WO2024050716A1 - 电芯自放电检测方法、装置、设备、存储介质和程序产品 - Google Patents

电芯自放电检测方法、装置、设备、存储介质和程序产品 Download PDF

Info

Publication number
WO2024050716A1
WO2024050716A1 PCT/CN2022/117543 CN2022117543W WO2024050716A1 WO 2024050716 A1 WO2024050716 A1 WO 2024050716A1 CN 2022117543 W CN2022117543 W CN 2022117543W WO 2024050716 A1 WO2024050716 A1 WO 2024050716A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
leakage current
self
battery core
discharge state
Prior art date
Application number
PCT/CN2022/117543
Other languages
English (en)
French (fr)
Inventor
朱翠翠
张继君
王少飞
魏奕民
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/117543 priority Critical patent/WO2024050716A1/zh
Priority to CN202280011308.9A priority patent/CN116830355A/zh
Publication of WO2024050716A1 publication Critical patent/WO2024050716A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging

Definitions

  • This application relates to the technical field of battery core detection, and in particular to a battery core self-discharge detection method, device, equipment, storage medium and program product.
  • the self-discharge of the battery core will affect the performance of the battery core to a certain extent, so it needs to be tested to determine whether its self-discharge meets the standards.
  • related battery core self-discharge detection methods often have large errors during the detection process, resulting in low battery core self-discharge detection accuracy.
  • Embodiments of the present application provide a battery core self-discharge detection method, device, equipment, storage medium and program product.
  • embodiments of the present application provide a method for detecting battery core self-discharge, including:
  • the self-discharge state of the battery core under preset detection conditions is detected.
  • the preset detection conditions include the temperature, pressure and state of charge SOC of the cell.
  • the preset detection conditions of the battery core can be controlled by adjusting the temperature, pressure and SOC of the battery core, thereby achieving the purpose of detecting the self-discharge state of the battery core under the preset detection conditions.
  • the temperature and pressure are the actual temperature and actual pressure inside the cell.
  • obtaining the leakage current value under preset detection conditions includes:
  • the OCV value of the battery core is used for constant voltage charging, which can effectively shorten the depolarization time of the battery core and quickly obtain a stable leakage current value, thereby increasing the rate of self-discharge detection of the battery core.
  • the preset detection conditions include a first detection condition and/or a second detection condition, wherein the first detection condition corresponds to the physical self-discharge state of the battery core, and the second detection condition corresponds to the physical self-discharge state of the battery core. Physical self-discharge state and chemical self-discharge state.
  • the preset detection condition includes a first detection condition
  • the leakage current value under the first detection condition is the first leakage current value.
  • the detection cell is in the preset detection state.
  • the self-discharge state below includes:
  • the first leakage current value it is detected whether the physical self-discharge state of the battery core exceeds the standard.
  • the first leakage current value corresponding to the physical self-discharge state of the battery core under the first detection condition can be obtained, so that the battery cores whose physical self-discharge state exceeds the standard can be screened out, and different types of battery cores can be automatically detected. Classification detection of discharge status further improves the accuracy of battery core self-discharge detection.
  • detecting whether the physical self-discharge state of the battery core exceeds the standard based on the first leakage current value includes:
  • the first leakage current value is greater than the first threshold, it is determined that the physical self-discharge state of the battery core exceeds the standard.
  • the cells whose physical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the preset detection condition includes a second detection condition
  • the leakage current value under the second detection condition is the second leakage current value.
  • the detection cell is in the preset detection state.
  • the self-discharge state below includes:
  • the second leakage current value it is detected whether the total self-discharge state of the battery core exceeds the standard.
  • the total self-discharge state includes physical self-discharge state and chemical self-discharge state.
  • the second leakage current value corresponding to the physical self-discharge state and the chemical self-discharge state of the battery core under the second detection condition can be obtained, so that the battery core whose total self-discharge state exceeds the standard can be screened out, and the control of the battery core can be realized.
  • Classification and detection of self-discharge status of different types of battery cells further improves the accuracy of self-discharge detection of battery cells.
  • detecting whether the total self-discharge state of the battery core exceeds the standard based on the second leakage current value includes:
  • the cells whose total self-discharge state exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the method further includes:
  • the remaining capacity of the battery core is determined.
  • the capacity loss can be directly calculated based on the leakage current value corresponding to the self-discharge of the battery core, and the remaining capacity after the battery core's self-discharge can be obtained.
  • the preset detection conditions include a first detection condition and a second detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the leakage current value under the second detection condition is The value is the second leakage current value.
  • the self-discharge state of the battery core in the preset detection state is detected, which also includes:
  • the third leakage current value it is detected whether the chemical self-discharge state of the battery core exceeds the standard.
  • the third leakage current value corresponding to the chemical self-discharge state can be obtained through the first leakage current value and the second leakage current value, so that the cells whose chemical self-discharge state exceeds the standard can be screened out, and the battery cells can be inspected.
  • Classification detection of different types of self-discharge states further improves the accuracy of battery core self-discharge detection.
  • detecting whether the chemical self-discharge state of the cell exceeds the standard based on the third leakage current value includes:
  • the cells whose chemical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • embodiments of the present application also provide a battery core self-discharge detection device, including:
  • the acquisition module is used to obtain the leakage current value under preset detection conditions, where the preset detection conditions correspond to the self-discharge state of the battery core;
  • the detection module is used to detect the self-discharge state of the battery core under preset detection conditions based on the leakage current value.
  • the preset detection conditions include the temperature, pressure and state of charge SOC of the cell.
  • the preset detection conditions of the battery core can be controlled by adjusting the temperature, pressure and SOC of the battery core, thereby achieving the purpose of detecting the self-discharge state of the battery core under the preset detection conditions.
  • the temperature and pressure are the actual temperature and actual pressure inside the cell.
  • the acquisition module is also used to:
  • the OCV value of the battery core is used for constant voltage charging, which can effectively shorten the depolarization time of the battery core and quickly obtain a stable leakage current value, thereby increasing the rate of self-discharge detection of the battery core.
  • the preset detection conditions include a first detection condition and/or a second detection condition, wherein the first detection condition corresponds to the physical self-discharge state of the battery core, and the second detection condition corresponds to the physical self-discharge state of the battery core. Physical self-discharge state and chemical self-discharge state.
  • the preset detection condition includes a first detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the detection module is further configured to:
  • the first leakage current value it is detected whether the physical self-discharge state of the battery core exceeds the standard.
  • the first leakage current value corresponding to the physical self-discharge state of the battery core under the first detection condition can be obtained, so that the battery cores whose physical self-discharge state exceeds the standard can be screened out, and different types of battery cores can be automatically detected. Classification detection of discharge status further improves the accuracy of battery core self-discharge detection.
  • the detection module is also used to:
  • the first leakage current value is greater than the first threshold, it is determined that the physical self-discharge state of the battery core exceeds the standard.
  • the cells whose physical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the preset detection condition includes a second detection condition
  • the leakage current value under the second detection condition is the second leakage current value.
  • the detection module is also used to:
  • the second leakage current value it is detected whether the total self-discharge state of the battery core exceeds the standard.
  • the total self-discharge state includes physical self-discharge state and chemical self-discharge state.
  • the second leakage current value corresponding to the physical self-discharge state and the chemical self-discharge state of the battery core under the second detection condition can be obtained, so that the battery core whose total self-discharge state exceeds the standard can be screened out, and the control of the battery core can be realized.
  • Classification and detection of self-discharge status of different types of battery cells further improves the accuracy of self-discharge detection of battery cells.
  • the detection module is also used to:
  • the cells whose total self-discharge state exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the device further includes:
  • the first determination module is used to determine the capacity loss of the battery core within the preset time period based on the second leakage current value
  • Capacity acquisition module used to obtain the initial capacity of the battery core
  • the second determination module is used to determine the remaining capacity of the battery core based on the initial capacity and capacity loss.
  • the capacity loss can be directly calculated based on the leakage current value corresponding to the self-discharge of the battery core, and the remaining capacity after the battery core's self-discharge can be obtained.
  • the preset detection conditions include a first detection condition and a second detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the leakage current value under the second detection condition is The value is the second leakage current value.
  • the detection module is also used for:
  • the third leakage current value it is detected whether the chemical self-discharge state of the battery core exceeds the standard.
  • the third leakage current value corresponding to the chemical self-discharge state can be obtained through the first leakage current value and the second leakage current value, so that the cells whose chemical self-discharge state exceeds the standard can be screened out, and the battery cells can be inspected.
  • Classification detection of different types of self-discharge states further improves the accuracy of battery core self-discharge detection.
  • the detection module is also used to:
  • the cells whose chemical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • embodiments of the present application provide an electronic device, which includes:
  • the processor and the memory storing the program or instructions implement the above method when the processor executes the program or instructions.
  • embodiments of the present application provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the programs or instructions are executed by a processor, the above method is implemented.
  • embodiments of the present application provide a computer program product.
  • the electronic device executes the above method.
  • Figure 1 is a schematic flow chart of the battery core self-discharge detection method provided by the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery core in the battery core self-discharge detection method provided by the embodiment of the present application;
  • Figure 3 is a schematic diagram of the installation position of the temperature and pressure sensors in Figure 2;
  • Figure 4 is a schematic diagram of a scenario embodiment of the battery core self-discharge detection method provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a battery core self-discharge detection device provided by another embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an electronic device provided by another embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., the embodiments of this application do not Not limited.
  • the battery core may be in the shape of a cylinder, a flat body, a cuboid, or other shapes, and the embodiments of the present application are not limited to this. Batteries are generally divided into three types according to packaging methods: cylindrical batteries, cuboid batteries and soft-packed batteries, which are not limited in the embodiments of the present application.
  • the battery core includes an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative electrodes to work.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the current related methods for detecting self-discharge of battery cells most of them use electrical signals such as capacity, voltage and resistance to analyze and judge the degree of self-discharge.
  • a small number use external environments such as pressure and magnetic fields to accelerate or increase the degree of self-discharge to facilitate self-discharge. detection.
  • the voltage of the battery core can be measured after adjusting the battery core to different external temperatures and pressures, and the self-discharge value can be calculated based on the voltage changes under different states to screen out the battery cells that fail to meet the self-discharge criteria.
  • the voltage drop is usually related to It is related to the state of charge (SOC) of the battery core and the battery system.
  • SOC state of charge
  • embodiments of the present application provide a battery core self-discharge detection method, device, equipment, storage medium and program product, which can improve the accuracy of battery core self-discharge detection.
  • Figure 1 is a schematic flow chart of a battery self-discharge detection method provided by some embodiments of the present application.
  • the battery self-discharge detection method may include the following steps:
  • Step 101 Obtain the leakage current value under preset detection conditions, where the preset detection conditions correspond to the self-discharge state of the battery core;
  • Step 102 Detect the self-discharge state of the battery core under preset detection conditions based on the leakage current value.
  • the preset detection condition usually corresponds to the self-discharge state of the battery core and can be set according to actual needs, and is not specifically limited here.
  • the preset detection condition may be the most severe detection condition of the self-discharge state without damaging the cell structure and electrical performance.
  • the preset detection condition may be the most likely state of the battery cell during actual use.
  • the preset detection conditions may also be detection conditions set to distinguish physical self-discharge status from chemical self-discharge status, so as to facilitate subsequent classification and screening of cells whose physical self-discharge status exceeds the standard and chemical self-discharge status exceeds the standard. It can be understood that the number of preset detection conditions can be one or multiple, and can be selected according to actual needs, and is not specifically limited here.
  • the leakage current value of the battery core under preset detection conditions can be measured. It can be understood that the number of preset detection conditions can be one, that is, at this time, the leakage current value of the battery core can be measured only once, and the number of preset detection conditions can also be multiple. In other words, the leakage current value of the battery core can be measured every time. To adjust to a preset detection condition, it is necessary to measure the leakage current value of the battery cell, so multiple leakage current values can be obtained.
  • the self-discharge state of the battery core under preset detection conditions can be detected based on the leakage current value.
  • the leakage current value can directly reflect whether the self-discharge state of the battery core exceeds the standard.
  • the measured leakage current value can be compared with a preset leakage current standard. If the leakage current standard is met, it can be considered that the self-discharge state of the battery core meets the standard and the battery core is a qualified product. If the leakage current standard is not met, it can be considered that the self-discharge state of the battery core exceeds the standard and needs to be screened out.
  • the preset detection conditions include the temperature, pressure and state of charge SOC of the cell.
  • the self-discharge state of the battery core is usually affected by temperature, pressure and SOC. Therefore, when detecting the self-discharge state of the battery core, the preset detection conditions can be achieved by adjusting the temperature, pressure and SOC of the battery core. In this way, the preset detection conditions of the battery core can be controlled by adjusting the temperature, pressure and SOC of the battery core, thereby achieving the purpose of detecting the self-discharge state of the battery core under the preset detection conditions.
  • the temperature and pressure are the actual temperature and actual pressure inside the cell.
  • a sensor array composed of a temperature sensor and a pressure sensor can be implanted inside the battery core.
  • the temperature sensor and the pressure sensor can be integrated through the sensor array to facilitate simultaneous detection of the actual temperature and actual pressure at the same location. .
  • the wound structure may include an outermost ring plane 201, an innermost ring plane 202, an intermediate layer plane 203, and an outermost ring corner 204 and Innermost corner 205.
  • the sensor array 301 can be arranged at the position of the middle layer plane 203 .
  • the type of temperature or pressure sensor and the occupied space of the sensor array 301 can be limited according to actual conditions.
  • the built-in pressure sensor can be one or more of strain gauge piezoresistive, electromagnetic, capacitive, piezoelectric, electrostatic capacitance, and vibrating wire types, and can be arranged in the middle layer of the wound structure. on the plane of the slice.
  • the sensor array 301 can be of a thin film type with good flexibility, and its thickness can be less than 10um.
  • the effective area for installing the sensor on the middle layer plane can be 1cm*1cm, and then the sensor array 301 can be packaged and fixed using packaging glue.
  • Each sensor temperature sensor or pressure sensor
  • a heating plate and a clamp can be provided outside the battery core, and the heating plate can be used to adjust the external ambient temperature of the battery core, thereby achieving the purpose of adjusting the actual temperature inside the battery core.
  • the clamp can exert clamping force on the outside of the battery core, thereby adjusting the actual pressure inside the battery core. For example, the external ambient temperature and clamp force can be adjusted, and the data collected by the built-in sensor array can be monitored in real time until the actual temperature and actual pressure inside the cell reach the temperature and pressure corresponding to the preset detection conditions.
  • the above step 101 may include the following steps:
  • the OCV of the battery core under the preset detection conditions can be measured first, and the constant voltage charging method can be used based on the measured OCV. Corresponding leakage current value under preset detection conditions.
  • the OCV can be used as the voltage value for constant voltage charging to perform constant voltage charging on the battery core.
  • the current will gradually decrease along with the depolarization process of the battery core, and finally tends to a stable current value.
  • This value can be used as a preset value. Corresponding leakage current value under detection conditions.
  • the OCV value of the battery core is used for constant voltage charging, which can effectively shorten the depolarization time of the battery core and quickly obtain a stable leakage current value, thereby increasing the rate of self-discharge detection of the battery core.
  • the preset detection conditions include a first detection condition and/or a second detection condition, wherein the first detection condition corresponds to the physical self-discharge state of the battery core, and the second detection condition corresponds to the physical self-discharge state of the battery core. Physical self-discharge state and chemical self-discharge state.
  • the self-discharge of the battery core can be divided into a chemical self-discharge state and a physical self-discharge state according to the cause of its occurrence.
  • the physical self-discharge state of the battery core can be detected by obtaining the leakage current value of the battery core under the first detection condition.
  • the total self-discharge state of the battery core including the physical self-discharge state and the chemical self-discharge state, can also be detected by obtaining the leakage current value of the battery core under the second detection condition.
  • the leakage current value of the battery core under the first detection condition and the leakage current value under the second detection condition can also be obtained, and the chemical self-discharge state of the battery core can be detected through the difference between the leakage current values under the two detection conditions.
  • the preset detection condition includes a first detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the first leakage current value it is detected whether the physical self-discharge state of the battery core exceeds the standard.
  • the preset detection condition may include a first detection condition, where the first detection condition may be a low temperature, low SOC and high pressure state of the battery core.
  • the first detection condition may be a low temperature, low SOC and high pressure state of the battery core.
  • the rate of chemical side reactions inside the cell decreases, and the magnitude of chemical self-discharge is compressed to a level that can be ignored. At this time, it can be considered that only physical self-discharge remains in the cell.
  • the first SOC is less than or equal to 20%
  • the first temperature is -10 ⁇ 10°C
  • the first pressure is 1 ⁇ 2Mpa.
  • the SOC of the battery cell can be adjusted to the first SOC first, and the first SOC can be less than or equal to 20%. Then the temperature of the external heating plate and the clamping force can be adjusted so that the temperature inside the battery core reaches the first temperature and the pressure reaches the first pressure.
  • the first temperature can be between -10°C and 10°C.
  • the specific value can be set according to actual needs and is not specifically limited here.
  • the first pressure can be between 1 and 2Mpa.
  • the specific value can be set according to actual needs. There is no specific limit here. .
  • the leakage current value of the battery core measured under the first detection condition can be used as the first leakage current value corresponding to the physical self-discharge state of the battery core.
  • the first leakage current value it can be detected whether the physical self-discharge state of the battery core exceeds the standard. For example, it can be determined whether the first leakage current value satisfies the preset first condition. If it does, it can be considered that the physical self-discharge state of the battery core exceeds the standard. If it does not, it can be considered that the physical self-discharge state of the battery core meets the standard.
  • the first leakage current value corresponding to the physical self-discharge state of the battery core under the first detection condition can be obtained, so that the battery cores whose physical self-discharge state exceeds the standard can be screened out, and different types of battery cores can be automatically detected. Classification detection of discharge status further improves the accuracy of battery core self-discharge detection.
  • detecting whether the physical self-discharge state of the cell exceeds the standard based on the first leakage current value may include the following steps:
  • the first leakage current value is greater than the first threshold, it is determined that the physical self-discharge state of the battery core exceeds the standard.
  • the first threshold can be a screening standard corresponding to the physical self-discharge state, and the first leakage current value and the first threshold can be compared.
  • the battery core can be considered If the physical self-discharge state exceeds the standard, the battery core will be screened out and classified into the abnormal physical self-discharge state.
  • the cells whose physical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the preset detection condition includes a second detection condition
  • the leakage current value under the second detection condition is the second leakage current value.
  • the detection cell is in the preset detection state.
  • the above step 102 may include the following steps:
  • the second leakage current value it is detected whether the total self-discharge state of the battery core exceeds the standard.
  • the total self-discharge state includes physical self-discharge state and chemical self-discharge state.
  • the preset detection condition may also include a second detection condition, where the second detection condition may be the state of high temperature, high SOC and high pressure of the battery core.
  • the second detection condition may be the state of high temperature, high SOC and high pressure of the battery core.
  • the second detection condition As the temperature increases, the rate of chemical side reactions inside the cell increases, and the physical self-discharge changes very little.
  • the second pressure can be kept consistent with the first pressure to ensure the second detection
  • the physical self-discharge under the condition is consistent with or very close to the physical self-discharge under the first detection condition.
  • the cell can undergo chemical self-discharge and physical self-discharge at the same time, and the physical self-discharge under the second detection condition can be consistent or very similar to the physical self-discharge under the first detection condition. near.
  • the second SOC is greater than or equal to 80%
  • the second temperature is 45-50°C
  • the second pressure is 1-2Mpa.
  • the SOC of the battery core can be adjusted to the second SOC first, and the second SOC can be greater than or equal to 80%. Then the temperature of the external heating plate and the clamping force can be adjusted so that the temperature inside the battery core reaches the second temperature and the pressure reaches the second pressure.
  • the second temperature can be between 45 and 50°C.
  • the specific value can be set according to actual needs and is not specifically limited here.
  • the second pressure in order to ensure that the physical self-discharge under the second detection condition is consistent or very close to the physical self-discharge under the first detection condition, the second pressure can be consistent with the first pressure. Based on this, the second pressure It can be between 1 and 2Mpa.
  • the specific value can be set according to actual needs. There is no specific limit here.
  • the leakage current of the battery core measured under the second detection condition can be used as the second leakage current value corresponding to the total self-discharge state of the battery core (including physical self-discharge state and chemical self-discharge state).
  • the second leakage current value it can be detected whether the total self-discharge state of the battery core exceeds the standard. For example, it can be determined whether the second leakage current value satisfies the preset second condition. If satisfied, the total self-discharge of the battery core can be considered. The state exceeds the standard. If it does not meet the standard, the total self-discharge state of the battery core can be considered to meet the standard.
  • the second leakage current value corresponding to the physical self-discharge state and the chemical self-discharge state of the battery core under the second detection condition can be obtained, so that the battery core whose total self-discharge state exceeds the standard can be screened out, and the control of the battery core can be realized.
  • Classification and detection of self-discharge status of different types of battery cells further improves the accuracy of self-discharge detection of battery cells.
  • detecting whether the total self-discharge state of the battery core exceeds the standard based on the second leakage current value may include the following steps:
  • the second threshold may be a screening criterion corresponding to the total self-discharge state including the physical self-discharge state and the chemical self-discharge state.
  • the second leakage current value and the second threshold may be compared. When the second leakage current value When it is greater than the second threshold, it can be considered that the total self-discharge state of the battery core exceeds the standard. At this time, the battery core is screened out and classified into the abnormal total self-discharge state.
  • the cells whose total self-discharge state exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • the cell self-discharge detection method may further include the following steps:
  • the remaining capacity of the battery core is determined.
  • calculation formula for calculating the above capacity loss can also be used to calculate the capacity loss caused by various types of self-discharge based on the leakage current values corresponding to various types of self-discharge.
  • the preset detection conditions include a first detection condition and a second detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the leakage current value under the second detection condition is The value is the second leakage current value.
  • the above step 102 may also include the following steps:
  • the third leakage current value it is detected whether the chemical self-discharge state of the battery core exceeds the standard.
  • the second leakage current value minus the first The leakage current value is the third leakage current value corresponding to the chemical self-discharge state.
  • the chemical self-discharge state of the battery core exceeds the standard. For example, it can be determined whether the third leakage current value satisfies the preset third condition. If it does, it can be considered that the chemical self-discharge state of the battery core exceeds the standard. If it does not, it can be considered that the chemical self-discharge state of the battery core meets the standard.
  • the third leakage current value corresponding to the chemical self-discharge state can be obtained through the first leakage current value and the second leakage current value, so that the cells whose chemical self-discharge state exceeds the standard can be screened out. Classified detection of different types of self-discharge states of battery cells is achieved, further improving the accuracy of self-discharge detection of battery cells.
  • detecting whether the chemical self-discharge state of the cell exceeds the standard based on the third leakage current value may include the following steps:
  • the third threshold value may be a screening standard corresponding to the chemical self-discharge state, and the third leakage current value and the third threshold value may be compared.
  • the third leakage current value is greater than the third threshold value, the battery cell may be considered to be defective. If the chemical self-discharge state exceeds the standard, the cell will be screened out and classified into the abnormal chemical self-discharge state.
  • the cells whose chemical self-discharge status exceeds the standard can be screened out, and the self-discharge conditions of the cells can be classified, further improving the accuracy of cell self-discharge detection. .
  • Figure 4 shows a schematic diagram of a scenario embodiment of the above-mentioned battery core self-discharge detection method.
  • this scenario example includes the following steps:
  • Step 401 Adjust the SOC of the battery cell to the first SOC.
  • a small current 0.04C battery cell can be selected, and the battery core can be adjusted to the first SOC, and the first SOC can be lower than 20%.
  • Step 402 Adjust the temperature and pressure inside the battery core to the first temperature and first pressure.
  • the external heating plate and clamp force are adjusted so that the temperature and pressure inside the battery core reach the first temperature and the first pressure, where the first temperature can be between -10°C and 10°C, and the first pressure can be between 1 ⁇ 2MPa.
  • Step 403 According to the OCV of the cell at this time, the first leakage current value corresponding to the physical self-discharge state is measured using a constant voltage method. For example, if the OCV of the battery cell is measured under the first detection condition, and this voltage value is used as the voltage value for constant voltage charging for constant voltage charging, the current will gradually decrease along with the depolarization process of the battery cell, and will eventually reach a stable current. value, and use this current value as the first leakage current value I 1 corresponding to the physical self-discharge state.
  • Step 404 restore the temperature and pressure inside the battery core to the initial state, and adjust the SOC of the battery core to the second SOC. For example, after the temperature and pressure of the first detection condition are released, the temperature inside the cell returns to room temperature, and the clamp pressure returns to 0, the cell is adjusted to the second SOC, which can be higher than 80%.
  • Step 405 Adjust the temperature and pressure inside the battery core to the second temperature and second pressure.
  • the external heating plate and clamp force are adjusted so that the temperature and pressure inside the battery core reach the second temperature and the second pressure, where the second temperature can be between 45°C and 50°C, and the second pressure can be between 1 and 50°C. 2MPa.
  • Step 406 According to the OCV of the cell at this time, a second leakage current value corresponding to the physical self-discharge state and the chemical self-discharge state is measured using a constant voltage method.
  • the OCV of the battery cell is measured under the second detection condition, and this voltage value is used as the voltage value for constant voltage charging for constant voltage charging.
  • the current will gradually decrease along with the depolarization process of the battery cell, and will eventually reach a stable current. value, and use this current value as the second leakage current value I 2 corresponding to the physical self-discharge state and the chemical self-discharge state.
  • Step 407 Calculate a third leakage current value corresponding to the chemical self-discharge state based on the first leakage current value and the second leakage current value. For example, by subtracting the first leakage current value from the second leakage current value, the third leakage current value I 3 corresponding to the chemical self-discharge state can be obtained.
  • Step 408 Based on the first leakage current value, the second leakage current value and the third leakage current value, determine whether the physical self-discharge state, total self-discharge state and chemical self-discharge state of the cell exceed the standard. For example, I 2 , I 1 , and I 3 are compared with the filtering standards I * 2 , I * 1 , and I * 3 respectively, and the abnormal conditions of I 2 , I 1 , and I 3 are output, and it is judged whether there is a total automatic failure in the battery core. The discharge state, physical self-discharge state and chemical self-discharge state exceed the standard.
  • Step 409 Calculate the capacity loss of the battery core due to self-discharge within a certain period of time based on the second leakage current value.
  • Step 410 Calculate the remaining capacity of the battery core after self-discharge.
  • this application also provides an embodiment of a battery core self-discharge detection device.
  • FIG. 5 shows a schematic structural diagram of a cell self-discharge detection device provided by another embodiment of the present application. For convenience of explanation, only the parts related to the embodiment of the present application are shown.
  • the cell self-discharge detection device 500 may include:
  • the acquisition module 501 is used to obtain the leakage current value under preset detection conditions, where the preset detection conditions correspond to the self-discharge state of the battery core;
  • the detection module 502 is used to detect the self-discharge state of the battery core under preset detection conditions according to the leakage current value.
  • the preset detection conditions may include the temperature, pressure and state of charge SOC of the cell.
  • the temperature and pressure may be the actual temperature and actual pressure inside the cell.
  • the acquisition module 501 can also be used to:
  • the preset detection condition may include a first detection condition and/or a second detection condition, wherein the first detection condition corresponds to the physical self-discharge state of the battery core, and the second detection condition corresponds to the physical self-discharge state of the battery core. physical self-discharge state and chemical self-discharge state.
  • the preset detection condition includes a first detection condition
  • the leakage current value under the first detection condition is the first leakage current value.
  • the detection module 502 can also be used to:
  • the first leakage current value it is detected whether the physical self-discharge state of the battery core exceeds the standard.
  • the detection module 502 can also be used to:
  • the first leakage current value is greater than the first threshold, it is determined that the physical self-discharge state of the battery core exceeds the standard.
  • the preset detection condition includes a second detection condition
  • the leakage current value under the second detection condition is the second leakage current value.
  • the detection module 502 can also be used to:
  • the second leakage current value it is detected whether the total self-discharge state of the battery core exceeds the standard.
  • the total self-discharge state includes physical self-discharge state and chemical self-discharge state.
  • the detection module 502 can also be used to:
  • the cell self-discharge detection device 500 may also include:
  • the first determination module is used to determine the capacity loss of the battery core within the preset time period based on the second leakage current value
  • Capacity acquisition module used to obtain the initial capacity of the battery core
  • the second determination module is used to determine the remaining capacity of the battery core based on the initial capacity and capacity loss.
  • the preset detection conditions include a first detection condition and a second detection condition
  • the leakage current value under the first detection condition is the first leakage current value
  • the leakage current value under the second detection condition is The value is the second leakage current value
  • the detection module 502 can also be used to:
  • the third leakage current value it is detected whether the chemical self-discharge state of the battery core exceeds the standard.
  • the detection module 502 can also be used to:
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be hardware-based. It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the convenience of distinguishing each other and are not used to limit the scope of protection of this application.
  • For the specific working processes of the units and modules in the above system please refer to the corresponding processes in the foregoing method embodiments, and will not be described again here.
  • Figure 6 shows a schematic diagram of the hardware structure of an electronic device provided by yet another embodiment of the present application.
  • the electronic device may include a processor 601 and a memory 602 storing programs or instructions.
  • the processor 601 executes the program, the steps in any of the above method embodiments are implemented.
  • the program can be divided into one or more modules/units, and one or more modules/units are stored in the memory 602 and executed by the processor 601 to complete the present application.
  • One or more modules/units may be a series of program instruction segments capable of completing a specific function. The instruction segment is used to describe the execution process of the program in the device.
  • processor 601 may include a central processing unit (CPU), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits according to the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 602 may include bulk storage for data or instructions.
  • memory 602 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of many of the above.
  • Memory 602 may include removable or non-removable (or fixed) media, where appropriate. Where appropriate, the memory 602 may be internal or external to the integrated gateway disaster recovery device. In certain embodiments, memory 602 is non-volatile solid-state memory.
  • Memory may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical or other physical/tangible memory storage devices.
  • memory includes one or more tangible (non-transitory) readable storage media (e.g., memory devices) encoded with software including computer-executable instructions, and when the software is executed (e.g., by one or more processor), which is operable to perform the operations described with reference to a method according to an aspect of the present disclosure.
  • the processor 601 reads and executes the programs or instructions stored in the memory 602 to implement any of the methods in the above embodiments.
  • the electronic device may also include a communication interface 603 and a bus 604.
  • the processor 601, the memory 602, and the communication interface 603 are connected through the bus 604 and complete communication with each other.
  • the communication interface 603 is mainly used to implement communication between modules, devices, units and/or equipment in the embodiments of this application.
  • Bus 604 includes hardware, software, or both, coupling the components of the online data traffic metering device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) interconnect, Industry Standard Architecture (ISA) Bus, Infinite Bandwidth Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Micro Channel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • bus 604 may include one or more buses.
  • the embodiment of the present application can provide a readable storage medium for implementation.
  • the readable storage medium stores programs or instructions; when the program or instructions are executed by the processor, any one of the methods in the above embodiments is implemented.
  • the readable storage medium can be read by a machine such as a computer.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement various processes of the above method embodiments. , and can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-a-chip or system-on-chip, etc.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a readable storage medium.
  • the program product is executed by at least one processor to implement each process of the above method embodiment and can achieve the same technical effect. , to avoid repetition, will not be repeated here.
  • the functional modules shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via a computer grid such as the Internet, an intranet, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电芯自放电检测方法及其装置、电子设备、可读存储介质。该方法包括:获取预设检测条件下的漏电流值,其中,所述预设检测条件对应电芯的自放电状态;根据所述漏电流值,检测所述电芯在所述预设检测条件下的自放电状态。

Description

电芯自放电检测方法、装置、设备、存储介质和程序产品 技术领域
本申请涉及电芯检测技术领域,尤其涉及一种电芯自放电检测方法、装置、设备、存储介质和程序产品。
背景技术
电芯在不工作的情况下,也会损耗电量,这种现象可以称为自放电现象。电芯的自放电在一定程度上会影响到电芯的性能,因此需要对其进行检测,判断其自放电是否符合标准。然而相关的电芯自放电检测方法在检测过程中往往存在较大的误差,从而导致电芯自放电检测精度较低。
发明内容
本申请实施例提供了一种电芯自放电检测方法、装置、设备、存储介质和程序产品。
第一方面,本申请实施例提供一种电芯自放电检测方法,包括:
获取预设检测条件下的漏电流值,其中,预设检测条件对应电芯的自放电状态;
根据漏电流值,检测电芯在预设检测条件下的自放电状态。
在本申请实施例中,通过在预设检测条件下测量电芯的漏电流值,进而直接根据漏电流值来判断电芯的自放电状态,克服了采用电压降来检测电芯的自放电时由于电芯平台期电压变化不明显而造成自放电筛查时的漏筛,有效提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括电芯的温度、压力和荷电状态SOC。这样,可以通过调整电芯的温度、压力和SOC来控制电芯的预设检测条件,从而实现检测电芯在预设检测条件下的自放电状态的目的。
可选地,在一些实施例中,温度和压力为电芯内部的实际温度和实际压力。
本实施例中,通过调整电芯内部的实际温度和实际压力来控制电芯的状态,可以确保电芯内部的实际温度和实际压力处于预设检测状态下,避免因电芯内外情况差异而导致后续检测结果不准确的问题。
可选地,在一些实施例中,获取预设检测条件下的漏电流值,包括:
获取电芯在预设检测条件下的开路电压OCV;
采用OCV恒压充电的方式获取预设检测条件状态下的漏电流值。
本实施例中,采用电芯的OCV值进行恒压充电,可以有效缩短电芯去极化的时间,快速获得稳定的漏电流值,从而提高了电芯自放电检测的速率。
可选地,在一些实施例中,预设检测条件包括第一检测条件和/或第二检测条件,其中,第一检测条件对应电芯的物理自放电状态,第二检测条件对应电芯的物理自放电状态和化学自放电状态。
本实施例中,可以通过获取电芯在第一检测条件和/或第二检测条件下的漏电流,从而可以实现对电芯的不同类型自放电状态进行分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第一检测条件,且第一检测条件下的漏电流值为第一漏电流值,根据漏电流值,检测电芯在预设检测状态下的自放电状态,包括:
根据第一漏电流值,检测电芯的物理自放电状态是否超标。
本实施例中,可以通过获取电芯在第一检测条件下,物理自放电状态对应的第一漏电流值,从而可以筛选出物理自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,根据第一漏电流值,检测电芯的物理自放电状态是否超标,包括:
在第一漏电流值大于第一阈值的情况下,确定电芯的物理自放电状态超标。
这样,可以通过比对第一漏电流值与第一阈值,筛选出物理自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第二检测条件,且第二检测条件下的漏电流值为第二漏电流值,根据漏电流值,检测电芯在预设检测状态下的自放电状态,包括:
根据第二漏电流值,检测电芯的总自放电状态是否超标,总自放电状态包括物理自放电状态和化学自放电状态。
本实施例中,可以通过获取电芯在第二检测条件下,物理自放电状态和化学自放电状态对应的第二漏电流值,从而可以筛选出总自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,根据第二漏电流值,检测电芯的总自放电状态是否超标,包括:
在第二漏电流值大于第二阈值的情况下,确定电芯的总自放电状态超标。
这样,可以通过比对第二漏电流值与第二阈值,筛选出总自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,获取第二检测条件下的第二漏电流值之后,方法还包括:
根据第二漏电流值,确定电芯在预设时间段内的容量损失;
获取电芯的初始容量;
根据初始容量和容量损失,确定电芯的剩余容量。
本实施例中,可以根据电芯自放电对应的漏电流值,直接计算出容量损失,进而可以得到电芯自放电后的剩余容量。
可选地,在一些实施例中,预设检测条件包括第一检测条件和第二检测条件,且第一检测条件下的漏电流值为第一漏电流值,第二检测条件下的漏电流值为第二漏电流值,根据漏电流值,检测电芯在预设检测状态下 的自放电状态,还包括:
根据第一漏电流值和第二漏电流值,确定电芯的第三漏电流值,第三漏电流值对应电芯的化学自放电状态;
根据第三漏电流值,检测电芯的化学自放电状态是否超标。
本实施例中,可以通过第一漏电流值和第二漏电流值,得到化学自放电状态对应的第三漏电流值,从而可以筛选出化学自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,根据第三漏电流值,检测电芯的化学自放电状态是否超标,包括:
在第三漏电流值大于第三阈值的情况下,确定电芯的化学自放电状态超标。
这样,可以通过比对第三漏电流值与第三阈值,筛选出化学自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
第二方面,本申请实施例还提供一种电芯自放电检测装置,包括:
获取模块,用于获取预设检测条件下的漏电流值,其中,预设检测条件对应电芯的自放电状态;
检测模块,用于根据漏电流值,检测电芯在预设检测条件下的自放电状态。
在本申请实施例中,通过在预设检测条件下测量电芯的漏电流值,进而直接根据漏电流值来判断电芯的自放电状态,克服了采用电压降来检测电芯的自放电时由于电芯平台期电压变化不明显而造成自放电筛查时的漏筛,有效提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括电芯的温度、压力和荷电状态SOC。这样,可以通过调整电芯的温度、压力和SOC来控制电芯的预设检测条件,从而实现检测电芯在预设检测条件下的自放电状态的目的。
可选地,在一些实施例中,温度和压力为电芯内部的实际温度和实际 压力。
本实施例中,通过调整电芯内部的实际温度和实际压力来控制电芯的状态,可以确保电芯内部的实际温度和实际压力处于预设检测状态下,避免因电芯内外情况差异而导致后续检测结果不准确的问题。
可选地,在一些实施例中,获取模块还用于:
获取电芯在预设检测条件下的开路电压OCV;
采用OCV恒压充电的方式获取预设检测条件状态下的漏电流值。
本实施例中,采用电芯的OCV值进行恒压充电,可以有效缩短电芯去极化的时间,快速获得稳定的漏电流值,从而提高了电芯自放电检测的速率。
可选地,在一些实施例中,预设检测条件包括第一检测条件和/或第二检测条件,其中,第一检测条件对应电芯的物理自放电状态,第二检测条件对应电芯的物理自放电状态和化学自放电状态。
本实施例中,可以通过获取电芯在第一检测条件和/或第二检测条件下的漏电流,从而可以实现对电芯的不同类型自放电状态进行分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第一检测条件,且第一检测条件下的漏电流值为第一漏电流值,检测模块还用于:
根据第一漏电流值,检测电芯的物理自放电状态是否超标。
本实施例中,可以通过获取电芯在第一检测条件下,物理自放电状态对应的第一漏电流值,从而可以筛选出物理自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,检测模块还用于:
在第一漏电流值大于第一阈值的情况下,确定电芯的物理自放电状态超标。
这样,可以通过比对第一漏电流值与第一阈值,筛选出物理自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第二检测条件,且第二检测条件下的漏电流值为第二漏电流值,检测模块还用于:
根据第二漏电流值,检测电芯的总自放电状态是否超标,总自放电状态包括物理自放电状态和化学自放电状态。
本实施例中,可以通过获取电芯在第二检测条件下,物理自放电状态和化学自放电状态对应的第二漏电流值,从而可以筛选出总自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,检测模块还用于:
在第二漏电流值大于第二阈值的情况下,确定电芯的总自放电状态超标。
这样,可以通过比对第二漏电流值与第二阈值,筛选出总自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,装置还包括:
第一确定模块,用于根据第二漏电流值,确定电芯在预设时间段内的容量损失;
容量获取模块,用于获取电芯的初始容量;
第二确定模块,用于根据初始容量和容量损失,确定电芯的剩余容量。
本实施例中,可以根据电芯自放电对应的漏电流值,直接计算出容量损失,进而可以得到电芯自放电后的剩余容量。
可选地,在一些实施例中,预设检测条件包括第一检测条件和第二检测条件,且第一检测条件下的漏电流值为第一漏电流值,第二检测条件下的漏电流值为第二漏电流值,检测模块还用于:
根据第一漏电流值和第二漏电流值,确定电芯的第三漏电流值,第三漏电流值对应电芯的化学自放电状态;
根据第三漏电流值,检测电芯的化学自放电状态是否超标。
本实施例中,可以通过第一漏电流值和第二漏电流值,得到化学自放 电状态对应的第三漏电流值,从而可以筛选出化学自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,检测模块还用于:
在第三漏电流值大于第三阈值的情况下,确定电芯的化学自放电状态超标。
这样,可以通过比对第三漏电流值与第三阈值,筛选出化学自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
第三方面,本申请实施例提供了一种电子设备,设备包括:
处理器以及存储有程序或指令的存储器,处理器执行程序或指令时实现上述的方法。
第四方面,本申请实施例提供了一种可读存储介质,可读存储介质上存储有程序或指令,程序或指令被处理器执行时实现上述的方法。
第五方面,本申请实施例提供了一种计算机程序产品,计算机程序产品中的指令由电子设备的处理器执行时,使得电子设备执行上述方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请实施例提供的电芯自放电检测方法的流程示意图;
图2为本申请实施例提供的电芯自放电检测方法中一种电芯的结构示意图;
图3为图2中温度和压力传感器的安装位置示意图;
图4为本申请实施例提供的电芯自放电检测方法的场景实施例示意图;
图5为本申请另一个实施例提供的电芯自放电检测装置的结构示意图;
图6是本申请又一个实施例提供的电子设备的结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电芯可以包括锂离子二次电芯、锂离子一次电芯、锂硫电芯、钠锂离子电芯、钠离子电芯或镁离子电芯等,本申请实施例对此并不限定。电芯可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对 此也不限定。电芯一般按封装的方式分成三种:柱形电芯、方体方形电芯和软包电芯,本申请实施例对此也不限定。
电芯包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电芯主要依靠金属离子在正极片和负极片之间移动来工作。电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
目前检测电芯自放电的相关方法中,大多采用电学信号如容量,电压与电阻进行分析做出自放电程度判断,另外有少量借用加压力,磁场等外界环境加速或提高自放电程度便于自放电检测。例如可以通过调整电芯在不同外部温度与压力后测定电芯的电压,根据不同状态下的电压变化计算自放电值从而筛选自放电不合格的电芯。然而申请人发现,通过上述方法检测电芯的自放电性能存在以精度较低的问题。一方面,通过电压的变化判断自放电是否超标存在一定的误差,采用电压降测量自放电率时需要根据荷电状态~开路电压曲线进行对标,本身就存在一定误差,另外电压降通常是与电芯的荷电状态(State of Charge,SOC)、电池体系有关,当电池处于平台区时,电芯即使自放电严重、容量损失较大,但电压降却很小或不明显,很难被检测到,从而导致自放电检测结果不准确。另一方面,由于受到电芯大小、外部传热介质、硬壳承压和电芯群裕度等多种因素影响,电芯的外部温度和压力通常与其内部实际的温度、压力存在较大差异,此时调整电芯的检测状态时,往往存在误差,从而也会影响到后续检测结果的准确性。可见,目前的电芯自放电检测方法存在精度较低的问题。
基于申请人发现的上述问题,本申请实施例提供一种电芯自放电检测方法、装置、设备、存储介质和程序产品,可以提高对电芯自放电检测的精度。下面首先介绍本申请实施例提供的电芯自放电检测方法。
请参照图1,图1为本申请一些实施例提供的电池自放电检测方法的流程示意图,该电池自放电检测方法可以包括如下步骤:
步骤101,获取预设检测条件下的漏电流值,其中,预设检测条件对应电芯的自放电状态;
步骤102,根据漏电流值,检测电芯在预设检测条件下的自放电状 态。
在本申请实施例中,通过在预设检测条件下测量电芯的漏电流值,进而直接根据漏电流值来判断电芯的自放电状态,克服了采用电压降来检测电芯的自放电时由于电芯平台期电压变化不明显而造成自放电筛查时的漏筛,有效提高了电芯自放电检测的精度。
在步骤101中,预设检测条件通常对应电芯的自放电状态,可以根据实际需求设定,此处不作具体限定。例如,预设检测条件可以是在不损害电芯结构和电学性能的基础上的自放电状态最激烈的检测条件。又例如,预设检测条件可以是电芯在实际使用过程中最可能处于的状态。还例如,预设检测条件还可以是为了区分物理自放电状态与化学自放电状态,便于后续分类筛选物理自放电状态超标和化学自放电状态超标的电芯而设定的检测条件等。可以理解的是,预设检测条件的数量可以一个,也可以为多个,具体可根据实际需求选择,此处也不作具体限定。
可以测量电芯在预设检测条件下的漏电流值。可以理解的是,预设检测条件的数量可以为一个,即此时,可以仅测量一次电芯的漏电流值,预设检测条件的数量也可以为多个,换而言之,电芯每调整到一个预设检测条件,则需要测量一次电芯的漏电流值,因此可以得到多个漏电流值。
在步骤102中,可以根据漏电流值,检测电芯在预设检测条件下的自放电状态,换而言之,漏电流值可以直接反映电芯的自放电状态是否存在超标的现象。示例地,可以将测量到的漏电流值与预设的漏电流标准进行比对,若满足漏电流标准,则可以认为电芯的自放电状态是达标的,该电芯为合格品。若不满足漏电流标准,则可以认为电芯的自放电状态超标,需要被筛除。
可选地,在一些实施例中,预设检测条件包括电芯的温度、压力和荷电状态SOC。
可以理解的是,电芯的自放电状态通常受到温度、压力和SOC的影响,因此在检测电芯的自放电状态时,可以通过调整电芯的温度、压力和SOC来达到预设检测条件。这样,可以通过调整电芯的温度、压力和SOC来控制电芯的预设检测条件,从而实现检测电芯在预设检测条件下的自放 电状态的目的。
可选地,在一些实施例中,温度和压力为电芯内部的实际温度和实际压力。
在本实施例中,电芯内部可以植入由温度传感器和压力传感器组成的传感器阵列,通过传感器阵列可以将温度传感器和压力传感器集成在一起,便于同时检测相同位置下的实际温度和实际压力情况。
以电芯为卷绕式结构为例,如图2和图3所示,该卷绕式结构可以包括最外圈平面201、最内圈平面202、中间层平面203以及最外圈拐角204和最内圈拐角205。为了保证传感器阵列301的安装稳定性,以及为了更加准确的监测到电芯内部真实状态的温度与压力情况,可以将传感器阵列301布置在中间层平面203的位置。
示例地,为了植入的传感器阵列301不影响电芯本身的电学性能,可以根据实际情况对温度或压力传感器的类型、传感器阵列301的占用空间进行限定。例如,内置的压力传感器可以采用应变片压阻型、电磁型、电容式、压电型、静电容量型、振弦式中的一种或多种,可以布置于卷绕式结构最中间层极片的平面上。同时传感器阵列301可以为薄膜型,具有良好柔韧性,其厚度可以小于10um,,中间层平面处安装传感器的有效面积可以为1cm*1cm,然后可以使用封装胶对传感器阵列301进行封装固定。每个传感器(温度传感器或压力传感器)可以通过导线独立引出传感信号,后续通过信号解耦就可以获得该位置的实际温度和实际压力情况。
可以在电芯的外部设置加热板和夹具,其中加热板可以用于调节电芯的外部环境温度,进而可以达到调整电芯内部的实际温度的目的。夹具可以在电芯的外部施加夹具力,进而可以达到调整电芯内部的实际压力的目的。示例地,可以通过调节外部环境温度和夹具力,并实时监测内置的传感器阵列采集到的数据,直至电芯内部的实际温度和实际压力达到预设检测条件所对应的温度和压力。
本实施例中,通过调整电芯内部的实际温度和实际压力来控制电芯的状态,可以确保电芯内部的实际温度和实际压力处于预设检测条件下,避免因电芯内外情况差异而导致后续检测结果不准确的问题。
可选地,在一些实施例中,上述步骤101可以包括如下步骤:
获取电芯在预设检测条件下的开路电压(Open circuit voltage,OCV);
采用OCV恒压充电的方式获取预设检测条件状态下的漏电流值。
在本实施例中,将电芯内部的温度、压力和SOC调整至预设检测条件后,可以先测量预设检测条件下电芯的OCV,并基于测量到的OCV采用恒压充电的方式测量预设检测条件下对应的漏电流值。
示例地,可以以该OCV作为恒压充电的电压值对电芯进行恒压充电,电流会随着电芯去极化过程逐渐降低,最终趋于稳定的电流值,可以将该值作为预设检测条件下对应的漏电流值。
本实施例中,采用电芯的OCV值进行恒压充电,可以有效缩短电芯去极化的时间,快速获得稳定的漏电流值,从而提高了电芯自放电检测的速率。
可选地,在一些实施例中,预设检测条件包括第一检测条件和/或第二检测条件,其中,第一检测条件对应电芯的物理自放电状态,第二检测条件对应电芯的物理自放电状态和化学自放电状态。
可以理解的是,电芯的自放电可以根据其产生的原因分为化学自放电状态和物理自放电状态。在本实施例中,可以通过获取电芯在第一检测条件下的漏电流值,来检测电芯的物理自放电状态。也可以通过获取电芯在第二检测条件下的漏电流值,来检测电芯的包括物理自放电状态和化学自放电状态的总自放电状态。还可以获取电芯在第一检测条件下的漏电流值以及在第二检测条件下的漏电流值,通过两种检测条件下的漏电流值之差,来检测电芯的化学自放电状态。
本实施例中,可以通过获取电芯在第一检测条件和/或第二检测条件下的漏电流,从而可以实现对电芯的不同类型自放电状态进行分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第一检测条件,且第一检测条件下的漏电流值为第一漏电流值,上述步骤102可以包括如下步骤:
根据第一漏电流值,检测电芯的物理自放电状态是否超标。
在本实施例中,预设检测条件可以包括第一检测条件,其中第一检测条件可以为电芯的低温,低SOC和高压力的状态。在第一检测条件下,电芯内部的化学副反应速率降低,化学自放电的大小被压缩到可以被忽略的程度,此时可以认为电芯只剩下物理自放电。
在一些示例中,在第一检测条件下,第一SOC小于或等于20%,第一温度为-10~10℃,第一压力为1~2Mpa。可以先将电芯的SOC调整至第一SOC,第一SOC可以小于或等于20%。然后可以调整外部加热板的温度和夹具力,使电芯内部的温度达到第一温度,压力达到第一压力。
可以理解的是,电芯内部的温度如果过高,可能会导致化学副反应速率增加,从而导致电芯内部发生化学自放电。若电芯内部的温度过低,则会影响到电芯的电学性能,甚至会对电芯造成一定程度上的损害。为了保证电芯的电学性能和使用寿命,第一温度可以介于-10~10℃之间,具体数值可以根据实际需求进行设定,此处不作具体限定。
还可以理解的是,电芯内部的压力如果过高,可能会造成过压而损坏电芯结构或电解液浸润受阻而析锂。若电芯内部的压力过低,则此时极片间距大,短路点小,容易因接触不良造成物理自放电状态低,从而存在漏筛的风险。为了摆正电芯的使用寿命以及提高电芯的物理自放电状态检测结果的准确性,第一压力可以介于1~2Mpa之间,具体数值可以根据实际需求进行设定,此处不作具体限定。
基于此,在第一检测条件下测量得到的电芯的漏电流值,可以作为电芯的物理自放电状态对应的第一漏电流值。
随后可以根据第一漏电流值,检测电芯的物理自放电状态是否超标。示例地,可以判断第一漏电流值是否满足预设第一条件,若满足,则可以认为电芯的物理自放电状态超标,若不满足,则可以认为电芯的物理自放电状态达标。
本实施例中,可以通过获取电芯在第一检测条件下,物理自放电状态对应的第一漏电流值,从而可以筛选出物理自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测 的精度。
可选地,在一些实施例中,根据第一漏电流值,检测电芯的物理自放电状态是否超标,可以包括如下步骤:
在第一漏电流值大于第一阈值的情况下,确定电芯的物理自放电状态超标。
在本实施例中,第一阈值可以是物理自放电状态对应的筛选标准,可以比对第一漏电流值和第一阈值,在第一漏电流值大于第一阈值时,可以认为电芯的物理自放电状态超标,此时将该电芯筛除,并将其归属于物理自放电状态异常分类中。
这样,可以通过比对第一漏电流值与第一阈值,筛选出物理自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,预设检测条件包括第二检测条件,且第二检测条件下的漏电流值为第二漏电流值,根据漏电流值,检测电芯在预设检测状态下的自放电状态,上述步骤102可以包括如下步骤:
根据第二漏电流值,检测电芯的总自放电状态是否超标,总自放电状态包括物理自放电状态和化学自放电状态。
在本实施例中,预设检测条件还可以包括第二检测条件,其中第二检测条件可以为电芯的高温,高SOC和高压力的状态。在第二检测条件下,随温度升高,电芯内部的化学副反应速率增加,且物理自放电的变化很小,此时可以将第二压力与第一压力保持一致,以保证第二检测条件下的物理自放电与第一检测条件下的物理自放电保持一致或十分接近。换而言之,在第二检测条件下,电芯可以同时发生化学自放电和物理自放电,且第二检测条件下的物理自放电可以与第一检测条件下的物理自放电保持一致或十分接近。
在一些示例中,在第二检测条件下,第二SOC大于或等于80%,第二温度为45~50℃,第二压力为1~2Mpa。可以先将电芯的SOC调整至第二SOC,第二SOC可以大于或等于80%。然后可以调整外部加热板的温度和夹具力,使电芯内部的温度达到第二温度,压力达到第二压力。
可以理解的是,要增加化学副反应速率,则需要提高电芯内部的温度,然而若电芯温度过高,则会影响到电芯的电学性能,甚至会对电芯造成一定程度上的损害。为了增加化学副反应的同时保证电芯的电学性能和使用寿命,第二温度可以介于45~50℃之间,具体数值可以根据实际需求进行设定,此处不作具体限定。
还可以理解的是,为了保证第二检测条件下的物理自放电与第一检测条件下的物理自放电保持一致或十分接近,第二压力可以与第一压力保持一致,基于此,第二压力可以介于1~2Mpa之间,具体数值可以根据实际需求进行设定,此处不作具体限定。
基于此,在第二检测条件下测量得到的电芯的漏电流,可以作为电芯的总自放电状态(包括物理自放电状态和化学自放电状态)对应的第二漏电流值。
随后可以根据第二漏电流值,检测电芯的总自放电状态是否超标,示例地,可以判断第二漏电流值是否满足预设第二条件,若满足,则可以认为电芯的总自放电状态超标,若不满足,则可以认为电芯的总自放电状态达标。
本实施例中,可以通过获取电芯在第二检测条件下,物理自放电状态和化学自放电状态对应的第二漏电流值,从而可以筛选出总自放电状态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,根据第二漏电流值,检测电芯的总自放电状态是否超标,可以包括如下步骤:
在第二漏电流值大于第二阈值的情况下,确定电芯的总自放电状态超标。
在本实施例中,第二阈值可以是包括物理自放电状态和化学自放电状态的总自放电状态对应的筛选标准,可以比对第二漏电流值和第二阈值,在第二漏电流值大于第二阈值时,可以认为电芯的总自放电状态超标,此时将该电芯筛除,并将其归属于总自放电状态异常分类中。
这样,可以通过比对第二漏电流值与第二阈值,筛选出总自放电状态 超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,获取第二检测条件下的第二漏电流值之后,电芯自放电检测方法还可以包括如下步骤:
根据第二漏电流值,确定电芯在预设时间段内的容量损失;
获取电芯的初始容量;
根据初始容量和容量损失,确定电芯的剩余容量。
在本实施例中,还可以根据第二漏电流值I 2,计算电芯在预设时间段内△t的容量损失Q loss,其中Q loss=I 2*△t。可以根据计算得到的容量损失,计算电芯自放电后的剩余容量Q,其中Q=Q 0-Q loss,Q 0为电芯的初始容量。
可以理解的是,计算上述容量损失的计算公式,还可以根据各类自放电对应的漏电流值,计算各类自放电分别造成的容量损失。
可选地,在一些实施例中,预设检测条件包括第一检测条件和第二检测条件,且第一检测条件下的漏电流值为第一漏电流值,第二检测条件下的漏电流值为第二漏电流值,上述步骤102还可以包括如下步骤:
根据第一漏电流值和第二漏电流值,确定电芯的第三漏电流值,第三漏电流值对应电芯的化学自放电状态;
根据第三漏电流值,检测电芯的化学自放电状态是否超标。
在本实施例中,如上文所言,由于第二检测条件下的物理自放电可以与第一检测条件下的物理自放电保持一致或十分接近,因此,将第二漏电流值减去第一漏电流值,即可以得到化学自放电状态对应的第三漏电流值。
随后可以根据第三漏电流值,检测电芯的化学自放电状态是否超标。示例地,可以判断第三漏电流值是否满足预设第三条件,若满足,则可以认为电芯的化学自放电状态超标,若不满足,则可以认为电芯的化学自放电状态达标。
本实施例中,本实施例中,可以通过第一漏电流值和第二漏电流值,得到化学自放电状态对应的第三漏电流值,从而可以筛选出化学自放电状 态超标的电芯,实现了对电芯不同类型自放电状态的分类检测,进一步提高了电芯自放电检测的精度。
可选地,在一些实施例中,根据第三漏电流值,检测电芯的化学自放电状态是否超标,可以包括如下步骤:
在第三漏电流值大于第三阈值的情况下,确定电芯的化学自放电状态超标。
在本实施例中,第三阈值可以是化学自放电状态对应的筛选标准,可以比对第三漏电流值和第三阈值,在第三漏电流值大于第三阈值时,可以认为电芯的化学自放电状态超标,此时将该电芯筛除,并将其归属于化学自放电状态异常分类中。
这样,可以通过比对第三漏电流值与第三阈值,筛选出化学自放电状态超标的电芯,并实现了对电芯自放电情况的分类处理,进一步提高了电芯自放电检测的精度。
为了便于理解上述实施例提供的电芯自放电检测方法,以下以一个具体的场景实施例对上述电芯自放电检测方法进行说明。图4示出了上述电芯自放电检测方法的场景实施例示意图。
如图4所示,该场景实施例包括如下步骤:
步骤401,调整电芯的SOC到第一SOC。示例地,电芯可以选择小电流0.04C电芯,将电芯调整到第一SOC,第一SOC可以低于20%。
步骤402,调整电芯内部的温度和压力至第一温度和第一压力。示例地,调整外部加热板与夹具力使电芯内部的温度和压力达到第一温度和第一压力,其中,第一温度可以介于-10~10℃之间,第一压力可以介于1~2MPa。
步骤403,根据此时电芯的OCV,采用恒压方式测量得到物理自放电状态对应的第一漏电流值。示例地,测定第一检测条件下电芯的OCV,并以此电压值作为恒压充电的电压值进行恒压充电,电流会随着电芯去极化过程逐渐降低,最终趋于稳定的电流值,将该电流值作为物理自放电状态对应的第一漏电流值I 1
步骤404,将电芯内部的温度和压力恢复至初始状态,调整电芯的 SOC到第二SOC。示例地,将第一检测条件的温度和压力进行释放,电芯内部的温度恢复到室温,夹具压力恢复到0后,将电芯调整到第二SOC,第SOC可以高于80%。
步骤405,调整电芯内部的温度和压力至第二温度和第二压力。示例地,调整外部加热板与夹具力使电芯内部的温度和压力达到第二温度和第二压力,其中,第二温度可以介于45~50℃之间,第二压力可以介于1~2MPa。
步骤406,根据此时电芯的OCV,采用恒压方式测量得到物理自放电状态和化学自放电状态对应的第二漏电流值。示例地,测定第二检测条件下电芯的OCV,并以此电压值作为恒压充电的电压值进行恒压充电,电流会随着电芯去极化过程逐渐降低,最终趋于稳定的电流值,将该电流值作为物理自放电状态和化学自放电状态对应的第二漏电流值I 2
步骤407,根据第一漏电流值和第二漏电流值,计算化学自放电状态对应的第三漏电流值。示例地,将第二漏电流值减去第一漏电流值,即可得到化学自放电状态对应的第三漏电流值I 3
步骤408,根据第一漏电流值、第二漏电流值和第三漏电流值,判断电芯的物理自放电状态、总自放电状态和化学自放电状态是否超标。示例地,将I 2、I 1、I 3与筛选标准I * 2、I * 1、I * 3分别进行比较,输出I 2、I 1、I 3的异常情况,判断电芯是否存在总自放电状态、物理自放电状态和化学自放电状态超标情况。例如:当I 2>I * 2时,输出电芯的总自放电状态异常;当I 1>I * 1时,输出电芯的物理自放电状态异常;当I 3>I * 3时,输出电芯的化学自放电状态异常。
步骤409,根据第二漏电流值计算电芯在一定时间内因自放电而造成的容量损失。示例地,可以根据第二漏电流值I 2,计算电芯在预设时间段内△t的容量损失Q loss,其中Q loss=I 2*△t。
步骤410,计算电芯自放电后的剩余容量。示例地,可以根据计算得到的容量损失,计算电芯自放电后的剩余容量Q,其中Q=Q 0-Q loss,Q 0为电芯的初始容量。
基于上述实施例提供的电芯自放电检测方法,本申请还提供了一种电 芯自放电检测装置的实施例。
图5示出了本申请另一个实施例提供的电芯自放电检测装置的结构示意图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图5,电芯自放电检测装置500可以包括:
获取模块501,用于获取预设检测条件下的漏电流值,其中,预设检测条件对应电芯的自放电状态;
检测模块502,用于根据漏电流值,检测电芯在预设检测条件下的自放电状态。
可选地,在一些实施例中,预设检测条件可以包括电芯的温度、压力和荷电状态SOC。可选地,在一些实施例中,温度和压力可以为电芯内部的实际温度和实际压力。
可选地,在一些实施例中,获取模块501还可以用于:
获取电芯在预设检测条件下的开路电压OCV;
采用OCV恒压充电的方式获取预设检测条件状态下的漏电流值。
可选地,在一些实施例中,预设检测条件可以包括第一检测条件和/或第二检测条件,其中,第一检测条件对应电芯的物理自放电状态,第二检测条件对应电芯的物理自放电状态和化学自放电状态。
可选地,在一些实施例中,预设检测条件包括第一检测条件,且第一检测条件下的漏电流值为第一漏电流值,检测模块502还可以用于:
根据第一漏电流值,检测电芯的物理自放电状态是否超标。
可选地,在一些实施例中,检测模块502还可以用于:
在第一漏电流值大于第一阈值的情况下,确定电芯的物理自放电状态超标。
可选地,在一些实施例中,预设检测条件包括第二检测条件,且第二检测条件下的漏电流值为第二漏电流值,检测模块502还可以用于:
根据第二漏电流值,检测电芯的总自放电状态是否超标,总自放电状态包括物理自放电状态和化学自放电状态。
可选地,在一些实施例中,检测模块502还可以用于:
在第二漏电流值大于第二阈值的情况下,确定电芯的总自放电状态超 标。
可选地,在一些实施例中,电芯自放电检测装置500还可以包括:
第一确定模块,用于根据第二漏电流值,确定电芯在预设时间段内的容量损失;
容量获取模块,用于获取电芯的初始容量;
第二确定模块,用于根据初始容量和容量损失,确定电芯的剩余容量。
可选地,在一些实施例中,预设检测条件包括第一检测条件和第二检测条件,且第一检测条件下的漏电流值为第一漏电流值,第二检测条件下的漏电流值为第二漏电流值,检测模块502还可以用于:
根据第一漏电流值和第二漏电流值,确定电芯的第三漏电流值,第三漏电流值对应电芯的化学自放电状态;
根据第三漏电流值,检测电芯的化学自放电状态是否超标。
可选地,在一些实施例中,检测模块502还可以用于:
在第三漏电流值大于第三阈值的情况下,确定电芯的化学自放电状态超标。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,与本申请方法实施例基于同一构思,是与上述电池极片对齐度检测方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不 用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图6示出了本申请又一个实施例提供的电子设备的硬件结构示意图。
电子设备可以包括处理器601以及存储有程序或指令的存储器602。处理器601执行程序时实现上述任意各个方法实施例中的步骤。
示例性的,程序可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器602中,并由处理器601执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列程序指令段,该指令段用于描述程序在设备中的执行过程。
具体地,上述处理器601可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器602可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器602可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器602可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器602可在综合网关容灾设备的内部或外部。在特定实施例中,存储器602是非易失性固态存储器。
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器601通过读取并执行存储器602中存储的程序或指令,以实现上述实施例中的任意一种方法。
在一个示例中,电子设备还可包括通信接口603和总线604。其中,处理器601、存储器602、通信接口603通过总线604连接并完成相互间 的通信。
通信接口603,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线604包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线604可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
另外,结合上述实施例中的方法,本申请实施例可提供一种可读存储介质来实现。该可读存储介质上存储有程序或指令;该程序或指令被处理器执行时实现上述实施例中的任意一种方法。该可读存储介质可以被如计算机等机器读取。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在可读存储介质中,该程序产品被至少一个处理器执行以实现如上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过 程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能模块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网格被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序或指令实现。这些程序或指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部 件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电芯自放电检测方法,包括:
    获取预设检测条件下的漏电流值,其中,所述预设检测条件对应电芯的自放电状态;
    根据所述漏电流值,检测所述电芯在所述预设检测条件下的自放电状态。
  2. 根据权利要求1所述的方法,其中,所述预设检测条件包括所述电芯的温度、压力和荷电状态SOC。
  3. 根据权利要求2所述的方法,其中,所述温度和所述压力为所述电芯内部的实际温度和实际压力。
  4. 根据权利要求1所述的方法,其中,所述获取预设检测条件下的漏电流值,包括:
    获取所述电芯在所述预设检测条件下的开路电压OCV;
    采用所述OCV恒压充电的方式获取所述预设检测条件下的漏电流值。
  5. 根据权利要求1所述的方法,其中,所述预设检测条件包括第一检测条件和/或第二检测条件,其中,所述第一检测条件对应所述电芯的物理自放电状态,所述第二检测条件对应所述电芯的物理自放电状态和化学自放电状态。
  6. 根据权利要求5所述的方法,其中,所述预设检测条件包括所述第一检测条件,且所述第一检测条件下的漏电流值为第一漏电流值,所述根据所述漏电流值,检测所述电芯在所述预设检测状态下的自放电状态,包括:
    根据所述第一漏电流值,检测所述电芯的物理自放电状态是否超标。
  7. 根据权利要求6所述的方法,其中,所述根据所述第一漏电流值,检测所述电芯的物理自放电状态是否超标,包括:
    在所述第一漏电流值大于第一阈值的情况下,确定所述电芯的物理自放电状态超标。
  8. 根据权利要求5所述的方法,其中,所述预设检测条件包括所述第二检测条件,且所述第二检测条件下的漏电流值为第二漏电流值,所述根据所述漏电流值,检测所述电芯在所述预设检测状态下的自放电状态,包括:
    根据所述第二漏电流值,检测所述电芯的总自放电状态是否超标,所述总自放电状态包括物理自放电状态和化学自放电状态。
  9. 根据权利要求8所述的方法,其中,所述根据所述第二漏电流值,检测所述电芯的总自放电状态是否超标,包括:
    在所述第二漏电流值大于第二阈值的情况下,确定所述电芯的总自放电状态超标。
  10. 根据权利要求8所述的方法,其中,获取所述第二检测条件下的第二漏电流值之后,所述方法还包括:
    根据所述第二漏电流值,确定所述电芯在预设时间段内的容量损失值;
    获取所述电芯的初始容量;
    根据所述初始容量和所述容量损失值,确定所述电芯的剩余容量。
  11. 根据权利要求5所述的方法,其中,所述预设检测条件包括所述第一检测条件和所述第二检测条件,且所述第一检测条件下的漏电流值为第一漏电流值,所述第二检测条件下的漏电流值为第二漏电流值,
    所述根据所述漏电流值,检测所述电芯在所述预设检测状态下的自放电状态,还包括:
    根据所述第一漏电流值和所述第二漏电流值,确定所述电芯的第三漏电流值,所述第三漏电流值对应所述电芯的化学自放电状态;
    根据所述第三漏电流值,检测所述电芯的化学自放电状态是否超标。
  12. 根据权利要求11所述的方法,其中,所述根据所述第三漏电流值,检测所述电芯的化学自放电状态是否超标,包括:
    在所述第三漏电流值大于第三阈值的情况下,确定所述电芯的化学自放电状态超标。
  13. 一种电芯自放电检测装置,包括:
    获取模块,用于获取预设检测条件下的漏电流值,其中,所述预设检测条件对应电芯的自放电状态;
    检测模块,用于根据所述漏电流值,检测所述电芯在所述预设检测状态下的自放电状态。
  14. 一种电子设备,包括:处理器以及存储有程序或指令的存储器;
    所述处理器执行所述程序或指令时实现如权利要求1-12任意一项所述的方法。
  15. 一种可读存储介质,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如权利要求1-12任意一项所述的方法。
  16. 一种计算机程序产品,所述计算机程序产品中的指令由电子设备的处理器执行时,使得所述电子设备执行如权利要求1-12任意一项所述的方法。
PCT/CN2022/117543 2022-09-07 2022-09-07 电芯自放电检测方法、装置、设备、存储介质和程序产品 WO2024050716A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/117543 WO2024050716A1 (zh) 2022-09-07 2022-09-07 电芯自放电检测方法、装置、设备、存储介质和程序产品
CN202280011308.9A CN116830355A (zh) 2022-09-07 2022-09-07 电芯自放电检测方法、装置、设备、存储介质和程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117543 WO2024050716A1 (zh) 2022-09-07 2022-09-07 电芯自放电检测方法、装置、设备、存储介质和程序产品

Publications (1)

Publication Number Publication Date
WO2024050716A1 true WO2024050716A1 (zh) 2024-03-14

Family

ID=88124383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117543 WO2024050716A1 (zh) 2022-09-07 2022-09-07 电芯自放电检测方法、装置、设备、存储介质和程序产品

Country Status (2)

Country Link
CN (1) CN116830355A (zh)
WO (1) WO2024050716A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133319A (ja) * 1998-10-23 2000-05-12 Toshiba Battery Co Ltd アルカリ二次電池の検査方法
CN109244573A (zh) * 2017-07-10 2019-01-18 丰田自动车株式会社 蓄电设备的短路检查方法和蓄电设备的制造方法
CN109425800A (zh) * 2017-08-21 2019-03-05 丰田自动车株式会社 蓄电器件的检查方法及制造方法
CN209911514U (zh) * 2019-04-30 2020-01-07 蜂巢能源科技有限公司 电池的自放电测试系统
CN111722129A (zh) * 2020-06-01 2020-09-29 国联汽车动力电池研究院有限责任公司 一种电池微短路检测方法及系统
CN112130085A (zh) * 2020-09-09 2020-12-25 欣旺达电动汽车电池有限公司 锂电池自放电性能的筛选方法、装置和计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133319A (ja) * 1998-10-23 2000-05-12 Toshiba Battery Co Ltd アルカリ二次電池の検査方法
CN109244573A (zh) * 2017-07-10 2019-01-18 丰田自动车株式会社 蓄电设备的短路检查方法和蓄电设备的制造方法
CN109425800A (zh) * 2017-08-21 2019-03-05 丰田自动车株式会社 蓄电器件的检查方法及制造方法
CN209911514U (zh) * 2019-04-30 2020-01-07 蜂巢能源科技有限公司 电池的自放电测试系统
CN111722129A (zh) * 2020-06-01 2020-09-29 国联汽车动力电池研究院有限责任公司 一种电池微短路检测方法及系统
CN112130085A (zh) * 2020-09-09 2020-12-25 欣旺达电动汽车电池有限公司 锂电池自放电性能的筛选方法、装置和计算机设备

Also Published As

Publication number Publication date
CN116830355A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2018090678A1 (zh) 一种监测锂离子电池荷电状态和健康状态的方法及其装置
CN113219361B (zh) 一种锂离子电池组异常自放电诊断方法及系统
EP4024069A1 (en) Method and apparatus for estimating battery temperature, electronic device, and storage medium
CN109078871B (zh) 一种面向梯次利用的退役电池并联模块的剔除方法
CN112180260A (zh) 电池析锂窗口分析方法、析锂检测方法、设备及存储介质
US11614494B2 (en) Method, apparatus, device and medium for detecting internal short-circuit fault of battery cell
US20230236252A1 (en) Methods and devices for estimating state of charge of battery, and extracting charging curve of battery
CN111239633B (zh) 电池包压差原因分析方法、装置和计算机设备
CN115079020A (zh) 电池故障检测方法、系统、装置存储介质以及车辆
JP2023514285A (ja) バッテリーシステム診断装置及び方法
CN111077456A (zh) 一种锂离子电池析锂的无损检测方法
KR20150104669A (ko) 배터리 검사 장치 및 배터리 검사 장치 제어방법
CN112946509A (zh) 一种基于电极应变的锂离子电池老化状态估计方法
CN114846347A (zh) 电池检查装置
CN111566494A (zh) 电池的熟化过程
WO2024050716A1 (zh) 电芯自放电检测方法、装置、设备、存储介质和程序产品
CN113361128A (zh) 一种异常电芯筛选方法、系统、计算机设备及存储介质
CN113311344A (zh) 适用于梯次利用的锂离子电池的热故障诊断方法及系统
US9372239B2 (en) Sealed battery manufacturing method and inspection device
US11598811B2 (en) Method, apparatus, and computer storage medium for identifying cell
JP7332099B2 (ja) バッテリーセルのスウェリング検査装置
CN115453373A (zh) 一种动力电池机械损伤在线探测方法
JP2023524846A (ja) バッテリー異常診断装置及び方法
CN111220850A (zh) 电池隔膜阻值测量方法及装置
CN105184198A (zh) 检测保护方法及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957689

Country of ref document: EP

Kind code of ref document: A1