WO2024051128A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2024051128A1
WO2024051128A1 PCT/CN2023/080562 CN2023080562W WO2024051128A1 WO 2024051128 A1 WO2024051128 A1 WO 2024051128A1 CN 2023080562 W CN2023080562 W CN 2023080562W WO 2024051128 A1 WO2024051128 A1 WO 2024051128A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
circuit board
transceiver
light
Prior art date
Application number
PCT/CN2023/080562
Other languages
English (en)
French (fr)
Inventor
邵乾
刘维伟
张强
张晓廓
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222412337.6U external-priority patent/CN218350555U/zh
Priority claimed from CN202211204022.0A external-priority patent/CN117826342A/zh
Priority claimed from CN202211202819.7A external-priority patent/CN117826338A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2024051128A1 publication Critical patent/WO2024051128A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Definitions

  • the present application relates to the field of optical fiber communication technology, and in particular to an optical module.
  • optical communication technology optical modules are tools for realizing mutual conversion of optical and electrical signals. They are one of the key components in optical communication equipment. With the development of optical communication technology, the transmission rate of optical modules continues to increase.
  • the present disclosure provides an optical module, including an optical transceiver component.
  • the optical transceiver component includes a transceiver housing and a third circuit board.
  • the first end of the transceiver housing is provided with a light window configured to emit or inject optical signals
  • the second end is provided with an insertion opening configured to insert a third circuit board
  • optical components are provided inside.
  • the third circuit board is provided with a hollowed-out area.
  • the first optical signal in the transceiver housing is emitted through the optical window
  • the second optical signal in the optical fiber adapter is emitted into the transceiver housing through the optical window.
  • the circuit board is inserted into the transceiver housing through the insertion port.
  • the optical components include a laser chip, a first lens, a lithium niobate chip, a second lens, a second filter, a third lens, a receiving turning prism and a light receiving chip.
  • the laser chip, the first lens, the second lens, the second filter, the third lens, the receiving turning prism and the light receiving chip are all located at the first end of the transceiver housing, and the lithium niobate chip is located at the second end of the transceiver housing.
  • the laser chip is a high-power DFB laser chip.
  • the high-power DFB laser chip is configured to emit high-power light.
  • the first lens, located between the laser chip and the lithium niobate chip, is configured to couple high-power light to the lithium niobate chip.
  • the lithium niobate chip is set corresponding to the hollowed-out area, including the substrate and the light modulation film layer, and the optical loss is less than 10dB.
  • the light modulation thin film layer is laid on the substrate and has a thickness of less than 100 ⁇ m.
  • the second lens is located between the lithium niobate chip and the second optical filter, and is configured to collimate the modulated optical signal to obtain a collimated optical signal.
  • the second filter located between the laser chip and the third lens, is configured to transmit the collimated optical signal to the fiber optic adapter.
  • the third lens located between the second filter and the receiving turning prism, is configured to couple the second optical signal reflected by the second filter to the receiving turning prism.
  • the receiving turning prism is configured to change the second optical signal and reflect the second optical signal to the light receiving chip.
  • Figure 1 is a connection diagram of an optical communication system provided according to some embodiments of the present disclosure.
  • Figure 2 is a structural diagram of an optical network terminal provided according to some embodiments of the present disclosure.
  • Figure 3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
  • Figure 4 is an exploded structural view of an optical module provided according to some embodiments of the present disclosure.
  • Figure 5 is a structural diagram of an optical module with an upper housing removed according to some embodiments of the present disclosure
  • Figure 6 is a structural diagram of an optical transceiver component and a circuit board provided according to some embodiments of the present disclosure
  • Figure 7 is a first structural diagram of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 8 is a first cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure
  • Figure 9 is a second cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 10 is a third cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 11 is a structural diagram of an optical transceiver component with an upper cover removed according to some embodiments of the present disclosure
  • Figure 12 is a structural diagram of an optical component and a third circuit board provided according to some embodiments of the present disclosure.
  • Figure 13 is a structural diagram of an optical component provided according to some embodiments of the present disclosure.
  • Figure 14 is a structural diagram of a third circuit board provided according to some embodiments of the present disclosure.
  • Figure 15 is a structural diagram of a fiber optic adapter, a focus ring, a fourth lens and a lens mount provided according to some embodiments of the present disclosure
  • Figure 16 is an exploded view of a fiber optic adapter, an adjustment ring, a fourth lens and a lens mount provided according to some embodiments of the present disclosure
  • Figure 17 is a first structural diagram of a transceiver tube holder provided according to some embodiments of the present disclosure.
  • Figure 18 is a second structural diagram of a transceiver socket provided according to some embodiments of the present disclosure.
  • Figure 19 is an exploded view of a transceiver socket provided according to some embodiments of the present disclosure.
  • Figure 20 is a first cross-sectional view of a transceiver socket provided according to some embodiments of the present disclosure
  • Figure 21 is a second cross-sectional view of a transceiver socket provided according to some embodiments of the present disclosure.
  • Figure 22 is a first optical path diagram of an optical module provided according to some embodiments of the present disclosure.
  • Figure 23 is a second optical path diagram of an optical module provided according to some embodiments of the present disclosure.
  • Figure 24 is a schematic diagram of the connection structure between an optical transceiver component and a circuit board according to some embodiments of the present disclosure
  • Figure 25 is a schematic structural diagram of an optical transceiver component and a circuit board separated according to some embodiments of the present disclosure
  • Figure 26 is a schematic structural diagram of an optical fiber adapter and optical transceiver components according to some embodiments of the present disclosure
  • Figure 27 is an exploded view of the structure of a fiber optic adapter provided according to some embodiments of the present disclosure.
  • Figure 28 is a schematic cross-sectional view of an optical fiber adapter provided according to some embodiments of the present disclosure.
  • Figure 29 is a schematic cross-sectional structural diagram of an optical transceiver component according to some embodiments of the present disclosure.
  • Figure 30 is an exploded partial structural diagram of an optical transceiver component according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicit Contains an indication of the quantity of the technical characteristics indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • some embodiments may be described using the term “connected” to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • optical signals are used to carry information to be transmitted, and the optical signals carrying information are transmitted to information processing equipment such as computers through information transmission equipment such as optical fibers or optical waveguides to complete the transmission of information. Since light has passive transmission characteristics when transmitted through optical fibers or optical waveguides, information transmission with low cost and low optical loss can be achieved.
  • the signals transmitted by information transmission equipment such as optical fibers or optical waveguides are optical signals, while the signals that can be recognized and processed by computers and other information processing equipment are electrical signals. Therefore, in order to distinguish between information transmission equipment such as optical fibers or optical waveguides and computers and other information processing equipment To establish an information connection between them, it is necessary to realize the mutual conversion of electrical signals and optical signals.
  • Optical modules realize the mutual conversion function of the above-mentioned optical signals and electrical signals in the field of optical communication technology.
  • the optical module includes an optical port and an electrical port.
  • the optical module realizes optical communication with information transmission equipment such as optical fiber or optical waveguide through the optical port, and realizes the electrical connection with the optical network terminal (for example, optical modem) through the electrical port.
  • the electrical connection It is mainly configured for power supply, I2C signal transmission, data information transmission, grounding, etc.; the optical network terminal transmits electrical signals to computers and other information processing equipment through network cables or wireless fidelity technology (Wi-Fi).
  • Figure 1 is a connection diagram of an optical communication system provided according to some embodiments of the present disclosure.
  • the optical communication system includes a remote server 1000, a local information processing device 2000, an optical network terminal 100, an optical module 200, an optical fiber 101 and a network cable 103.
  • optical fiber 101 One end of the optical fiber 101 is connected to the remote server 1000, and the other end is connected to the optical network terminal 100 through the optical module 200.
  • the optical fiber itself can support long-distance signal transmission, such as signal transmission of thousands of meters (6 kilometers to 8 kilometers). On this basis, if a repeater is used, unlimited distance transmission can be theoretically achieved. Therefore, in the optical communication system, the distance between the remote server 1000 and the optical network terminal 100 can reach thousands of meters, tens of kilometers or hundreds of kilometers.
  • the local information processing device 2000 can be any one or more of the following devices: router, switch, computer, mobile phone, tablet computer, television, etc.
  • the physical distance between the remote server 1000 and the optical network terminal 100 is greater than the physical distance between the local information processing device 2000 and the optical network terminal 100 .
  • the connection between the local information processing equipment 2000 and the remote server 1000 is connected by the optical fiber 101 and the network.
  • the cable 103 is completed; and the connection between the optical fiber 101 and the network cable 103 is completed by the optical module 200 and the optical network terminal 100.
  • the optical module 200 includes an optical port and an electrical port.
  • the optical port is configured to access the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101;
  • the electrical port is configured to access the optical network terminal 100, so that The optical module 200 establishes a bidirectional electrical signal connection with the optical network terminal 100 .
  • the optical module 200 realizes mutual conversion between optical signals and electrical signals, thereby establishing an information connection between the optical fiber 101 and the optical network terminal 100 .
  • the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module 200 and then input into the optical network terminal 100.
  • the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module 200 and input into the optical fiber 101. Since the optical module 200 is a tool for converting optical signals and electrical signals and does not have the function of processing data, the information does not change during the above-mentioned photoelectric conversion process.
  • the optical network terminal 100 includes a substantially rectangular parallelepiped housing, and an optical module interface 102 and a network cable interface 104 provided on the housing.
  • the optical module interface 102 is configured to access the optical module 200, so that the optical network terminal 100 and the optical module 200 establish a bidirectional electrical signal connection;
  • the network cable interface 104 is configured to access the network cable 103, so that the optical network terminal 100 and the network cable 103 Establish a two-way electrical signal connection.
  • the optical module 200 and the network cable 103 are connected through the optical network terminal 100 .
  • the optical network terminal 100 transmits the electrical signal from the optical module 200 to the network cable 103, and transmits the electrical signal from the network cable 103 to the optical module 200. Therefore, the optical network terminal 100 serves as the host computer of the optical module 200 and can monitor the optical module. 200 job.
  • the host computer of the optical module 200 may also include an optical line terminal (Optical Line Terminal, OLT), etc.
  • the remote server 1000 establishes a bidirectional signal transmission channel with the local information processing device 2000 through the optical fiber 101, the optical module 200, the optical network terminal 100 and the network cable 103.
  • Figure 2 is a structural diagram of an optical network terminal according to some embodiments of the present disclosure.
  • Figure 2 only shows the parts of the optical network terminal 100 related to the optical module 200.
  • the optical network terminal 100 also includes a circuit board 105 provided in the housing, a cage 106 provided on the surface of the circuit board 105, a heat sink 107 provided on the cage 106, and electrical connections provided inside the cage 106. device.
  • the electrical connector is configured to be connected to the electrical port of the optical module 200; the heat sink 107 has fins and other protrusions that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the optical network terminal 100, and the optical module 200 is fixed by the cage 106.
  • the heat generated by the optical module 200 is conducted to the cage 106, and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 and the optical network terminal 100 establish a bidirectional electrical signal connection.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 and the optical fiber 101 establish a bidirectional optical signal connection.
  • Figure 3 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
  • Figure 4 is an exploded structural view of an optical module according to some embodiments of the present disclosure.
  • the optical module 200 includes a shell, a circuit board 300 and an optical transceiver component 400 disposed in the shell.
  • the housing includes an upper housing 201 and a lower housing 202.
  • the upper housing 201 is covered on the lower housing 202 to form the above-mentioned housing with two openings; the outer contour of the housing can be a square body.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021; the upper case 201 includes a cover plate 2011, and the cover plate 2011 is closed On the two lower side plates 2022 of the lower housing 202, the above-mentioned housing is formed.
  • the lower case 202 includes a bottom plate 2021 and two lower side plates 2022 located on both sides of the bottom plate 2021 and perpendicular to the bottom plate 2021;
  • the upper case 201 includes a cover plate 2011 and two lower side plates 2022 located on both sides of the cover plate 2011.
  • the two upper side plates of the cover plate 2011 are vertically arranged, and are combined with the two lower side plates 2022 to realize that the upper housing 201 is covered on the lower housing 202 .
  • the direction of the connection line between the two openings 204 and 205 may be consistent with the length direction of the optical module 200 , or may be inconsistent with the length direction of the optical module 200 .
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at an end of the optical module 200 and the opening 205 is located at a side of the optical module 200 .
  • the opening 204 is an electrical port, and the golden finger 301 of the circuit board 300 extends from the electrical port and is inserted into the host computer (for example, the optical network terminal 100); the opening 205 is an optical port, and the opening 205 is configured to access the external optical fiber 101. So that the external optical fiber 101 is connected to the optical transceiver component 400 inside the optical module 200.
  • the assembly method of combining the upper housing 201 and the lower housing 202 facilitates the installation of the circuit board 300, the optical transceiver component 400 and other components into the housing, and the upper housing 201 and the lower housing 202 form an encapsulation and protection for these components.
  • the assembly method of combining the upper housing 201 and the lower housing 202 facilitates the installation of the circuit board 300, the optical transceiver component 400 and other components into the housing, and the upper housing 201 and the lower housing 202 form an encapsulation and protection for these components.
  • the positioning components such as the circuit board 300 and the optical transceiver component 400
  • heat dissipation components and electromagnetic shielding components of these components
  • the upper housing 201 and the lower housing 202 can be made of metal materials, which facilitates electromagnetic shielding and heat dissipation.
  • the optical module 200 also includes an unlocking component 203 located outside its housing.
  • the unlocking component is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the connection between the optical module 200 and the host computer. Fixed connection.
  • the unlocking component is located on the outer walls of the two lower side plates 2022 of the lower housing 202, and has a snapping component that matches the host computer cage (for example, the cage 106 of the optical network terminal 100).
  • the optical module 200 is inserted into the cage of the host computer, the optical module 200 is fixed in the cage of the host computer by the engaging parts of the unlocking part.
  • the engaging parts of the unlocking part move accordingly, thereby changing the engaging parts.
  • the connection relationship with the host computer is to release the engagement relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out from the cage of the host computer.
  • the circuit board 300 includes circuit wiring, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit wiring to realize functions such as power supply, electrical signal transmission, and grounding.
  • Electronic components include, for example, capacitors, resistors, transistors, and Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • Chips include, for example, microcontroller units (Microcontroller Units, MCUs), laser driver chips, limiting amplifiers, clock and data recovery (Clock and Data Recovery, CDR) chips, power management chips, and digital signal processing (Digital Signal Processing, DSP) chips.
  • the circuit board 300 can be a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also perform a load-bearing function. For example, the rigid circuit board can smoothly carry the above-mentioned electronic components and chips; when the optical transceiver component is located on the circuit board, the rigid circuit board The circuit board can also provide smooth loading; the rigid circuit board can also be inserted into the electrical connector in the host computer cage.
  • the circuit board 300 also includes a gold finger 301 formed on an end surface thereof, and the gold finger 301 is composed of a plurality of mutually independent pins.
  • the circuit board 300 is inserted into the cage 106 and is electrically connected to the electrical connector in the cage 106 by the gold finger 301 .
  • the gold finger 301 can be disposed only on one side of the circuit board 300 (for example, the upper surface shown in FIG. 4 ), or can be disposed on the upper and lower surfaces of the circuit board 300 to adapt to situations where a large number of pins are required.
  • the golden finger 301 is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc. Of course, flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards can be used in conjunction with rigid circuit boards to supplement rigid circuit boards.
  • a flexible circuit board can be used to connect the rigid circuit board and the optical transceiver component.
  • the optical transceiver component 400 is configured to transmit a first optical signal and receive a second optical signal.
  • the optical signal emitted by the optical transceiver component 400 is the first optical signal
  • the optical signal received by the optical transceiver component 400 is the second optical signal.
  • Figure 5 is a structural diagram of an optical module with an upper housing removed according to some embodiments of the present disclosure.
  • Figure 6 is a structural diagram of an optical transceiver component and a circuit board provided according to some embodiments of the present disclosure.
  • the circuit board 300 includes a first circuit board 301 and a second circuit board 302, and the first circuit board 301 is connected to the second circuit board 302.
  • the first circuit board 301 is a hard circuit board, the first end is connected to the second end of the second circuit board 302, and the second end is provided with a golden finger.
  • the second circuit board 302 is a flexible circuit board, with a first end connected to the optical transceiver component 400 and a second end connected to the first end of the first circuit board 301 .
  • Figure 7 is a first structural diagram of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 8 is a first cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 9 is a second cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure.
  • Figure 10 is a third cross-sectional view of an optical transceiver component provided according to some embodiments of the present disclosure.
  • the optical transceiver component 400 includes a transceiver housing 401, an optical fiber adapter 404, and a third circuit board 303.
  • the first end of the transceiver housing 401 is provided with a light window, and the second end of the transceiver housing 401 is provided with an insertion opening.
  • the first end of the transceiver housing 401 is connected to the lens holder 405 through laser welding.
  • the lens holder 405 is welded to the light window of the transceiver housing 401.
  • the lens holder 405 and the optical fiber adapter 404 are connected through the focusing ring 406.
  • the third The circuit board 303 is inserted into the transceiver housing 401 through the insertion port.
  • Figure 11 is a structural diagram of an optical transceiver component with an upper cover removed according to some embodiments of the present disclosure.
  • Figure 12 is a structural diagram of an optical component and a third circuit board provided according to some embodiments of the present disclosure.
  • Figure 13 is a structural diagram of an optical component provided according to some embodiments of the present disclosure.
  • the transceiver housing 401 includes an upper cover 4011 and a transceiver tube base 4012.
  • the upper cover 4011 is closed on the transceiver tube base 4012.
  • the upper cover 4011 and The transceiver tube holder 4012 forms a hollow transceiver cavity.
  • the transceiver cavity is provided with optical components.
  • the optical components include a laser chip 4021, a first lens 4022, an isolator 4023, a light modulation chip 4024, a second lens 4025, a second filter 4026, a third lens 4027, a receiving turning prism 40210, a light receiving chip 4028 and a transverse Resistance amplifier chip 40214.
  • the laser chip 4021, the first lens 4022, the isolator 4023, the light modulation chip 4024, the second lens 4025, the second filter 4026, the third lens 4027, the receiving turning prism 40210, and the light receiving chip 4028 are all located in the transceiver base 4012 Above, the transimpedance amplifier chip 40214 is located on the third circuit board 303.
  • the laser chip 4021 is a high-power distributed feedback laser chip, and the laser chip 4021 can provide high-power light.
  • the wavelength of the high-power light emitted by the laser chip 4021 is ⁇ 1
  • the high-power light emitted by the laser chip 4021 is divergent light.
  • a first lens 4022 is provided between the laser chip 4021 and the light modulation chip 4024.
  • the first lens 4022 is configured to couple the high-power light emitted by the laser chip 4021 into the light modulation chip 4024 .
  • the first lens 4022 is a focusing lens, and the focusing lens couples the divergent light into the light modulation chip 4024.
  • the first lens 4022 can also be a collimating lens and a focusing lens.
  • the first lens 4022 includes a first sub-lens 40221 and a second sub-lens 40222.
  • the first sub-lens 40221 is a collimating lens
  • the second sub-lens 40222 is a focusing lens. lens.
  • the first sub-lens 40221 first collimates the divergent light to obtain collimated light.
  • the second sub-lens 40222 then focuses and couples the collimated light into the light modulation chip 4024.
  • an isolator 4023 is provided between the laser chip 4021 and the light modulation chip 4024.
  • the isolator 4023 is located between the first lens 4022 and the light modulation chip 4024; when the first lens 4022 is a combination of a collimating lens and a focusing lens, the isolator 4023 is located between the first lens 4022 and the light modulation chip 4024. Between the first sub-lens 40221 and the second sub-lens 40222.
  • the optical module includes a DFB laser chip + light modulation chip combination.
  • the light modulation chip 4024 includes a substrate and a light modulation film layer.
  • the substrate is a glass substrate, and the light modulation film layer is laid on the substrate.
  • the thickness of the light modulating film layer is less than 100 ⁇ m. Since the light modulation chip 4024 is relatively small and has relatively high integration accuracy, the light modulation chip 4024 has the advantages of low power consumption and low optical loss compared to silicon photonic chips. Among them, the optical loss of the silicon photonic chip is less than 11.2dB, and the optical loss of the light modulation chip 4024 is less than 10dB.
  • the light modulation chip 4024 is arranged in the transceiver tube base and is located in the gap.
  • the light modulation chip 4024 includes a substrate and a light modulation film layer located on the surface of the substrate; a first pad is provided on the surface of the light modulation film layer. It is electrically connected to the third circuit board; an arc-shaped light waveguide is provided inside the light modulation film layer, and the light inlet and light outlet of the light waveguide are located at the same end of the light modulation film layer.
  • the substrate is a glass substrate, the light modulation film layer may be a light modulation film layer, and the film is laid on the substrate.
  • the light modulation chip 4024 may be a lithium niobate chip or a chip made of other materials.
  • the thickness of the light modulation film layer is less than 100 ⁇ m. In order to reduce the size of the light modulation chip 4024, in some embodiments, the thickness of the light modulation film layer is less than 20 ⁇ m.
  • the light modulating film layer may be a lithium niobate film.
  • the optical loss of the silicon optical chip is less than 11.2dB, in order to configure the optical module including the DFB laser chip + silicon optical chip combination to meet the optical power requirements of the light emitted by the 50G PON, find the optical power of the light emitted by the DFB laser chip > 158mW. Since the optical loss of the optical modulation chip 4024 is less than 10dB, in order to configure the optical module including the DFB laser chip + optical modulation chip combination to meet the optical power requirements of the light emitted by the 50G PON, the optical power of the light emitted by the DFB laser chip is >80mW .
  • the optical power of the light emitted by the high-power DFB laser chip is less than 120mW. Therefore, in order for the optical module to meet the optical power requirements of the light emitted by 50G PON, the optical module uses a combination of DFB laser chip + light modulation chip.
  • the light modulation chip 4024 is configured such that one side of the light modulation chip 4024 is provided with an input interface and an output interface.
  • the light modulation chip 4024 is provided with an input optical waveguide, a Mach-Zehnder (MZ) modulator and an output optical waveguide.
  • MZ Mach-Zehnder
  • the input optical waveguide connects the input interface and the input end of the MZ modulator
  • the output optical waveguide connects the output end of the MZ modulator and the output optical interface.
  • High-power light is incident into the input optical waveguide of the optical modulation chip 4024 through the input interface. Most of the high-power light received by the input optical waveguide is incident on the input end of the MZ modulator.
  • the MZ modulator modulates the high-power light to obtain modulation.
  • the modulated optical signal is output to the output optical waveguide through the output end of the MZM modulator, and most of the modulated optical signals received by the output optical waveguide are output through the output interface.
  • the modulated optical signal is a divergent optical signal.
  • the input interface and the output interface of the light modulation chip 4024 can also be provided on different sides of the light modulation chip 4024. However, if the input interface and the output interface of the light modulation chip 4024 are arranged on different sides of the light modulation chip 4024, the length and size of the light modulation chip 4024 may be increased, thereby increasing the number of optical modules that encapsulate the light modulation chip 4024 inside it. length size. Therefore, in order to reduce the length size of the light modulation chip 4024, in some embodiments, one side of the light modulation chip 4024 may be provided with an input interface and an output interface.
  • a first power monitor and a second power monitor are provided on the surface of the light modulation chip 4024.
  • the first power monitor is located near the input optical waveguide of the light modulation chip 4024, and the second power monitor is located at the output optical waveguide of the light modulation chip 4024. nearby, first The power monitor is configured to monitor a small part of the light received by the input optical waveguide to monitor the optical power, and the second power monitor is configured to monitor a small part of the optical signal received by the output optical waveguide to monitor whether the MZM modulator is at its maximum Best modulation point.
  • the optical modulation chip 4024 can modulate high-power light (the optical power emitted by the laser chip is >80mW).
  • the optical loss of the optical modulation thin film layer modulator (the optical loss is less than 10dB) is smaller than the optical loss of the silicon photonic chip (the optical loss is less than 11.2dB). ), so that the modulated optical signal can meet the optical power of the light emitted by 50G PON.
  • the second lens 4025 is located between the light modulation chip 4024 and the second filter 4026.
  • the second lens 4025 is configured to collimate the optical signal output by the light modulation chip 4024.
  • the optical signal output by the light modulation chip 4024 is a divergent light signal
  • the second lens 4025 is a collimating lens.
  • the collimating lens collimates the divergent light signal output by the light modulation chip 4024 to obtain a collimated light signal.
  • the optical signal emitted through the transceiver housing is regarded as the first optical signal
  • the optical signal incident through the transceiver housing is regarded as the second optical signal.
  • the second optical filter 4026 is configured to transmit the optical signal of a specific wavelength and reflect the second optical signal to the third lens 4027 .
  • the second optical filter 4026 is configured to transmit the optical signal with the wavelength ⁇ 1 and reflect the second optical signal to the third lens 4027 .
  • the second filter 4026 can either include two 45° triangular prisms, the bevel edges of the two 45° triangular prisms are bonded, and one of the bevel edges is coated with a filter film; it can also include a glass piece, where the glass piece faces the optical fiber. One end of the adapter is coated with a light filter film.
  • the second filter 4026 includes a design of two 45° prisms to facilitate production process operations.
  • the second filter 4026 includes a glass piece, and the glass piece needs a filter bracket to be fixed on the transceiver tube base.
  • the third lens 4027 is located between the second filter 4026 and the receiving turning prism 40210.
  • the third lens 4027 is configured to couple the second optical signal reflected by the second filter 4026 to the receiving turning prism 40210.
  • the third lens 4027 is a focusing lens that focuses and couples the second optical signal reflected by the second filter 4026 to the receiving turning prism 40210.
  • the receiving turning prism 40210 is configured to change the direction of the second optical signal, and the light receiving chip 4028 receives the second optical signal. Since the photosensitive surface of the light receiving chip 4028 is arranged perpendicularly to the third lens 4027, if the turning prism 40210 is not received, the light receiving chip 4028 cannot receive the second optical signal.
  • the receiving turning prism 40210 is located above the light receiving chip 4028.
  • the receiving turning prism 40210 is configured to change the second optical signal coupled to the third lens 4027 so that the light receiving chip 4028 receives the second optical signal. In order to enable the light receiving chip 4028 to receive as much of the second optical signal as possible, in some embodiments, the receiving turning prism 40210 is disposed at the focus of the light receiving chip 4028.
  • the angle of the receiving turning prism 40210 is 41° to 43°.
  • the angle of the receiving turning prism 40210 cannot be set to 45° to prevent the second optical signal from vertically incident on the light receiving chip and reduce the reflection of the second optical signal.
  • the angle of the receiving turning prism 40210 is 42°, and the main optical axis incident on the light receiving chip 4028 is not perpendicular to the upper surface of the light receiving chip 4028, but forms an included angle of 84°. In this way, after a small part of the second optical signal incident on the light receiving chip 4028 is reflected by the light receiving chip, this small part of the second optical signal cannot be reflected back to the optical fiber adapter 404 along the original optical path.
  • the receiving turning prism 40210 may be connected to the third lens 4027 or not connected to the third lens 4027.
  • the receiving turning prism 40210 and the third lens 4027 are connected through refractive index matching glue.
  • the second optical signal passes through the incident surface of the third lens 4027, the exit surface of the third lens 4027, the incident surface of the receiving turning prism 40210, and the reflection of the receiving turning prism 40210. surface and the output surface of the receiving turning prism 40210 to the light receiving chip.
  • the second optical signal is easily reflected by the exit surface of the third lens 4027, and the incident surface of the receiving turning prism 40210 is also easily reflected.
  • the refractive index matching glue makes the exit surface of the third lens 4027 less likely to be reflected, and the incident surface of the receiving turning prism 40210 is also less likely to be reflected. Reduce the optical loss of the second optical signal and reduce the occupied optical module space.
  • the light receiving chip 4028 is located vertically below the receiving turning prism 40210, and the light receiving chip 4028 is configured to convert the received second optical signal into a current signal.
  • the light receiving chip 4028 is provided with a photosensitive surface. The photosensitive surface receives the second optical signal, and the light receiving chip 4028 converts the second optical signal into a current signal.
  • the light modulation chip 4024 is located at the second end of the transceiver socket, the laser chip 4021, the first lens 4022, and the isolator 4023, the second lens 4025, the second filter 4026, the third lens 4027, the receiving turning prism 40210, and the light receiving chip 4028 are all located at the first end of the transceiver tube base 4012.
  • the first end of the transceiver tube base 4012 is the first end of the transceiver housing 401
  • the third end of the transceiver tube base 4012 is the first end of the transceiver housing 401.
  • the two ends are the second ends of the transceiver housing 401.
  • the transimpedance amplifier chip 40214 is configured to convert the current signal into a voltage signal.
  • Figure 14 is a structural diagram of a third circuit board provided according to some embodiments of the present disclosure.
  • a notch 3033 is provided at the first end of the third circuit board 303 .
  • the existence of the notch 3033 makes the shape of the third circuit board 303 U-shaped.
  • the notch 3033 is configured to place the light modulation chip 4024.
  • the length of the notch 3033 is greater than or equal to the length of the light modulation chip 4024, and the width of the notch 3033 is greater than or equal to the width of the light modulation chip 4024.
  • the light modulation chip 4024 is provided with a first welding pad, and the third circuit board 303 is provided with a second welding pad.
  • the first welding pad and the second welding pad are provided correspondingly.
  • the width of the notch 3033 is equal to the width of the light modulation chip 4024
  • the length dimension of the notch 3033 is equal to the length dimension of the light modulation chip 4024.
  • the third circuit board 303 includes a first sub-circuit board 3031 and a second sub-circuit board 3032.
  • the first sub-circuit board 3031 and the second sub-circuit board 3032 are an integrally formed structure.
  • the second sub-circuit board 3032 is located at the first end of the third circuit board 303, and the first sub-circuit board 3031 is located at the second end of the third circuit board 303.
  • a second notch area 30322 is provided at the connection between the first sub-circuit board 3031 and the second sub-circuit board 3032.
  • the second sub-circuit board 3032 is provided with a first notch area 30321.
  • the first sub-circuit board 3031 is provided with a notch 3033.
  • the first notch area 30321 is arranged corresponding to the light receiving chip 4028, the connection area between the first side plate and the second side plate is arranged corresponding to the second notch area 30322, and the second notch area 30322 is closer to the third notch area 30321 than the first notch area 30321.
  • the golden finger of circuit board 303 The height of the upper surface of the second sub-circuit board 3032 is lower than the height of the upper surface of the first sub-circuit board 3031 . That is, the second sub-circuit board 3032 is more recessed relative to the first sub-circuit board 3031.
  • part of the first sub-circuit board 3031 is dug After removing several layers, the second sub-circuit board 3032 is obtained, so that the second sub-circuit board 3032 is more recessed relative to the first sub-circuit board 3031, and a transimpedance amplifier chip 40214 and some resistors and capacitors are arranged on the second sub-circuit board 3032. .
  • the first end of the first sub-circuit board 3031 is close to the laser chip 4021.
  • the second end of the first sub-circuit board 3031 is provided with a gold finger.
  • the third end of the first sub-circuit board 3031 is close to the light receiving chip 4028.
  • the third end of the circuit board 3031 is connected to the second sub-circuit board 3032, and the third end of the first sub-circuit board 3031 is not connected to the first end of the first sub-circuit board 3031.
  • the first end of the first sub-circuit board 3031 and the third end of the first sub-circuit board 3031 are located at the first end of the transceiver socket 4012, and the second end of the first sub-circuit board 3031 is located at the first end of the transceiver socket 4012. Second end.
  • Figure 15 is a structural diagram of a fiber optic adapter, a focus ring, a fourth lens and a lens holder according to some embodiments of the present disclosure.
  • Figure 16 is an exploded view of a fiber optic adapter, an adjustment ring, a fourth lens and a lens mount provided in accordance with some embodiments of the present disclosure.
  • a storage cavity is provided in the lens holder 405 , and a fourth lens 4029 is placed in the storage cavity.
  • the fourth lens 4029 and the storage cavity are bonded with glue.
  • the fourth lens 4029 is a focusing lens.
  • the focusing lens is configured to couple the first optical signal transmitted through the second optical filter 4026 to the optical fiber ferrule in the optical fiber adapter 404, and the focusing lens is also configured to collimate the second optical signal incident on the optical fiber ferrule. in the second filter 4026.
  • a focusing cavity is provided in the focusing ring 406 , and the focusing cavity is engaged with one end of the optical fiber adapter 404 facing the transceiver housing 401 .
  • the relative positions of the optical fiber adapter 404 and the lens holder 405 are fixed through optical coupling, and then the focusing ring 406 is used to fix the relative positions of the optical fiber adapter 404 and the lens holder 405.
  • Figure 17 is a first structural diagram of a transceiver socket provided according to some embodiments of the present disclosure.
  • Figure 18 is a second structural diagram of a transceiver socket provided according to some embodiments of the present disclosure.
  • Figure 19 is a schematic diagram of a transceiver socket provided according to some embodiments of the present disclosure. The example provides an exploded view of the transceiver socket.
  • Figure 20 is a first cross-sectional view of a transceiver socket provided according to some embodiments of the present disclosure
  • Figure 21 is a second cross-sectional view of a transceiver socket provided according to some embodiments of the present disclosure.
  • the first end of the transceiver tube base 4012 is provided with a light hole 401211 and a light window 401212, and the second end of the transceiver tube base 4012 is provided with There is an insertion port 401213.
  • the light hole 401211 extends from the inner surface of the first end of the transceiver tube base 4012 to the outer surface of the first end of the transceiver tube base 4012 .
  • the light hole 401211 is configured to emit the first optical signal emitted by the laser chip 4021 out of the transceiver housing 401 , and the light hole 401211 is also configured to emit the second optical signal emitted by the fiber optic adapter 404 into the transceiver housing 401 .
  • the light hole 401211 and the second lens 4025 and the second filter 4026 are on a straight line.
  • the light window 401212 is provided correspondingly to the light hole 401211, and a flat window glass 407 is provided at the light window 401212.
  • the flat window glass 407 is sealed and welded to the light window 401212.
  • the flat window glass 407 not only facilitates the emission of the first optical signal and the second optical signal injection, the transceiver housing 401 can also be sealed.
  • the third circuit board 303 is inserted into the transceiver housing 401 through the insertion port 401213.
  • a third The three circuit boards 303 are welded to the insertion port 401213.
  • the area of the third circuit board 303 corresponding to the insertion port 401213 is covered with copper, and the transceiver tube base 4012 is a metal transceiver tube seat.
  • the area of the third circuit board 303 corresponding to the insertion port 401213 and the insertion port 401213 of the transceiver tube seat 4012 are soldered welding.
  • the transceiver tube base 4012 includes a transceiver bottom plate and a transceiver side plate.
  • the transceiver side plate and the transceiver bottom plate form a cavity without an upper cover.
  • the first end of the transceiver side plate is provided with a light hole 401211 and a light window 401212, and the second end of the transceiver side plate is provided with an insertion opening 401213.
  • the receiving and transmitting base plate includes a tube base body 40121, a storage slot 40122, and a first support protrusion 40123.
  • the concave degree of the storage slot 40122, the tube base body 40121, and the first support protrusion 40123 gradually decreases. That is, the storage groove 40122 is more recessed relative to the tube base body 40121, and the tube base body 40121 is more recessed relative to the first support protrusion 40123.
  • the tube base body 40121 is the area of the receiving and transmitting base plate between the first support protrusion 40123 and the receiving and transmitting side plate except for the storage slot 40122.
  • a light receiving chip 4028 is provided on the stem body 40121.
  • a heat sink substrate is provided on the tube base body 40121, and a light receiving chip 4028 is provided on the heat sink substrate.
  • the light receiving chip 4028 is arranged corresponding to the first notch area 30321 of the third circuit board 303. Since the optical path of the second optical signal needs to be turned by the receiving turning prism, the upper surface of the light receiving chip 4028 must be much lower than the upper surface of the light modulating chip 4024. However, the upper surface of the third circuit board 303 is at about the same height as the upper surface of the light modulation chip 4024, so the light receiving chip 4028 cannot be placed directly on the third circuit board 303, but is placed on the tube base body 40121 through the heat sink substrate. superior. That is, the light receiving chip 4028 is bonded to the heat sink substrate, and the heat sink substrate is bonded to the stem body 40121.
  • the storage slot 40122 is located at the first end of the transceiver bottom plate, and the storage slot 40122 is located between the light hole 401211 and the first support protrusion 40123.
  • the storage slot 40122 is configured to place the semiconductor refrigerator.
  • the semiconductor refrigerator and the light receiving chip 4028 are respectively located on both sides of the first support protrusion 40123.
  • the semiconductor refrigerator is configured to control the temperature of the laser chip 4021 so that the laser chip 4021 emits light of a specific wavelength.
  • the position of the first supporting protrusion 40123 needs to be raised.
  • the height of the insertion port 401213, the light hole 401211 and the light receiving chip 4028 needs to be increased.
  • the height of the heat sink substrate on the lower side of the light receiving chip 4028 needs to be increased. Therefore, it is not recommended to place the semiconductor refrigerator on the tube base body 40121.
  • the third circuit board 303 may not be inserted into the tube base body 40121 through the insertion opening 401213. Therefore, the semiconductor refrigerator cannot be directly placed on the tube base body 40121.
  • the position height of the optical fiber adapter 404 When the position height of the light hole 401211 is increased, the position height of the optical fiber adapter 404 also needs to be adjusted. Since the position and height of the optical fiber adapter 404 is fixed, the position of the light hole 401211 is also fixed, so the semiconductor refrigerator cannot be directly placed on the tube base body 40121. In order to make the optical waveguide of the laser chip 4021 above the semiconductor refrigerator and the optical waveguide of the light modulation chip 4024 be on the same level without raising the height of the first supporting protrusion 40123, in some embodiments, the semiconductor refrigerator is placed in the storage slot 40122, and the storage slot 40122 is more recessed relative to the tube base body 40121.
  • the first lens 4022 can only absorb a small part of the light of a specific wavelength emitted by the laser chip 4021 Coupled into the light modulation chip 4024, resulting in low coupling efficiency.
  • a first ceramic substrate is bonded to the semiconductor refrigerator.
  • a second ceramic substrate is provided on the first ceramic substrate, and a laser chip 4021 and a thermistor are provided on the second ceramic substrate.
  • the existence of the first ceramic substrate can reduce the height difference between the light outlet of the laser chip 4021 and the input interface of the light modulation chip 4024, so that the light outlet of the laser chip 4021 and the input interface of the light modulation chip 4024 are located on the same level as possible, thereby improving the coupling efficiency.
  • the first ceramic substrate is also provided with a switching circuit.
  • the switching circuit is configured to connect the semiconductor refrigerator, the laser chip 4021 and the thermistor to the third circuit board 303 .
  • a laser chip 4021 and a thermistor are provided on the second ceramic substrate.
  • the thermistor is located near the laser chip 4021, and is configured to monitor the temperature change of the laser chip 4021.
  • a circuit is also provided. The circuit is configured to connect the laser chip 4021 and the thermistor to the switching circuit.
  • the first supporting protrusion 40123 is located on the tube base body 40121.
  • the first end of the first support protrusion 40123 is connected to the first end of the transceiver side plate, and the second end and side of the first support protrusion 40123 are not connected to the transceiver side plate.
  • the first supporting protrusion 40123 is provided with a second supporting protrusion 40124.
  • the first end of the first support protrusion 40123 is connected to the first end of the tube base body 40121
  • the second support protrusion 40124 is located at the second end of the tube base body 40121
  • the second end of the first support protrusion 40123 is connected to the second end of the tube base body 40121.
  • the supporting protrusions 40124 are connected, and the second supporting protrusions 40124 are located at the second end of the tube base body 40121.
  • the first support protrusion 40123 is provided with an isolator 4023, the second lens 4025, the third lens 4027 and the receiving turning prism 40210, and the second support protrusion 40124 is provided with a light modulation chip 4024.
  • the height of the first support protrusion 40123 is less than or equal to the height of the second support protrusion 40124.
  • the thickness of the light modulation chip 4024 is about 500 ⁇ m
  • the height of the second lens 4025 is 1 mm, that is, the height difference between the center of the second lens 4025 and the lower surface of the second lens 4025 is 500 ⁇ m.
  • the thickness of the light modulation chip 4024 is about 550 ⁇ m, since the height difference between the center of the second lens 4025 and the lower surface of the second lens 4025 is 500 ⁇ m, the height of the first supporting protrusion 40123 where the second lens 4025 is located Equal to the height of the second supporting protrusion 40124 where the light modulation chip 4024 is located.
  • the first support protrusion 40123 includes a first side plate and a second side plate.
  • the first end of the first side plate is connected to the first end of the sending and receiving side plate.
  • the second end of the first side plate is connected to the third end of the second side plate.
  • One end is connected, the connection area between the first side panel and the second side panel is arranged corresponding to the second notch area 30322 of the third circuit board 303, and the side of the second end of the second side panel is connected to the second support protrusion 40124.
  • the first side plate is connected to the first side wall of the storage slot 40122
  • the second side plate is connected to the second side wall of the storage slot 40122.
  • the connection area between the first side panel and the second side panel is arranged corresponding to the second notch area 30322 of the third circuit board 303, and the first side wall of the storage slot 40122 is connected to the second side wall of the storage slot 40122.
  • a third lens 4027 and a receiving turning prism 40210 are provided on the first side plate, an isolator 4023 and a second lens 4025 are provided on the first end of the second side plate, and a second support is provided on the second end of the second side plate. Bump 40124.
  • the shape of the first supporting protrusion 40123 is L-shaped.
  • the first side plate of the first support protrusion 40123 and the second side plate of the first support protrusion 40123 form an L-shaped support protrusion.
  • Figure 22 is a first optical path diagram of an optical module provided according to some embodiments of the present disclosure.
  • the laser chip 4021 emits light of a specific wavelength
  • the first lens 4022 couples the light of the specific wavelength emitted by the laser chip to the light modulation chip 4024
  • the light of the specific wavelength is modulated by the light modulation chip 4024.
  • a modulated optical signal is obtained.
  • the modulated optical signal is collimated by the second lens 4025 to obtain a collimated optical signal.
  • the collimated optical signal passes through the second optical filter 4026 and is coupled to the optical fiber of the optical fiber adapter 404 through the fourth lens 4029.
  • the light with wavelength ⁇ 1 is light with a specific wavelength.
  • the optical fiber ferrule of the optical fiber adapter 404 emits a second optical signal.
  • the second optical signal is collimated by the fourth lens 4029 to obtain a collimated optical signal.
  • the collimated optical signal is filtered through the second filter.
  • the light sheet 4026 reflects to the third lens 4027.
  • the third lens 4027 couples the second optical signal reflected by the second filter 4026 to the receiving turning prism 40210.
  • the second optical signal changes direction after being changed by the receiving turning prism 40210 and then is incident on the light. In the receiving chip 4028.
  • the optical transceiver component includes a transceiver housing and a third circuit board.
  • the first end of the transceiver housing is provided with a light window configured to emit or inject optical signals
  • the second end is provided with an insertion opening configured to insert a third circuit board
  • optical components are provided inside.
  • the third circuit board is provided with a gap.
  • the first optical signal in the transceiver housing is emitted through the optical window
  • the second optical signal in the optical fiber adapter is emitted into the transceiver housing through the optical window.
  • the circuit board extends into the transceiver housing through the insertion opening.
  • the transceiver housing is a metal transceiver housing.
  • the circuit board is welded to the insertion port of the transceiver housing to ensure that the circuit
  • the optical components include a laser chip, a first lens, a light modulation chip, a second lens, a second filter, a third lens, a receiving turning prism and a light receiving chip.
  • the laser chip, the first lens, the second lens, the second filter, the third lens, the receiving turning prism and the light receiving chip are all located at the first end of the transceiver housing, and the light modulation chip is located at the second end of the transceiver housing.
  • the laser chip is a high-power DFB laser chip.
  • the high-power DFB laser chip is configured to emit high-power light.
  • the first lens is located between the laser chip and the light modulation chip 4024.
  • the first lens is configured to couple high-power light to the light modulation chip 4024.
  • the light modulation chip 4024 is arranged corresponding to the notch 3033.
  • the light modulation chip 4024 includes a substrate and a light modulation chip.
  • the thin film layer with optical loss less than 10dB, is configured to modulate high-power light to obtain a modulated optical signal.
  • the light modulation thin film layer is laid on the substrate and has a thickness of less than 100 ⁇ m.
  • the optical power of the light emitted by the DFB laser chip is difficult to exceed 120mW at full temperature. Therefore, in order for the optical module to meet the optical power requirements of the light emitted by 50G PON, the optical module can only use a combination of DFB laser chip + light modulation chip.
  • the second lens is located between the light modulation chip and the second filter, and is configured to collimate the modulated optical signal to obtain a collimated optical signal.
  • the second optical filter is located between the laser chip and the third lens, and the second optical filter is configured to transmit the collimated optical signal to the fiber optic adapter.
  • the third lens is located between the second optical filter and the receiving turning prism, and the third lens is configured to couple the second optical signal reflected by the second optical filter to the receiving turning prism.
  • the receiving turning prism is located above the light receiving chip, and the receiving turning prism is configured to change the second optical signal so that the second optical signal is reflected to the light receiving chip.
  • the laser chip provides high-power light
  • the optical loss of the optical modulation chip is less than that of the silicon optical chip, so that the modulated optical signal modulated by the optical modulation chip meets the optical power requirements of the light emitted by 50G PON.
  • the first lens 4022 can also include a first sub-lens 40221 and a second sub-lens 40222.
  • the first sub-lens 40221 is located between the laser chip 4021 and the isolator 4023.
  • the sub-lens 40222 is located between the isolator 4023 and the light modulation chip 4024.
  • the first sub-lens 40221 is a collimating lens
  • the second sub-lens 40222 is a focusing lens
  • the second filter 4026 can include two 45° prisms, two The bevel edges of a 45° prism are bonded, and one of the bevel edges is coated with a filter film; it can also include a glass piece, in which the end of the glass piece facing the fiber optic adapter is coated with a light filter film, and the glass piece passes through the filter holder Fixed on the transceiver tube base.
  • the receiving turning prism 40210 may be connected to the third lens 4027 or not connected to the third lens 4027. In some embodiments, not only the first optical path diagram shown in FIG. 26 is provided, but a second optical path diagram may also be provided.
  • Figure 23 is a second optical path diagram of an optical module provided according to some embodiments of the present disclosure.
  • the laser chip 4021 emits light of a specific wavelength
  • the first sub-lens 40221 collimates the light of a specific wavelength emitted by the laser chip to obtain collimated light
  • the second sub-lens 40222 collimates the light.
  • the optical modulation chip 4024 the light of a specific wavelength is modulated by the optical modulation chip 4024 to obtain a modulated optical signal.
  • the modulated optical signal is collimated by the second lens 4025 to obtain a collimated optical signal.
  • the collimated optical signal passes through the second lens 4025.
  • the optical filter 4026 is then coupled to the optical fiber ferrule of the optical fiber adapter 404 through the fourth lens 4029.
  • the optical fiber ferrule of the optical fiber adapter 404 emits a second optical signal.
  • the second optical signal is collimated by the fourth lens 4029 to obtain a collimated optical signal.
  • the collimated optical signal is reflected by the second filter 4026 to
  • the third lens 4027 couples the second optical signal reflected by the second filter 4026 to the receiving turning prism 40210.
  • the second optical signal changes direction after being changed by the receiving turning prism 40210 and then enters the light receiving chip 4028.
  • an optical fiber adapter 404 is provided at one end of the optical transceiver component.
  • the optical fiber adapter 404 is configured to connect the optical transceiver component and the external optical fiber.
  • Figure 24 is a schematic structural diagram of the connection between an optical transceiver component and a circuit board provided by this application.
  • Figure 25 is a schematic structural diagram of an optical transceiver component and a circuit board separated from each other provided by this application.
  • the circuit board 300 is provided with a transmitting through hole 310
  • the transceiver housing 401 is embedded inside the transmitting through hole 310
  • the circuit board is adjacent to a side of the transmitting through hole 310.
  • There are drive pins on the side which are connected to the laser chip 4021 and the semiconductor refrigerator through wiring.
  • An optical fiber adapter 404 is provided at one end of the transceiver housing 401. The signal light emitted by the laser chip 4021 is coupled into the optical fiber adapter 404 through the lens 420, and is transmitted to the outside through the optical fiber adapter 404.
  • FIG. 26 is a schematic structural diagram of an optical fiber adapter and an optical transceiver component according to an example of this application.
  • FIG. 27 is an exploded view of the structure of an optical fiber adapter according to an example of this application.
  • FIG. 28 is a schematic cross-sectional view of an optical fiber adapter according to an example of this application.
  • the optical transceiver component includes: a transceiver housing 401, a laser chip 4021, a semiconductor refrigerator and a lens 420 arranged inside the transmitter housing.
  • the transceiver housing 401 is provided with a launch base 413, and a first launch side plate 414 and a second launch side plate 412 provided on both sides of the launch base 413. There is also a first launch side plate 414 and a second launch side plate 412 between There is an adapter bearing plate 411.
  • the light emitting chip, semiconductor refrigerator and lens are arranged on the emitting base 413 and are located on the opposite side of the adapting carrier plate.
  • the launch base extends to the outside of the first launch side plate 414 and the second launch side plate 412 to form a carrying platform 4131 .
  • the upper surface of the carrying platform 4131 is connected to the lower surface of the circuit board 300, and the carrying platform 4131 is configured to carry the circuit board.
  • the upper surface of the light hole 401211 is connected with the opening of the transceiver housing to form an adapting groove 4111.
  • the adapting groove 4111 is located on the adapting carrier plate 411 , and the adapting groove 4111 is configured for fixed installation of the fiber optic adapter 404 .
  • Adapter groove 4111 compared to The upper surface of the transceiver housing 401 is recessed downward and has an arc-shaped structure.
  • the fiber optic connector 500 of the fiber optic adapter 404 includes: a flange 520, a fiber optic ferrule 510, and an optical isolator 540.
  • a flange 520 is provided at one end of the optical fiber ferrule 510
  • a sleeve 530 is provided at the other end.
  • the optical isolator 540 is disposed inside the sleeve 530 .
  • the flange 520 is located outside the optical fiber ferrule 510, and the flange 520 is configured to limit the positioning of the optical fiber ferrule 510 in left and right positions. There is a gap between the flange 520 and the sleeve 530, and part of the optical fiber ferrule 510 is exposed between the flange and the sleeve.
  • the inner wall of the flange 520 is connected to the optical fiber ferrule 510.
  • the flange 520 is sleeved on the outside of the optical fiber ferrule 510.
  • the flange 520 is provided with a first connecting part 521 and a second connecting part 522 with different diameters.
  • the first connecting part The diameter of the portion 521 is larger than the diameter of the second connecting portion 522 .
  • the second connection part 522 is embedded inside the adapting groove, and the first connection part 521 is provided outside the optical transceiver housing 401, and one end of the first connection part 521 is against the side wall of the transceiver housing 401.
  • the connecting portion 521 can be configured to limit the position of the optical fiber adapter 404 in the left and right directions of the optical path propagation direction, that is, the end of the first connecting portion 521 is against the side wall of the transceiver housing 401 to achieve positioning of the optical fiber adapter 404 in the optical path propagation direction.
  • the positioning in the length direction is beneficial to the positioning of the optical fiber adapter 404.
  • the outer wall of the flange 520 is connected to the adapting groove 4111 through connecting glue.
  • the end of the first connecting part 521 is against the side wall of the adapting transceiver housing 401.
  • the lower outer wall of the second connecting part 522 is in contact with the adapting groove 4111.
  • the slots 4111 are connected by connecting glue.
  • the diameter of the optical fiber ferrule 510 is smaller than the diameter of the flange. Part of the optical fiber ferrule 510 is exposed between the flange and the sleeve. There is a gap between the outer wall of the optical fiber ferrule 510 and the installation groove. If the local connection glue is used during installation, The excess glue extends along the adapting groove 4111 and does not adhere to the exposed part of the optical fiber ferrule 510. When determining the position of the optical fiber adapter, it is only necessary to use a detection instrument to detect the exposed part between the flange and the sleeve.
  • the three-dimensional position coordinates of the central axis of the optical fiber ferrule 510 can be obtained, which facilitates the unification of the optical axes of the optical fiber ferrule 510 and the light emitting chip during the installation process.
  • the optical fiber ferrule is made of ceramic material and has high processing accuracy.
  • the sleeve and flange are made of metal, and their processing accuracy is smaller than that of the optical fiber ferrule.
  • the processing accuracy of the optical fiber ferrule is greater than that of the sleeve, and the processing accuracy of the optical fiber ferrule is greater than that of the flange.
  • Using the outer wall of the optical fiber ferrule for identification improves the accuracy of identifying the position of the optical central axis, which is beneficial to improving the quality of the optical module. coupling efficiency.
  • the outer wall of the sleeve 530 is connected to the adapting groove 4111.
  • the sleeve and the adapting groove 4111 are connected through liquid glue.
  • the diameter of the sleeve is the same as the diameter of the first connecting portion of the flange.
  • the opening length of the upper surface of the adapting groove 4111 is no longer than the distance from the left end of the first connecting part of the flange to the right end of the sleeve, and the width of the opening of the upper surface of the adapting groove 4111 is greater than the diameter of the optical fiber ferrule 510 , the optical fiber ferrule 510 is exposed in the opening direction of the adapting groove 4111, which facilitates the use of a detection instrument to detect the outer wall of the optical fiber ferrule 510 exposed between the flange and the sleeve, and the central axis of the optical fiber ferrule 510 can be obtained
  • the three-dimensional position coordinates facilitate the unification of the optical axes of the optical fiber ferrule 510 and the light-emitting chip during the installation process.
  • FIG. 29 is a schematic cross-sectional structural diagram of an optical transceiver component provided by this application
  • FIG. 30 is a disassembled partial structural schematic diagram of an optical transceiver component provided by this application.
  • FIGS. 29 and 30 in order to improve the coupling efficiency of light in the optical transceiver component, it is necessary to maintain the unity of the optical axis of the light emitting chip and the central axis of the optical fiber ferrule 510 .
  • three-dimensional coordinates can be established, and the left sides of multiple points can be used to unify the optical axis of the light-emitting chip and the central axis of the optical fiber ferrule 510 .
  • a first cermet substrate 441 is disposed above the launch base 413, and a semiconductor refrigerator 440 is disposed above it.
  • the first cermet substrate 441 is provided with a cooling driving circuit and is wired to the circuit board.
  • the cooling driving circuit is configured to drive the semiconductor refrigerator 440 to adjust the temperature of the optical transceiver component.
  • a second ceramic substrate 442 is disposed above the semiconductor refrigerator 440, and a lens 420 and a third cermet substrate 443 are disposed above it.
  • the lens 420 is disposed between the third cermet substrate 443 and the optical fiber ferrule 510.
  • a laser chip 4021 is provided above the substrate 443.
  • the laser chip 4021 emits signal light toward the fiber optic adapter 404.
  • the signal light at this time is divergent light and forms convergent light after passing through the lens.
  • the spot of the convergent light is located at the fiber ferrule 510 At the end face, it is transmitted to the external optical fiber through the optical fiber adapter.
  • the diameter of the optical fiber ferrule 510 is smaller than the diameter of the flange. Part of the optical fiber ferrule 510 is exposed between the flange and the sleeve. There is a gap between the outer wall of the optical fiber ferrule 510 and the installation groove. During installation, the optical fiber ferrule 510 can be installed through the installation groove.
  • the outer wall of the optical fiber ferrule 510 is directly measured at the opening of the groove to determine the position of the central axis of the optical fiber ferrule 510 . It avoids using the outer diameter of the flange to measure the central axis of the optical fiber ferrule 510 and causing deviations caused by the concentricity deviation between the flange 520 and the optical fiber ferrule 510 .
  • the cermet substrate has high flatness. After determining the height between the central axis of the optical fiber ferrule 510 and the upper surface of the light emitting base 413, the thickness of the third cermet substrate can be screened so that the light emitting optical axis of the light emitting chip is consistent with The central axis of the optical fiber ferrule 510 is on a straight line. Thus, the positioning of the optical fiber ferrule 510 and the light emitting chip in the width and thickness directions of the optical module is determined.
  • the optical fiber ferrule 510 and the light emitting chip are positioned in the length direction of the optical module.
  • the fiber optic adapter 404 includes: a flange 520, a fiber optic ferrule 510 and an optical isolator.
  • one end of the optical fiber ferrule 510 is provided with a flange 520, and the other end is provided with a sleeve.
  • the optical isolator is arranged in the sleeve.
  • the flange 520 is provided with a first connecting part and a second connecting part having different diameters, the diameter of the first connecting part being larger than the diameter of the second connecting part.
  • the second connection part is embedded inside the adapting groove 4111, and the first connection part is provided outside the light emitting housing, and one end of the first connection part is against the side wall of the adapting emitting housing, that is, through the first connection
  • the side wall of the optical fiber ferrule 511 is pressed against the side wall of the adapting groove 4111 to position the optical fiber ferrule 510 in the length direction of the optical module.
  • the light-emitting chip is disposed on the upper surface of the third cermet substrate and is located above the light-emitting base 413. The distance of the light-emitting chip in the length direction of the optical module can be determined by taking a certain vertex of the light-emitting base 413 as a benchmark. position.
  • the flange 520 is provided with first connecting parts and second connecting parts with different diameters, and the diameter of the first connecting part is larger than the diameter of the second connecting part.
  • the second connection part is embedded inside the adapting groove 4111, and the first connection part is provided outside the light emitting housing, and one end of the first connection part is against the side wall of the adapting emitting housing, and the second connection part can It is configured as a limiter to ensure the positioning of the end face of the optical fiber ferrule 510 in the length direction of the optical module.
  • the diameter of the optical fiber ferrule 510 is smaller than the diameter of the flange 520. Part of the optical fiber ferrule 510 is exposed between the flange 520 and the sleeve.
  • the distance between the outer wall of the optical fiber ferrule 510 and the installation groove, and the fitting groove is The distance between the upper surface opening of 4111 in the width direction of the optical module is greater than the diameter of the optical fiber ferrule 510 .
  • the optical axes of the optical fiber ferrule 510 and the light-emitting chip are unified, ensuring that the optical fiber ferrule 510 and the emitting chip in the Forbidden City are aligned with each other in the optical module. Width and height positioning.
  • the adapting groove 4111 has an arc-shaped structure and matches the flange 520 and the outer wall of the sleeve.
  • the diameter of the second connecting part of the flange 520 is the same as the diameter of the sleeve.
  • the width of the opening of the adapting groove 4111 on the upper surface is smaller than the diameter of the second connecting portion of the flange 520 , and the width of the opening of the adapting groove 4111 on the upper surface is greater than the width of the optical fiber ferrule 510 diameter of.
  • Part of the optical fiber ferrule 510 is exposed between the flange 520 and the sleeve. There is a gap between the outer wall of the optical fiber ferrule 510 and the installation groove. If there is a lot of local connection glue during installation, the excess glue will be along the adapting groove. 4111 extends and does not adhere to the exposed part of the optical fiber ferrule 510.
  • the position of the optical fiber adapter When determining the position of the optical fiber adapter, only the outer wall of the optical fiber ferrule 510 exposed between the flange 520 and the sleeve is detected by using a detection instrument.
  • the three-dimensional position coordinates of the central axis of the optical fiber ferrule 510 can be obtained, which facilitates the unification of the optical axes of the optical fiber ferrule 510 and the light-emitting chip during the installation process.
  • an installation avoidance part is provided on the side of the adaptation groove 4111 adjacent to the light emitting chip.
  • the installation avoidance part is located at the bottom of the adaptation groove 4111, so that part of the optical fiber adapter is exposed to the emission housing. internal.
  • the end face of the optical fiber adapter is parallel to the end face of the adapting groove 4111 adjacent to the light emitting chip, which facilitates the installation and fixation of the optical fiber adapter, and prevents the optical fiber adapter from protruding from the adapting groove 4111, which is helpful to avoid the installation and transportation process of the optical fiber adapter. Damage caused by external force.
  • the optical fiber ferrule 510 and the flange 520 are coaxially arranged; the optical fiber ferrule 510 and the sleeve are coaxially arranged to facilitate positioning of the optical fiber ferrule 510 during installation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块,包括光收发部件(400)。光收发部件(400)包括收发壳体(401)和第三电路板(303)。收发壳体(401)的第一端设有光窗(401212),第二端设有插入口(401213),内部设有光学部件。收发壳体(401)中的第一光信号经光窗(401212)射出,光纤适配器(404)中的第二光信号经光窗(401212)射入收发壳体中。第一透镜(4022)将大功率光耦合至光调制芯片(4024)。光调制芯片(4024)包括衬底和光调制薄膜层,光损耗小于10dB。光调制薄膜层,铺设于衬底上,厚度小于100μm。第二透镜(4025),将调制后光信号准直得到准直光信号。第二滤光片(4026)将准直光信号透射至光纤适配器(404)。第三透镜(4027)将第二滤光片(4026)反射的第二光信号耦合至接收转折棱镜(40210)。接收转折棱镜(40210)将第二光信号反射至光接收芯片(4028)。

Description

光模块
本申请要求在2022年09月29日提交中国专利局、申请号202211204022.0的中国专利申请,在2022年09月29日提交中国专利局、申请号202211202819.7的中国专利申请,和在2022年09月09日提交中国专利局、申请号202222412337.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键部件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本公开提供了一种光模块,包括光收发组件。光收发部件包括收发壳体和第三电路板。收发壳体,第一端设有被配置为光信号射出或者射入的光窗,第二端设有被配置为第三电路板插入的插入口,内部设有光学部件。第三电路板设置有挖空区域。收发壳体中的第一光信号经光窗射出,光纤适配器中的第二光信号经光窗射入收发壳体中。电路板经插入口插入收发壳体中。光学部件包括激光芯片、第一透镜、铌酸锂芯片、第二透镜、第二滤光片、第三透镜、接收转折棱镜和光接收芯片。激光芯片、第一透镜、第二透镜、第二滤光片、第三透镜、接收转折棱镜和光接收芯片均位于收发壳体的第一端,铌酸锂芯片位于收发壳体的第二端。激光芯片为大功率DFB激光芯片。大功率DFB激光芯片被配置为发射大功率光。第一透镜,位于激光芯片与铌酸锂芯片之间,被配置为将大功率光耦合至铌酸锂芯片。铌酸锂芯片,与挖空区域对应设置,包括衬底和光调制薄膜层,光损耗小于10dB。光调制薄膜层,铺设于衬底上,厚度小于100μm。第二透镜,位于铌酸锂芯片与第二滤光片之间,被配置为将调制后光信号准直得到准直光信号。第二滤光片,位于激光芯片与第三透镜之间,被配置为将准直光信号透射至光纤适配器。第三透镜,位于第二滤光片与接收转折棱镜之间,被配置为将第二滤光片反射的第二光信号耦合至接收转折棱镜。接收转折棱镜,被配置为改变第二光信号,将第二光信号反射至光接收芯片。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例提供的光通信系统的连接关系图;
图2为根据本公开一些实施例提供的光网络终端的结构图;
图3为根据本公开一些实施例提供的一种光模块结构图;
图4为根据本公开一些实施例提供的光模块分解结构图;
图5为根据本公开一些实施例提供的除去上壳体的光模块结构图;
图6为根据本公开一些实施例提供的光收发部件与电路板的结构图;
图7为根据本公开一些实施例提供的光收发部件的第一个结构图;
图8为根据本公开一些实施例提供的光收发部件的第一剖面图;
图9为根据本公开一些实施例提供的光收发部件的第二剖面图;
图10为根据本公开一些实施例提供的光收发部件的第三剖面图;
图11为根据本公开一些实施例提供的除去上盖体的光收发部件的结构图;
图12为根据本公开一些实施例提供的光学部件与第三电路板的结构图;
图13为根据本公开一些实施例提供的光学部件的结构图;
图14为根据本公开一些实施例提供的第三电路板的结构图;
图15为根据本公开一些实施例提供的光纤适配器、调焦环、第四透镜和透镜固定座的结构图;
图16为根据本公开一些实施例提供的光纤适配器、调节环、第四透镜和透镜固定座的分解图;
图17为根据本公开一些实施例提供的收发管座的第一个结构图;
图18为根据本公开一些实施例提供的收发管座的第二个结构图;
图19为根据本公开一些实施例提供的收发管座的分解图;
图20为根据本公开一些实施例提供的收发管座的第一剖面图;
图21为根据本公开一些实施例提供的收发管座的第二剖面图;
图22为根据本公开一些实施例提供的光模块的第一种光路图;
图23为根据本公开一些实施例提供的光模块的第二种光路图;
图24为根据本公开一些实施例提供的一种光收发部件与电路板连接结构示意图;
图25为根据本公开一些实施例提供的一种光收发部件与电路板拆分的结构示意图;
图26为根据本公开一些实施例提供的一种光纤适配器与光收发部件的结构示意图;
图27为根据本公开一些实施例提供的一种光纤适配器的结构爆炸图;
图28为根据本公开一些实施例提供的一种光纤适配器的剖面示意图;
图29为根据本公开一些实施例提供的一种光收发部件的剖面结构示意图;
图30为根据本公开一些实施例提供的一种光收发部件的拆分局部结构示意图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐 含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
光通信系统中,使用光信号携带待传输的信息,并使携带有信息的光信号通过光纤或光波导等信息传输设备传输至计算机等信息处理设备,以完成信息的传输。由于光通过光纤或光波导传输时具有无源传输特性,因此可以实现低成本、低光损耗的信息传输。此外,光纤或光波导等信息传输设备传输的信号是光信号,而计算机等信息处理设备能够识别和处理的信号是电信号,因此为了在光纤或光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,需要实现电信号与光信号的相互转换。
光模块在光通信技术领域中实现上述光信号与电信号的相互转换功能。光模块包括光口和电口,光模块通过光口实现与光纤或光波导等信息传输设备的光通信,通过电口实现与光网络终端(例如,光猫)之间的电连接,电连接主要被配置为供电、I2C信号传输、数据信息传输以及接地等;光网络终端通过网线或无线保真技术(Wi-Fi)将电信号传输给计算机等信息处理设备。
图1为根据本公开一些实施例提供的光通信系统的连接关系图。如图1所示,光通信系统包括远端服务器1000、本地信息处理设备2000、光网络终端100、光模块200、光纤101及网线103。
光纤101的一端连接远端服务器1000,另一端通过光模块200与光网络终端100连接。光纤本身可支持远距离信号传输,例如数千米(6千米至8千米)的信号传输,在此基础上如果使用中继器,则理论上可以实现无限距离传输。因此在光通信系统中,远端服务器1000与光网络终端100之间的距离可达到数千米、数十千米或数百千米。
网线103的一端连接本地信息处理设备2000,另一端连接光网络终端100。本地信息处理设备2000可以为以下设备中的任一种或几种:路由器、交换机、计算机、手机、平板电脑、电视机等。
远端服务器1000与光网络终端100之间的物理距离大于本地信息处理设备2000与光网络终端100之间的物理距离。本地信息处理设备2000与远端服务器1000之间的连接由光纤101与网 线103完成;而光纤101与网线103之间的连接由光模块200和光网络终端100完成。
光模块200包括光口和电口,光口被配置为接入光纤101,从而使得光模块200与光纤101建立双向的光信号连接;电口被配置为接入光网络终端100中,从而使得光模块200与光网络终端100建立双向的电信号连接。光模块200实现光信号与电信号的相互转换,从而使得光纤101与光网络终端100之间建立信息连接。示例地,来自光纤101的光信号由光模块200转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块200转换为光信号输入至光纤101中。由于光模块200是实现光信号与电信号相互转换的工具,不具有处理数据的功能,在上述光电转换过程中,信息并未发生变化。
光网络终端100包括大致呈长方体的外壳,以及设置在壳体上的光模块接口102和网线接口104。光模块接口102被配置为接入光模块200,从而使得光网络终端100与光模块200建立双向的电信号连接;网线接口104被配置为接入网线103,从而使得光网络终端100与网线103建立双向的电信号连接。光模块200与网线103之间通过光网络终端100建立连接。示例地,光网络终端100将来自光模块200的电信号传递给网线103,将来自网线103的电信号传递给光模块200,因此光网络终端100作为光模块200的上位机,可以监控光模块200的工作。光模块200的上位机除光网络终端100之外还可以包括光线路终端(Optical Line Terminal,OLT)等。
远端服务器1000通过光纤101、光模块200、光网络终端100及网线103,与本地信息处理设备2000之间建立了双向的信号传递通道。
图2为根据本公开一些实施例提供的光网络终端的结构图,为了清楚地显示光模块200与光网络终端100的连接关系,图2仅示出了光网络终端100的与光模块200相关的结构。如图2所示,光网络终端100还包括设置于壳体内的电路板105,设置在电路板105表面的笼子106,设置在笼子106上的散热器107,以及设置在笼子106内部的电连接器。电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而光模块200与光网络终端100建议双向的电信号连接。此外,光模块200的光口与光纤101连接,从而光模块200与光纤101建立双向的光信号连接。
图3为根据本公开一些实施例提供的一种光模块的结构图。图4为根据本公开一些实施例提供的光模块分解结构图。如图3和4所示,光模块200包括壳体(shell),设置于壳体内的电路板300及光收发部件400。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓可呈现方形体。
在本公开的一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011,盖板2011盖合在下壳体202的两个下侧板2022上,以形成上述壳体。
在一些实施例中,下壳体202包括底板2021以及位于底板2021两侧、与底板2021垂直设置的两个下侧板2022;上壳体201包括盖板2011以及位于盖板2011两侧、与盖板2011垂直设置的两个上侧板,由两个上侧板与两个下侧板2022结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指301从电口伸出,插入上位机(例如,光网络终端100)中;开口205为光口,该开口205被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光收发部件400。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光收发部件400等部件安装到壳体中,由上壳体201、下壳体202对这些部件形成封装保护。此外,在装配电路板300和光收发部件400等部件时,便于这些部件的定位部件、散热部件以及电磁屏蔽部件的部署,有利 于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202可采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,解锁部件被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件位于下壳体202的两个下侧板2022的外壁上,解锁部件具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件时,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器、时钟数据恢复(Clock and Data Recovery,CDR)芯片、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300可以为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光收发部件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指301,金手指301由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指301与笼子106内的电连接器导通连接。金手指301可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指301被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。当然,部分光模块中也会使用柔性电路板。柔性电路板可与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光收发部件之间可以采用柔性电路板连接。光收发组件400,被配置为发射第一光信号和接收第二光信号。光收发组件400发射的光信号为第一光信号,光收发组件400接收的光信号为第二光信号。
图5为根据本公开一些实施例提供的除去上壳体的光模块结构图。图6为根据本公开一些实施例提供的光收发部件与电路板的结构图。如图4、图5和图6可知,在一些实施例中,电路板300包括第一电路板301和第二电路板302,第一电路板301与第二电路板302连接。第一电路板301,为硬质电路板,第一端与第二电路板302的第二端连接,第二端设置有金手指。第二电路板302,为柔性电路板,第一端与光收发部件400连接,第二端与第一电路板301的第一端连接。
图7为根据本公开一些实施例提供的光收发部件的第一个结构图。图8为根据本公开一些实施例提供的光收发部件的第一剖面图。图9为根据本公开一些实施例提供的光收发部件的第二剖面图。图10为根据本公开一些实施例提供的光收发部件的第三剖面图。如图7、图8、图9、图10可知,在一些实施例中,光收发部件400包括收发壳体401、光纤适配器404和第三电路板303。收发壳体401的第一端设置有光窗,收发壳体401的第二端设置有插入口。收发壳体401的第一端与透镜固定座405通过激光焊连接,透镜固定座405焊接于收发壳体401的光窗处,透镜固定座405与光纤适配器404通过调焦环406连接,第三电路板303经插入口插入收发壳体401内部。
图11为根据本公开一些实施例提供的除去上盖体的光收发部件的结构图。图12为根据本公开一些实施例提供的光学部件与第三电路板的结构图。图13为根据本公开一些实施例提供的光学部件的结构图。如图11、图12和图13可知,在一些实施例中,收发壳体401包括上盖体4011和收发管座4012,上盖体4011盖合在收发管座4012上,上盖体4011与收发管座4012围成一个空心的收发腔体。该收发腔体内设置有光学部件。该光学部件包括激光芯片4021、第一透镜4022、隔离器4023、光调制芯片4024、第二透镜4025、第二滤光片4026、第三透镜4027、接收转折棱镜40210、光接收芯片4028和跨阻放大芯片40214。激光芯片4021、第一透镜4022、隔离器4023、光调制芯片4024、第二透镜4025、第二滤光片4026、第三透镜4027、接收转折棱镜40210、光接收芯片4028均位于收发管座4012上,跨阻放大芯片40214位于第三电路板303上。
激光芯片4021为大功率分布式反馈激光芯片,激光芯片4021可以提供大功率光。其中,激光芯片4021发出的大功率光的波长为λ1,激光芯片4021发出的大功率光为发散光。为了将激光芯片4021发出的发散光耦合至光调制芯片4024中,在激光芯片4021与光调制芯片4024之间设置第一透镜4022。第一透镜4022被配置为将激光芯片4021发出的大功率光耦合至光调制芯片4024中。第一透镜4022为聚焦透镜,聚焦透镜将发散光耦合至光调制芯片4024中。
第一透镜4022除了可以是一个聚焦透镜外,还可以为一个准直透镜和一个聚焦透镜。当第一透镜4022为一个准直透镜和一个聚焦透镜时,第一透镜4022包括第一子透镜40221和第二子透镜40222,第一子透镜40221为准直透镜,第二子透镜40222为聚焦透镜。第一子透镜40221先将发散光准直得到准直光。第二子透镜40222再将准直光聚焦耦合至光调制芯片4024中。
由于经第一透镜4022耦合至光调制芯片4024中的光可能会沿原路返回,从而损伤激光芯片4021。为了防止经第一透镜4022耦合至光调制芯片4024中的光沿原路返回,在激光芯片4021与光调制芯片4024之间设置隔离器4023。
当第一透镜4022为一个聚焦透镜时,隔离器4023位于第一透镜4022与光调制芯片4024之间;当第一透镜4022为一个准直透镜和一个聚焦透镜的组合时,隔离器4023位于第一子透镜40221和第二子透镜40222之间。
在一些实施例中,光模块包括采用DFB激光芯片+光调制芯片组合。光调制芯片4024包括衬底和光调制薄膜层,衬底为玻璃衬底,光调制薄膜层铺设于衬底上。光调制薄膜层的厚度小于100μm。由于光调制芯片4024比较小,集成精度比较高,则相对比硅光芯片来说,光调制芯片4024具有功耗低、光损耗低等优点。其中,硅光芯片的光损耗小于11.2dB,光调制芯片4024的光损耗小于10dB。
光调制芯片4024,设置在收发管座内,位于缺口中,光调制芯片4024包括衬底及位于衬底表面的光调制薄膜层;光调制薄膜层表面设置有第一焊盘,第一焊盘与第三电路板电连接;光调制薄膜层内部设置有弧形光波导,光波导的入光口及出光口均位于光调制薄膜层的同一端。衬底为玻璃衬底,光调制薄膜层可以是光调制薄膜层,该薄膜铺设于衬底上。
光调制芯片4024可以是铌酸锂芯片,可以是其他材质的芯片。
光调制薄膜层的厚度小于100μm,为了缩小光调制芯片4024的尺寸,在一些实施例中,光调制薄膜层的厚度小于20μm。光调制薄膜层可以是铌酸锂薄膜。
由于硅光芯片的光损耗小于11.2dB,为了将包括DFB激光芯片+硅光芯片组合的光模块配置为满足50G PON发射的光的光功率的要求,求DFB激光芯片发射的光的光功率>158mW。由于光调制芯片4024的光损耗小于10dB,为了将包括DFB激光芯片+光调制芯片组合的光模块配置为满足50G PON发射的光的光功率的要求,DFB激光芯片发射的光的光功率>80mW。
大功率DFB激光芯片发射的光的光功率小于120mW。因此,为了光模块可以满足50G PON发射的光的光功率的要求,光模块采用DFB激光芯片+光调制芯片的组合方式。
光调制芯片4024被配置为光调制芯片4024的一侧边设置有输入接口和输出接口,光调制芯片4024内设有输入光波导、马赫曾德尔(Mach—Zehnder,MZ)调制器和输出光波导,输入光波导连接输入接口与MZ调制器的输入端,输出光波导连接MZ调制器的输出端与输出光接口。大功率光经输入接口入射至光调制芯片4024的输入光波导中,输入光波导接收到的大部分大功率光入射至MZ调制器的输入端,MZ调制器对大功率光进行调制,得到调制后光信号,调制后光信号经MZM调制器的输出端输出至输出光波导,输出光波导接收到的大部分调制后光信号经输出接口输出。其中,调制后光信号为发散光信号。
光调制芯片4024的输入接口和输出接口也可以设置于光调制芯片4024的不同侧。但如果将光调制芯片4024的输入接口和输出接口设置于光调制芯片4024的不同侧时,可能会造成光调制芯片4024的长度尺寸增加,进而增加将光调制芯片4024封装于其内部的光模块的长度尺寸。因此,为了减少光调制芯片4024的长度尺寸,在一些实施例中,可将光调制芯片4024的一侧设置有输入接口和输出接口。
光调制芯片4024的表面设置有第一功率监控器和第二功率监控器,第一功率监控器位于光调制芯片4024的输入光波导附近,第二功率监控器位于光调制芯片4024的输出光波导附近,第一 功率监控器被配置为监控输入光波导接收到的小部分光以实现监控光功率,第二功率监控器被配置为监控输出光波导接收到的小部分光信号,以监控MZM调制器是否处于最佳调制点。
光调制芯片4024可对大功率光(激光芯片发射的光功率>80mW)进行调制,光调制薄膜层调制器的光损耗(光损耗小于10dB)小于硅光芯片的光损耗(光损耗小于11.2dB),使得调制后光信号可以满足50G PON发射的光的光功率。
第二透镜4025,位于光调制芯片4024与第二滤光片4026之间,第二透镜4025被配置为对光调制芯片4024输出的光信号进行准直。光调制芯片4024输出的光信号为发散光信号,第二透镜4025为准直透镜,准直透镜将光调制芯片4024输出的发散光信号准直,以得到准直光信号。
为了方便描述,将经收发壳体射出的光信号作为第一光信号,将经收发壳体射入的光信号作为第二光信号。第二滤光片4026被配置为透过特定波长的光信号,并将第二光信号反射至第三透镜4027。第二滤光片4026被配置为透过波长为λ1的光信号,并将第二光信号反射至第三透镜4027。
第二滤光片4026既可以包括两个45°三棱镜,两个45°三棱镜的斜边粘接,且其中一个斜边镀有滤光薄膜;也可以包括一个玻璃片,其中,玻璃片朝向光纤适配器的一端镀有滤光薄膜。第二滤光片4026包括两个45°三棱镜的设计,便于生产工艺操作。第二滤光片4026包括一个玻璃片,玻璃片需要一个滤光片支架固定于收发管座上。
第三透镜4027,位于第二滤光片4026与接收转折棱镜40210之间,第三透镜4027被配置为将第二滤光片4026反射至的第二光信号耦合至接收转折棱镜40210。第三透镜4027为聚焦透镜,聚焦透镜将第二滤光片4026反射至的第二光信号聚焦耦合至接收转折棱镜40210。
接收转折棱镜40210被配置为改变第二光信号的方向,光接收芯片4028接收到第二光信号。由于光接收芯片4028的光敏面与第三透镜4027垂直设置,如果没有接收转折棱镜40210时,光接收芯片4028无法接收到第二光信号。接收转折棱镜40210位于光接收芯片4028的上方。接收转折棱镜40210被配置为改变经第三透镜4027耦合至的第二光信号,以使光接收芯片4028接收到第二光信号。为了使光接收芯片4028尽可能多的接收到第二光信号,在一些实施例中,将接收转折棱镜40210设置于光接收芯片4028的焦点处。
接收转折棱镜40210的角度为41°~43°。接收转折棱镜40210的角度不能设置为45°,以避免第二光信号垂直入射光接收芯片,减少第二光信号反射。例如,接收转折棱镜40210的角度为42°,入射到光接收芯片4028的主光轴与光接收芯片4028的上表面不是垂直,而是形成84°的夹角。这样入射到光接收芯片4028的小部分第二光信号经光接收芯片反射后,这小部分第二光信号不能顺着原光路反射回光纤适配器404中。
接收转折棱镜40210,既可以与第三透镜4027连接,也可以与第三透镜4027不连接。接收转折棱镜40210与第三透镜4027通过折射率匹配胶连接。当接收转折棱镜40210不与第三透镜4027连接时,第二光信号依次经过第三透镜4027的入射面、第三透镜4027的出射面、接收转折棱镜40210的入射面、接收转折棱镜40210的反射面和接收转折棱镜40210的出射面至光接收芯片中。
光在两个不同折射率的界面上会发生反射。当接收转折棱镜40210与第三透镜4027不连接时,第二光信号经第三透镜4027的出射面处容易发生反射,且接收转折棱镜40210的入射面也容易发生反射。但当接收转折棱镜40210与第三透镜4027通过折射率匹配胶连接时,折射率匹配胶使得第三透镜4027的出射面不容易发生反射,且接收转折棱镜40210的入射面也不容易发生反射,减少第二光信号光损耗,并减小占用的光模块空间。
光接收芯片4028,位于接收转折棱镜40210的垂直下方,光接收芯片4028被配置为将接收到的第二光信号转换为电流信号。光接收芯片4028设置有光敏面,光敏面接收到第二光信号,光接收芯片4028将第二光信号转换为电流信号。
由于光调制芯片的尺寸较大,为了使光调制芯片可以封装于常规尺寸的光模块中,故而将光调制芯片4024位于收发管座的第二端,激光芯片4021、第一透镜4022、隔离器4023、第二透镜4025、第二滤光片4026、第三透镜4027、接收转折棱镜40210、光接收芯片4028均位于收发管座4012的第一端。其中,收发管座4012的第一端为收发壳体401的第一端,收发管座4012的第 二端为收发壳体401的第二端。跨阻放大芯片40214被配置为将电流信号转换为电压信号。
图14为根据本公开一些实施例提供的第三电路板的结构图。如图14可知,在一些实施例中,第三电路板303的第一端设置有缺口3033。缺口3033的存在,使得第三电路板303的形状为U形。该缺口3033被配置为放置光调制芯片4024。为了便于放置光调制芯片4024,缺口3033的长度尺寸大于等于光调制芯片4024的长度尺寸,且缺口3033的宽度尺寸大于等于光调制芯片4024的宽度尺寸。
光调制芯片4024上设置有第一焊盘,第三电路板303上设置有第二焊盘,第一焊盘与第二焊盘对应设置。为了尽量缩短光调制芯片4024的第一焊盘与第三电路板303的第二焊盘之间的打线距离,在一些实施例中,缺口3033的宽度尺寸等于光调制芯片4024的宽度尺寸,缺口3033的长度尺寸等于光调制芯片4024的长度尺寸。
在一些实施例中,第三电路板303包括第一子电路板3031和第二子电路板3032,第一子电路板3031与第二子电路板3032为一体成型结构。第二子电路板3032位于第三电路板303的第一端,第一子电路板3031位于第三电路板303的第二端。第一子电路板3031与第二子电路板3032连接处设置有第二缺口区域30322,第二子电路板3032设置有第一缺口区域30321,第一子电路板3031设置有缺口3033。第一缺口区域30321与光接收芯片4028对应设置,第一侧板与第二侧板的连接区域与第二缺口区域30322对应设置,第二缺口区域30322相对于第一缺口区域30321更靠近第三电路板303的金手指。第二子电路板3032的上表面高度低于第一子电路板3031的上表面高度。即第二子电路板3032相对于第一子电路板3031更凹陷。
为了缩短跨阻放大芯片40214与收发管座4012上的光接收芯片4028之间的打线长度从而提高信号线的高频性能,在一些实施例中,将第一子电路板3031的部分区域挖掉若干层后得到第二子电路板3032,以使第二子电路板3032相对于第一子电路板3031更凹陷,并在第二子电路板3032上设置跨阻放大芯片40214和一些电阻电容。
第一子电路板3031的第一端靠近激光芯片4021,第一子电路板3031的第二端末端设置有金手指,第一子电路板3031的第三端靠近光接收芯片4028,第一子电路板3031的第三端与第二子电路板3032连接,且第一子电路板3031的第三端与第一子电路板3031的第一端不连接。其中,第一子电路板3031的第一端与第一子电路板3031的第三端均位于收发管座4012的第一端,第一子电路板3031的第二端位于收发管座4012的第二端。
图15根据本公开一些实施例提供的光纤适配器、调焦环、第四透镜和透镜固定座的结构图。图16为根据本公开一些实施例提供的光纤适配器、调节环、第四透镜和透镜固定座的分解图。如图15和图16可知,在一些实施例中,透镜固定座405内设置有置物腔,该置物腔内放置有第四透镜4029,第四透镜4029与置物腔通过胶水粘接。第四透镜4029为聚焦透镜。聚焦透镜被配置为将透过第二滤光片4026的第一光信号耦合至光纤适配器404中的光纤插芯,聚焦透镜还被配置为将该光纤插芯入射的第二光信号准直射入第二滤光片4026中。
如图16可知,在一些实施例中,调焦环406内设置有调焦腔,调焦腔卡合于光纤适配器404朝向收发壳体401的一端。安装时,光纤适配器404与透镜固定座405通过光耦合将二者相对位置固定好,再利用调焦环406将光纤适配器404与透镜固定座405相对位置固定。
图17为根据本公开一些实施例提供的收发管座的第一个结构图,图18为根据本公开一些实施例提供的收发管座的第二个结构图,图19为根据本公开一些实施例提供的收发管座的分解图。图20为根据本公开一些实施例提供的收发管座的第一剖面图,图21为根据本公开一些实施例提供的收发管座的第二剖面图。如图17、图18、图19、图20和图21可知,在一些实施例中,收发管座4012的第一端设置有通光孔401211和光窗401212,收发管座4012的第二端设置有插入口401213。通光孔401211由收发管座4012的第一端的内表面延伸至收发管座4012的第一端的外表面。通光孔401211被配置为将激光芯片4021发射的第一光信号射出收发壳体401外,通光孔401211也被配置为将光纤适配器404射出的第二光信号入射至收发壳体401内。
为了将激光芯片4021发射的第一光信号尽可能的射出收发壳体401外,将光纤适配器404射出的第二光信号尽可能的入射至收发壳体401内,通光孔401211与第二透镜4025及第二滤光片4026在一条直线上。光窗401212与通光孔401211对应设置,光窗401212处设置有平窗玻璃407。平窗玻璃407密封焊接于光窗401212处。平窗玻璃407不仅便于第一光信号的射出和第二光信号 的射入,也可以将收发壳体401密封。
第三电路板303经插入口401213插入收发壳体401内。为了使收发壳体401为一个密封壳体,除了上盖体4011与收发管座4012密封连接,且收发管座4012的第一端的光窗处还设置有平窗玻璃407外,还将第三电路板303与插入口401213焊接。第三电路板303对应插入口401213处的区域铺设有铜皮,收发管座4012为金属收发管座,第三电路板303对应插入口401213处的区域与收发管座4012的插入口401213通过焊锡焊接。
在一些实施例中,收发管座4012包括收发底板和收发侧板,收发侧板与收发底板围成一个无上盖的腔体。收发侧板的第一端设置有通光孔401211和光窗401212,收发侧板的第二端设置有插入口401213。
收发底板包括管座本体40121、置物槽40122和第一支撑凸起40123,置物槽40122、管座本体40121和第一支撑凸起40123的凹陷程度依次减弱。即,置物槽40122相对于管座本体40121更凹陷,管座本体40121相对于第一支撑凸起40123更凹陷。管座本体40121为收发底板中位于第一支撑凸起40123与收发侧板之间除置物槽40122之外的区域。
管座本体40121上设置有光接收芯片4028。管座本体40121上设置有热沉基板,热沉基板上设置有光接收芯片4028。其中,光接收芯片4028与第三电路板303的第一缺口区域30321对应设置。由于第二光信号的光路需要经过接收转折棱镜转折,光接收芯片4028的上表面必须远低于光调制芯片4024的上表面。但第三电路板303的上表面与光调制芯片4024的上表面的位置高度差不多,故光接收芯片4028不能直接放置于第三电路板303上,而是通过热沉基板放置于管座本体40121上。即光接收芯片4028与热沉基板粘接,热沉基板与管座本体40121粘接。
置物槽40122位于收发底板的第一端,置物槽40122位于通光孔401211与第一支撑凸起40123之间。置物槽40122被配置为放置半导体制冷器。半导体制冷器与光接收芯片4028分别位于第一支撑凸起40123的两侧。半导体制冷器被配置为控制激光芯片4021的温度,以使激光芯片4021发射特定波长的光。
如果将半导体制冷器直接放置于管座本体40121上,为了使半导体制冷器上方的激光芯片4021的光波导与光调制芯片4024的光波导在同一水平面上,需提高第一支撑凸起40123的位置高度,进而需要提高插入口401213、通光孔401211和光接收芯片4028的位置高度。当光接收芯片4028的位置高度提高时,需要提高光接收芯片4028下侧的热沉基板的位置高度,因此,不建议将半导体制冷器放置于管座本体40121上。当插入口401213的位置高度提高时可能会造成第三电路板303无法经插入口401213插入管座本体40121上,因此,半导体制冷器不能直接放置于管座本体40121上。
当通光孔401211的位置高度提高时,还需要调整光纤适配器404的位置高度。由于光纤适配器404的位置高度是固定的,则通光孔401211的位置也是固定的,因此半导体制冷器不能直接放置于管座本体40121上。为了使半导体制冷器上方的激光芯片4021的光波导与光调制芯片4024的光波导在同一水平面上,且不提高第一支撑凸起40123的位置高度,在一些实施例中,将半导体制冷器放置于置物槽40122,且置物槽40122相对于管座本体40121更凹陷。
由于半导体制冷器的厚度公差控制的很差,激光芯片4021的出光口与光调制芯片4024的输入接口的高度差较大,第一透镜4022只能将激光芯片4021发射的特定波长的光少部分耦合至光调制芯片4024中,使得耦合效率低。为了避免这个问题,在一些实施例中,半导体制冷器上粘接有第一陶瓷基板。
第一陶瓷基板上设置有第二陶瓷基板,第二陶瓷基板上设置有激光芯片4021和热敏电阻。第一陶瓷基板的存在,可减少激光芯片4021的出光口与光调制芯片4024的输入接口的高度差,使得激光芯片4021的出光口与光调制芯片4024的输入接口尽可能位于同一水平面,进而提高耦合效率。
第一陶瓷基板上除了设置有第二陶瓷基板、第一透镜4022和第二滤光片4026外,还设置有转接电路。转接电路被配置为将半导体制冷器、激光芯片4021及热敏电阻与第三电路板303连接。
第二陶瓷基板上设置有激光芯片4021和热敏电阻。热敏电阻,位于激光芯片4021的附近,热敏电阻被配置为监控激光芯片4021的温度变化。第二陶瓷基板上除了设置有激光芯片4021和 热敏电阻外,还设置有电路。该电路被配置为将激光芯片4021及热敏电阻与转接电路连接。
第一支撑凸起40123位于管座本体40121上。第一支撑凸起40123的第一端与收发侧板的第一端连接,第一支撑凸起40123的第二端及侧边均与收发侧板不连接。
第一支撑凸起40123上设置有第二支撑凸起40124。第一支撑凸起40123的第一端与管座本体40121的第一端连接,第二支撑凸起40124位于管座本体40121的第二端,第一支撑凸起40123的第二端与第二支撑凸起40124连接,第二支撑凸起40124位于管座本体40121的第二端。第一支撑凸起40123上设置有隔离器4023、第二透镜4025、第三透镜4027和接收转折棱镜40210,第二支撑凸起40124上设置有光调制芯片4024。
第一支撑凸起40123高度小于或者等于第二支撑凸起40124高度。光调制芯片4024的厚度为500μm左右,第二透镜4025的高度为1㎜,即第二透镜4025中心与第二透镜4025的下表面之间的高度差为500μm。在光模块的组装过程中,需要通过上下左右移动第二透镜4025的位置,以实现第二透镜4025与光调制芯片4024的耦合。因此,第二透镜4025所处的第一支撑凸起40123的高度要低于光调制芯片4024所处的第二支撑凸起40124的高度。
但如果光调制芯片4024的厚度为550μm左右时,由于第二透镜4025中心与第二透镜4025的下表面之间的高度差为500μm,第二透镜4025所位于的第一支撑凸起40123的高度等于光调制芯片4024所处的第二支撑凸起40124的高度。
第一支撑凸起40123包括第一侧板和第二侧板,第一侧板的第一端与收发侧板的第一端连接,第一侧板的第二端与第二侧板的第一端连接,第一侧板与和第二侧板的连接区域与第三电路板303的第二缺口区域30322对应设置,第二侧板的第二端的侧边与第二支撑凸起40124连接,第一侧板与置物槽40122的第一侧壁连接,第二侧板与置物槽40122的第二侧壁连接。其中,第一侧板和第二侧板的连接区域与第三电路板303的第二缺口区域30322对应设置,置物槽40122的第一侧壁与置物槽40122的第二侧壁连接。
第一侧板上设置有第三透镜4027和接收转折棱镜40210,第二侧板的第一端上设置有隔离器4023和第二透镜4025,第二侧板的第二端上设置第二支撑凸起40124。
第一支撑凸起40123的形状为L形。第一支撑凸起40123的第一侧板与第一支撑凸起40123的第二侧板围成一个L形的支撑凸起。
图22为根据本公开一些实施例提供的光模块的第一种光路图。如图22可知,在一些实施例中,激光芯片4021发射特定波长的光,第一透镜4022将激光芯片发射的特定波长的光耦合至光调制芯片4024,特定波长的光经光调制芯片4024调制后得到调制后光信号,调制后光信号经第二透镜4025准直后得到准直光信号,准直光信号透过第二滤光片4026后经第四透镜4029耦合至光纤适配器404的光纤插芯中。其中,波长为λ1的光为特定波长的光。
如图22可知,在一些实施例中,光纤适配器404的光纤插芯射出第二光信号,第二光信号经第四透镜4029准直后得到准直光信号,准直光信号经第二滤光片4026反射至第三透镜4027,第三透镜4027将第二滤光片4026反射至的第二光信号耦合至接收转折棱镜40210,第二光信号经接收转折棱镜40210改变方向后入射至光接收芯片4028中。
本申请提供了一种光模块,包括光收发部件。光收发部件包括收发壳体和第三电路板。收发壳体,第一端设有被配置为光信号射出或者射入的光窗,第二端设有被配置为第三电路板插入的插入口,内部设有光学部件。第三电路板设置有缺口。收发壳体中的第一光信号经光窗射出,光纤适配器中的第二光信号经光窗射入收发壳体中。电路板经插入口伸入收发壳体中。
为了保证电路板与收发壳体之间的密封性,电路板对应插入口处的区域铺设有铜皮,收发壳体为金属收发壳体,电路板与收发壳体的插入口焊接连接,保证电路板与收发壳体之间的密封性。光学部件包括激光芯片、第一透镜、光调制芯片、第二透镜、第二滤光片、第三透镜、接收转折棱镜和光接收芯片。激光芯片、第一透镜、第二透镜、第二滤光片、第三透镜、接收转折棱镜和光接收芯片均位于收发壳体的第一端,光调制芯片位于收发壳体的第二端。激光芯片为大功率DFB激光芯片。大功率DFB激光芯片被配置为发射大功率光。
第一透镜,位于激光芯片与光调制芯片4024之间,该第一透镜被配置为将大功率光耦合至光调制芯片4024。光调制芯片4024与缺口3033对应设置,该光调制芯片4024包括衬底和光调制 薄膜层,光损耗小于10dB,被配置为调制大功率光得到调制后光信号。光调制薄膜层,铺设于衬底上,厚度小于100μm。
DFB激光芯片发射的光的光功率全温状态下很难满足120mW以上。因此,为了光模块可以满足50G PON发射的光的光功率的要求,光模块只能采用DFB激光芯片+光调制芯片的组合方式。第二透镜位于光调制芯片与第二滤光片之间,第二透镜被配置为将调制后光信号准直得到准直光信号。第二滤光片位于激光芯片与第三透镜之间,第二滤光片被配置为将准直光信号透射至光纤适配器。第三透镜位于第二滤光片与接收转折棱镜之间,第三透镜被配置为将第二滤光片反射的第二光信号耦合至接收转折棱镜。
接收转折棱镜,位于光接收芯片的上方,接收转折棱镜被配置为改变第二光信号,以使第二光信号反射至光接收芯片。本申请中,激光芯片提供大功率光,光调制芯片的光损耗小于硅光芯片的光损耗,使得经光调制芯片调制的调制后光信号满足50G PON发射的光的光功率的要求。
由于第一透镜402不仅可以仅为一个聚焦透镜,第一透镜4022也可以包括第一子透镜40221和第二子透镜40222,第一子透镜40221位于激光芯片4021与隔离器4023之间,第二子透镜40222位于隔离器4023与光调制芯片4024之间,第一子透镜40221为准直透镜,第二子透镜40222为聚焦透镜;第二滤光片4026既可以包括两个45°三棱镜,两个45°三棱镜的斜边粘接,且其中一个斜边镀有滤光薄膜;也可以包括一个玻璃片,其中,玻璃片朝向光纤适配器的一端镀有滤光薄膜,玻璃片通过滤光片支架固定于收发管座上。
接收转折棱镜40210,既可以与第三透镜4027连接,也可以与第三透镜4027不连接。在一些实施例中,不仅提供了图26所示的第一光路图,还可以提供第二种光路图。
图23为根据本公开一些实施例提供的光模块的第二种光路图。如图23可知,在一些实施例中,激光芯片4021发射特定波长的光,第一子透镜40221将激光芯片发射的特定波长的光准直得到准直光,第二子透镜40222将准直光耦合至光调制芯片4024,特定波长的光经光调制芯片4024调制后得到调制后光信号,调制后光信号经第二透镜4025准直后得到准直光信号,准直光信号透过第二滤光片4026后经第四透镜4029耦合至光纤适配器404的光纤插芯中。
在一些实施例中,光纤适配器404的光纤插芯射出第二光信号,第二光信号经第四透镜4029准直后得到准直光信号,准直光信号经第二滤光片4026反射至第三透镜4027,第三透镜4027将第二滤光片4026反射至的第二光信号耦合至接收转折棱镜40210,第二光信号经接收转折棱镜40210改变方向后入射至光接收芯片4028中。
为了实现光收发部件与外部光纤之间的连接,在光收发部件的一端设有光纤适配器404,光纤适配器404被配置为连接光收发部件和外部光纤。
图24为本申请提供的一种光收发部件与电路板连接结构示意图,图25为本申请提供的一种光收发部件与电路板拆分的结构示意图。如图24和图25中所示,在本申请的一些实施例中,电路板300设有发射通孔310,收发壳体401嵌入发射通孔310的内部,且电路板邻近发射通孔的一侧设置有驱动引脚,通过打线与激光芯片4021、半导体制冷器连接。收发壳体401的一端设置光纤适配器404,激光芯片4021发出的信号光经透镜420后耦合至光纤适配器404内,经光纤适配器404传递至外部。
图26为本申请示例的一种光纤适配器与光收发部件的结构示意图,图27为本申请示例的一种光纤适配器的结构爆炸图;图28为本申请示例的一种光纤适配器的剖面示意图。如图26、图27和图28中所示,光收发部件包括:收发壳体401和设置于发射壳体内部的激光芯片4021、半导体制冷器和透镜420。
收发壳体401设置有发射底座413,和设置于发射底座413两侧的第一发射侧板414和第二发射侧板412,第一发射侧板414和第二发射侧板412之间还设有适配承载板411。光发射芯片、半导体制冷器和透镜设置于发射底座413上,且位于适配承载板的对侧。
发射底座延伸至第一发射侧板414和第二发射侧板412的外部,形成承载平台4131。承载平台4131的上表面与电路板300的下表面连接,承载平台4131被配置为承载电路板。
通光孔401211的上表面与收发壳体的开口位置连通,形成适配凹槽4111。适配凹槽4111位于适配承载板411上,适配凹槽4111被配置为光纤适配器404的固定安装。适配凹槽4111相比 收发壳体401的上表面向下方凹陷,为弧形结构。
光纤适配器404的光纤接头500包括:法兰520、光纤插芯510和光隔离器540。其中,光纤插芯510的一端设置法兰520,另一端设有套筒530。光隔离器540设置于套筒530内。且法兰520位于光纤插芯510的外部,法兰520被配置为限定光纤插芯510在左右位置的定位。法兰520与套筒530之间存在缝隙,光纤插芯510的局部裸露于法兰与套筒之间。
法兰520的内壁与光纤插芯510连接,法兰520套设于光纤插芯510的外部,且法兰520设置有具有不同直径的第一连接部521和第二连接部522,第一连接部521的直径大于第二连接部522的直径。第二连接部522嵌入适配凹槽的内部,而第一连接部521设置于光收发壳体401的外部,且第一连接部521的一端抵靠于收发壳体401的侧壁,第一连接部521可被配置为是实现光纤适配器404在光路传播方向的左右方向的限位,即第一连接部521的端部抵靠于适收发壳体401的侧壁,实现对光纤适配器404在长度方向的定位,有利于光纤适配器404的定位。
通过连接胶将法兰520的外壁与适配凹槽4111连接,第一连接部521的端部抵靠于适收发壳体401的侧壁,第二连接部522的下侧外壁与适配凹槽4111通过连接胶连接。
光纤插芯510的直径小于法兰的直径,光纤插芯510的局部裸露于法兰与套筒之间,光纤插芯510的外壁与安装凹槽之间存在缝隙,安装时的如果局部连接胶较多,多余的胶水沿适配凹槽4111延伸,不粘连于光纤插芯510的裸露部位,在进行光纤适配器的位置确定时,仅需通过使用探测仪器对裸露于法兰与套筒之间的光纤插芯510的外壁进行探测,即可得到光纤插芯510的中心轴的三维位置坐标,方便安装过程中光纤插芯510与光发射芯片的光轴的统一。
光纤插芯为陶瓷材质,具有较高的加工精度。套筒与法兰为金属材质,其加工精度小于光纤插芯的加工精度。通过使用探测仪器对裸露于法兰与套筒之间的光纤插芯510的外壁进行探测,识别光纤插芯的中心轴位置,比通过识别套筒或法兰的外壁确定光纤插芯的中心轴的位置准确度更高,有利于提高光模块的耦合效率。光纤插芯的加工精度大于套筒的加工精度,光纤插芯的加工精度大于法兰的加工精度,利用光纤插芯的外壁进行识别,提高识别光中心轴位置的准确性,利于提高光模块的耦合效率。
套筒530的外壁与适配凹槽4111连接,为增加连接牢固性,套筒与适配凹槽4111之间通过液体胶连接。为方便光纤适配器的安装,套筒的直径与法兰的第一连接部的直径相同。且适配凹槽4111的上表面的开口长度不大于法兰的第一连接部的左端到套筒的右端的距离,适配凹槽4111的上表面的开口的宽度大于光纤插芯510的直径,光纤插芯510的裸露于适配凹槽4111的开口方向,便于使用探测仪器对裸露于法兰与套筒之间的光纤插芯510的外壁进行探测,可得到光纤插芯510的中心轴的三维位置坐标,方便安装过程中光纤插芯510与光发射芯片的光轴的统一。
图29为本申请提供的一种光收发部件的剖面结构示意图,图30为本申请提供的一种光收发部件的拆分局部结构示意图。参照图29和图30所示,为提高光收发部件中光的耦合效率,要保持光发射芯片的光轴与光纤插芯510的中心轴的统一。在安装过程中,可建立三维坐标,利用多个点的左边进行光发射芯片的光轴与光纤插芯510的中心轴的统一。
发射底座413的上方设置有第一金属陶瓷基板441,其上方设置有半导体制冷器440。第一金属陶瓷基板441设有制冷驱动电路,与电路板打线连接,制冷驱动电路被配置为驱动半导体制冷器440,对光收发部件进行温度调节。
半导体制冷器440的上方设置有第二陶瓷基板442,其上方设置有透镜420、第三金属陶瓷基板443,透镜420设置于第三金属陶瓷基板443与光纤插芯510之间,第三金属陶瓷基板443的上方设有激光芯片4021。激光芯片4021朝向光纤适配器404向出射信号光,此时的信号光为发散光,经透镜后形成会聚光,会聚光再经过光纤适配器内的光隔离器后,会聚光的光斑位于光纤插芯510的端面处,经过光纤适配器传递至外部光纤。
为保证光的耦合效率,要保证光发射芯片与光纤插芯510的光轴统一,则需要保证光发射芯片的光轴的高度与光纤插芯510的中心轴的高度一致。光纤插芯510的直径小于法兰的直径,光纤插芯510的局部裸露于法兰与套筒之间,光纤插芯510的外壁与安装凹槽之间存在缝隙,安装时可通过在安装凹槽的开口处直接测量光纤插芯510的外壁,进行光纤插芯510的中心轴线的位置的确定。避免了利用法兰外径进行光纤插芯510的中心轴的测量,因法兰520与光纤插芯510的同心度偏差引起的偏差。
金属陶瓷基板具有较高的平整度,在确定光纤插芯510的中心轴距离光发射底座413的上表面高度后,可通过筛选第三金属陶瓷基板的厚度,使得光发射芯片的出光光轴与光纤插芯510的中心轴在一条直线上。由此,确定光纤插芯510、光发射芯片在光模块的宽度和厚度方向的定位。
为保证光的耦合效率,还要保证光发射芯片出射的信号光经透镜会聚后的光斑落至光纤插芯510的端面。因此,为保证光发射芯片出射的信号光经透镜会聚后的光斑落至光纤插芯510的端面,则需要保证光纤插芯510的端面与光发射芯片之间的距离。为方便安装,分别对光纤插芯510和光发射芯片在光模块长度方向进行定位。
光纤适配器404包括:法兰520、光纤插芯510和光隔离器。其中,光纤插芯510的一端设置法兰520,另一端设有套筒。光隔离器设置于套筒内。法兰520设置有具有不同直径的第一连接部和第二连接部,第一连接部的直径大于第二连接部的直径。第二连接部嵌入适配凹槽4111的内部,而第一连接部设置于光发射壳体的外部,且第一连接部的一端抵靠于适发射壳体的侧壁,即通过第一连接部的侧壁抵靠于适配凹槽4111的侧壁上,实现对光纤插芯510在光模块长度方向进行定位。而光发射芯片设置于第三金属陶瓷基板的上表面,位于光发射底座413的上方,可通过以光发射底座413的某一顶点为基准进行测量,确定光发射芯片在光模块的长度方向的定位。
法兰520设置有不同直径的第一连接部和第二连接部,第一连接部的直径大于第二连接部的直径。第二连接部嵌入适配凹槽4111的内部,而第一连接部设置于光发射壳体的外部,且第一连接部的一端抵靠于适发射壳体的侧壁,第二连接部可被配置为限位,保证光纤插芯510端面在光模块的长度方向的定位。光纤插芯510的直径小于法兰520的直径,光纤插芯510的局部裸露于法兰520与套筒之间,光纤插芯510的外壁与安装凹槽之间存在缝隙,且适配凹槽4111的上表面开口在光模块宽度方向的距离大于光纤插芯510的直径。在进行光纤适配器的位置确定时,仅需通过使用探测仪器对裸露于法兰520与套筒之间的光纤插芯510的外壁进行探测,通过识别光纤插芯510的外壁圆柱面即可实现对光纤插芯510在光模块的宽度和高度方向的识别。然后通过对被配置为承载光发射芯片的第三金属陶瓷基板的厚度进行选取,实现光纤插芯510与光发射芯片的光轴的统一,保证光纤插芯510与故宫内发射芯片在光模块的宽度和高度方向的定位。
在一些实施例中,适配凹槽4111为圆弧形结构,与法兰520、套筒的外壁相匹配。为了方便安装,法兰520的第二连接部的直径与套筒的直径相同,安装时,可通过将光纤适配器未连接光纤的一端由适配凹槽4111的一侧插入,直至法兰520的第一连接部的侧壁抵靠于适配凹槽4111的端部。为了实现光纤适配器的安装定位,适配凹槽4111在上表面的开口的宽度小于法兰520的第二连接部的直径,且适配凹槽4111在上表面的开口的宽度大于光纤插芯510的直径。光纤插芯510的局部裸露于法兰520与套筒之间,光纤插芯510的外壁与安装凹槽之间存在缝隙,安装时的如果局部连接胶较多,多余的胶水沿适配凹槽4111延伸,不粘连于光纤插芯510的裸露部位,在进行光纤适配器的位置确定时,仅需通过使用探测仪器对裸露于法兰520与套筒之间的光纤插芯510的外壁进行探测,即可得到光纤插芯510的中心轴的三维位置坐标,方便安装过程中光纤插芯510与光发射芯片的光轴的统一。
为方便安装并及时观察光纤适配器的安装位置,适配凹槽4111邻近光发射芯片的一侧设置安装避让部,安装避让部位于适配凹槽4111的底部,使得部分光纤适配器裸露于发射壳体内部。光纤适配器的端面与适配凹槽4111临近光发射芯片的一侧端面平行,方便光纤适配器的安装固定,且避免光纤适配器凸出与适配凹槽4111,有利于避免光纤适配器在安装、运输过程中受到外力碰触导致损坏。
在一些实施例中,光纤插芯510与法兰520同轴设置;光纤插芯510与套筒同轴设置,方便安装过程中光纤插芯510的限位。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种光模块,包括:
    光收发部件,包括收发壳体和第三电路板,
    其中,所述收发壳体的第一端设有光窗,所述光窗被配置为光信号射出或者射入,所述收发壳体的第二端设有插入口,所述插入口被配置为所述第三电路板插入的插入口,所述收发壳体的内部设有光学部件;
    其中,所述第三电路板设置有缺口;
    光学部件,包括激光芯片、第一透镜、光调制芯片、第二透镜、第二滤光片、第三透镜、接收转折棱镜和光接收芯片;其中,
    所述激光芯片、所述第一透镜、所述第二透镜、所述第二滤光片、所述接收转折棱镜、所述第三透镜和所述光接收芯片均位于所述收发壳体的第一端,所述光调制芯片位于所述收发壳体的第二端;
    所述第一透镜位于激光芯片与光调制芯片之间;
    所述光调制芯片与所述缺口对应设置;所述光调制芯片包括衬底和光调制薄膜层,所述光调制芯片的光损耗小于10dB;
    所述光调制薄膜层铺设于所述衬底上,所述光调制薄膜层的厚度小于100μm;所述第二透镜位于所述光调制芯片与所述第二滤光片之间;
    所述光调制薄膜层表面设置有第一焊盘,所述第一焊盘与所述第三电路板电连接;所述光调制薄膜层内部设置有弧形光波导,所述光波导的入光口及出光口均位于所述光调制薄膜层的同一端;
    所述第二滤光片位于所述激光芯片与所述第三透镜之间;以及
    所述接收转折棱镜,位于所述光接收芯片的上方。
  2. 根据权利要求1所述的光模块,其中,所述收发壳体包括收发侧板和收发底板;
    所述收发侧板与所述收发底板围成一个无盖体的腔体;所述腔体的第一端设置有所述光窗和通光孔,所述腔体的第二端设置有所述插入口;
    所述通光孔,由所述收发侧板的第一端的内表面延伸至所述收发侧板的第一端的外表面;
    所述收发底板上设置有管座本体、置物槽和第一支撑凸起;
    所述第一支撑凸起的第一端与所述收发侧板的第一端连接,所述第一支撑凸起的侧边及第二端均与所述收发侧板不连接;
    所述第一支撑凸起、所述管座本体和所述置物槽的凹陷程度依次增加;
    所述管座本体上设置有所述光接收芯片。
  3. 根据权利要求2所述的光模块,其中,所述第一支撑凸起包括第一侧板和第二侧板;
    所述第一侧板的第一端与所述收发侧板的第一端连接,所述第一侧板的第二端与所述第二侧板连接,上设置有所述第三透镜;
    所述第二侧板上设置有第二支撑凸起和所述第二透镜;
    所述第二支撑凸起与所述缺口对应设置,所述第二支撑凸起上设置有所述光调制芯片。
  4. 根据权利要求3所述的光模块,其中,所述第一支撑凸起的高度小于或者等于所述第二支撑凸起的高度。
  5. 根据权利要求3所述的光模块,还包括电路板;
    所述电路板包括第一电路板、第二电路板和所述第三电路板;其中,
    所述第一电路板的第一端与所述第二电路板的第二端连接,所述第一电路板的第二端设置有金手指;
    所述第二电路板的第一端与所述第三电路板的第二端连接;
    所述第三电路板的第一端经所述插入口伸入至所述收发管座内;所述第三电路板包括第一子电路板和第二子电路板;其中,
    所述第一子电路板与第二子电路板的连接处设置有第二缺口区域,第一子电路板设置有所述缺口;
    所述第二子电路板设置有第一缺口区域,所述第一缺口区域相对于所述第一子电路板凹陷;
    所述第一缺口区域与所述光接收芯片对应设置;
    所述第二缺口区域与所述第一侧板及所述第二侧板的连接区域对应设置,所述第二缺口区域相对于所述第一缺口区域更靠近所述第三电路板的金手指;
    所述缺口,所述缺口设置有开口,所述开口与所述第二支撑凸起对应设置。
  6. 根据权利要求4或5所述的光模块,其中,所述第二滤光片包括两个45°三棱镜,两个45°三棱镜的斜边粘接,其中一个斜边镀有滤光薄膜;
    或,所述第二滤光片仅包括一个玻璃片,其中,所述玻璃片朝向所述光纤适配器的一面镀有滤光薄膜。
  7. 根据权利要求4或5所述的光模块,其中,所述第一透镜为一个聚焦透镜;或所述第一透镜为一个准直透镜和一个聚焦透镜。
  8. 根据权利要求4或5所述的光模块,其中,所述接收转折棱镜与所述第三透镜连接;或,所述接收转折棱镜不与所述第三透镜连接;其中,所述接收转折棱镜的角度为41°~43°。
  9. 根据权利要求1-8中任一项所述的光模块,其中,所述光收发部件还包括透镜固定座和光纤适配器;
    所述透镜固定座的内部设置有第四透镜,所述透镜固定座与所述收发壳体的第一端连接;
    所述光纤适配器与所述透镜固定座连接;
    所述第四透镜被配置为将透过所述第二滤光片的光信号耦合至所述光纤适配器,所述第四透镜还被配置为将所述光纤适配器入射的第二光信号准直后射入所述第二滤光片中。
  10. 根据权利要求2-8中任一项所述的光模块,其中,所述置物槽内设置有半导体制冷器;
    所述半导体制冷器上设置有第一陶瓷基板;
    所述第一陶瓷基上设置有第二陶瓷基板、所述第一透镜和所述第二滤光片;
    所述第二陶瓷基板上设置有所述激光芯片和热敏电阻;
    所述热敏电阻被配置为监控所述激光芯片的温度变化。
  11. 根据权利要求3或4所述的光模块,还包括:
    第一电路板,与所述收发壳体电连接;
    所述收发壳体包括:
    收发管座,一端设置有所述光窗,另一端设置有所述插入口;
    上盖体,盖合所述收发管座;
    光纤适配器,与所述收发管座的光窗连通,所述出光口朝向所述光纤适配器;
    所述激光芯片的出光方向背向所述光纤适配器、朝向所述光波导的入光口。
  12. 根据权利要求11所述的光模块,其中,
    所述收发侧板,与所述收发底板围成一个无盖体的腔体,所述收发侧板的第一端设置有通光孔,所述收发侧板的第二端设置有所述插入口;
    所述通光孔,由所述收发侧板的第一端的内表面延伸至所述收发侧板的第一端的外表面;
    所述收发底板上设置有底板本体、置物槽和支撑凸起;
    所述支撑凸起的第一端与所述收发侧板的第一端连接,所述支撑凸起的侧边及第二端均与所述收发侧板不连接;
    所述支撑凸起、所述底板本体和所述置物槽的凹陷程度依次加深;
    所述底板本体上设置有光接收芯片。
  13. 根据权利要求12所述的光模块,其中,所述支撑凸起包括第一子支撑凸起和第二子支撑凸起;
    所述第一子支撑凸起的第一端与所述收发侧板的第一端连接,所述第一子支撑凸起的第二端与所述第二子支撑凸起连接,所述第一子支撑凸起包括第一侧板和第二侧板;
    所述第二子支撑凸起与所述缺口对应设置,所述缺口处设置有所述光调制芯片;
    所述第一侧板的第一端与所述收发侧板的第一端连接,所述第一侧板的第二端与所述第二侧板的第一端连接,所述第一侧板上设置有所述第三透镜;
    所述第二侧板的第二端与所述第二子支撑凸起连接,所述第二侧板上设置有所述第二透镜。
  14. 根据权利要求13所述的光模块,其中,所述第一子支撑凸起高度差小于或者等于所述第二子支撑凸起的高度。
  15. 根据权利要求11或12所述的光模块,其中,所述电路板包括所述第一电路板、第二电路板和所述第三电路板;
    所述第一电路板的第一端与所述第二电路板的第二端连接,所述第一电路板的第二端设置有金手指;
    所述第二电路板的第一端与所述第三电路板的第二端连接;
    所述第三电路板的第一端经所述插入口伸入至所述收发管座内,所述第三电路板包括第一子电路板和第二子电路板;
    所述第一子电路板设置有第一缺口区域,所述第一缺口区域相对于所述第二子电路板更凹陷;
    所述第二子电路板与第一子电路板连接处设置有第二缺口区域;
    所述第一缺口区域与所述光接收芯片对应设置,所述第一缺口区域与所述第二缺口区域均位于所述第三电路板的第一端;
    所述第二缺口区域与所述第一侧板及所述第二侧板的连接区域对应设置,所述第二缺口区域相对于所述第一缺口区域更靠近所述第三电路板的金手指。
  16. 根据权利要求11-15中任一项所述的光模块,其中,所述第二滤光片包括两个45°三棱镜,两个所述45°三棱镜的斜边粘接,其中一个所述斜边镀有滤光薄膜;或所述第二滤光片仅包括一个玻璃片,其中,所述玻璃片朝向所述光纤适配器的一端镀有滤光薄膜。
  17. 根据权利要求11-15中任一项所述的光模块,其中,所述第一透镜包括一个聚焦透镜;或所述第一透镜包括一个准直透镜和一个聚焦透镜。
  18. 根据权利要求11-15中任一项所述的光模块,其中,所述接收转折棱镜与所述第三透镜连接;或所述接收转折棱镜不与所述第三透镜连接;
    所述接收转折棱镜的角度为41°~43°。
  19. 根据权利要求11-18中任一项所述的光模块,其中,所述光收发部件还包括透镜固定座和光纤适配器;
    所述透镜固定座内部设置有第四透镜,所述第四透镜与所述收发壳体的第一端连接;
    所述光纤适配器与所述透镜固定座通过调焦环连接;
    所述第四透镜被配置为将透过所述第二滤光片的光信号耦合至所述光纤适配器,所述第四透镜还被配置为将所述光纤适配器入射的第二光信号准直射入所述第二滤光片中。
  20. 根据权利要求11-19中任一项所述的光模块,其中,所述置物槽内设置有半导体制冷器;
    所述半导体制冷器上设置有第一陶瓷基板;
    所述第一陶瓷基板上设置有第二陶瓷基板、所述第一透镜和所述第二滤光片;
    所述第二陶瓷基板上设置有所述激光芯片和热敏电阻;
    所述热敏电阻被配置为监控所述激光芯片的温度变化。
  21. 根据权利要求5所述的光模块,其中,所述电路板,设有发射通孔;
    所述收发壳体设置于所述发射通孔内,所述收发壳体包括:
    发射底座,被配置为承载光发射芯片和透镜;
    适配承载板,设置于所述发射底座的一侧,所述适配承载板的上表面向下方凹陷形成适配凹槽;
    光纤适配器,嵌入所述适配凹槽内,所述光纤适配器包括:
    光纤插芯;
    法兰,套设于所述光纤插芯的外部,所述法兰包括具有不同直径的第一连接部和第二连接部;
    套筒,套设于所述光纤插芯的外部,其内设有光隔离器;
    所述第一连接部的一侧抵靠于所述适配凹槽的侧壁,所述第二连接部嵌入所述适配凹槽;
    所述法兰与所述套筒不接触,所述光纤插芯的局部裸露于所述法兰与所述套筒之间;
    所述光纤插芯的加工精度大于所述套筒的加工精度。
  22. 根据权利要求21所述的光模块,其中,所述第一连接部与所述第二连接部为圆柱形结构,且所述第一连接部的直径大于所述第二连接部的直径。
  23. 根据权利要求21或22所述的光模块,其中,所述光纤插芯的直径小于所述第二连接部的直径,所述光纤插芯的直径小于所述套筒的直径。
  24. 根据权利要求21-23中任一项所述的光模块,其中,所述光纤插芯与所述法兰同轴设置;
    所述光纤插芯与所述套筒同轴设置。
  25. 根据权利要求21-24中任一项所述的光模块,其中,所述适配凹槽在上表面的开口的宽度大于所述光纤插芯的直径。
  26. 根据权利要求21-24中任一项所述的光模块,其中,所述适配凹槽在上表面的开口的宽度小于所述第二连接部的直径,且所述适配凹槽在上表面的开口的宽度小于所述套筒的直径。
  27. 根据权利要求21所述的光模块,其中,所述发射壳体还包括:第一发射侧板,设置于所述适配承载板的邻侧;
    第二发射侧板,设置于所述第一发射侧板的对侧;
    所述发射壳体内设有半导体制冷器、透镜和光发射芯片,所述透镜设置于所述光纤适配器与所述光发射芯片之间。
  28. 根据权利要求27所述的光模块,其中,所述电路板设有驱动电路,与所述光发射芯片、所述半导体制冷器电连接;所述驱动电路设置于所述光纤适配器的对侧。
  29. 根据权利要求27所述的光模块,其中,所述发射底座的上方设有第一金属陶瓷基板,所述第一金属陶瓷基板的上方设置所述半导体制冷器,所述第一金属陶瓷基板与所述电路板电连接,且所述第一金属陶瓷基板与所述半导体制冷器;
    所述半导体制冷器的上方设有第二陶瓷基板,所述第二陶瓷基板的上方设置透镜和第三金属陶瓷基板,所述光发射芯片设置于所述第三金属陶瓷基板的上方。
  30. 根据权利要求21-29中任一项所述的光模块,其中,还包括:上壳体,
    下壳体,与所述上壳体盖合形成包裹腔体,所述电路板设置于所述包裹腔体内部。
PCT/CN2023/080562 2022-09-09 2023-03-09 光模块 WO2024051128A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202222412337.6U CN218350555U (zh) 2022-09-09 2022-09-09 一种光模块
CN202222412337.6 2022-09-09
CN202211204022.0 2022-09-29
CN202211204022.0A CN117826342A (zh) 2022-09-29 2022-09-29 一种光模块
CN202211202819.7A CN117826338A (zh) 2022-09-29 2022-09-29 一种光模块
CN202211202819.7 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024051128A1 true WO2024051128A1 (zh) 2024-03-14

Family

ID=90192745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080562 WO2024051128A1 (zh) 2022-09-09 2023-03-09 光模块

Country Status (1)

Country Link
WO (1) WO2024051128A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120670A1 (en) * 2016-10-31 2018-05-03 Fujitsu Optical Components Limited Optical modulator and optical module
CN108696316A (zh) * 2017-03-31 2018-10-23 住友大阪水泥股份有限公司 光通信模块及其使用的光调制器
CN110471148A (zh) * 2019-09-02 2019-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278497U (zh) * 2021-03-31 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN114095085A (zh) * 2020-08-24 2022-02-25 Tdk株式会社 发送装置、信息终端、通信系统和通信方法
WO2022110965A1 (zh) * 2020-11-24 2022-06-02 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350559U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350555U (zh) * 2022-09-09 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350560U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350561U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180120670A1 (en) * 2016-10-31 2018-05-03 Fujitsu Optical Components Limited Optical modulator and optical module
CN108696316A (zh) * 2017-03-31 2018-10-23 住友大阪水泥股份有限公司 光通信模块及其使用的光调制器
CN110471148A (zh) * 2019-09-02 2019-11-19 青岛海信宽带多媒体技术有限公司 一种光模块
CN114095085A (zh) * 2020-08-24 2022-02-25 Tdk株式会社 发送装置、信息终端、通信系统和通信方法
WO2022110965A1 (zh) * 2020-11-24 2022-06-02 青岛海信宽带多媒体技术有限公司 一种光模块
CN214278497U (zh) * 2021-03-31 2021-09-24 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350555U (zh) * 2022-09-09 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350559U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350560U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN218350561U (zh) * 2022-09-27 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块

Similar Documents

Publication Publication Date Title
CN217085337U (zh) 一种光模块
CN218350561U (zh) 一种光模块
CN218350559U (zh) 一种光模块
CN113009648B (zh) 一种光模块
CN216248434U (zh) 一种光发射次模块及光模块
CN114675383A (zh) 一种光模块
CN116897308A (zh) 光模块
CN214704104U (zh) 一种光模块
WO2024051128A1 (zh) 光模块
WO2023035711A1 (zh) 光模块
WO2022267805A1 (zh) 光模块
WO2023185220A1 (zh) 一种光模块
CN218350555U (zh) 一种光模块
WO2022257486A1 (zh) 光模块
US20230418006A1 (en) Optical module
WO2022193733A1 (zh) 一种光模块
CN216310327U (zh) 一种光模块
WO2024066093A1 (zh) 光模块
WO2024066202A1 (zh) 光模块
WO2022247426A1 (zh) 光模块
WO2023184906A1 (zh) 光模块
WO2023134293A1 (zh) 一种光模块
WO2022193933A1 (zh) 光模块
WO2023246019A1 (zh) 光模块
CN115453694B (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861836

Country of ref document: EP

Kind code of ref document: A1