近眼显示光机,其中,所述成像端分光棱镜为异形棱镜,其中所述异形棱镜具有面向所述照明分光面的第一侧面、面向所述偏振反射组件的第二侧面以及面向所述偏转模组的第三侧面;所述异形棱镜的所述第一侧面上设有分光膜以作为所述成像分光面;所述异形棱镜的所述第二侧面平行于所述光轴;所述异形棱镜的所述第三侧面相对倾斜于所述光轴。
  15. 根据权利要求14所述的近眼显示光机,其中,所述照明端分光棱镜的所述照明分光面和所述成像端分光棱镜的所述成像分光面之间填充光学介质。
  16. 根据权利要求14所述的近眼显示光机,其中,所述显示芯片为LCoS芯片;所述照明端分光棱镜为45°直角棱镜,并且所述45°直角棱镜的斜面上设有分光膜以作为所述照明分光面。
  17. 根据权利要求11所述的近眼显示光机,其中,所述照明模组包括照明光源、准直元件以及匀光元件;所述成像组件包括起偏元件;所述准直元件被设置于所述照明光源和所述匀光元件之间的光路中;所述匀光元件被设置于所述准直元件和所述起偏元件之间的光路中;所述起偏元件被设置于所述匀光元件和所述照明端分光棱镜之间的光路中;所述照明模组进一步包括合色元件和照明透镜;所述合色元件被设置于多个所述准直元件和所述匀光元件之间的光路中;所述照明透镜被设置于所述匀光元件和所述起偏元件之间的光路中;或
    所述照明模组包括多个照明光源、光棒组、合色元件以及匀光元件;所述成像组件包括起偏元件;所述光棒组被设置于多个所述照明光源和所述合色元件之间的光路中,用于全反射经由所述照明光源发射的照明光以匀化并混合不同颜色的照明光;所述匀光元件被设置于所述合色元件和所述起偏元件之间的光路中。
  18. 根据权利要求17所述的近眼显示光机,其中,所述合色元件为合色楔形棱镜、合色反射棱镜、二向色直角棱镜或十字二向色合色棱镜;或者,所述合色元件包括第一直角棱镜、第二直角棱镜以及胶合于所述第一直角棱镜的斜面和所述第二直角棱镜的斜面之间的合色楔形棱镜。
  19. 根据权利要求11所述的近眼显示光机,其中,所述近眼显示光机的投射偏转角大于等于35°;所述近眼显示光机的体积小于等于1cc。
  20. 一种近眼显示设备,其特征在于,包括:
    如权利要求1至19中任一所述的近眼显示光机;以及
    波导器件,所述波导器件被设置于所述近眼显示光机的投光侧,用于将经由所述近眼显示光机投射的图像光传输至人眼以成像。
PCT/CN2023/117461 2022-09-09 2023-09-07 近眼显示光机和近眼显示设备 WO2024051777A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211103194.9A CN117706777A (zh) 2022-09-09 2022-09-09 近眼显示光机、近眼显示设备以及近眼显示方法
CN202211103194.9 2022-09-09
CN202310608625.5 2023-05-26
CN202310608625 2023-05-26

Publications (1)

Publication Number Publication Date
WO2024051777A1 true WO2024051777A1 (zh) 2024-03-14

Family

ID=90192063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117461 WO2024051777A1 (zh) 2022-09-09 2023-09-07 近眼显示光机和近眼显示设备

Country Status (1)

Country Link
WO (1) WO2024051777A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562674A (zh) * 2020-05-20 2020-08-21 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN112180607A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
CN112180608A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 智能眼镜
CN112180606A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
CN216210248U (zh) * 2021-10-29 2022-04-05 舜宇光学(浙江)研究院有限公司 近眼显示设备
CN114690432A (zh) * 2022-06-02 2022-07-01 舜宇光学(浙江)研究院有限公司 偏置显示光机及其方法和近眼显示设备
CN114967160A (zh) * 2022-07-28 2022-08-30 歌尔光学科技有限公司 投影显示组件和增强现实显示设备
CN218158583U (zh) * 2022-09-09 2022-12-27 浙江舜为科技有限公司 近眼显示光机和近眼显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562674A (zh) * 2020-05-20 2020-08-21 Oppo广东移动通信有限公司 光学显示组件和智能穿戴设备
CN112180607A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
CN112180608A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 智能眼镜
CN112180606A (zh) * 2020-11-09 2021-01-05 Oppo广东移动通信有限公司 图像显示装置及可穿戴设备
CN216210248U (zh) * 2021-10-29 2022-04-05 舜宇光学(浙江)研究院有限公司 近眼显示设备
CN114690432A (zh) * 2022-06-02 2022-07-01 舜宇光学(浙江)研究院有限公司 偏置显示光机及其方法和近眼显示设备
CN114967160A (zh) * 2022-07-28 2022-08-30 歌尔光学科技有限公司 投影显示组件和增强现实显示设备
CN218158583U (zh) * 2022-09-09 2022-12-27 浙江舜为科技有限公司 近眼显示光机和近眼显示设备

Similar Documents

Publication Publication Date Title
US6310713B2 (en) Optical system for miniature personal displays using reflective light valves
US20050063196A1 (en) Light pipe based projection engine
CN214795441U (zh) 微型投影光引擎和穿戴式显示设备
WO2022028284A1 (zh) 中继合色器件、微型投影光引擎及其方法和电子设备
US20040001186A1 (en) Projection type image display apparatus
WO2019107044A1 (ja) 虚像投射装置
CN218158583U (zh) 近眼显示光机和近眼显示设备
WO2024051777A1 (zh) 近眼显示光机和近眼显示设备
CN219016710U (zh) 微型光引擎及近眼显示设备
CN116540484A (zh) 投影显示模组以及可穿戴设备
CN114967311B (zh) 一种投影系统以及电子设备
CN113126299B (zh) 一种投影光机和头戴式智能设备
WO2019024090A1 (zh) 光学成像系统和头戴设备
CN219625819U (zh) 斜投式显示光机和近眼显示眼镜
CN117706777A (zh) 近眼显示光机、近眼显示设备以及近眼显示方法
JP2001264680A (ja) 画像表示装置
JPH11212026A (ja) プロジェクタ用光源ユニット
WO2023207954A1 (zh) 微型投射模组及头戴显示设备
CN216387590U (zh) 微投影光引擎和近眼显示设备
CN116755255B (zh) 投影显示系统以及投影设备
CN218848468U (zh) 光机系统和近眼显示设备
CN115793370A (zh) 一种投影光机及ar眼镜
CN116880069A (zh) 投影光学系统以及投影设备
WO2020143371A1 (zh) 准直合色系统、照明系统以及微型投影光引擎
JPH10307277A (ja) 投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862471

Country of ref document: EP

Kind code of ref document: A1