WO2024051256A1 - 背光模组、显示装置以及背光模组的制作方法 - Google Patents

背光模组、显示装置以及背光模组的制作方法 Download PDF

Info

Publication number
WO2024051256A1
WO2024051256A1 PCT/CN2023/100534 CN2023100534W WO2024051256A1 WO 2024051256 A1 WO2024051256 A1 WO 2024051256A1 CN 2023100534 W CN2023100534 W CN 2023100534W WO 2024051256 A1 WO2024051256 A1 WO 2024051256A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
blue light
light
backlight module
green light
Prior art date
Application number
PCT/CN2023/100534
Other languages
English (en)
French (fr)
Inventor
万年康
姚黎晓
朱法栋
杨宇琦
Original Assignee
惠州视维新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州视维新技术有限公司 filed Critical 惠州视维新技术有限公司
Publication of WO2024051256A1 publication Critical patent/WO2024051256A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present application relates to the field of display technology, and in particular, to a backlight module, a display device, and a method for manufacturing a backlight module.
  • an LCD TV usually includes a backlight module and a liquid crystal module.
  • the backlight module provides uniformly distributed light, so that the liquid crystal module displays images to the user.
  • Backlight modules usually use LED as the light source. With the rapid development of LED backlight technology, consumers have increasing demands for TVs with high color gamut, requiring TVs to display richer colors, better layering, and higher color reproduction. .
  • backlight modules usually use blue LEDs with red and green phosphors. The phosphors are excited by blue light and mixed with light colors to form white light. Due to the unstable performance of phosphors and low light conversion efficiency, there are defects in uneven light mixing of the three primary colors of red, green and blue, and the color gamut range is small, making it difficult to meet the needs of high color gamut backlight displays.
  • a backlight module including:
  • a chip layer is provided on the substrate, and the chip layer includes a plurality of blue light chips and a plurality of green light chips arranged at intervals;
  • a quantum dot layer is provided on the side of the chip layer facing away from the substrate.
  • the quantum dot layer includes red quantum dots.
  • a part of the blue light emitted by the blue light chip is used to excite the red quantum dots to emit red light.
  • Another part of the blue light emitted by the blue light chip is mixed with the red light and the green light emitted by the green light chip to form white light.
  • an embodiment of the present application further provides a display device, which includes the backlight module described in any of the above embodiments.
  • embodiments of the present application also provide a method of manufacturing a backlight module.
  • the method of manufacturing a backlight module includes:
  • a chip layer is provided on the substrate, and the chip layer includes a plurality of blue light chips and a plurality of green light chips arranged at intervals; a quantum dot layer is provided on the substrate, and the quantum dot layer is located away from the chip layer. one side of the substrate;
  • the quantum dot layer includes red quantum dots, a part of the blue light emitted by the blue light chip is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip is combined with the red light and the The green light emitted by the green light chip is mixed to form white light.
  • the backlight module provided by the embodiment of the present application is provided with a chip layer on a substrate.
  • the chip layer includes a plurality of blue light chips and a plurality of green light chips arranged at intervals.
  • the red quantum dot layer is located on the side of the chip layer away from the substrate.
  • the quantum dot layer includes red quantum dots, where a part of the blue light emitted by the blue light chip is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip is mixed with red light and green light emitted by the green light chip to form white light;
  • the light source of the backlight module directly uses a blue light chip and a green light chip.
  • the half-wave width of the green light emitted by the green light chip is 21 nanometers, while the half-wave width of the green light emitted by the traditional blue light-excited phosphor is 56 nanometers. ; According to the principle that the narrower the half-wave width, the better the monochromaticity and the higher the color gamut after light mixing. Compared with the traditional backlight solution, this application narrows the half-wave width of the green light, so that the green light has a higher color gamut. Purity, so that a high color gamut backlight can be obtained after light mixing.
  • Figure 1 is a first structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 2 is an exploded structural diagram of the backlight module shown in FIG. 1 .
  • FIG. 3 is a second structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • FIG. 4 is an exploded structural diagram of the backlight module shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of a first arrangement of blue light chips and green light chips in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the second arrangement of blue light chips and green light chips in the embodiment of the present application.
  • Figure 7 is a schematic diagram of a third arrangement of blue light chips and green light chips in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the fourth arrangement of blue light chips and green light chips in the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of the manufacturing method of the backlight module provided by the embodiment of the present application.
  • LCD displays As the communication interface between users and information, LCD displays have become the current mainstream display method because of their superior characteristics such as high space utilization, low electromagnetic interference, and no radiation. They are widely used in information communication tools such as TVs, smartphones, and tablets. use.
  • the LCD module of the LCD display does not emit light itself, but the backlight module provides light source for the LCD module.
  • the backlight modules of LCD displays mainly include direct-type backlight modules and edge-type backlight modules.
  • Backlight modules usually use LED as the light source.
  • LED backlight technology consumers have increasing demands for TVs with high color gamut, requiring TVs to display richer colors, better layering, and higher color reproduction. . Therefore, embodiments of the present application provide a backlight module, a display device, and a method for manufacturing a backlight module, which can achieve a high color gamut and uniform light mixing backlight and bring good visual effects to users.
  • the backlight module provided by the embodiment of the present application is a direct-type backlight module, which has multiple backlight partitions and can realize partitioned light control functions.
  • This direct-type backlight module is mainly used in display devices such as LCD TVs, smartphones, and tablet computers to provide backlight sources for LCD panels.
  • Figure 1 is a first structural schematic diagram of a backlight module provided by an embodiment of the present application.
  • Figure 2 is an exploded structural diagram of the backlight module shown in Figure 1.
  • the backlight module 100 provided in the embodiment of the present application includes a substrate 10, a chip layer 20 and a quantum dot layer 40.
  • the chip layer 20 is disposed on the substrate 10.
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals.
  • the quantum dot layer 40 is disposed on a side of the chip layer 20 away from the substrate 10.
  • the quantum dot layer 40 Includes red quantum dots. Part of the blue light emitted by the blue light chip 21 is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip 21 is mixed with the red light and the green light emitted by the green light chip 22 to form white light.
  • the substrate 10 can be a PCB circuit board or a flexible circuit board.
  • the substrate 10 is an important electronic component, a support body for electronic components, and a carrier for electrical interconnection of electronic components.
  • the substrate 10 is a PCB circuit board, and the PCB circuit board is an aluminum substrate.
  • the blue light chip 21 and the green light chip 22 can be Micro-LED chips or Mini-LED chips.
  • both the blue light chip 21 and the green light chip 22 are flip-chip Min-LED chips.
  • the blue light chip 21 is used to emit blue light.
  • the blue light chip 21 emits blue light with a central wavelength of 440nm to 470nm.
  • the green light chip 22 is used to emit green light.
  • the green light chip 22 emits blue light with a central wavelength of 500nm to 545nm. green light.
  • the blue light chip 21 and the green light chip 22 are spaced apart on the substrate 10 and are electrically connected to the substrate 10 .
  • the light-emitting surfaces of the blue light chip 21 and the green light chip 22 face the side away from the substrate 10, that is, the light is emitted upward; the other sides of the blue light chip 21 and the green light chip 22 are mounted on the substrate 10.
  • the corresponding positions of the substrate 10 are provided with solder joints.
  • the blue light chip 21 and the green light chip 22 are soldered to the pads of the substrate 10 through solder paste.
  • the number of blue light chips 21 and green light chips 22 is multiple.
  • multiple blue light chips 21 and multiple green light chips 22 are arranged on the substrate 10 in an array.
  • the quantum dot layer 40 is disposed on the side of the chip layer 20 facing away from the substrate 10 .
  • the quantum dot layer 40 includes red quantum dots. After being excited by the blue light emitted by the blue light chip 21, the red quantum dots emit red light with a central wavelength of 600 nm to 680 nm. The red light is mixed with the remaining blue light and green light in the internal optical path to form white light with a higher color gamut.
  • the quantum dot layer 40 can be understood as a quantum dot diffusion plate 41, and the quantum dot diffusion plate 41 includes red quantum dots. It can be understood that the red quantum dots are evenly dispersed in the diffusion plate.
  • the diffusion plate is equivalent to a carrier that wraps the red quantum dots.
  • the diffusion plate can effectively block the erosion of the red quantum dots by external water and oxygen, allowing the red quantum dots to maintain good stability. , improve the light conversion efficiency of red quantum dots.
  • the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 are directed to the quantum dot diffusion plate 41, and excite the red quantum dots to emit red light with a central wavelength of 600nm ⁇ 680nm. This red light and the remaining blue light , green light is mixed in the internal light path to form white light with a wide color gamut.
  • the quantum dot diffusion plate 41 also has the functions of light homogenization and atomization.
  • the quantum dot diffusion plate 41 causes the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 to refract or scatter in different directions, thereby changing the The path of light fully scatters the light to produce an optical diffusion effect, making the light entering the liquid crystal display module softer.
  • the quantum dot diffusion plate 41 is formed by combining red quantum dots with a diffusion plate.
  • the quantum dot diffusion plate 41 not only has the function of light conversion of red quantum dots, but also functions as a diffusion plate. The function of light homogenization and atomization.
  • the thickness of the backlight module 100 can be effectively reduced, which is beneficial to achieving ultra-thin backlight module 100.
  • the backlight module 100 uses a blue light chip 21 and a green light chip 22 with narrow luminescence peaks as light sources, and then matches the quantum dot layer 40.
  • the quantum dot layer 40 includes high color purity red. Quantum dots, the red quantum dots are excited by the blue and green dual primary color light-emitting chip and mixed to form white light.
  • the half-wave width of the green light emitted by the green light chip 22 is 21 nanometers, while the half-wave width of the green light emitted by the traditional blue light-excited phosphor is 56 nanometers; According to the principle that the narrower the half-wave width, the better the monochromaticity and the higher the color gamut after light mixing. Compared with the traditional backlight solution, this application narrows the half-wave width of green light, making the green light have higher color purity. , so that a high color gamut backlight can be obtained after light mixing.
  • Table 1 is the color gamut comparison data between the backlight module provided by the embodiment of the present application and the traditional backlight solution.
  • the color gamut value (BT2020) of the traditional blue light chip with red and green phosphor backlight solution does not exceed 75%, while the color gamut value (BT2020) of the backlight module provided by the embodiment of the present application ) can reach more than 90%.
  • the color gamut value of the backlight module in the embodiment of the present application is also greatly improved. Therefore, compared with the traditional blue light chip with red and green phosphors
  • the backlight solution provided by the embodiment of the present application can achieve an ultra-high color gamut and also has good brightness uniformity.
  • the backlight module 100 provided by the embodiment of the present application also includes a lens layer 50 .
  • the lens layer 50 covers the blue light chip 21 and the green light chip 22 . It should be noted that packaging each blue light chip 21 and green light chip 22 through the lens layer 50 can not only maintain the airtightness of the light-emitting chip and protect the light-emitting chip from the influence of temperature and humidity in the surrounding environment, but also prevent The light-emitting chip is damaged by mechanical vibration or impact or causes changes in characteristics, which affects its light-emitting performance.
  • the lens layer 50 includes a plurality of lenses, and each lens corresponds to each blue light chip 21 or each green light chip 22 .
  • the lens can be in the form of a convex lens, and the lens can refract, reflect or scatter the blue light emitted by the blue light chip 21 or the green light emitted by the green light chip 22 to increase the light emission angle and light mixing of the blue light chip 21 or green light chip 22
  • the uniformity is beneficial to reducing the number of light-emitting chips used, thereby reducing the cost of the backlight module 100 .
  • the lens layer 50 is made of transparent material, especially a highly transparent material, so as not to affect the color effect of the emitted light.
  • the lens layer 50 is made of transparent material, especially a highly transparent material, so as not to affect the color effect of the emitted light.
  • the material of the lens layer 50 can be epoxy resin, silicone, polycarbonate and other materials, which is not specifically limited in this application.
  • the lens layer 50 can be dispensed on the substrate 10 to cover the blue light chip 21 and the green light chip 22, then molded, and finally baked or cured by UV light to form the final lens layer 50.
  • the lens layer 50 includes a plurality of lenses, which can be formed by injection molding, and then the lenses are pasted and fixed on the surface of the blue light chip 21 or the green light chip 22 to form a pair of the lens layer 50 and the blue light chip 21 and the green light chip 22 .
  • the backlight module 100 provided by the embodiment of the present application also includes a reflective layer 60.
  • the reflective layer 60 is disposed on the substrate 10.
  • the reflective layer 60 includes a plurality of hollow areas 61.
  • the hollow areas 61 are also Equivalent to the openings provided on the reflective layer 60 , the blue light chip 21 and the green light chip 22 are located on the substrate 10 where the hollow area 61 is exposed.
  • the reflective layer 60 is located between the substrate 10 and the quantum dot layer 40.
  • the reflective layer 60 can reflect the light emitted by the blue light chip 21 or the green light chip 22 towards the substrate 10 to the quantum dot layer 40 to improve the light utilization rate. .
  • the reflective layer 60 can be a reflective sheet attached to the substrate 10 .
  • the reflective sheet includes a plurality of hollow areas 61 , and the hollow areas 61 can expose the blue light chip 21 or the green light chip 22 provided on the substrate 10 .
  • each hollow area 61 corresponds to each blue light chip 21 or green light chip 22, and then the reflective sheet is pressed and assembled onto the substrate 10, so that the blue light The chip 21 and the green light chip 22 are exposed from the hollow area 61 .
  • the reflective layer 60 may also be a reflective coating sprayed on the substrate 10 , such as a metal coating.
  • a reflective coating sprayed on the substrate 10 , such as a metal coating.
  • the hollow area 61 can be covered, and the non-covered area can be sprayed with the reflective coating to form the reflective layer 60 .
  • the backlight module 100 provided by the embodiment of the present application also includes a back plate 70.
  • the back plate 70 includes a bottom plate 71 and a side plate 72 connected to the periphery of the bottom plate 71.
  • the back plate 70 is used to carry a fixed substrate. 10.
  • the quantum dot layer 40 and other components are assembled together to form the backlight module 100.
  • a chip layer 20 is provided on the substrate 10.
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals.
  • the red quantum dot layer 40 is located on the chip layer. 20
  • the red quantum dot layer 40 includes red quantum dots, in which a part of the blue light emitted by the blue light chip 21 is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip is combined with red light and green light.
  • the green light emitted by the light chip 22 is mixed to form white light; in this application, the light source of the backlight module directly uses the blue light chip 21 and the green light chip 22, in which the half-wave width of the green light emitted by the green light chip 22 is 21 nanometers, while the traditional The half-wave width of the green light emitted by the phosphor excited by blue light is 56 nanometers; based on the principle that the narrower the half-wave width, the better the monochromaticity and the higher the color gamut after light mixing. Compared with the traditional The backlight solution narrows the half-wave width of the green light, making the green light have higher color purity, so that a high color gamut backlight can be obtained after light mixing.
  • the structure is simple and the process is easier to implement.
  • Figure 3 is a second structural schematic diagram of the backlight module provided by an embodiment of the present application.
  • Figure 4 is an exploded structural diagram of the backlight module shown in Figure 3.
  • the embodiment shown in FIG. 3 is different from the embodiment shown in FIG. 1 in that the quantum dot layer 40 is arranged in a different manner.
  • the backlight module 100 provided in the embodiment of the present application includes a substrate 10, a chip layer 20 and a quantum dot layer 40.
  • the chip layer 20 is disposed on the substrate 10.
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals.
  • the quantum dot layer 40 is disposed on a side of the chip layer 20 away from the substrate 10.
  • the quantum dot layer 40 includes red quantum dots. Part of the blue light emitted by the blue light chip 21 is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip 21 is mixed with the red light and the green light emitted by the green light chip 22 to form white light.
  • the quantum dot layer 40 can be understood as a quantum dot film 42, and the quantum dot film 42 includes red quantum dots. It is understandable that the red quantum dots are evenly dispersed in the diaphragm.
  • the diaphragm is equivalent to a carrier that wraps the red quantum dots.
  • the diaphragm can effectively block the erosion of the red quantum dots by external water and oxygen, allowing the red quantum dots to maintain good stability. , effectively improving the light conversion efficiency of red quantum dots.
  • the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 are directed to the quantum dot film 42, and excite the red quantum dots to emit red light with a central wavelength of 600nm ⁇ 680nm. This red light and the remaining blue light , green light is mixed in the internal light path to form white light with a wide color gamut.
  • the backlight module 100 provided by the embodiment of the present application further includes a diffusion plate 80 .
  • the diffusion plate 80 is disposed on the side of the quantum dot film 42 facing the substrate 10 .
  • the diffusion plate 80 has the functions of light homogenization and atomization, which can cause the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 to refract or scatter in different directions, thereby changing the traveling route of the light and achieving incident on the quantum dot film.
  • the light from the sheet 42 is sufficiently scattered to produce an optical diffusion effect, making the light incident on the liquid crystal display module softer.
  • FIG. 5 is a schematic diagram of a first arrangement of blue light chips and green light chips in an embodiment of the present application.
  • the backlight module 100 provided by the embodiment of the present application includes a chip layer 20 disposed on a substrate 10.
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals, wherein the blue light chips 21 and the green light chips 22 are located between The first direction is alternately arranged, and the blue light chips 21 and the green light chips 22 are alternately arranged in the second direction, and the first direction is perpendicular to the second direction.
  • a plurality of blue light chips 21 and a plurality of green light chips 22 are arranged in an array on the substrate 10 , and the blue light chips 21 and the green light chips 22 are spaced apart.
  • the blue light chips 21 and the green light chips 22 are arranged alternately in the first direction, and the first direction can be understood as the X direction shown in Figure 5; at the same time, the blue light chips 21 and the green light chips 22 are arranged alternately in the second direction.
  • the second direction can be understood as the Y direction shown in Figure 5.
  • the substrate 10 is provided with an independent first driving circuit and a second driving circuit.
  • the first driving circuit is used to drive the blue light chip 21 to emit light
  • the second driving circuit is used to drive the green light chip 22 glow.
  • the backlight module 100 can be divided into multiple light control areas.
  • the blue light chips 21 in each light control area are first connected in series and then connected in parallel to the first driving circuit.
  • the blue light chips 21 in each light control area are connected in parallel.
  • the green light chips 22 are first connected in series, and then connected in parallel to the second driving circuit.
  • the first driving circuit and the second driving circuit are two independent driving circuits, which means that the first driving circuit can only control the passing current of the blue light chip 21, and the second driving circuit can only control the passing current of the green light chip 22. input current.
  • the required color point values of the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 can be adjusted, thereby adjusting the uniformity and uniformity of the blue-green dual primary color mixing. Color gamut range. In actual use, whether the blue light chip 21 and the green light chip 22 require different currents, and how to adjust the currents, can be set accordingly according to actual needs.
  • FIG. 6 is a schematic diagram of a second arrangement of blue light chips and green light chips in an embodiment of the present application.
  • the backlight module 100 provided by the embodiment of the present application includes a chip layer 20 disposed on a substrate 10 .
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals.
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction; at the same time, the blue light chips 21 and the green light chips 22 are arranged alternately in the second direction, and the first direction is perpendicular to the third direction. Two directions.
  • a plurality of blue light chips 21 and a plurality of green light chips 22 are arranged in an array on the substrate 10 , and the blue light chips 21 and the green light chips 22 are spaced apart.
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction.
  • the first direction can be understood as the X direction shown in Figure 6; at the same time, the blue light chips 21 and the green light chips 22 are also
  • the second directions are arranged alternately in sequence, and the second direction can be understood as the Y direction shown in FIG. 6 .
  • FIG. 7 is a schematic diagram of a third arrangement of blue light chips and green light chips in an embodiment of the present application.
  • a plurality of blue light chips 21 and a plurality of green light chips 22 are arrayed on the substrate 10 , and the blue light chips 21 and the green light chips 22 are spaced apart.
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction.
  • the first direction can be understood as the Y direction shown in Figure 7; at the same time, the blue light chips 21 and the green light chips 22 are also arranged at intervals in the first direction.
  • the second directions are arranged alternately in sequence, and the second direction can be understood as the X direction shown in Figure 7.
  • FIG. 8 is a schematic diagram of a fourth arrangement of blue light chips and green light chips in an embodiment of the present application.
  • a plurality of blue light chips 21 and a plurality of green light chips 22 are arrayed on the substrate 10
  • the blue light chips 21 and the green light chips 22 are arrayed on the substrate 10 .
  • the chips are set at 22 intervals.
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction.
  • the first direction can be understood as the X direction shown in Figure 8; at the same time, the blue light chips 21 and the green light chips 22 are also The second direction is alternately arranged, and the blue light chip 21 and the green light chip 22 are staggered from each other in the second direction.
  • the second direction can be understood as the Y direction shown in FIG. 8 .
  • the arrangement of the blue light chip 21 and the green light chip 22 is not limited to the several ways shown in the figure, and also includes other symmetrical or asymmetrical arrangements, which is not specifically limited in this application.
  • the substrate 10 is provided with an independent first driving circuit and a second driving circuit.
  • the first driving circuit is used to drive the blue light chip 21 to emit light
  • the second driving circuit is used to drive the green light chip 22 glow.
  • the first driving circuit and the second driving circuit are two independent driving circuits, which means that the first driving circuit can only control the passing current of the blue light chip 21, and the second driving circuit can only control the passing current of the green light chip 22. input current.
  • the required color point values of the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 can be adjusted, thereby adjusting the uniformity and uniformity of the blue-green dual primary color mixing. Color gamut range. In actual use, whether the blue light chip 21 and the green light chip 22 require different currents, and how to adjust the currents, can be set accordingly according to actual needs.
  • An embodiment of the present application also provides a display device.
  • the display device includes the backlight module 100 shown in any of the above embodiments.
  • the backlight module 100 provides a backlight source for the display device.
  • the display device may be: a liquid crystal display panel, electronic paper, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function, which is not limited in the embodiments of this application. .
  • the display device provided by the embodiment of the present application uses the above-mentioned backlight module 100, which can achieve an ultra-high color gamut and bring good visual effects to users.
  • An embodiment of the present application also provides a method for manufacturing a backlight module.
  • the manufacturing method of the backlight module is used to produce the backlight module 100 .
  • the backlight module 100 can be applied to the above display device. Among the following methods, the order can be adjusted appropriately without affecting the use effect.
  • FIG. 9 is a schematic flowchart of a method for manufacturing a backlight module according to an embodiment of the present application.
  • the manufacturing method of the backlight module 100 includes the following steps:
  • S310 provide a substrate, and set a chip layer on the substrate, where the chip layer includes a plurality of blue light chips and a plurality of green light chips arranged at intervals.
  • the substrate 10 can be a PCB circuit board or a flexible circuit board.
  • the substrate 10 is an important electronic component, a support body for electronic components, and a carrier for electrical interconnection of electronic components.
  • the blue light chip 21 and the green light chip 22 can be Micro-LED chips or Mini-LED chips. Preferred, Blu-ray The chip 21 and the green light chip 22 are both flip-chip Min-LED chips.
  • the blue light chip 21 and the green light chip 22 are spaced apart on the substrate 10 and are electrically connected to the substrate 10 .
  • the light-emitting surfaces of the blue light chip 21 and the green light chip 22 face the side away from the substrate 10 , that is, the light is emitted upward; the other surfaces of the blue light chip 21 and the green light chip 22 are mounted on the substrate 10 , for example, at the corresponding positions of the substrate 10 Welding pads are provided, and the blue light chip 21 and the green light chip 22 are soldered to the welding pads of the substrate 10 through solder paste.
  • the number of blue light chips 21 and green light chips 22 is multiple.
  • multiple blue light chips 21 and multiple green light chips 22 are arranged on the substrate 10 in an array.
  • the backlight module 100 includes a plurality of blue light chips 21 and a plurality of green light chips 22 disposed on the substrate 10 .
  • the blue light chips 21 and the green light chips 22 are arranged alternately in a first direction
  • the blue light chips 21 and the green light chips 22 are arranged alternately in a second direction
  • the first direction is perpendicular to the second direction.
  • the backlight module 100 includes a plurality of blue light chips 21 and a plurality of green light chips 22 disposed on the substrate 10 .
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction; at the same time, the blue light chips 21 and the green light chips 22 are arranged alternately in the second direction, and the first direction is perpendicular to the third direction. Two directions.
  • the backlight module 100 includes a plurality of blue light chips 21 and a plurality of green light chips 22 disposed on the substrate 10 .
  • the blue light chips 21 are arranged at intervals in the first direction
  • the green light chips 22 are arranged at intervals in the first direction; at the same time, the blue light chips 21 and the green light chips 22 are alternately arranged in the second direction, and the blue light chips 21 and the green light chips 22 are arranged alternately in the second direction.
  • the second directions are offset from each other, and the first direction is perpendicular to the second direction.
  • the substrate 10 is provided with an independent first driving circuit and a second driving circuit.
  • the first driving circuit is used to drive the blue light chip 21 to emit light
  • the second driving circuit is used to drive the green light chip 22 to emit light.
  • the first driving circuit and the second driving circuit are two independent driving circuits, which means that the first driving circuit can only control the passing current of the blue light chip 21, and the second driving circuit can only control the passing current of the green light chip 22. input current.
  • the required color point values of the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 can be adjusted, thereby adjusting the uniformity and uniformity of the blue-green dual primary color mixing. Color gamut range. In actual use, whether the blue light chip 21 and the green light chip 22 require different currents, and how to adjust the currents, can be set accordingly according to actual needs.
  • a quantum dot layer is provided on the substrate.
  • the quantum dot layer is located on the side of the chip layer facing away from the substrate.
  • the quantum dot layer includes red quantum dots, and part of the blue light emitted by the blue light chip is used to excite the red quantum dots to emit red light. , another part of the blue light emitted by the blue light chip is mixed with the red light and the green light emitted by the green light chip to form white light.
  • the blue light emitted by the blue light chip 21 and the green light emitted by the green light chip 22 are emitted to the quantum dot layer 40 and excite the red quantum dots to emit red light with a central wavelength of 600nm to 680nm. This red light and the remaining blue light , green light is mixed in the internal light path to form white light with a wide color gamut.
  • the quantum dot layer 40 may be a quantum dot diffusion plate 41, and the quantum dot diffusion plate 41 includes red quantum dots. It can be understood that the red quantum dots are evenly dispersed in the diffusion plate.
  • the diffusion plate is equivalent to a carrier that wraps the red quantum dots. The diffusion plate can effectively block the erosion of the red quantum dots by external water and oxygen, allowing the red quantum dots to maintain good stability. , improve the light conversion efficiency of red quantum dots.
  • the quantum dot layer 40 may be a quantum dot film 42, and the quantum dot film 42 includes red quantum dots. It is understandable that the red quantum dots are evenly dispersed in the diaphragm.
  • the diaphragm is equivalent to a carrier that wraps the red quantum dots. The diaphragm can effectively block the erosion of the red quantum dots by external water and oxygen, allowing the red quantum dots to maintain good stability. , effectively improving the light conversion efficiency of red quantum dots.
  • step S310 it also includes: setting a lens layer on the substrate, and the lens layer covers the blue light chip and the green light chip.
  • packaging each blue light chip 21 and green light chip 22 through the lens layer 50 can not only maintain the airtightness of the light-emitting chip and protect the light-emitting chip from the influence of temperature and humidity in the surrounding environment, but also prevent The light-emitting chip is damaged by mechanical vibration or impact or causes changes in characteristics, which affects its light-emitting performance.
  • the lens layer 50 can also refract, reflect or scatter the blue light emitted by the blue light chip 21 or the green light emitted by the green light chip 22 to increase the light emission angle and light mixing uniformity of the blue light chip 21 or green light chip 22, which is beneficial to The number of light-emitting chips used is reduced, thereby reducing the cost of the backlight module 100 .
  • the blue light chip 21 and the green light chip 22 are first disposed on the substrate 10 to cover them, then molded, and finally baked or cured by UV light to form the final lens layer 50 .
  • the lens layer 50 includes a plurality of lenses, which may be formed by injection molding.
  • the lens is pasted and fixed on the surface of the blue light chip 21 or the green light chip 22 to form the effect of the lens layer 50 encapsulating the blue light chip 21 and the green light chip 22 .
  • step S320 it also includes: setting a reflective layer on the substrate.
  • the reflective layer includes a plurality of hollow areas, and the blue light chip and the green light chip are located in the hollow areas. exposed on the substrate.
  • the reflective layer 60 can be a reflective sheet attached to the substrate 10 .
  • the reflective sheet includes a plurality of hollow areas 61 , and the hollow areas 61 can expose the blue light chip 21 or the green light chip 22 provided on the substrate 10 .
  • each hollow area 61 corresponds to each blue light chip 21 or green light chip 22, and then the reflective sheet is pressed and assembled onto the substrate 10, so that the blue light The chip 21 and the green light chip 22 are exposed from the hollow area 61 .
  • the reflective layer 60 may also be a reflective coating sprayed on the substrate 10 , such as a metal coating.
  • a reflective coating sprayed on the substrate 10 , such as a metal coating.
  • the hollow area 61 can be covered, and the non-covered area can be sprayed with the reflective coating to form the reflective layer 60 .
  • the backlight module 100 disposes a chip layer 20 on the substrate 10.
  • the chip layer 20 includes a plurality of blue light chips 21 and a plurality of green light chips 22 arranged at intervals.
  • the red quantum dot layer 40 is located on the chip layer. 20
  • the red quantum dot layer 40 includes red quantum dots, in which a part of the blue light emitted by the blue light chip 21 is used to excite the red quantum dots to emit red light, and the other part of the blue light emitted by the blue light chip is combined with red light and green light.
  • the green light emitted by the light chip 22 is mixed to form white light; in this application, the light source of the backlight module 100 directly uses the blue light chip 21 and the green light chip 22, in which the half-wave width of the green light emitted by the green light chip 22 is 21 nanometers, while the traditional The half-wave width of the green light emitted by the phosphor excited by blue light is 56 nanometers; based on the principle that the narrower the half-wave width, the better the monochromaticity and the higher the color gamut after light mixing. Compared with the traditional backlight solution, this application narrows the The half-wave width of green light is increased, making green light have higher color purity, so that a high color gamut backlight can be obtained after light mixing.

Abstract

公开一种背光模组、显示装置以及背光模组的制作方法,背光模组包括基板、芯片层及量子点层,其中芯片层设置于基板上,芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片,量子点层设置于芯片层背离基板的一侧,量子点层包括红色量子点,从而得到混光均匀且高色域的背光源,而且结构简单,工艺上较容易实现。

Description

背光模组、显示装置以及背光模组的制作方法
本申请要求于2022年09月07日提交中国专利局、申请号为202211091857.X、发明名称为“背光模组、显示装置以及背光模组的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种背光模组、显示装置以及背光模组的制作方法。
背景技术
随着社会的发展,显示装置例如电视机、电脑已经成为家庭必备的家用电器。尤其是液晶显示电视,更是受到人们的青睐。其中,液晶显示电视通常包括背光模组和液晶模组,背光模组提供分布均匀的光线,以使得液晶模组显示图像给用户。
技术问题
背光模组通常采用LED作为光源,随着LED背光技术的迅速发展,消费者对电视高色域等方面的需求日渐增加,要求电视的显示颜色更加丰富,层次感更好,色彩还原度更高。现有技术中,背光模组通常使用蓝光LED搭配红、绿荧光粉,通过蓝光激发荧光粉并进行光色混合以形成白光。由于荧光粉性能不稳定且光转化效率低,存在红绿蓝三基色混光不均匀缺陷,色域范围较小,难以满足高色域背光显示的需求。
技术解决方案
第一方面,本申请实施例提供一种背光模组,包括:
基板;
芯片层,设置于所述基板,所述芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片;
量子点层,设置于所述芯片层背离所述基板的一侧,所述量子点层包括红色量子点,所述蓝光芯片发出的一部分蓝光用于激发所述红色量子点以发出红光,所述蓝光芯片发出的另一部分蓝光与所述红光以及所述绿光芯片发出的绿光混合以形成白光。
第二方面,本申请实施例还提供一种显示装置,所述显示装置包括上述任一实施例所述的背光模组。
第三方面,本申请实施例还提供一种背光模组的制作方法,所述背光模组的制作方法包括:
提供一基板;
在所述基板上设置芯片层,所述芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片;在所述基板上设置量子点层,所述量子点层位于所述芯片层背离所述基板的一侧;
其中,所述量子点层包括红色量子点,所述蓝光芯片发出的一部分蓝光用于激发所述红色量子点以发出红光,所述蓝光芯片发出的另一部分蓝光与所述红光以及所述绿光芯片发出的绿光混合以形成白光。
有益效果
本申请实施例提供的背光模组,通过在基板上设置芯片层,该芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片,红色量子点层位于芯片层背离基板的一侧,红色量子点层包括红色量子点,其中,蓝光芯片发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片发出的另一部分蓝光与红光以及绿光芯片发出的绿光混合以形成白光;本申请中背光模组的光源直接采用蓝光芯片和绿光芯片,其中绿光芯片发出绿光的半波宽为21纳米,而传统的用蓝光激发荧光粉发出的绿光半波宽为56纳米;根据半波宽越窄单色性越好,混光后色域越高的原理,本申请相对于传统的背光方案,缩窄了绿光的半波宽,使得绿光具有更高的色纯度,从而在混光后能够得到高色域的背光源。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的背光模组的第一种结构示意图。
图2为图1所示的背光模组的分解结构示意图。
图3为本申请实施例提供的背光模组的第二种结构示意图。
图4为图3所示的背光模组的分解结构示意图。
图5为本申请实施例中蓝光芯片和绿光芯片的第一种排列示意图。
图6为本申请实施例中蓝光芯片和绿光芯片的第二种排列示意图。
图7为本申请实施例中蓝光芯片和绿光芯片的第三种排列示意图。
图8为本申请实施例中蓝光芯片和绿光芯片的第四种排列示意图。
图9为本申请实施例提供的背光模组的制作方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
液晶显示器作为用户与信息的沟通界面,因其具有高空间利用率、低电磁干扰以及无辐射等优越特性,成为当前主流的显示方式,在电视、智能手机、平板电脑等信息沟通工具中被广泛使用。液晶显示器的液晶模组本身不发光,而是由背光模组为液晶模组提供光源。液晶显示器的背光模组主要包括直下式背光模组和侧入式背光模组。
背光模组通常采用LED作为光源,随着LED背光技术的迅速发展,消费者对电视高色域等方面的需求日渐增加,要求电视的显示颜色更加丰富,层次感更好,色彩还原度更高。因此,本申请实施例提供一种背光模组、显示装置以及背光模组的制作方法,能够实现高色域且混光均匀的背光,给用户带来良好的视觉效果。以下结合附图进行具体的说明。
本申请实施例提供的背光模组为直下式背光模组,其具有多个背光分区,可以实现分区控光功能。该直下式背光模组主要应用于液晶电视、智能手机、平板电脑等显示装置中,以为液晶显示面板提供背光源。
请参考图1和图2,图1为本申请实施例提供的背光模组的第一种结构示意图,图2为图1所示的背光模组的分解结构示意图。
本申请实施例提供的背光模组100包括基板10、芯片层20以及量子点层40。其中,芯片层20设置于基板10上,芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22量子点层40设置于芯片层20背离基板10的一侧,量子点层40包括红色量子点。其中,蓝光芯片21发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片21发出的另一部分蓝光与红光以及绿光芯片22发出的绿光混合以形成白光。
其中,基板10可以为PCB电路板或者柔性线路板,基板10是重要的电子部件,是电子元器件的支撑体,是电子元器件电气相互连接的载体。优选的,基板10为PCB电路板,该PCB电路板为铝基板。
其中,蓝光芯片21和绿光芯片22可以为Micro-LED芯片或者Mini-LED芯片。优选的,蓝光芯片21和绿光芯片22均为倒装Min-LED芯片。蓝光芯片21用于发射蓝光,具体地,蓝光芯片21发出中心波长波为440nm~470nm的蓝光;绿光芯片22用于发出绿光,具体的,绿光芯片22发出中心波长为500nm~545nm的绿光。
蓝光芯片21和绿光芯片22相间隔设置于基板10上,且与基板10电性连接。具体地, 蓝光芯片21和绿光芯片22的发光面朝向背离基板10的一侧,即光向上出射;蓝光芯片21和绿光芯片22的另一面与基板10贴装,例如,基板10对应位置设有焊盘,蓝光芯片21和绿光芯片22通过锡膏焊接于基板10的焊盘上。在本申请实施例中,蓝光芯片21和绿光芯片22的数量均为多个,例如,多个蓝光芯片21和多个绿光芯片22以阵列方式设置于基板10上。
请继续参考图1,本申请实施例中,量子点层40设置于芯片层20背离基板10的一侧,量子点层40包括红色量子点。红色量子点受蓝光芯片21发出的蓝光激发后,发出中心波长为600nm~680nm的红光,该红光与剩余的蓝光、绿光在内部光路中混合形成较高色域的白光。
其中,量子点层40可以理解为量子点扩散板41,量子点扩散板41包括红色量子点。可以理解的,红色量子点均匀分散于扩散板内,扩散板相当于包裹红色量子点的载体,扩散板可以有效阻隔外界水和氧对红色量子点的侵蚀,使得红色量子点保持良好的稳定性,提高红色量子点光转化效率。示例性的,蓝光芯片21发出的蓝光和绿光芯片22发出的绿光射向量子点扩散板41,并激发红色量子点发出中心波长为600nm~680nm的红光,该红光与剩余的蓝光、绿光在内部光路中混合形成色域较宽的白光。
另一方面,量子点扩散板41还具有均光和雾化的作用,量子点扩散板41使得蓝光芯片21发出的蓝光和绿光芯片22发出的绿光发生不同方向的折射或者散射,从而改变光线的行进路线,对光线充分散射以产生光学扩散的效果,使得射入液晶显示模组的光线更加柔和。
需要说明的是,本申请实施例中,通过将红色量子点与扩散板进行结合以形成量子点扩散板41,量子点扩散板41不仅具有红色量子点的光转化的作用,同时还具有扩散板的均光及雾化的作用。通过设置量子点扩散板41,可以有效减小背光模组100的厚度,有利于实现背光模组100的超薄化。
可以理解的,本申请实施例中,背光模组100采用发光峰较窄的蓝光芯片21和绿光芯片22作为光源,再搭配量子点层40,所述量子点层40包括高色纯度的红色量子点,通过蓝绿双基色发光芯片激发红色量子点进行混合以形成白光。需要说明的是,本申请实施例提供的背光模组100,绿光芯片22发出绿光的半波宽在21纳米,而传统的用蓝光激发荧光粉发出的绿光半波宽在56纳米;根据半波宽越窄单色性越好,混光后色域越高的原理,本申请相对于传统的背光方案,缩窄了绿光的半波宽,使得绿光具有更高的色纯度,从而在混光后能够得到高色域的背光源。
如表1所示,表1为本申请实施例提供的背光模组与传统背光方案的色域对比数据。从表1中可以看出,传统的蓝光芯片搭配红、绿荧光粉的背光方案,其色域值(BT2020)不超过75%,而本申请实施例提供的背光模组色域值(BT 2020)可以达到90%以上,按照另外几种色域标准的对比数据,本申请实施例中的背光模组的色域值也有很大的提高,因此相对于传统的蓝光芯片搭配红、绿荧光粉的背光方案,本申请实施例提供的背光模组可以实现超高色域,同时还具有良好的亮度均匀性。
表1:
请继续参考图1和图2,本申请实施例提供的背光模组100还包括透镜层50,透镜层50包覆所述蓝光芯片21和所述绿光芯片22。需要说明的是,通过透镜层50将每一蓝光芯片21和绿光芯片22封装起来,不仅可以维护发光芯片的气密性并保护发光芯片不受周围环境中温度及湿度的影响,同时也防止发光芯片受到机械振动、冲击造成破损或引起特性的变化而影响其发光性能。
需要说明的是,透镜层50包括多个透镜,每一透镜与每一蓝光芯片21或每一绿光芯片22相对应。透镜的形式可以设置呈凸透镜状,透镜能够对蓝光芯片21发出的蓝光或绿光芯片22发出的绿光进行折射、反射或散射,以增加蓝光芯片21或绿光芯片22的出光角度以及混光均匀性,有利于减小发光芯片的使用数量,从而降低背光模组100的成本。
其中,透镜层50采用透明材料制成,尤其是高透明材质,以不影响出射光线的颜色效果。通过将透镜层50设置为透明胶层,使得蓝光芯片21或绿光芯片22发出的光线穿过透镜层50时仍以原始颜色光线射出。例如,蓝光芯片21发出的蓝光穿过透镜层50后仍为蓝光,绿光芯片22发出的绿光穿过透镜层50后仍为绿光。
示例性的,透镜层50的材质可以为环氧树脂、硅胶、聚碳酸酯等材料,对此本申请不做具体限定。
在一些实施例中,透镜层50可以采用在基板10上先点胶覆盖蓝光芯片21和绿光芯片22,然后通过模压方式成型,最后经过烘烤或者UV光照固化后形成最终的透镜层50。
在另一些实施例中,透镜层50包括多个透镜,该透镜可以通过注塑形成,然后将该透镜粘贴固定于蓝光芯片21或绿光芯片22表面,以形成透镜层50对蓝光芯片21和绿光芯片22封装的效果。
请继续参考图1和图2,本申请实施例提供的背光模组100还包括反射层60,所述反射层60设置于基板10上,反射层60包括多个镂空区61,镂空区61也相当于反射层60上设置的开口,蓝光芯片21和绿光芯片22位于所述镂空区61露出的基板10上。需要说明的是,反射层60位于基板10和量子点层40之间,反射层60可以将蓝光芯片21或者绿光芯片22射向基板10的光线反射至量子点层40,以提高光线利用率。
在一些实施例中,反射层60可以为贴附于基板10上的反射片,反射片包括多个镂空区61,镂空区61可以裸漏出基板10上设置的蓝光芯片21或绿光芯片22。具体地,将反射片贴附于基板10上时,首先将每一镂空区61与每一蓝光芯片21或绿光芯片22相对应,之后将反射片进行按压组装到基板10上,以使蓝光芯片21和绿光芯片22从镂空区61暴露出来。
在另一些实施例中,反射层60也可以为喷涂于基板10上的反射涂层,例如金属涂层等。在进行喷涂反射涂层时,可以将镂空区61遮盖起来,未遮盖区域则喷涂反射涂层以形成反射层60。
请继续参考图1和图2,本申请实施例提供的背光模组100还包括背板70,背板70包括底板71以及连接于底板71周缘的侧板72,背板70用于承载固定基板10、量子点层40等各部件,以将各部件装配到一起形成背光模组100。
需要说明的是,本申请实施例中,通过在基板10上设置芯片层20,该芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22,红色量子点层40位于芯片层20背离基板10的一侧,红色量子点层40包括红色量子点,其中,蓝光芯片21发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片发出的另一部分蓝光与红光以及绿光芯片22发出的绿光混合以形成白光;本申请中背光模组的光源直接采用蓝光芯片21和绿光芯片22,其中绿光芯片22发出绿光的半波宽为21纳米,而传统的用蓝光激发荧光粉发出的绿光半波宽为56纳米;根据半波宽越窄单色性越好,混光后色域越高的原理,本申请相对于传统 的背光方案,缩窄了绿光的半波宽,使得绿光具有更高的色纯度,从而在混光后能够得到高色域的背光源,而且结构简单,工艺上较容易实现。
请继续参考图3和图4,图3为本申请实施例提供的背光模组的第二种结构示意图,图4为图3所示的背光模组的分解结构示意图。图3所示的实施例相对于图1所示实施例,不同之处在于量子点层40的设置方式不同。
本申请实施例提供的背光模组100包括基板10、芯片层20以及量子点层40。其中,芯片层20设置于基板10上,芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22,量子点层40设置于芯片层20背离基板10的一侧,量子点层40包括红色量子点。其中,蓝光芯片21发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片21发出的另一部分蓝光与红光以及绿光芯片22发出的绿光混合以形成白光。
其中,量子点层40可以理解为量子点膜片42,量子点膜片42包括红色量子点。可以理解的,红色量子点均匀分散于膜片内,膜片相当于包裹红色量子点的载体,膜片可以有效阻隔外界水和氧对红色量子点的侵蚀,使得红色量子点保持良好的稳定性,有效提高红色量子点光转化效率。示例性的,蓝光芯片21发出的蓝光和绿光芯片22发出的绿光射向量子点膜片42,并激发红色量子点发出中心波长为600nm~680nm的红光,该红光与剩余的蓝光、绿光在内部光路中混合形成色域较宽的白光。
请继续参考图3和图4,本申请实施例提供的背光模组100还包括扩散板80,扩散板80设置于量子点膜片42朝向基板10的一侧。扩散板80具有均光和雾化的作用,可以使得蓝光芯片21发出的蓝光和绿光芯片22发出的绿光发生不同方向的折射或者散射,从而改变光线的行进路线,实现入射至量子点膜片42的光线充分散射以产生光学扩散的效果,使得射入液晶显示模组的光线更加柔和。
请结合图1至图4并参考图5,图5为本申请实施例中蓝光芯片和绿光芯片的第一种排列示意图。本申请实施例提供的背光模组100包括设置于基板10上芯片层20,芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22,其中蓝光芯片21与绿光芯片22在第一方向依次交替排列,且蓝光芯片21与绿光芯片22在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
如图5所示,多个蓝光芯片21与多个绿光芯片22阵列设置于基板10上,且蓝光芯片21与绿光芯片22间隔设置。示例性的,蓝光芯片21与绿光芯片22在第一方向依次交替排列,第一方向可以理解为图5所示的X方向;同时蓝光芯片21与绿光芯片22在第二方向依次交替排列,第二方向可以理解为图5所示的Y方向。可以理解的,通过依次交替设 置蓝光芯片21和绿光芯片22,能够提高蓝光芯片21发出蓝光和绿光芯片22发出绿光的混光均匀性,有利于实现背光模组100的超高色域。
需要说明的是,本申请实施例中,基板10设置有独立的第一驱动电路和第二驱动电路,第一驱动电路用于驱动蓝光芯片21发光,第二驱动电路用于驱动绿光芯片22发光。通过设置两个独立的驱动电路,使得可以分别调整蓝光芯片21和绿光芯片22通过的电流,有利于后续色点的调整。
示例性的,背光模组100可以分为多个控光区域,每一控光区域内的蓝光芯片21先进行串联,然后再并联接入第一驱动电路,同理,每一控光区域内的绿光芯片22先进行串联,然后再并联接入第二驱动电路。其中,第一驱动电路和第二驱动电路为两个独立的驱动电路,相当于,第一驱动电路只能控制蓝光芯片21的通入电流,第二驱动电路只能控制绿光芯片22的通入电流。通过分别控制第一驱动电路和第二驱动电路的电流大小,可以调整蓝光芯片21发出的蓝光和绿光芯片22发出的绿光所需色点值,进而调整蓝绿双基色混光均匀性及色域范围。在实际使用中,蓝光芯片21和绿光芯片22是否需要不同电流,以及电流如何调整,可根据实际需要作出相应设置。
请参考图6,图6为本申请实施例中蓝光芯片和绿光芯片的第二种排列示意图。本申请实施例提供的背光模组100包括设置于基板10上芯片层20,芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22。其中,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列;同时蓝光芯片21和绿光芯片22在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
如图6所示,多个蓝光芯片21与多个绿光芯片22阵列设置于基板10上,且蓝光芯片21与绿光芯片22间隔设置。示例性的,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列,第一方向可以理解为图6所示的X方向;同时蓝光芯片21和绿光芯片22还在第二方向依次交替排列,第二方向可以理解为图6所示的Y方向。
请参考图7,图7为本申请实施例中蓝光芯片和绿光芯片的第三种排列示意图。如图7所示,多个蓝光芯片21与多个绿光芯片22阵列设置于基板10上,且蓝光芯片21与绿光芯片22间隔设置。示例性的,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列,第一方向可以理解为图7所示的Y方向;同时蓝光芯片21和绿光芯片22还在第二方向依次交替排列,第二方向可以理解为图7所示的X方向。
请参考图8,图8为本申请实施例中蓝光芯片和绿光芯片的第四种排列示意图。如图8所示,多个蓝光芯片21与多个绿光芯片22阵列设置于基板10上,且蓝光芯片21与绿光 芯片22间隔设置。示例性的,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列,第一方向可以理解为图8所示的X方向;同时蓝光芯片21和绿光芯片22还在第二方向依次交替排列,并且蓝光芯片21和绿光芯片22在第二方向彼此错开,第二方向可以理解为图8所示的Y方向。
需要说明的是,对于蓝光芯片21和绿光芯片22的排列方式并不限于图示的几种方式,还包括其他对称或不对称的各种排列方式,对此本申请不做具体限定。
需要说明的是,本申请实施例中,基板10设置有独立的第一驱动电路和第二驱动电路,第一驱动电路用于驱动蓝光芯片21发光,第二驱动电路用于驱动绿光芯片22发光。其中,第一驱动电路和第二驱动电路为两个独立的驱动电路,相当于,第一驱动电路只能控制蓝光芯片21的通入电流,第二驱动电路只能控制绿光芯片22的通入电流。通过分别控制第一驱动电路和第二驱动电路的电流大小,可以调整蓝光芯片21发出的蓝光和绿光芯片22发出的绿光所需色点值,进而调整蓝绿双基色混光均匀性及色域范围。在实际使用中,蓝光芯片21和绿光芯片22是否需要不同电流,以及电流如何调整,可根据实际需要作出相应设置。
本申请实施例还提供一种显示装置,该显示装置包括上述任一实施例所示的背光模组100,背光模组100为显示装置提供背光源。所述显示装置可以为:液晶显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本申请实施例对此不作限定。本申请实施例提供的显示装置采用上述的背光模组100,可以实现超高色域,给用户带来良好的视觉效果。
本申请实施例还提供一种背光模组的制作方法。该背光模组的制作方法用于生产该背光模组100。该背光模组100可以应用于上述显示装置。下述方法中,在不影响使用效果的情况下,可以适当调整顺序。
请结合图1至图8并参考图9,图9为本申请实施例提供的背光模组的制作方法的流程示意图。
该背光模组100的制作方法包括如下步骤:
S310,提供一基板,在基板上设置芯片层,其中芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片。
其中,基板10可以为PCB电路板或者柔性线路板,基板10是重要的电子部件,是电子元器件的支撑体,是电子元器件电气相互连接的载体。
蓝光芯片21和绿光芯片22可以为Micro-LED芯片或者Mini-LED芯片。优选的,蓝光 芯片21和绿光芯片22均为倒装Min-LED芯片。
其中,蓝光芯片21和绿光芯片22相间隔设置于基板10上,且与基板10电性连接。具体地,蓝光芯片21和绿光芯片22的发光面朝向背离基板10的一侧,即光向上出射;蓝光芯片21和绿光芯片22的另一面与基板10贴装,例如,基板10对应位置设有焊盘,蓝光芯片21和绿光芯片22通过锡膏焊接于基板10的焊盘上。在本申请实施例中,蓝光芯片21和绿光芯片22的数量均为多个,例如,多个蓝光芯片21和多个绿光芯片22以阵列方式设置于基板10上。
示例性的,背光模组100包括设置于基板10上的多个蓝光芯片21和多个绿光芯片22。其中,蓝光芯片21与绿光芯片22在第一方向依次交替排列,且蓝光芯片21与绿光芯片22在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
示例性的,背光模组100包括设置于基板10上的多个蓝光芯片21和多个绿光芯片22。其中,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列;同时蓝光芯片21和绿光芯片22在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
示例性的,背光模组100包括设置于基板10上的多个蓝光芯片21和多个绿光芯片22。其中,蓝光芯片21在第一方向间隔排列,绿光芯片22在第一方向间隔排列;同时蓝光芯片21和绿光芯片22在第二方向依次交替排列,并且蓝光芯片21和绿光芯片22再第二方向彼此错开,所述第一方向垂直于所述第二方向。
需要说明的是,基板10设置有独立的第一驱动电路和第二驱动电路,第一驱动电路用于驱动蓝光芯片21发光,第二驱动电路用于驱动绿光芯片22发光。其中,第一驱动电路和第二驱动电路为两个独立的驱动电路,相当于,第一驱动电路只能控制蓝光芯片21的通入电流,第二驱动电路只能控制绿光芯片22的通入电流。通过分别控制第一驱动电路和第二驱动电路的电流大小,可以调整蓝光芯片21发出的蓝光和绿光芯片22发出的绿光所需色点值,进而调整蓝绿双基色混光均匀性及色域范围。在实际使用中,蓝光芯片21和绿光芯片22是否需要不同电流,以及电流如何调整,可根据实际需要作出相应设置。
S320,在基板上设置量子点层,所述量子点层位于芯片层背离基板的一侧;其中,量子点层包括红色量子点,蓝光芯片发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片发出的另一部分蓝光与红光以及绿光芯片发出的绿光混合以形成白光。
需要说明的是,蓝光芯片21发出的蓝光和绿光芯片22发出的绿光射向量子点层40,并激发红色量子点发出中心波长为600nm~680nm的红光,该红光与剩余的蓝光、绿光在内部光路中混合形成色域较宽的白光。
其中,量子点层40为可以为量子点扩散板41,量子点扩散板41包括红色量子点。可以理解的,红色量子点均匀分散于扩散板内,扩散板相当于包裹红色量子点的载体,扩散板可以有效阻隔外界水和氧对红色量子点的侵蚀,使得红色量子点保持良好的稳定性,提高红色量子点光转化效率。
在另一些实施例中,量子点层40可以为量子点膜片42,量子点膜片42包括红色量子点。可以理解的,红色量子点均匀分散于膜片内,膜片相当于包裹红色量子点的载体,膜片可以有效阻隔外界水和氧对红色量子点的侵蚀,使得红色量子点保持良好的稳定性,有效提高红色量子点光转化效率。
本申请实施例提供的背光模组100的制作方法中,步骤S310之后,还包括:在所述基板上设置透镜层,所述透镜层包覆所述蓝光芯片和所述绿光芯片。
需要说明的是,通过透镜层50将每一蓝光芯片21和绿光芯片22封装起来,不仅可以维护发光芯片的气密性并保护发光芯片不受周围环境中温度及湿度的影响,同时也防止发光芯片受到机械振动、冲击造成破损或引起特性的变化而影响其发光性能。同时透镜层50还能够对蓝光芯片21发出的蓝光或绿光芯片22发出的绿光进行折射、反射或散射,以增加蓝光芯片21或绿光芯片22的出光角度以及混光均匀性,有利于减小发光芯片的使用数量,从而降低背光模组100的成本。
在一些实施例中,在基板10上先点胶覆盖蓝光芯片21和绿光芯片22,然后通过模压方式成型,最后经过烘烤或者UV光照固化后形成最终的透镜层50。
在另一些实施例中,透镜层50包括多个透镜,该透镜可以通过注塑形成。将该透镜粘贴固定于蓝光芯片21或绿光芯片22表面,以形成透镜层50对蓝光芯片21和绿光芯片22封装的效果。
本申请实施例提供的背光模组100的制作方法中,步骤S320之前,还包括:在所述基板上设置反射层,反射层包括多个镂空区,蓝光芯片和绿光芯片位于所述镂空区露出的所述基板上。
示例性的,反射层60可以为贴附于基板10上的反射片,反射片包括多个镂空区61,镂空区61可以裸漏出基板10上设置的蓝光芯片21或绿光芯片22。具体地,将反射片贴附于基板10上时,首先将每一镂空区61与每一蓝光芯片21或绿光芯片22相对应,之后将反射片进行按压组装到基板10上,以使蓝光芯片21和绿光芯片22从镂空区61暴露出来。
在一些实施例中,反射层60也可以为喷涂于基板10上的反射涂层,例如金属涂层等。 在进行喷涂反射涂层时,可以将镂空区61遮盖起来,未遮盖区域则喷涂反射涂层以形成反射层60。
本申请实施例提供的背光模组100,通过在基板10上设置芯片层20,该芯片层20包括间隔设置的多个蓝光芯片21和多个绿光芯片22,红色量子点层40位于芯片层20背离基板10的一侧,红色量子点层40包括红色量子点,其中,蓝光芯片21发出的一部分蓝光用于激发红色量子点以发出红光,蓝光芯片发出的另一部分蓝光与红光以及绿光芯片22发出的绿光混合以形成白光;本申请中背光模组100的光源直接采用蓝光芯片21和绿光芯片22,其中绿光芯片22发出绿光的半波宽为21纳米,而传统的用蓝光激发荧光粉发出的绿光半波宽为56纳米;根据半波宽越窄单色性越好,混光后色域越高的原理,本申请相对于传统的背光方案,缩窄了绿光的半波宽,使得绿光具有更高的色纯度,从而在混光后能够得到高色域的背光源。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例提供的背光模组、显示装置以及背光模组的制作方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种背光模组,其中,包括:
    基板;
    芯片层,设置于所述基板,所述芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片;
    量子点层,设置于所述芯片层背离所述基板的一侧,所述量子点层包括红色量子点,所述蓝光芯片发出的一部分蓝光用于激发所述红色量子点以发出红光,所述蓝光芯片发出的另一部分蓝光与所述红光以及所述绿光芯片发出的绿光混合以形成白光。
  2. 根据权利要求1所述的背光模组,其中,所述蓝光芯片与所述绿光芯片在第一方向依次交替排列,所述蓝光芯片与所述绿光芯片在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
  3. 根据权利要求1所述的背光模组,其中,所述蓝光芯片在第一方向间隔排列,所述绿光芯片在第一方向间隔排列,所述蓝光芯片和所述绿光芯片在第二方向依次交替排列,所述第一方向垂直于所述第二方向。
  4. 根据权利要求3所述的背光模组,其中,所述蓝光芯片和所述绿光芯片在所述第二方向相互错开。
  5. 根据权利要求1所述的背光模组,其中,所述基板设置有独立的第一驱动电路和第二驱动电路,所述第一驱动电路用于驱动所述蓝光芯片发光,所述第二驱动电路用于驱动所述绿光芯片发光。
  6. 根据权利要求5所述的背光模组,其中,所述背光模组分为多个控光区域;每一所述控光区域内的所述蓝光芯片先进行串联,然后再并联接入所述第一驱动电路;每一所述控光区域内的所述绿光芯片先进行串联,然后再并联接入所述第二驱动电路。
  7. 根据权利要求1所述的背光模组,其中,还包括透镜层,所述透镜层包覆所述蓝光芯片和所述绿光芯片。
  8. 根据权利要求7所述的背光模组,其中,所述透镜层包括多个透镜,每一所述透镜与一个所述蓝光芯片或一个所述绿光芯片相对应。
  9. 根据权利要求8所述的背光模组,其中,所述透镜呈凸透镜状。
  10. 根据权利要求1所述的背光模组,其中,所述量子点层为量子点扩散板。
  11. 根据权利要求1所述的背光模组,其中,所述量子点层为量子点膜片。
  12. 根据权利要求1所述的背光模组,其中,还包括反射层,所述反射层设置于所述基板上,所述反射层包括多个镂空区,所述蓝光芯片和所述绿光芯片位于所述镂空区露出 的所述基板上。
  13. 根据权利要求12所述的背光模组,其中,所述反射层位于所述基板和所述量子点层之间。
  14. 根据权利要求1所述的背光模组,其中,所述蓝光芯片和所述绿光芯片均为Micro-LED芯片。
  15. 根据权利要求1所述的背光模组,其中,所述蓝光芯片和所述绿光芯片均为Mini-LED芯片。
  16. 一种显示装置,其中,所述显示装置包括权利要求1至15任一项所述的背光模组。
  17. 一种背光模组的制作方法,其中,包括:
    提供一基板;
    在所述基板上设置芯片层,所述芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片;
    在所述基板上设置量子点层,所述量子点层位于所述芯片层背离所述基板的一侧;
    其中,所述量子点层包括红色量子点,所述蓝光芯片发出的一部分蓝光用于激发所述红色量子点以发出红光,所述蓝光芯片发出的另一部分蓝光与所述红光以及所述绿光芯片发出的绿光混合以形成白光。
  18. 根据权利要求17所述的背光模组的制作方法,其中,所述在所述基板上设置芯片层,所述芯片层包括间隔设置的多个蓝光芯片和多个绿光芯片之后,还包括:
    在所述基板上设置透镜层,所述透镜层包覆所述蓝光芯片和所述绿光芯片。
  19. 根据权利要求17所述的背光模组的制作方法,其中,所述在所述基板上设置透镜层,包括:
    在所述基板上先点胶覆盖所述蓝光芯片和所述绿光芯片,然后通过模压方式成型,最后经过烘烤或者UV光照固化后形成最终的透镜层。
  20. 根据权利要求17所述的背光模组的制作方法,其中,所述在所述基板上设置量子点层之前,还包括;
    在所述基板上设置反射层,所述反射层包括多个镂空区,所述蓝光芯片和所述绿光芯片位于所述镂空区露出的所述基板上。
PCT/CN2023/100534 2022-09-07 2023-06-15 背光模组、显示装置以及背光模组的制作方法 WO2024051256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211091857.XA CN117130193A (zh) 2022-09-07 2022-09-07 背光模组、显示装置以及背光模组的制作方法
CN202211091857.X 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024051256A1 true WO2024051256A1 (zh) 2024-03-14

Family

ID=88849611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100534 WO2024051256A1 (zh) 2022-09-07 2023-06-15 背光模组、显示装置以及背光模组的制作方法

Country Status (2)

Country Link
CN (1) CN117130193A (zh)
WO (1) WO2024051256A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234149A (zh) * 2013-03-29 2013-08-07 京东方科技集团股份有限公司 背光模组、液晶显示器及背光源驱动控制方法
CN106449620A (zh) * 2016-10-10 2017-02-22 天津中环电子照明科技有限公司 一种基于蓝、绿光led芯片的远程量子点led器件
CN206739014U (zh) * 2017-05-03 2017-12-12 深圳Tcl新技术有限公司 Led发光组件、灯条及背光模组
CN207424457U (zh) * 2017-10-18 2018-05-29 安徽芯瑞达科技股份有限公司 基于双芯片双电路连接led灯珠的直下式背光源
CN207834348U (zh) * 2017-11-27 2018-09-07 广东晶科电子股份有限公司 一种封装结构、白光发光二极管及背光模组
CN109143682A (zh) * 2018-09-26 2019-01-04 上海中航光电子有限公司 背光模组和显示装置
CN109799647A (zh) * 2019-03-29 2019-05-24 深圳创维-Rgb电子有限公司 一种背光源及液晶显示模组
CN217112965U (zh) * 2021-11-17 2022-08-02 江苏毅昌科技有限公司 一种背光模组及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234149A (zh) * 2013-03-29 2013-08-07 京东方科技集团股份有限公司 背光模组、液晶显示器及背光源驱动控制方法
CN106449620A (zh) * 2016-10-10 2017-02-22 天津中环电子照明科技有限公司 一种基于蓝、绿光led芯片的远程量子点led器件
CN206739014U (zh) * 2017-05-03 2017-12-12 深圳Tcl新技术有限公司 Led发光组件、灯条及背光模组
CN207424457U (zh) * 2017-10-18 2018-05-29 安徽芯瑞达科技股份有限公司 基于双芯片双电路连接led灯珠的直下式背光源
CN207834348U (zh) * 2017-11-27 2018-09-07 广东晶科电子股份有限公司 一种封装结构、白光发光二极管及背光模组
CN109143682A (zh) * 2018-09-26 2019-01-04 上海中航光电子有限公司 背光模组和显示装置
CN109799647A (zh) * 2019-03-29 2019-05-24 深圳创维-Rgb电子有限公司 一种背光源及液晶显示模组
CN217112965U (zh) * 2021-11-17 2022-08-02 江苏毅昌科技有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
CN117130193A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US10845641B2 (en) Direct backlight module and liquid crystal display device
CN107093659B (zh) 柔性面光源及其制造方法及电子设备
WO2021227098A1 (zh) 背光模组和显示面板
KR101824884B1 (ko) 백라이트 유닛
KR102067420B1 (ko) 발광다이오드어셈블리 및 그를 포함한 액정표시장치
JP2004118205A (ja) 波長変換発光デバイスを用いるカラーlcdのバックライト
CN101169556A (zh) 一种使用led光源的侧光式背光模组
CN108732816A (zh) 面光源背光模组及液晶显示面板
WO2020025054A1 (zh) 一种发光装置及其制备方法
CN215416207U (zh) 一种显示装置
CN111240094B (zh) 一种面光源
KR20120056001A (ko) 백라이트 유닛 및 액정표시장치
CN101071232A (zh) 面光源装置及其制作方法与具此面光源装置的液晶显示器
US11822183B2 (en) Display apparatus
WO2023165212A1 (zh) 背光模组及直下式背光装置
CN214751236U (zh) 一种显示装置
CN201129667Y (zh) 一种使用led光源的侧光式背光模组
KR100824716B1 (ko) 엘이디 칩온보드 타입의 면광원모듈과 이를 이용한액정표시장치
WO2024051256A1 (zh) 背光模组、显示装置以及背光模组的制作方法
KR20130058264A (ko) 액정표시장치
WO2023284641A1 (zh) 背光模组和液晶显示器
CN114864797A (zh) 发光面板和显示装置
CN114509895A (zh) 背光模组及其制备方法和显示装置
CN111290172A (zh) 一种面光源结构及其制作方法、显示装置
CN115407550B (zh) 一种显示装置