WO2024050899A1 - 吸音材料块及其制备方法与应用 - Google Patents

吸音材料块及其制备方法与应用 Download PDF

Info

Publication number
WO2024050899A1
WO2024050899A1 PCT/CN2022/122708 CN2022122708W WO2024050899A1 WO 2024050899 A1 WO2024050899 A1 WO 2024050899A1 CN 2022122708 W CN2022122708 W CN 2022122708W WO 2024050899 A1 WO2024050899 A1 WO 2024050899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
absorbing material
material block
binder
cross
Prior art date
Application number
PCT/CN2022/122708
Other languages
English (en)
French (fr)
Inventor
汪中洋
王和志
张捷
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to US18/095,000 priority Critical patent/US20240080615A1/en
Publication of WO2024050899A1 publication Critical patent/WO2024050899A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/28Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials

Definitions

  • the present invention relates to the field of composite materials. Specifically, the present invention relates to a sound-absorbing material block and its preparation method and application.
  • sound-absorbing material powder is bonded together into balls with a binder to ensure excellent sound-absorbing properties.
  • aging phenomena such as falling off and breaking will occur.
  • it is necessary to increase the proportion of binder in the sound-absorbing material.
  • an increase in the binder content will cause the sound-absorbing particles to A large number of mesopores or micropores are blocked, which greatly reduces the sound absorption performance. Therefore, from the aspects of performance and strength, the binder content in the sound-absorbing material particles needs to be kept within a certain range, but this also limits the improvement of the performance of the sound-absorbing material.
  • the sound-absorbing material powder is generally made into blocks or directly formed in the back cavity to increase the strength of the sound-absorbing material, reduce the risk of sound-absorbing particles breaking, and improve the sound-absorbing performance.
  • This type of solution has a simple process and can Reduce the risk of breakage caused by collision with each other.
  • most of these sound-absorbing material blocks have poor performance, and the material powder is prone to agglomeration, and problems such as material block breakage and powder loss may still occur.
  • the object of the present invention is to provide a sound-absorbing material block that can improve the strength and performance of the sound-absorbing material block while reducing the amount of binder added.
  • a sound-absorbing material block characterized in that the sound-absorbing material block includes three-dimensional open-pore foam, sound-absorbing material powder, binder, gelling agent and cross-linking agent;
  • the gelling agent, cross-linking agent and adhesive bond the sound-absorbing material powder to each other and connect to the three-dimensional open-cell foam; based on the mass of the sound-absorbing material powder, the gelling agent accounts for 1-5wt% of the sound-absorbing material powder, the binder accounts for 1-8wt% of the sound-absorbing material powder, and based on the mass of the gel, the cross-linking agent accounts for 1-8 wt% of the gel. 1-10wt%.
  • the cross-linking agent is one or more of N,N'-methylenebisacrylamide, boric acid, calcium chloride, and aluminum chloride.
  • the three-dimensional open-cell foam has a porosity greater than 60% and a density of 10-100 mg/cm 3 .
  • the three-dimensional open-cell foam is melamine foam or polyurethane foam.
  • the sound-absorbing material powder is a zeolite material composed of one or more of MFI molecular sieve, MEL molecular sieve and FER molecular sieve with a silicon-to-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m.
  • the binder is one or more of polyacrylate, styrene-butadiene emulsion, polystyrene acrylate, polystyrene acetate, polyurethane resin and polyethyl vinyl acetate salt.
  • the gelling agent is one or more of sodium carboxymethylcellulose, sodium alginate, chitosan, sodium polyacrylate, polyacrylamide, gelatin, and polyvinyl alcohol.
  • the present invention also provides a method for preparing the sound-absorbing material block of the present invention, which is characterized in that the method includes the steps:
  • the solvent is one or more of water, methanol, ethanol, butanol and ethyl acetate.
  • this application also provides a speaker, which includes: a shell with a receiving space, a sound-emitting unit placed in the housing, and a rear cavity surrounded by the sound-emitting unit and the housing, wherein The feature is that the back cavity is filled with the sound-absorbing material block of the present invention.
  • any method known in the art can be used to blend the sound-absorbing material powder, gelling agent, binder and solvent, preferably at room temperature and under stirring conditions. Blending, more preferably blending with the application of ultrasound. There is no limit to the blending time, as long as it can be mixed uniformly. Generally, it can be mixed uniformly in 30-120 minutes.
  • the stirring time is not limited as long as it can be mixed uniformly. Generally, it can be mixed uniformly in 5-30 minutes, preferably at room temperature.
  • any method known in the art can be used to add the slurry B to the three-dimensional open-cell foam, preferably by dropping the slurry B into the three-dimensional open-cell foam.
  • medium and preferably aged at room temperature. The aging time is generally 30-120 minutes.
  • drying step S4 any method known in the art can be used for drying, and freeze-drying is preferably used for drying.
  • any method known in the art can be used for dehydration, preferably by baking.
  • the baking temperature is generally 50-100°C, and the baking time is generally 1-6 h.
  • this application relates to the application of the sound-absorbing material block of the present invention in speakers of electronic devices, such electronic devices include but are not limited to smartphones, watches, tablets, smart speakers, laptops, televisions, cars, etc.
  • the three-dimensional open-cell foam can be cut into a shape that matches the rear cavity of the speaker, such as a sphere, an ellipsoid, a tetrahedron, a hexahedron, or a shape that matches the rear cavity of the speaker. Match any other shape.
  • adding gelling agent and cross-linking agent to form a cross-linked structure during sample preparation can reduce the amount of binder added, so that the pores on the surface of the sound-absorbing powder material will not be blocked, thereby improving the sound-absorbing performance.
  • the dual effects of the cross-linked structure of the gelling agent and the foam skeleton can significantly improve the strength of the sample at low binder content.
  • the gel agent can make the sound-absorbing powder evenly dispersed in the solvent and not easy to agglomerate. It will not settle even if it is left standing for a long time, which is conducive to industrial production.
  • the preparation process of the present invention is simple, and while improving the sound-absorbing performance and strength of the sound-absorbing material block, it can also improve the assembly efficiency of the sound-absorbing material.
  • Figure 1 is an SEM image of the surface of the sound-absorbing material block in Example 1 of the present invention.
  • Figure 2 is an SEM image of the cross-section of the sound-absorbing material block in Embodiment 1 of the present invention at 100 ⁇ m.
  • Figure 3 is an SEM image of the cross-section of the sound-absorbing material block in Embodiment 1 of the present invention at 20 ⁇ m.
  • room temperature refers to an ambient temperature in the range of 18-25°C.
  • the present invention prepares a new sound-absorbing material block .
  • the sound-absorbing material block prepared by the invention not only has excellent sound-absorbing performance, but also has significantly improved strength.
  • a sound-absorbing material block is prepared according to the following steps.
  • zeolite material is composed of one or more of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m. composition.
  • Absorb slurry B Drop it into the melamine foam material, and age it at room temperature for 60 minutes.
  • the density of the melamine foam is 10-100 mg/cm 3 and the porosity is greater than 60%.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • the surface and cross-section of the sound-absorbing material block were scanned using a scanning electron microscope respectively.
  • the SEM image of the surface of the sound-absorbing material block is shown in Figure 1, and the SEM images of the cross-section are shown in Figures 2 and 3. It is evident from the figure that in the melamine foam, the zeolite material powders bond to each other and form a gel cross-linked structure connected to the melamine foam scaffold.
  • a sound-absorbing material block is prepared according to the following steps.
  • zeolite material is made of one of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m. or multiple compositions.
  • Absorb slurry B Drop it into the melamine foam material, and age it at room temperature for 60 minutes.
  • the density of the melamine foam is 10-100 mg/cm 3 and the porosity is greater than 60%.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • the surface and cross-section of the obtained sound-absorbing material block were scanned using a scanning electron microscope, and the obtained SEM image was similar to that of Example 1. It is evident from the figure that in the melamine foam, the zeolite material powders bond to each other and form a gel cross-linked structure connected to the melamine foam scaffold.
  • a sound-absorbing material block is prepared according to the following steps.
  • slurry A in which the zeolite material is composed of one of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon to aluminum ratio greater than 100 and a particle size less than 10 ⁇ m, or Various compositions.
  • Absorb slurry B Drop it into the polyurethane foam material, and age it at room temperature for 60 minutes.
  • the density of the polyurethane foam is 10-100 mg/cm 3 and the porosity is greater than 60%.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • the surface and cross-section of the obtained sound-absorbing material block were scanned using a scanning electron microscope, and the obtained SEM image was similar to that of Example 1. It is evident from the figure that in the polyurethane foam, the zeolite material powders bond to each other and form a gel cross-linked structure connected to the polyurethane foam scaffold.
  • a sound-absorbing material block was prepared according to the following steps.
  • zeolite material is composed of one or more of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m. composition.
  • Absorb slurry A Drop it into the melamine foam material, and age it at room temperature for 60 minutes.
  • the density of the melamine foam is 10-100 mg/cm 3 and the porosity is greater than 60%.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • a sound-absorbing material block was prepared according to the following steps.
  • zeolite material is made of one of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m. or multiple compositions.
  • Absorb slurry A Drop it into the melamine foam material, and age it at room temperature for 60 minutes.
  • the density of the melamine foam is 10-100 mg/cm 3 and the porosity is greater than 60%.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • a sound-absorbing material block was prepared according to the following steps.
  • zeolite material is composed of one or more of MFI molecular sieves, MEL molecular sieves and FER molecular sieves with a silicon-aluminum ratio greater than 100 and a particle size less than 10 ⁇ m. composition.
  • Aspirate slurry B add dropwise to the polytetrafluoro mold, and age at room temperature for 60 minutes.
  • the aged samples were freeze-dried using a freeze dryer.
  • the resulting sample is placed in an 80°C environment and baked for 2 hours for dehydration to obtain the required sound-absorbing material block.
  • the sound-absorbing material blocks of Examples 1-3 and Comparative Examples 1-3 were put into the test tool, and an impedance analyzer was used to test the reduction value of the resonant frequency (F0) (i.e., ⁇ F0), where F0 Reduction indicates the degree to which the resonant frequency moves to low frequency.
  • F0 resonant frequency
  • each sample was prepared into a cube of 10mm*12mm*2mm/0.24 cubic centimeters (referred to as 0.4cc).
  • the volume of conventional sound-absorbing particles used was also 0.24cc.
  • the volume of the speaker back cavity of the test tooling was 0.4cc. .

Abstract

吸音材料块及其制备方法与应用,吸音材料块包括三维开孔泡沫、吸音材料粉体、粘结剂、凝胶剂和交联剂,凝胶剂、交联剂与粘结剂使吸音材料粉体相互粘接并连接到三维开孔泡沫,以吸音材料粉体的质量计,凝胶剂占吸音材料粉体的1-5wt%,粘结剂占吸音材料粉体的1-8wt%,且以凝胶剂的质量计,交联剂占凝胶剂的1-10wt%。吸音材料块减少了粘结剂的添加量,显著提高了材料块的吸音性能与强度。

Description

吸音材料块及其制备方法与应用 技术领域
本发明涉及复合材料领域,具体的,本发明涉及一种吸音材料块及其制备方法与应用。
背景技术
各种移动终端对音频质量要求越来越高,为提高移动终端的音频质量,目前,本领域采用的常用做法是在扬声器后腔中填充吸音材料,增大虚拟后腔体积,从而提高音频质量。
通常,以粘结剂将吸音材料粉末粘接在一起成球,保证其具有优秀的吸音性能。然而,吸音颗粒在相互碰撞时会发生掉粉、破碎等老化现象,为避免这一情况发生,需要提高粘结剂在吸音材料中的占比,但是粘结剂含量的增加,会导致吸音颗粒中的大量介孔或微孔堵塞,极大的降低吸音性能。所以,从性能与强度两方面考虑,吸音材料颗粒中的粘结剂含量需保持在一定范围内,但这也限制了吸音材料性能的提升。
本领域一般采用将吸音材料粉末制成块材、或在后腔中直接成型的方案,来增加吸音材料的强度,减少吸音颗粒破碎的风险,同时提高吸声性能,此类方案工艺简单,能减少相互碰撞带来的破碎风险。但是,这种吸音材料块大多性能较差,材料粉末易发生团聚,且仍会发生材料块断裂、掉粉等问题。
因此,提供一种高性能、高强度的吸音材料块及其制备方法成为本领域亟需解决的问题。
技术问题
本发明的目的在于提供一种吸音材料块,能在减少粘结剂的添加量的同时提高吸音材料块的强度与性能。
技术解决方案
本发明的技术方案如下:一种吸音材料块,其特征在于,所述吸音材料块包括三维开孔泡沫、吸音材料粉体、粘结剂、凝胶剂和交联剂;
所述凝胶剂、交联剂与粘结剂使所述吸音材料粉体相互粘接并连接到三维开孔泡沫;以所述吸音材料粉体的质量计,所述凝胶剂占所述吸音材料粉体的1-5wt%,所述粘结剂占所述吸音材料粉体的1-8wt%,且以所述凝胶剂的质量计,所述交联剂占所述凝胶剂的1-10wt%。
优选地,所述交联剂为N,N'-亚甲基双丙烯酰胺、硼酸、氯化钙、氯化铝中的一种或多种。
优选地,所述三维开孔泡沫的孔隙率大于60%,密度为10-100mg/cm 3
优选地,所述三维开孔泡沫为三聚氰胺泡沫或聚氨酯泡沫。
优选地,所述吸音材料粉体为硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成的沸石材料。
优选地,所述粘结剂为聚丙烯酸酯、丁苯乳液、聚苯乙烯丙烯酸酯、聚苯乙烯醋酸酯、聚氨酯树脂及聚乙基乙烯醋酸酯盐的一种或多种。
优选地,所述凝胶剂为羟甲基纤维素钠、海藻酸钠、壳聚糖、聚丙烯酸钠、聚丙烯酰胺、明胶、聚乙烯醇中的一种或多种。
另一方面,本发明还提供了本发明吸音材料块的制备方法,其特征在于,所述方法包括步骤:
S1:将吸音材料粉体、凝胶剂、粘结剂与溶剂共混,形成浆料A;
S2:将交联剂加入所述浆料A中,搅拌均匀,得到浆料B;
S3:将所述浆料B加入到三维开孔泡沫中,陈化以在三维开孔泡沫中形成凝胶;
S4:对陈化后的样品进行干燥处理;
S5:对干燥后的样品进行脱水处理,得到所述吸音材料块。
优选地,所述溶剂为水、甲醇、乙醇、丁醇及乙酸乙酯中的一种或多种。
相应的,本申请还提供了一种扬声器,该扬声器包括:具有收容空间的壳体、置于所述壳体内的发声单体以及由所述发声单体与壳体围成的后腔,其特征在于,所述后腔中填充有本发明的吸音材料块。
根据本发明的方法,在浆料A形成步骤S1中可采用本领域已知的任何方法将吸音材料粉体、凝胶剂、粘结剂与溶剂共混,优选在室温和搅拌的条件下进行共混,更优选在施加超声的情况下进行共混。共混时间不限,只要能够混合均匀即可,一般经30-120min即可混合均匀。
根据本发明的方法,在浆料B形成的步骤S2中,搅拌时间不限,只要能够混合均匀即可,一般经5-30min即可混合均匀,优选在室温条件下进行。
根据本发明的方法,在凝胶形成步骤S3中可采用本领域已知的任何方法将浆料B加入到三维开孔泡沫中,优选通过滴加的方式将浆料B加入到三维开孔泡沫中,并优选在室温条件下进行陈化,陈化时间一般为30-120min。
根据本发明的方法,在干燥步骤S4中可采用本领域已知的任何方法进行干燥,优选采用冷冻干燥的方式进行干燥处理。
根据本发明的方法,在脱水步骤S5中可采用本领域已知的任何方法进行脱水,优选通过烘烤的方式进行脱水,烘烤温度一般为50-100℃,烘烤时间一般为1-6 h。
还另一方面,本申请涉及本发明吸音材料块在电子设备扬声器中的应用,此类电子设备包括但不限于智能手机、手表、平板电脑、智能音箱、笔记本电脑、电视以及汽车等等。
本发明吸音材料块在应用在扬声器的情况时,可先将三维开孔泡沫裁切成与扬声器后腔相适配的形状,例如球体、椭圆体、四面体、六面体或与扬声器后腔相适配的其他任意形状。
有益效果
与现有技术相比,本发明的益处在于:
首先,在样品制备中加入凝胶剂和交联剂并形成交联结构,可以降低粘结剂的添加量,因而不会堵塞吸音粉末材料表面的孔洞,使得吸音性能得以提高。
其次,凝胶剂交联结构与泡沫骨架的双重作用能显著提高样品在低粘结剂含量时的强度。
另外,凝胶剂可使吸音粉末在溶剂中分散均匀,不易团聚,即使长时间静置也不会发生沉降,有利于工业化生产。
最后,本发明制备工艺简单,在提高吸音材料块的吸音性能与强度的同时,还能提高吸音材料的组装效率。
根据本公开的以下描述并结合附图,本公开的这些和其他目的、方面和优点将变得显而易见。
附图说明
图1是本发明实施例1的吸音材料块表面的SEM图。
图2是本发明实施例1的吸音材料块截面处在100 μm下的SEM图。
图3是本发明实施例1的吸音材料块截面处在20 μm下的SEM图。
本发明的实施方式
在本申请,术语“室温”是指18-25℃范围的环境温度。
以三维开孔泡沫作为支架,并利用凝胶剂、交联剂与粘结剂使吸音材料粉体相互粘接并连接到三维开孔泡沫支架上,本发明制备了一种新的吸音材料块。本发明制备的吸音材料块不仅具有优异的吸音性能,而且其强度也获得显著提高。
以下通过实施例来进一步说明,应当理解,此处所描述的具体实施例仅仅用于解释本发明,而不是用于限定本发明。
制备实施例
实施例1
本实施例按如下步骤制备了一种吸音材料块。
称取0.05g海藻酸钠,在室温下,加入至8g水中并搅拌20min,形成均匀透明的海藻酸钠水溶液,然后,向所述海藻酸钠水溶液中加入4g沸石材料和0.2g(固含量为50wt%)的丁苯乳液,继续搅拌、超声20min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
将0.005g氯化钙加入到浆料A中,室温下搅拌10min,得到浆料B。
吸取浆料B,滴加到三聚氰胺泡沫材料中,室温下陈化60min,其中所述三聚氰胺泡沫的密度为10-100mg/cm 3,孔隙率大于60%。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
得到的吸音材料块的表面和截面分别用扫描电子显微镜进行扫描,其中吸音材料块表面的SEM图如图1所示,截面的SEM图如图2和图3所示。从图中明显可见,在三聚氰胺泡沫中,沸石材料粉末相互粘接,并形成连接到三聚氰胺泡沫支架的凝胶交联结构。
实施例2
本实施例按如下步骤制备了一种吸音材料块。
称取0.08g聚丙烯酰胺,在室温下,加入至8g水中并搅拌20min,形成均匀透明的聚丙烯酰胺水溶液,然后,向所述聚丙烯酰胺水溶液中加入5g沸石材料与0.15g(固含量为50wt%)的聚苯乙烯醋酸酯,继续搅拌、超声20min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
将0.005g N,N'-亚甲基双丙烯酰胺加入到浆料A中,室温下搅拌10min,得到浆料B。
吸取浆料B,滴加到三聚氰胺泡沫材料中,室温下陈化60min,其中所述三聚氰胺泡沫的密度为10-100mg/cm 3,孔隙率大于60%。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,再将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
得到的吸音材料块的表面和截面分别用扫描电子显微镜进行扫描,所得SEM图与实施例1的相似。从图中明显可见,在三聚氰胺泡沫中,沸石材料粉末相互粘接,并形成连接到三聚氰胺泡沫支架的凝胶交联结构。
实施例3
本实施例按如下步骤制备了一种吸音材料块。
称取0.1g聚丙烯酸钠,在室温下,加入至8g水中并搅拌20min,形成均匀透明的聚丙烯酸钠水溶液,然后,向所述聚丙烯酸钠水溶液中加入4.5g沸石材料与0.3g(固含量为50wt%)的聚丙烯酸酯,继续搅拌、超声40min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
将0.008g N,N'-亚甲基双丙烯酰胺加入到浆料A中,室温下搅拌10min,得到浆料B。
吸取浆料B,滴加到聚氨酯泡沫材料中,室温下陈化60min,其中所述聚氨酯泡沫的密度为10-100mg/cm 3,孔隙率大于60%。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,再将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
得到的吸音材料块的表面和截面分别用扫描电子显微镜进行扫描,所得SEM图与实施例1的相似。从图中明显可见,在聚氨酯泡沫中,沸石材料粉末相互粘接,并形成连接到聚氨酯泡沫支架的凝胶交联结构。
对比例1
本对比例按如下步骤制备了一种吸音材料块。
称取0.05g海藻酸钠,在室温下,加入至8g水中并搅拌20min,形成均匀透明的海藻酸钠水溶液,然后,向所述海藻酸钠水溶液中加入4g沸石材料和0.1g(固含量为50wt%)丁苯乳液,继续搅拌、超声20min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
吸取浆料A,滴加到三聚氰胺泡沫材料中,室温下陈化60min,其中所述三聚氰胺泡沫的密度为10-100mg/cm 3,孔隙率大于60%。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,再将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
对比例2
本对比例按如下步骤制备了一种吸音材料块。
称取0.08g聚丙烯酰胺,在室温下,加入至8g水中并搅拌20min,形成均匀透明的聚丙烯酰胺水溶液,然后,向所述聚丙烯酰胺水溶液中加入4g沸石材料与0.8g(固含量为50wt%)的聚苯乙烯醋酸酯,继续搅拌、超声20min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
吸取浆料A,滴加到三聚氰胺泡沫材料中,室温下陈化60min,其中所述三聚氰胺泡沫的密度为10-100mg/cm 3,孔隙率大于60%。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,再将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
对比例3
本对比例按如下步骤制备了一种吸音材料块。
称取0.05g海藻酸钠,在室温下,加入至8g水中并搅拌20min,形成均匀透明的海藻酸钠水溶液,然后,向所述海藻酸钠水溶液中加入4g沸石材料和0.2g(固含量为50wt%)的丁苯乳液,继续搅拌、超声20min,得到浆料A,其中所述沸石材料由硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成。
将0.005g氯化钙加入到浆料A中,室温下搅拌10min,得到浆料B。
吸取浆料B,滴加到聚四氟模具中,室温下陈化60min。
然后,利用冻干机,对陈化后的样品进行冷冻干燥处理。
当冷冻干燥处理完成后,再将所得样品放置在80℃环境中,烘烤2h进行脱水处理,得到所需的吸音材料块。
声学性能测试
以常规吸音颗粒作为对照,对实施例1-3以及对比例1-3的吸音材料块进行了声学性能测试。
根据扬声器谐振频率的测定方法,分别将实施例1-3以及对比例1-3的吸音材料块放入测试工装,使用阻抗分析仪测试其谐振频率(F0)降低值(即ΔF0),其中F0降低表示谐振频率向低频移动的程度,一般情况下,ΔF0越大,扬声器低频性能越好。
在实验中,将各样品制备成10mm*12mm*2mm/0.24立方厘米(简称0.4cc)的立方体,采用的常规吸音颗粒的体积也为0.24cc,测试工装的扬声器后腔的体积均为0.4cc。
另外,还通过跌落试验,测试实施例1-3以及对比例1-3的吸音材料块的掉落破损情况。
测试结果如下表所示。
样品 ΔF0(Hz) 掉落破损情况
实施例1 203 不掉粉
实施例2 194 不掉粉
实施例3 201 不掉粉
对比例1 207 掉粉
对比例2 146 不掉粉
对比例3 198 断裂,掉粉
常规吸音颗粒 186 不掉粉
根据上表数据可知,本发明实施例1-3吸音材料块的吸音性能均优于常规吸音颗粒,且均不掉粉。实施例1-3之间性能差异是由于所加入的凝胶剂的不同,以及加入的沸石含量差异所导致的。
对比例1样品虽然吸音性能优于实施例1,但是样品严重掉粉,这是由于未添加交联剂,吸音粉末未形成凝胶交联结构所致。在对比例2中,提高了粘结剂含量,但是未添加交联剂,虽然对比例2样品通过跌落实验,未发生掉粉,但其吸音性能严重下降。在对比例3中,直接将浆料B在模具中干燥,其样品吸音性能较高,但由于没有泡沫支架的支撑,所以样品跌落后发生了断裂与掉粉。
以上对本发明的目的、技术方案和有益效果进行了详细说明,所应理解的是,以上所述仅为本发明的实施方案和具体实施例,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种吸音材料块,其特征在于,所述吸音材料块包括三维开孔泡沫、吸音材料粉体、粘结剂、凝胶剂和交联剂;
    所述凝胶剂、交联剂与粘结剂使所述吸音材料粉体相互粘接并连接到三维开孔泡沫,以所述吸音材料粉体的质量计,所述凝胶剂占所述吸音材料粉体的1-5wt%,所述粘结剂占所述吸音材料粉体的1-8wt%,且以所述凝胶剂的质量计,所述交联剂占所述凝胶剂的1-10wt%。
  2. 根据权利要求1所述的吸音材料块,其特征在于,所述交联剂为N,N'-亚甲基双丙烯酰胺、硼酸、氯化钙、氯化铝中的一种或多种。
  3. 根据权利要求1所述的吸音材料块,其特征在于,所述三维开孔泡沫的孔隙率大于60%,密度为10-100mg/cm 3
  4. 根据权利要求1-3中任一项所述的吸音材料块,其特征在于,所述三维开孔泡沫为三聚氰胺泡沫或聚氨酯泡沫。
  5. 根据权利要求1-3中任一项所述的吸音材料块,其特征在于,所述吸音材料粉体为硅铝比大于100且粒径小于10μm的MFI分子筛、MEL分子筛及FER分子筛中的一种或多种组成的沸石材料。
  6. 根据权利要求1-3中任一项所述的吸音材料块,其特征在于,所述粘结剂为聚丙烯酸酯、丁苯乳液、聚苯乙烯丙烯酸酯、聚苯乙烯醋酸酯、聚氨酯树脂及聚乙基乙烯醋酸酯盐的一种或多种。
  7. 根据权利要求1-3中任一项所述的吸音材料块,其特征在于,所述凝胶剂为羟甲基纤维素钠、海藻酸钠、壳聚糖、聚丙烯酸钠、聚丙烯酰胺、明胶、聚乙烯醇中的一种或多种。
  8. 一种制备权利要求1所述吸音材料块的方法,其特征在于,所述方法包括步骤:
    S1:将吸音材料粉体、凝胶剂、粘结剂与溶剂共混,形成浆料A;
    S2:将交联剂加入所述浆料A中,搅拌均匀,得到浆料B;
    S3:将所述浆料B加入到三维开孔泡沫中,陈化以在三维开孔泡沫中形成凝胶;
    S4:对陈化后的样品进行干燥处理;
    S5:对干燥后的样品进行脱水处理,得到所述吸音材料块。
  9. 根据权利要求8所述的方法,其特征在于,所述溶剂为水、甲醇、乙醇、丁醇及乙酸乙酯中的一种或多种。
  10. 一种扬声器,包括:具有收容空间的壳体、置于所述壳体内的发声单体以及由所述发声单体与壳体围成的后腔,其特征在于,所述后腔中填充有权利要求1所述的吸音材料块。
PCT/CN2022/122708 2022-09-05 2022-09-29 吸音材料块及其制备方法与应用 WO2024050899A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/095,000 US20240080615A1 (en) 2022-09-05 2023-01-10 Sound-absorbing material block, method for preparing the same and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211077326.5 2022-09-05
CN202211077326.5A CN115504810A (zh) 2022-09-05 2022-09-05 一种吸音材料块及其制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/095,000 Continuation US20240080615A1 (en) 2022-09-05 2023-01-10 Sound-absorbing material block, method for preparing the same and its application

Publications (1)

Publication Number Publication Date
WO2024050899A1 true WO2024050899A1 (zh) 2024-03-14

Family

ID=84501107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122708 WO2024050899A1 (zh) 2022-09-05 2022-09-29 吸音材料块及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115504810A (zh)
WO (1) WO2024050899A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601984A (zh) * 2016-01-26 2016-05-25 瑞声光电科技(常州)有限公司 吸音材料及其制备方法
CN105681999A (zh) * 2016-01-28 2016-06-15 歌尔声学股份有限公司 吸音件的制备方法和吸音件
WO2018120697A1 (zh) * 2016-12-26 2018-07-05 歌尔股份有限公司 发声装置的吸音件及其制备方法和发声装置模组
US20190139527A1 (en) * 2016-02-29 2019-05-09 Goertek Inc. Method for preparing sound-absorbing article, and sound-absorbing article
CN114495883A (zh) * 2022-01-25 2022-05-13 瑞声光电科技(常州)有限公司 吸音材料块及其制备方法和应用该吸音材料块的扬声器箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2469244A1 (en) * 2003-06-23 2004-12-23 National Research Council Of Canada Method of making open cell material
JP4952484B2 (ja) * 2007-10-02 2012-06-13 パナソニック株式会社 セラミック多孔体の製造方法とそれを用いて作製したセラミック多孔体および構造体
EP2666626B1 (en) * 2012-05-23 2014-12-31 Sekisui Alveo AG Flame-retardant polyolefin foam and its production
CN109809806A (zh) * 2019-03-27 2019-05-28 中国科学院兰州化学物理研究所 一种无机三维骨架泡沫材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601984A (zh) * 2016-01-26 2016-05-25 瑞声光电科技(常州)有限公司 吸音材料及其制备方法
CN105681999A (zh) * 2016-01-28 2016-06-15 歌尔声学股份有限公司 吸音件的制备方法和吸音件
US20190139527A1 (en) * 2016-02-29 2019-05-09 Goertek Inc. Method for preparing sound-absorbing article, and sound-absorbing article
WO2018120697A1 (zh) * 2016-12-26 2018-07-05 歌尔股份有限公司 发声装置的吸音件及其制备方法和发声装置模组
CN114495883A (zh) * 2022-01-25 2022-05-13 瑞声光电科技(常州)有限公司 吸音材料块及其制备方法和应用该吸音材料块的扬声器箱

Also Published As

Publication number Publication date
CN115504810A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN107500604B (zh) 一种改进型的吸音材料
US20230239612A1 (en) Sound absorption material, method of making the same and speaker box filled with the same
Liao et al. Temperature/pH dual sensitive Hericium erinaceus residue carboxymethyl chitin/poly (N-isopropyl acrylamide) sequential IPN hydrogels
WO2024036710A1 (zh) 一种分子筛吸音材料及其制备方法和扬声器
CN117550833B (zh) 一种吸音块材及其制备方法和应用
CN115547284A (zh) 一种多孔复合吸声材料及其制备方法
CN116162415A (zh) 吸音片材及其制造方法和应用该吸音片材的扬声器
WO2024050899A1 (zh) 吸音材料块及其制备方法与应用
US11570544B1 (en) Sound-absorbing material, preparation method thereof and speaker using same
KR20240011094A (ko) 알칼리 금속 변형 음향 보강 재료, 이의 제조 방법,스피커 및 전자 장치
CN115477505B (zh) 吸音材料、发声装置和电子设备
CN113981677A (zh) 纤维多孔复合吸音材料及其制备方法和用途
US20240080615A1 (en) Sound-absorbing material block, method for preparing the same and its application
WO2023201810A1 (zh) 一种核壳分子筛及其制备方法、吸声材料和扬声器
WO2024007416A1 (zh) 吸音材料块及其制备方法与相关设备
CN115497445A (zh) 吸音材料、发声装置和电子设备
CN116102030A (zh) 一种用于吸声的分子筛材料及其制备方法
WO2022217808A1 (zh) 发声器件
CN115460531B (zh) 沸石颗粒、发声装置和电子设备
WO2023020311A1 (zh) 一种可膨胀声学增强件及其制作方法与应用
CN115474143B (zh) 吸音材料、发声装置和电子设备
CN116854104A (zh) 一种无粘结剂分子筛微粒材料、制备方法及微型扬声器
CN115784666B (zh) 吸音材料、发声装置和电子设备
CN113347539B (zh) 一种吸音材料及扬声器
US20240064458A1 (en) Molecular sieve sound-absorbing material, method for preparing the same and speaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957867

Country of ref document: EP

Kind code of ref document: A1