WO2024051431A1 - 电力设备温度测量方法、装置、存储介质及计算机设备 - Google Patents

电力设备温度测量方法、装置、存储介质及计算机设备 Download PDF

Info

Publication number
WO2024051431A1
WO2024051431A1 PCT/CN2023/111944 CN2023111944W WO2024051431A1 WO 2024051431 A1 WO2024051431 A1 WO 2024051431A1 CN 2023111944 W CN2023111944 W CN 2023111944W WO 2024051431 A1 WO2024051431 A1 WO 2024051431A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
infrared
image
information
temperature measurement
Prior art date
Application number
PCT/CN2023/111944
Other languages
English (en)
French (fr)
Inventor
张娜
杨罡
胡帆
王大伟
俞华
李晓倩
张渊
Original Assignee
国网山西省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网山西省电力公司电力科学研究院 filed Critical 国网山西省电力公司电力科学研究院
Publication of WO2024051431A1 publication Critical patent/WO2024051431A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • This application relates to the technical field of power equipment monitoring, for example, to power equipment temperature measurement methods, devices, storage media and computer equipment for conductors and insulators without active heat dissipation capabilities, such as cables and reactors.
  • Temperature detection of power equipment is an important part of power equipment detection.
  • a handheld infrared imager is used as a collection device to detect the temperature of power equipment.
  • the imaging is mainly two-dimensional images. Due to the complex environmental background of power equipment, multiple devices in the imaging are interlaced and blocked. Temperature identification through two-dimensional images will affect the power supply. Infrared temperature measurement effect on the surface of the device.
  • This application provides a method, device, storage medium and computer equipment for measuring the temperature of electric equipment, which helps to improve the accuracy of measuring the temperature of electric equipment.
  • a method for measuring temperature of power equipment including:
  • an infrared binocular camera to capture infrared images of power equipment, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain temperature measurement information
  • Identify the target device image in the target image and output the target device temperature information according to the temperature measurement information.
  • the method also includes:
  • a three-dimensional isotherm map is drawn.
  • cutting the infrared image according to the depth information to obtain a target image within a preset depth range includes:
  • Identify connected object images within the connected object recognition range and cut the infrared image according to the connected object image and the depth information to obtain a target image including the connected object image and a preset depth range image.
  • the method further includes:
  • the temperature normally connected objects are removed from the target image.
  • identifying the target device image within the target image and outputting target device temperature information according to the temperature measurement information includes:
  • the temperature measurement information identify the temperature abnormal area in the infrared image, wherein the temperature measurement temperature of the temperature abnormal area is outside the preset normal temperature interval;
  • the target device temperature information is output.
  • the output target device temperature information includes:
  • infrared diagnosis abnormal text description information includes target device information, target device location information, the target device temperature information, the historical temperature information, and the temperature change trend.
  • the method before taking the infrared image of the power equipment through an infrared binocular camera, the method further includes:
  • the infrared dual target fixed plate is arranged at multiple different positions, and the infrared dual target fixed plate is photographed by an infrared binocular camera to obtain multiple corresponding calibration images at different positions, and the infrared dual target fixed plate is
  • the preset temperature measurement points on the board are subjected to infrared temperature measurement and temperature measurement with a thermometer gun to obtain the infrared temperature measurement temperature and the temperature measurement gun temperature of the preset temperature measurement point;
  • a power equipment temperature measurement device includes:
  • An infrared binocular camera is set to capture infrared images of power equipment and conduct infrared temperature measurement of the area within the field of view to obtain temperature measurement information;
  • a distance calculation module configured to perform triangulation calculation on the infrared image to determine depth information corresponding to the infrared image
  • An image segmentation module configured to cut the infrared image according to the depth information to obtain a target image within a preset depth range
  • a target recognition module configured to recognize the target device image within the target image
  • the image understanding module is configured to output the temperature information of the target device based on the temperature measurement information.
  • the device further includes: a distance correction module configured to capture infrared images of the power equipment through an infrared binocular camera, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain After measuring the temperature information, determine the depth corresponding to the temperature measurement information, and correct the temperature measurement information according to the infrared temperature measurement distance correction coefficient table to obtain the target temperature information, wherein the infrared temperature measurement distance correction coefficient table includes Distance correction coefficients corresponding to different depths;
  • a three-dimensional isotherm map is drawn.
  • the image segmentation module is configured to determine the connected object recognition range corresponding to the preset depth range based on the preset connected object recognition distance;
  • Identify connected object images within the connected object recognition range and cut the infrared image according to the connected object image and the depth information to obtain a target image including the connected object image and a preset depth range image.
  • the target recognition module is also configured to:
  • the infrared image is cut according to the connected object image and the depth information, and after obtaining the target image including the connected object image and the preset depth range image, the connected object is identified based on the temperature measurement information.
  • the temperature-normally connected object in the object image wherein the measured temperature of the temperature-normally connected object is within a preset normal temperature interval;
  • the temperature normally connected objects are removed from the target image.
  • the target recognition module is configured to perform target device image recognition through the left-eye infrared view or the right-eye infrared view of the target image;
  • the temperature measurement information identify the temperature abnormal area in the infrared image, wherein the temperature measurement temperature of the temperature abnormal area is outside the preset normal temperature interval;
  • the target device temperature information is output.
  • the image understanding module is set to:
  • infrared diagnosis abnormal text description information includes target device information, target device location information, the target device temperature information, the historical temperature information, and the temperature change trend.
  • the device further includes: a radiation rate adjustment module, configured to use power equipment materials to make an infrared dual target fixing plate before taking an infrared image of the electric power equipment through an infrared binocular camera, and to fix the infrared dual target.
  • the plate is heated;
  • the infrared dual target fixed plate is arranged at multiple different positions, and the infrared dual target fixed plate is photographed by an infrared binocular camera to obtain multiple corresponding calibration images at different positions, and the infrared dual target fixed plate is
  • the preset temperature measurement points on the board are subjected to infrared temperature measurement and temperature measurement with a thermometer gun to obtain the infrared temperature measurement temperature and the temperature measurement gun temperature of the preset temperature measurement point;
  • a storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the above method for measuring the temperature of electrical equipment is implemented.
  • a computer device including a storage medium, a processor, and a computer program stored on the storage medium and executable on the processor.
  • the processor executes the computer program, the above-mentioned power is realized.
  • Equipment temperature measurement methods are provided.
  • Figure 1 shows a schematic flow chart of a power equipment temperature measurement method provided by an embodiment of the present application
  • Figure 2 shows a schematic flow chart of another power equipment temperature measurement method provided by an embodiment of the present application
  • Figure 3 shows a schematic diagram of the arrangement of an infrared dual target fixed plate provided by an embodiment of the present application
  • Figure 4 shows a schematic flow chart of a power equipment temperature measurement method provided by an embodiment of the present application
  • Figure 5 shows a schematic structural diagram of a power equipment temperature measurement device provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • a method for measuring temperature of power equipment includes the following steps.
  • Step 101 Take an infrared image of the power equipment through an infrared binocular camera, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain temperature measurement information.
  • Step 102 Perform triangulation on the infrared image to determine depth information corresponding to the infrared image.
  • Step 103 Cut the infrared image according to the depth information to obtain a target image within a preset depth range.
  • Step 104 Identify the target device image in the target image, and output the temperature information of the target device according to the temperature measurement information.
  • Embodiments of the present application can be applied to power equipment that adopts natural heat dissipation, such as cables, reactors, and other power equipment that do not use conductors and insulators that require forced heat dissipation.
  • an infrared binocular camera is used to capture infrared images of power equipment, and infrared temperature measurement is performed within the field of view of the infrared binocular camera to obtain temperature measurement information within the range.
  • the infrared temperature measurement information obtained for the range is obtained based on the principle of triangular temperature measurement
  • the image is solved to determine the depth information corresponding to the infrared image within the range, the infrared image is cut according to the depth information, and the target image within the preset depth range is obtained, the target device image in the target image is identified, and the type of the target device is determined. , such as "reactor", outputs the temperature information of the target device based on the temperature measurement information corresponding to the target device.
  • the image depth information is obtained by performing triangulation on the infrared image, and the target image within the preset depth range is segmented in the infrared image, thereby reducing the influence of the background on temperature judgment and improving Improve the accuracy of temperature detection of power equipment.
  • the embodiments of the present application are helpful for the detection personnel to operate and improve the accuracy of temperature detection of power equipment.
  • Step 201 Use power equipment materials to make an infrared dual-target fixed plate, and heat the infrared dual-target fixed plate.
  • Step 202 Set the infrared dual target fixed plate at multiple different positions, photograph the infrared dual target fixed plate through an infrared binocular camera to obtain multiple corresponding calibration images at different positions, and compare the infrared dual target fixed plate with the infrared dual target fixed plate.
  • the preset temperature measurement points on the dual-target fixed plate are measured by infrared temperature measurement and the temperature measurement gun, and the infrared temperature measurement temperature and the temperature measurement gun temperature of the preset temperature measurement point are obtained.
  • Step 203 Perform parameter calibration on the infrared binocular camera based on the calibration image.
  • Step 204 Calculate the temperature difference between the infrared temperature measurement temperature and the temperature measurement temperature of the temperature measurement gun, and adjust the temperature measurement radiation rate of the infrared binocular camera based on the temperature difference.
  • Step 205 Use an infrared binocular camera to capture infrared images of the power equipment, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain temperature measurement information.
  • the infrared dual target fixed plate is made of materials commonly used in power equipment.
  • the shape of the infrared dual target fixed plate includes: square or circular checkerboard.
  • the infrared dual target fixed plate is mounted on a track-type bracket. It can achieve 3 degrees of freedom rotation.
  • the infrared binocular camera, interactive panel and visualization screen are fixed on the operating platform. It can also achieve 3 degrees of freedom rotation.
  • Common materials for infrared dual target fixing plates include: stainless steel, carbon steel, Silicone rubber, ceramics, etc., and are coated according to the coating of electrical equipment, so that after using the calibration plate to determine the parameters and temperature measurement radiation rate of the infrared binocular camera, the infrared binocular camera can more accurately capture infrared images and conduct Infrared temperature measurement.
  • Image as shown in Figure 4, perform infrared temperature measurement and temperature measurement with a thermometer gun on the preset temperature measurement point on the infrared dual target fixed plate, and obtain the infrared temperature measurement temperature and the temperature measurement gun temperature of the preset temperature measurement point. , perform parameter calibration of the infrared binocular camera based on the calibration image, and then calculate the temperature difference between the infrared temperature measurement temperature and the temperature measurement temperature measured by the temperature measuring gun. Based on the temperature difference, adjust the temperature measurement radiation rate of the infrared binocular camera, and measure the temperature. The initial value of the radiation rate is 0.9, and is adjusted in steps of 0.02.
  • Step 206 Perform triangulation on the infrared image to determine depth information corresponding to the infrared image.
  • Step 207 Determine the connected object recognition range corresponding to the preset depth range based on the preset connected object recognition distance.
  • the preset connected object recognition distance refers to a small adjustment of the depth range based on the connectivity of the recognized object/target within the preset depth distance range, so that the recognized object/target is retained as completely as possible in the image after cutting. middle.
  • Step 208 Identify the connected object images within the connected object recognition range, cut the infrared image according to the connected object images and the depth information, and obtain the connected object images and the preset depth range images. target image.
  • an infrared binocular camera to capture infrared images of power equipment, perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain temperature measurement information, perform triangulation on the infrared image, and determine the location information corresponding to the infrared image, including Depth information, height information, and length information; capture infrared images of power equipment through infrared binocular cameras, and perform infrared temperature measurement within the field of view of the infrared binocular cameras to obtain temperature measurement information within the range.
  • triangular temperature measurement Solve the infrared images obtained in this range to determine the depth information corresponding to the infrared images in this range.
  • the connected object recognition range corresponding to the preset depth range Based on the preset recognition distance of connected objects, determine the connected object recognition range corresponding to the preset depth range. Assume that the preset depth range is 6m. , traverse with a step length of 1m, identify connected object images within 6m of the connected object, and cut the infrared image based on the connected object image and depth information to obtain a target image containing connected object images and preset depth range images. If 6m When connected objects exist, they should also be retained in the target image. When identifying connected objects, when the recognition depth value exceeds the threshold of the preset depth range, the images beyond the range will be removed from the target image.
  • Step 209 Based on the temperature measurement information, identify the temperature-normal connected objects in the connected object image, wherein the temperature-measured temperature of the temperature-normal connected objects is within a preset normal temperature interval.
  • Step 210 Remove the temperature-normal connected objects from the target image.
  • the temperature-normal connected objects in the connected object image are identified, where the measured temperature of the temperature-normal connected objects is within the preset normal temperature range; the temperature-normal connected objects are removed from the target image to facilitate target recognition. enter.
  • Step 211 Perform target device image recognition through the left-eye infrared view or right-eye infrared view of the target image.
  • Step 212 Identify the temperature abnormality area in the infrared image based on the temperature measurement information, where the temperature measurement temperature of the temperature abnormality area is outside the preset normal temperature range.
  • Step 213 If the temperature abnormal area exists in the target device image, output the target device temperature information.
  • the temperature abnormal area is the depth, height, and length information of the abnormal location. Or the location of the isotherm.
  • the embodiments of this application adjust the different emissivities accordingly to match the optimal temperature measurement emissivity when different materials have different emissivities, and reduce the influence of the background on temperature detection through depth information, thereby improving the efficiency of power equipment. Accuracy of temperature detection.
  • step 205 it also includes: determining the depth corresponding to the temperature measurement information, and correcting the temperature measurement information according to the infrared temperature measurement distance correction coefficient table to obtain the target temperature information, that is, abnormal temperature information.
  • the abnormal temperature information includes abnormal temperature values, abnormal temperature The value is the temperature value after temperature measurement and distance correction or the highest value in the temperature area.
  • the infrared temperature measurement distance correction coefficient table includes distance correction coefficients corresponding to different depths; based on the target temperature information and the depth corresponding to the target temperature information, a three-dimensional drawing is The isotherm map displays the target temperature information and corresponding depth more intuitively.
  • the target device temperature information is output through the visual screen, including: reading the historical temperature information of the target device.
  • the historical temperature information is the last measured temperature value or the highest value in the temperature area, and determining the target based on the target device temperature information and historical temperature information.
  • the temperature change trend of the equipment, the change trend is increasing, approaching, and decreasing, and the threshold of the temperature change trend is 0.5 degrees Celsius; generate and display infrared diagnosis abnormal text description information, where the infrared diagnosis abnormal text description information includes target device information, target Device location information, target device temperature information, historical temperature information and temperature change trends are stored in the text format: target device - target device location - target device temperature - historical temperature - temperature change trend, which facilitates direct text comparison by inspectors.
  • an embodiment of the present application provides a power equipment temperature measurement device. As shown in Figure 5, the device includes the following modules.
  • the infrared binocular camera 310 is configured to capture infrared images of power equipment, and perform infrared temperature measurement on the area within the field of view to obtain temperature measurement information;
  • the distance calculation module 320 is configured to perform triangulation calculation on the infrared image and determine the depth information corresponding to the infrared image;
  • the image segmentation module 330 is configured to cut the infrared image according to the depth information to obtain a target image within a preset depth range;
  • the target identification module 340 is configured to identify the target device image within the target image
  • the image understanding module 350 is configured to output target device temperature information based on the temperature measurement information.
  • the device further includes: a distance correction module configured to capture the infrared image of the power equipment through the infrared binocular camera, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain the measurement.
  • a distance correction module configured to capture the infrared image of the power equipment through the infrared binocular camera, and perform infrared temperature measurement on the area within the field of view of the infrared binocular camera to obtain the measurement.
  • the depth corresponding to the temperature measurement information is determined, and the temperature measurement information is corrected according to the infrared temperature measurement distance correction coefficient table to obtain the target temperature information, wherein the infrared temperature measurement distance correction coefficient table includes different The distance correction coefficient corresponding to the depth;
  • a three-dimensional isotherm map is drawn.
  • the image segmentation module 330 is further configured to determine the connected object recognition range corresponding to the preset depth range based on the preset connected object recognition distance;
  • Identify connected object images within the connected object recognition range and cut the infrared image according to the connected object image and the depth information to obtain a target image including the connected object image and a preset depth range image.
  • the target recognition module 340 is also configured to:
  • the infrared image is cut according to the connected object image and the depth information, and after obtaining the target image including the connected object image and the preset depth range image, the connected object is identified based on the temperature measurement information.
  • the temperature-normally connected object in the object image wherein the measured temperature of the temperature-normally connected object is within a preset normal temperature interval;
  • the temperature normally connected objects are removed from the target image.
  • the target recognition module 340 is also configured to perform target device image recognition through the left-eye infrared view or the right-eye infrared view of the target image;
  • the temperature measurement information identify the temperature abnormal area in the infrared image, wherein the temperature measurement temperature of the temperature abnormal area is outside the preset normal temperature interval;
  • the image understanding module 350 is also configured to output target device temperature information if the temperature abnormal area exists in the target device image.
  • the image understanding module 350 is also configured to:
  • infrared diagnosis abnormal text description information includes target device information, target device location information, the target device temperature information, the historical temperature information, and the temperature change trend.
  • the device further includes: a radiation rate adjustment module, configured to:
  • the infrared dual target fixed plate is arranged at multiple different positions, and the infrared dual target fixed plate is photographed by an infrared binocular camera to obtain multiple corresponding calibration images at different positions, and the infrared dual target fixed plate is Perform infrared temperature measurement and temperature measurement with a thermometer gun at the preset temperature measurement point, and obtain the infrared temperature measurement temperature and the temperature measurement temperature with the temperature measurement gun at the preset temperature measurement point;
  • embodiments of the present application also provide a storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the above-mentioned Figures 1 to 4 are implemented. Method of measuring temperature of electrical equipment shown.
  • the technical solution of this application can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a Compact Disc Read Only Memory (CD-ROM) ), Universal Serial Bus flash disk (Universal Serial Bus flash disk, U disk, mobile hard disk, etc.), including multiple instructions to cause a computer device (which can be a personal computer, server, or network device, etc.) to execute Methods described in multiple implementation scenarios of this application.
  • the storage medium may be a non-transitory storage medium.
  • an embodiment of the present application also provides a computer device, which can be, for example, Personal computers, servers, network equipment, etc.
  • the computer equipment includes a storage medium 410 and a processor 420; the storage medium 410 is configured to store a computer program; the processor 420 is configured to execute the computer program to implement the above as shown in Figures 1 to 4
  • the computer device may also include a user interface, a network interface, a camera, a radio frequency (Radio Frequency, RF) circuit, a sensor, an audio circuit, a wireless fidelity (Wireless Fidelity, WI-FI) module, and the like.
  • the user interface may include a display screen (Display), an input unit such as a keyboard (Keyboard), etc.
  • the user interface may also include a Universal Serial Bus (Universal Serial Bus, USB) interface, a card reader interface, etc.
  • Network interfaces may include standard wired interfaces, wireless interfaces (such as Bluetooth interfaces, WI-FI interfaces), etc.
  • the structure of a computer device does not limit the computer device. It may include more or less components, or combine some components, or arrange different components.
  • the storage medium may also include an operating system and a network communication module.
  • An operating system is a program that manages and saves the hardware and software resources of a computer device and supports the operation of information processing programs and other software and/or programs.
  • the network communication module is configured to implement communication between multiple components within the storage medium, as well as communication with other hardware and software in the physical device.
  • the embodiment of the present application obtains image depth information by triangulating the infrared image, and segments the target image within the preset depth range in the infrared image, reducing the impact of the background on temperature judgment, and improving the temperature of the power equipment. Detection accuracy.
  • the accompanying drawing is only a schematic diagram of an implementation scenario, and the modules or processes in the accompanying drawing are not necessarily necessary for implementing the present application.
  • the modules in the device in the implementation scenario may be distributed in the device in the implementation scenario according to the description of the implementation scenario, or may be correspondingly changed and located in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios can be combined into one module or split into multiple sub-modules.

Abstract

一种电力设备温度测量方法、装置、存储介质及计算机设备,该方法包括:通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温获得测温信息(S101);对所述红外图像进行三角测量解算,确定所述红外图像对应的深度信息(S102);根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像(S103);识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息(S104)。

Description

电力设备温度测量方法、装置、存储介质及计算机设备
本申请要求在2022年09月09日提交中国专利局、申请号为202211098661.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力设备监测技术领域,例如涉及到不具有主动散热能力的导体和绝缘体的电力设备,例如电缆以及电抗器等的电力设备温度测量方法、装置、存储介质及计算机设备。
背景技术
电力设备的温度检测是电力设备检测中的重要环节。以手持的红外成像仪为采集装置对电力设备进行温度检测,成像以二维图像为主,由于电力设备环境背景复杂,成像中多个设备相互交错遮挡,通过二维图像进行温度识别会影响电力设备表面的红外测温效果。
发明内容
本申请提供了一种电力设备温度测量方法、装置、存储介质及计算机设备,有助于提高测量电力设备的温度的准确度。
根据本申请的一个方面,提供了一种电力设备温度测量方法,所述方法包括:
通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温以获得测温信息;
对所述红外图像进行三角测量解算,以确定所述红外图像对应的深度信息;
根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像;
识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息。
可选地,所述方法还包括:
确定所述测温信息对应的深度,并根据红外测温距离修正系数表对所述测温信息进行修正,获得目标温度信息,其中,所述红外测温距离修正系数表包括不同深度对应的距离修正系数;
根据所述目标温度信息以及所述目标温度信息对应的深度,绘制立体等温线图。
可选地,所述根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像,包括:
依据预设连通对象识别距离,确定所述预设深度范围对应的连通对象识别范围;
识别所述连通对象识别范围内的连通对象图像,并依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像。
可选地,在所述依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像之后,所述方法还包括:
基于所述测温信息,识别所述连通对象图像中的温度正常连通对象,其中,所述温度正常连通对象的测温温度在预设正常温度区间内;
将所述温度正常连通对象从所述目标图像中去除。
可选地,所述识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息,包括:
通过所述目标图像的左目红外视图或右目红外视图进行目标设备图像识别;
根据所述测温信息,识别所述红外图像中的温度异常区域,其中,所述温度异常区域的测温温度在预设正常温度区间之外;
若所述目标设备图像中存在所述温度异常区域,则输出目标设备温度信息。
可选地,所述输出目标设备温度信息,包括:
读取目标设备的历史温度信息,并根据所述目标设备温度信息以及所述历史温度信息,确定所述目标设备的温度变化趋势;
生成并显示红外诊断异常文本描述信息,其中,所述红外诊断异常文本描述信息包括目标设备信息、目标设备位置信息、所述目标设备温度信息、所述历史温度信息以及所述温度变化趋势。
可选地,在所述通过红外双目摄像头拍摄电力设备的红外图像之前,所述方法还包括:
采用电力设备材料制作红外双目标定板,并对所述红外双目标定板进行加热;
将所述红外双目标定板设置在多个不同位置处,分别通过红外双目摄像头拍摄所述红外双目标定板以获得不同位置处对应的多张标定图像,并对所述红外双目标定板上的预设测温点进行红外测温和测温枪测温,以获得所述预设测温点的红外测温温度和测温枪测温温度;
基于所述多张标定图像对所述红外双目摄像头进行参数标定;
计算所述红外测温温度和所述测温枪测温温度之间的温度差值,依据所述温度差值,调整所述红外双目摄像头的测温辐射率。
根据本申请的另一方面,提供了一种电力设备温度测量装置,所述装置包括:
红外双目摄像头,设置为拍摄电力设备的红外图像,并对视野范围内的区域进行红外测温以获得测温信息;
距离解算模块,设置为对所述红外图像进行三角测量解算,以确定所述红外图像对应的深度信息;
图像分割模块,设置为根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像;
目标识别模块,设置为识别所述目标图像内的目标设备图像;
图像理解模块,设置为根据所述测温信息,输出目标设备温度信息。
可选地,所述装置还包括:距离修正模块,设置为在所述通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温以获得测温信息之后,确定所述测温信息对应的深度,并根据红外测温距离修正系数表对所述测温信息进行修正,获得目标温度信息,其中,所述红外测温距离修正系数表包括不同深度对应的距离修正系数;
根据所述目标温度信息以及所述目标温度信息对应的深度,绘制立体等温线图。
可选地,所述图像分割模块,是设置为依据预设连通对象识别距离,确定所述预设深度范围对应的连通对象识别范围;
识别所述连通对象识别范围内的连通对象图像,并依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像。
可选地,所述目标识别模块,还设置为:
所述依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像之后,基于所述测温信息,识别所述连通对象图像中的温度正常连通对象,其中,所述温度正常连通对象的测温温度在预设正常温度区间内;
将所述温度正常连通对象从所述目标图像中去除。
可选地,所述目标识别模块,是设置为通过所述目标图像的左目红外视图或右目红外视图进行目标设备图像识别;
根据所述测温信息,识别所述红外图像中的温度异常区域,其中,所述温度异常区域的测温温度在预设正常温度区间之外;
若所述目标设备图像中存在所述温度异常区域,则输出目标设备温度信息。
可选地,所述图像理解模块,是设置为:
读取目标设备的历史温度信息,并根据所述目标设备温度信息以及所述历史温度信息,确定所述目标设备的温度变化趋势;
生成并显示红外诊断异常文本描述信息,其中,所述红外诊断异常文本描述信息包括目标设备信息、目标设备位置信息、所述目标设备温度信息、所述历史温度信息以及所述温度变化趋势。
可选地,所述装置还包括:辐射率调整模块,设置为在通过红外双目摄像头拍摄电力设备的红外图像之前,采用电力设备材料制作红外双目标定板,并对所述红外双目标定板进行加热;
将所述红外双目标定板设置在多个不同位置处,分别通过红外双目摄像头拍摄所述红外双目标定板以获得不同位置处对应的多张标定图像,并对所述红外双目标定板上的预设测温点进行红外测温和测温枪测温,以获得所述预设测温点的红外测温温度和测温枪测温温度;
基于所述多张标定图像对所述红外双目摄像头进行参数标定;
计算所述红外测温温度和所述测温枪测温温度之间的温度差值,依据所述温度差值,调整所述红外双目摄像头的测温辐射率。
依据本申请又一个方面,提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述电力设备温度测量方法。
依据本申请再一个方面,提供了一种计算机设备,包括存储介质、处理器及存储在存储介质上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述电力设备温度测量方法。
附图说明
图1示出了本申请实施例提供的一种电力设备温度测量方法的流程示意图;
图2示出了本申请实施例提供的另一种电力设备温度测量方法的流程示意图;
图3示出了本申请实施例提供的一种红外双目标定板的设置示意图;
图4示出了本申请实施例提供的一种电力设备温度测量方法的流程示意图;
图5示出了本申请实施例提供的一种电力设备温度测量装置的结构示意图;
图6示出了本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
下文中将参考附图并结合实施例来说明本申请。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种电力设备温度测量方法,如图1所示,该方法包括以下步骤。
步骤101,通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温以获得测温信息。
步骤102,对所述红外图像进行三角测量解算,以确定所述红外图像对应的深度信息。
步骤103,根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像。
步骤104,识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息。
本申请实施例可以应用于电力设备中采取自然散热的设备,例如电缆、电抗器、以及其他不采取强迫散热的导体和绝缘体的电力设备。
本申请实施例可以应用于多种电力设备检测中,用于检测电力设备的表面温度。本申请实施例通过红外双目摄像头拍摄电力设备的红外图像,并对红外双目摄像头视野范围内进行红外测温,获得该范围内的温度测量信息,根据三角测温原理对该范围获得的红外图像进行解算,确定该范围内红外图像对应的深度信息,根据深度信息对红外图像进行切割,并获得预设深度范围内的目标图像,识别目标图像中的目标设备图像,确定目标设备的种类,如“电抗器”,根据目标设备对应的测温信息,输出目标设备的温度信息。
通过应用本实施例的技术方案,通过对红外图像进行三角测量解算获得图像深度信息,并在红外图像中分割出预设深度范围内的目标图像,减小了背景对温度判断的影响,提高了对电力设备进行温度检测的准确性。
本申请实施例相比于通过手持检测装置与通过二维图像对温度进行检测的方式,有助于检测人员操作,提高了对电力设备温度检测的准确性。
作为上述实施方式的细化和扩展,为了说明本实施例的实施过程,提供了另一种电力设备温度测量方法,如图2所示,该方法包括以下步骤。
步骤201,采用电力设备材料制作红外双目标定板,对所述红外双目标定板进行加热。
步骤202,将所述红外双目标定板设置在多个不同位置处,分别通过红外双目摄像头拍摄所述红外双目标定板以获得不同位置处对应的多张标定图像,并对所述红外双目标定板上的预设测温点进行红外测温和测温枪测温,获得所述预设测温点的红外测温温度和测温枪测温温度。
步骤203,基于所述标定图像对所述红外双目摄像头进行参数标定。
步骤204,计算所述红外测温温度和所述测温枪测温温度的温度差值,依据所述温度差值,调整所述红外双目摄像头的测温辐射率。
步骤205,通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温获得测温信息。
本申请实施例中,采用电力设备常用材料制作红外双目标定板,如图3所示,红外双目标定板的形状包括:方形或者圆形棋盘格,红外双目标定板架在轨道式支架上,可以实现3个自由度旋转,红外双目摄像头、交互面板和可视化屏幕固定在操作平台上,同样可以实现3个自由度旋转,红外双目标定板的常用材料包括:不锈钢、碳钢、硅橡胶、以及陶瓷等,并根据电力设备涂层进行涂制,以便在利用该标定板确定红外双目摄像头的参数和测温辐射率后,红外双目摄像头能够更准确的拍摄红外图像以及进行红外测温。在开始标定前对红外双目标定板进行均匀加热;将红外双目标定板设置在多个不同位置处,分别通过红外双目摄像头拍摄红外双目标定板以获得不同位置处对应的多张标定图像,如图4所示,对红外双目标定板上的预设测温点进行红外测温和测温枪测温,获得预设测温点的红外测温温度和测温枪测温温度,根据标定图像对红外双目摄像头进行参数标定,接下来计算红外测温温度和测温枪测温温度的温度差值,依据温度差值,调整红外双目摄像头的测温辐射率,测温辐射率的初始值采用0.9,并以0.02的步长进行调整,当同方向调整差值连续5次出现增大时,进行反方向的调整,同时计算差值,在差值最小时为最优的测温辐射率; 特定点可以在标定前提前指定,如使用角点或者标定板格的中心点,数量选取10个以上。
步骤206,对所述红外图像进行三角测量解算,确定所述红外图像对应的深度信息。
步骤207,依据预设连通对象识别距离,确定所述预设深度范围对应的连通对象识别范围。其中,预设连通对象识别距离,是指在预设深度距离范围内,依据识别对象/目标的连通情况进行深度范围的小幅度调整,使得识别对象/目标尽可能完整的保留在切割后的图像中。
步骤208,识别所述连通对象识别范围内的连通对象图像,并依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像。
通过红外双目摄像头拍摄电力设备的红外图像,并对红外双目摄像头视野范围内的区域进行红外测温获得测温信息,对红外图像进行三角测量解算,确定红外图像对应的位置信息,包括深度信息、高度信息、以及长度信息;通过红外双目摄像头拍摄电力设备的红外图像,并对红外双目摄像头视野范围内进行红外测温,获得该范围内的温度测量信息,根据三角测温原理对该范围获得的红外图像进行解算,确定该范围内红外图像对应的深度信息,依据预设连通对象的识别距离,确定预设深度范围对应的连通对象识别范围,假设预设深度范围为6m,以1m为步长进行遍历,识别连通对象6m内的连通对象图像,并依据连通对象图像以及深度信息对红外图像进行切割,获得包含连通对象图像以及预设深度范围图像的目标图像,如果6m处存在连通时也要在目标图像中进行保留,在识别连通对象时,当识别深度值超出预设深度范围的阈值时,则将超出范围的图像从目标图像中去除。
步骤209,基于所述测温信息,识别所述连通对象图像中的温度正常连通对象,其中,所述温度正常连通对象的测温温度在预设正常温度区间内。
步骤210,将所述温度正常连通对象从所述目标图像中去除。
基于测温信息,识别连通对象图像中的温度正常连通对象,其中,温度正常连通对象的测温温度在预设正常温度区间内;将温度正常连通对象从目标图像中去除,方便为目标识别提供输入。
步骤211,通过所述目标图像的左目红外视图或右目红外视图进行目标设备图像识别。
步骤212,根据所述测温信息,识别所述红外图像中的温度异常区域,其中,所述温度异常区域的测温温度在预设正常温度区间之外。
步骤213,若所述目标设备图像中存在所述温度异常区域,则输出目标设备温度信息。
通过目标图像的左目红外视图或右目红外视图进行目标设备图像识别,确定识别中只使用一侧的视图;根据测温信息,识别红外图像中的温度异常区域,其中,温度异常区域的测温温度在预设正常温度区间之外,温度异常包括温度过高或温度过低;若目标设备图像中存在温度异常区域,则输出目标设备温度信息,温度异常区域为异常位置所在深度、高度、长度信息或者所在等温线位置。本申请实施例通过针对在不同材质不同辐射率时,对不同辐射率进行相应调整,匹配最优的测温辐射率,并且通过深度信息减小了背景对温度检测的影响,提高了对电力设备进行温度检测的准确性。
在步骤205之后还包括:确定测温信息对应的深度,并根据红外测温距离修正系数表对测温信息进行修正,获得目标温度信息即异常温度信息,异常温度信息包括异常温度值,异常温度值为测温并进行距离修正后的温度值或者温度区域最高值,其中,红外测温距离修正系数表包括不同深度对应的距离修正系数;根据目标温度信息以及目标温度信息对应的深度,绘制立体等温线图,将目标温度信息与对应的深度更加直观的表现出来。
另外,通过可视化屏幕输出目标设备温度信息,包括:读取目标设备的历史温度信息,历史温度信息为上一次测量温度值或者温度区域最高值,并根据目标设备温度信息以及历史温度信息,确定目标设备的温度变化趋势,变化趋势为增大、接近、变小,温度变化趋势的阈值采用0.5摄氏度;生成并显示红外诊断异常文本描述信息,其中,红外诊断异常文本描述信息包括目标设备信息、目标设备位置信息、目标设备温度信息、历史温度信息以及温度变化趋势,存储的文本格式为:目标设备-目标设备位置-目标设备温度-历史温度-温度变化趋势,方便检测人员直接进行文本比对。
作为图1方法的实现,本申请实施例提供了一种电力设备温度测量装置,如图5所示,该装置包括以下模块。
红外双目摄像头310,设置为拍摄电力设备的红外图像,并对视野范围内的区域进行红外测温获得测温信息;
距离解算模块320,设置为对所述红外图像进行三角测量解算,确定所述红外图像对应的深度信息;
图像分割模块330,设置为根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像;
目标识别模块340,设置为识别所述目标图像内的目标设备图像;
图像理解模块350,设置为根据所述测温信息,输出目标设备温度信息。
可选地,所述装置还包括:距离修正模块,设置为在所述通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温获得测温信息之后,确定所述测温信息对应的深度,并根据红外测温距离修正系数表对所述测温信息进行修正,获得目标温度信息,其中,所述红外测温距离修正系数表包括不同深度对应的距离修正系数;
根据所述目标温度信息以及所述目标温度信息对应的深度,绘制立体等温线图。
可选地,所述图像分割模块330,还设置为依据预设连通对象识别距离,确定所述预设深度范围对应的连通对象识别范围;
识别所述连通对象识别范围内的连通对象图像,并依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像。
可选地,所述目标识别模块340,还设置为:
所述依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像之后,基于所述测温信息,识别所述连通对象图像中的温度正常连通对象,其中,所述温度正常连通对象的测温温度在预设正常温度区间内;
将所述温度正常连通对象从所述目标图像中去除。
可选地,所述目标识别模块340,还设置为通过所述目标图像的左目红外视图或右目红外视图进行目标设备图像识别;
根据所述测温信息,识别所述红外图像中的温度异常区域,其中,所述温度异常区域的测温温度在预设正常温度区间之外;
所述图像理解模块350,还设置为若所述目标设备图像中存在所述温度异常区域,则输出目标设备温度信息。
可选地,所述图像理解模块350,还设置为:
读取目标设备的历史温度信息,并根据所述目标设备温度信息以及所述历史温度信息,确定所述目标设备的温度变化趋势;
生成并显示红外诊断异常文本描述信息,其中,所述红外诊断异常文本描述信息包括目标设备信息、目标设备位置信息、所述目标设备温度信息、所述历史温度信息以及所述温度变化趋势。
可选地,所述装置还包括:辐射率调整模块,设置为:
通过红外双目摄像头拍摄电力设备的红外图像之前,采用电力设备材料制作红外双目标定板,对所述红外双目标定板进行加热;
将所述红外双目标定板设置在多个不同位置处,分别通过红外双目摄像头拍摄所述红外双目标定板获得不同位置处对应的多张标定图像,并对所述红外双目标定板上的预设测温点进行红外测温和测温枪测温,获得所述预设测温点的红外测温温度和测温枪测温温度;
基于所述标定图像对所述红外双目摄像头进行参数标定;
计算所述红外测温温度和所述测温枪测温温度的温度差值,依据所述温度差值,调整所述红外双目摄像头的测温辐射率。
本申请实施例提供的一种电力设备温度测量装置所涉及多个功能单元的其他相应描述,可以参考图1至图4方法中的对应描述,在此不再赘述。
基于上述如图1至图4所示方法,相应的,本申请实施例还提供了一种存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述如图1至图4所示的电力设备温度测量方法。
基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM),通用串行总线闪存盘(Universal Serial Bus flash disk,U盘),移动硬盘等)中,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施场景所述的方法。存储介质可以是非暂态(non-transitory)存储介质。
基于上述如图1至图4所示的方法,以及图5所示的虚拟装置实施例,为了实现上述目的,如图6所示,本申请实施例还提供了一种计算机设备,例如可以为个人计算机、服务器、网络设备等,该计算机设备包括存储介质410和处理器420;存储介质410,设置为存储计算机程序;处理器420,设置为执行计算机程序以实现上述如图1至图4所示的电力设备温度测量方法。
可选地,该计算机设备还可以包括用户接口、网络接口、摄像头、射频(Radio Frequency,RF)电路,传感器、音频电路、无线保真(Wireless Fidelity,WI-FI)模块等等。用户接口可以包括显示屏(Display)、输入单元比如键盘(Keyboard)等,用户接口还可以包括通用串行总线(Universal Serial Bus,USB)接口、读卡器接口等。网络接口可以包括标准的有线接口、无线接口(如蓝牙接口、WI-FI接口)等。
本实施例提供的一种计算机设备结构并不构成对该计算机设备的限定,可以包括更多或更少的部件,或者组合一些部件,或者不同的部件布置。
存储介质中还可以包括操作系统、网络通信模块。操作系统是管理和保存计算机设备硬件和软件资源的程序,支持信息处理程序以及其它软件和/或程序的运行。网络通信模块设置为实现存储介质内部多个组件之间的通信,以及与该实体设备中其它硬件和软件之间通信。
通过以上的实施方式的描述,可以了解到本申请可以借助软件加必要的通用硬件平台的方式来实现,也可以通过硬件实现。
本申请实施例通过对红外图像进行三角测量解算获得图像深度信息,并在红外图像中分割出预设深度范围内的目标图像,减小了背景对温度判断的影响,提高了对电力设备温度检测的准确性。
附图只是一个实施场景的示意图,附图中的模块或流程并不一定是实施本申请所必须的。实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以拆分成多个子模块。
上述本申请序号仅仅为了描述,不代表实施场景的优劣。以上公开的仅为本申请的几个实施场景,但是,本申请并非局限于此,任何本领域的技术人员能思之的变化都应落入本申请的保护范围。

Claims (10)

  1. 一种电力设备温度测量方法,包括:
    通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温以获得测温信息;
    对所述红外图像进行三角测量解算,以确定所述红外图像对应的深度信息;
    根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像;
    识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息。
  2. 根据权利要求1所述的电力设备温度测量方法,其中,在所述通过红外双目摄像头拍摄电力设备的红外图像,并对所述红外双目摄像头视野范围内的区域进行红外测温以获得测温信息之后,所述方法还包括:
    确定所述测温信息对应的深度,并根据红外测温距离修正系数表对所述测温信息进行修正,获得目标温度信息,其中,所述红外测温距离修正系数表包括不同深度对应的距离修正系数;
    根据所述目标温度信息以及所述目标温度信息对应的深度,绘制立体等温线图。
  3. 根据权利要求1所述的电力设备温度测量方法,其中,所述根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像,包括:
    依据预设连通对象识别距离,确定所述预设深度范围对应的连通对象识别范围;
    识别所述连通对象识别范围内的连通对象图像,并依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像。
  4. 根据权利要求3所述的电力设备温度测量方法,其中,在所述依据所述连通对象图像以及所述深度信息对所述红外图像进行切割,获得包含所述连通对象图像以及预设深度范围图像的目标图像之后,所述方法还包括:
    基于所述测温信息,识别所述连通对象图像中的温度正常连通对象,其中,所述温度正常连通对象的测温温度在预设正常温度区间内;
    将所述温度正常连通对象从所述目标图像中去除。
  5. 根据权利要求1所述的电力设备温度测量方法,其中,所述识别所述目标图像内的目标设备图像,并根据所述测温信息,输出目标设备温度信息,包括:
    通过所述目标图像的左目红外视图或右目红外视图进行目标设备图像识别;
    根据所述测温信息,识别所述红外图像中的温度异常区域,其中,所述温度异常区域的测温温度在预设正常温度区间之外;
    在所述目标设备图像中存在所述温度异常区域的情况下,输出所述目标设备温度信息。
  6. 根据权利要求5所述的电力设备温度测量方法,其中,所述输出所述目标设备温度信息,包括:
    读取目标设备的历史温度信息,并根据所述目标设备温度信息以及所述历史温度信息,确定所述目标设备的温度变化趋势;
    生成并显示红外诊断异常文本描述信息,其中,所述红外诊断异常文本描述信息包括目标设备信息、目标设备位置信息、所述目标设备温度信息、所述历史温度信息以及所述温度变化趋势。
  7. 根据权利要求1至6中任一项所述的电力设备温度测量方法,其中,在所述通过红外双目摄像头拍摄电力设备的红外图像之前,所述方法还包括:
    采用电力设备材料制作红外双目标定板,并对所述红外双目标定板进行加热;
    将所述红外双目标定板设置在多个不同位置处,分别通过所述红外双目摄像头拍摄所述红外双目标定板以获得不同位置处对应的多张标定图像,并对所述红外双目标定板上的预设测温点进行红外测温和测温枪测温,以获得所述预设测温点的红外测温温度和测温枪测温温度;
    基于所述多张标定图像对所述红外双目摄像头进行参数标定;
    计算所述红外测温温度和所述测温枪测温温度之间的温度差值,依据所述温度差值,调整所述红外双目摄像头的测温辐射率。
  8. 一种电力设备温度测量装置,包括:
    红外双目摄像头,设置为拍摄电力设备的红外图像,并对视野范围内的区域进行红外测温以获得测温信息;
    距离解算模块,设置为对所述红外图像进行三角测量解算,以确定所述红外图像对应的深度信息;
    图像分割模块,设置为根据所述深度信息对所述红外图像进行切割,获得预设深度范围内的目标图像;
    目标识别模块,设置为识别所述目标图像内的目标设备图像;
    图像理解模块,设置为根据所述测温信息,输出目标设备温度信息。
  9. 一种存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的电力设备温度测量方法。
  10. 一种计算机设备,包括存储介质、处理器及存储在所述存储介质上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的电力设备温度测量方法。
PCT/CN2023/111944 2022-09-09 2023-08-09 电力设备温度测量方法、装置、存储介质及计算机设备 WO2024051431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211098661.3 2022-09-09
CN202211098661.3A CN115183876B (zh) 2022-09-09 2022-09-09 电力设备温度测量方法及装置、存储介质、计算机设备

Publications (1)

Publication Number Publication Date
WO2024051431A1 true WO2024051431A1 (zh) 2024-03-14

Family

ID=83523028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111944 WO2024051431A1 (zh) 2022-09-09 2023-08-09 电力设备温度测量方法、装置、存储介质及计算机设备

Country Status (2)

Country Link
CN (1) CN115183876B (zh)
WO (1) WO2024051431A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183876B (zh) * 2022-09-09 2022-12-09 国网山西省电力公司电力科学研究院 电力设备温度测量方法及装置、存储介质、计算机设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625762A (zh) * 2009-06-19 2010-01-13 深圳市中瀛鑫科技发展有限公司 目标分割方法及装置
US20130235163A1 (en) * 2010-07-05 2013-09-12 Hoon Joo Camera system for three-dimensional thermal imaging
CN108596128A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 对象识别方法、装置及存储介质
CN113418617A (zh) * 2021-07-15 2021-09-21 西安华控智能系统工程有限公司 一种风电场箱式变压器三维温度场测量与诊断方法
WO2021196360A1 (zh) * 2020-03-31 2021-10-07 深圳奥比中光科技有限公司 一种温度测量方法及系统
CN113820020A (zh) * 2021-09-29 2021-12-21 深圳供电局有限公司 双目摄像头红外测温的方法、装置、计算机设备
CN115183876A (zh) * 2022-09-09 2022-10-14 国网山西省电力公司电力科学研究院 电力设备温度测量方法及装置、存储介质、计算机设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9305237B2 (en) * 2011-11-04 2016-04-05 Polestar Technologies, Inc. Methods and systems for detection and identification of concealed materials
CN108682039B (zh) * 2018-04-28 2022-03-25 国网山西省电力公司电力科学研究院 一种双目立体视觉测量方法
WO2021142164A1 (en) * 2020-01-10 2021-07-15 Flir Commercial Systems, Inc. Radiometric calibration systems for infrared imagers
CN111582157B (zh) * 2020-05-07 2023-07-28 讯飞幻境(北京)科技有限公司 一种人体识别方法、装置、设备及计算机可读存储介质
CN114485953A (zh) * 2020-11-13 2022-05-13 杭州海康威视数字技术股份有限公司 温度测量方法、装置及系统
CN113077476B (zh) * 2021-03-17 2023-04-18 浙江大华技术股份有限公司 一种高度测量方法、终端设备以及计算机存储介质
CN113378856A (zh) * 2021-06-24 2021-09-10 重庆大学 一种基于人工智能的嵌入式输变电装备红外检测方法
CN113503975A (zh) * 2021-09-13 2021-10-15 四川大学 一种标定板及红外测温映射标定方法
CN114565676A (zh) * 2021-12-29 2022-05-31 骨圣元化机器人(深圳)有限公司 红外相机标定装置
CN114612577A (zh) * 2022-04-08 2022-06-10 深圳职业技术学院 一种基于双目立体视觉的果园智能喷药方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625762A (zh) * 2009-06-19 2010-01-13 深圳市中瀛鑫科技发展有限公司 目标分割方法及装置
US20130235163A1 (en) * 2010-07-05 2013-09-12 Hoon Joo Camera system for three-dimensional thermal imaging
CN108596128A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 对象识别方法、装置及存储介质
WO2021196360A1 (zh) * 2020-03-31 2021-10-07 深圳奥比中光科技有限公司 一种温度测量方法及系统
CN113418617A (zh) * 2021-07-15 2021-09-21 西安华控智能系统工程有限公司 一种风电场箱式变压器三维温度场测量与诊断方法
CN113820020A (zh) * 2021-09-29 2021-12-21 深圳供电局有限公司 双目摄像头红外测温的方法、装置、计算机设备
CN115183876A (zh) * 2022-09-09 2022-10-14 国网山西省电力公司电力科学研究院 电力设备温度测量方法及装置、存储介质、计算机设备

Also Published As

Publication number Publication date
CN115183876B (zh) 2022-12-09
CN115183876A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
US9194931B2 (en) Length measurement method and device of the same
US10334151B2 (en) Phase detection autofocus using subaperture images
US10419742B2 (en) Method and device for capturing image and storage medium
JP5122948B2 (ja) タッチ面に対応するポインタを検出するための装置及び方法
WO2024051431A1 (zh) 电力设备温度测量方法、装置、存储介质及计算机设备
CN109584307B (zh) 改进摄像机固有参数校准的系统和方法
WO2021196548A1 (zh) 距离确定方法、装置及系统
WO2022143283A1 (zh) 摄像头标定方法、装置、计算机设备和存储介质
JP2007129709A (ja) イメージングデバイスをキャリブレートするための方法、イメージングデバイスの配列を含むイメージングシステムをキャリブレートするための方法およびイメージングシステム
US20130083990A1 (en) Using Videogrammetry to Fabricate Parts
US20180262748A1 (en) Camera calibration board, camera calibration device, camera calibration method, and program-recording medium for camera calibration
CN105700138A (zh) 头戴型显示装置及其校正方法
CN102547121B (zh) 拍摄参数取得装置、拍摄参数取得方法
EP3477945A1 (en) Method and apparatus for calibrating parameter of three-dimensional (3d) display apparatus
US20210231502A1 (en) Information processing apparatus for helping intuitive and easy recognition of temperature of heat source
EP4220547A1 (en) Method and apparatus for determining heat data of global region, and storage medium
CN113272871A (zh) 一种相机校准的方法和系统
CN111279393A (zh) 相机标定方法、装置、设备及存储介质
CN110765926B (zh) 图画书识别方法、装置、电子设备和存储介质
JP5996233B2 (ja) 画像撮像装置
TW201445458A (zh) 一種攝像設備的檢測裝置及方法
CN114593832A (zh) 热像设备及热像仪的温度校正方法
JP6617061B2 (ja) 作業支援プログラム、作業支援方法、情報処理装置、及び作業支援システム
CN104296656A (zh) 一种被测物的测量基准面定位设备与装置及其方法
CN112446928B (zh) 一种拍摄装置的外参确定系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862129

Country of ref document: EP

Kind code of ref document: A1