WO2024049150A1 - Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same - Google Patents

Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same Download PDF

Info

Publication number
WO2024049150A1
WO2024049150A1 PCT/KR2023/012751 KR2023012751W WO2024049150A1 WO 2024049150 A1 WO2024049150 A1 WO 2024049150A1 KR 2023012751 W KR2023012751 W KR 2023012751W WO 2024049150 A1 WO2024049150 A1 WO 2024049150A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
formula
metal
metal compound
composition
Prior art date
Application number
PCT/KR2023/012751
Other languages
French (fr)
Korean (ko)
Inventor
권용희
변태석
전상용
이상찬
임영재
이상익
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Publication of WO2024049150A1 publication Critical patent/WO2024049150A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present invention relates to a composition for thin film deposition containing a metal compound, a method for producing a metal compound, a method for producing a metal-containing thin film using the same, and a metal-containing thin film manufactured therefrom.
  • silicon was the most widely used thin film material for display electronic devices, but metal oxides, which have higher charge mobility and are easier to process at low temperatures than polycrystalline silicon, are currently being used.
  • Metal oxide has a wide energy band gap and excellent light transmittance, so it is expected to be a material that can improve uniformity and mobility, which are shortcomings of existing silicon.
  • group 13 metal oxides can be used as transparent oxide semiconductor materials and can also be applied as electrodes and conductive coating materials.
  • group 13 metals indium and gallium are useful because they have excellent resistance to wear and tear and have low resistance when contacting aluminum wires.
  • the composition of the deposited thin film is determined by the sputter target, so there is a limit to uniformly controlling the composition of the thin film, and when depositing on a large area, It is difficult to maintain uniform thin film composition and uniform thickness.
  • Indium(III) chloride a previously used metal precursor, has the disadvantage of being chlorine-contaminated and requiring an external oxygen source when depositing thin films using methods such as atomic layer deposition, chemical vapor deposition, and pulsed laser deposition.
  • trialkylindium (III) precursors such as trimethyl indium and triethyl indium, which have been widely used in the past, are very sensitive to oxygen and moisture, and since they are solid, problems may arise in terms of vapor pressure control and reproducibility of a uniform film.
  • the purpose of the present invention is to provide a composition for thin film deposition containing a metal compound exhibiting excellent volatility and thermal stability.
  • Another object of the present invention is to provide a method for producing a metal compound.
  • Another object of the present invention is to provide a method for manufacturing a thin film that can exhibit improved deposition speed and reproducibility using the composition for thin film deposition.
  • the present invention provides a high-quality metal-containing thin film having constant composition and uniform thickness by employing the composition for thin film deposition.
  • the present invention provides a composition for thin film deposition containing a metal compound represented by the following formula (1).
  • M is In or Ga
  • R a to R c are independently C1-C7 alkyl
  • R 1 to R 8 are independently hydrogen or C1-C7 alkyl
  • M in Formula 1 is In or Ga, is a single bond or a double bond, R a to R c may be independently C1-C4 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C4 alkyl.
  • the metal compound according to an embodiment of the present invention may be represented by the following formula (2).
  • M is In or Ga
  • R is C1-C7alkyl
  • R 11 to R 14 are independently hydrogen or C1-C7 alkyl.
  • M in Formula 2 is In or Ga, is a single bond or a double bond, R is C1-C4 alkyl, and R 11 to R 14 may independently be hydrogen or C1-C4 alkyl.
  • the metal compound according to one embodiment may be represented by the following formula (3).
  • M is In or Ga
  • R is C1-C3 alkyl
  • R 21 to R 24 are independently hydrogen or C1-C4 alkyl.
  • the present invention provides a method for producing a metal compound represented by the following Chemical Formula 1 according to an embodiment, and specifically includes the step of reacting compounds represented by the following Chemical Formulas 11 to 15 to prepare a compound represented by the following Chemical Formula 1: do.
  • M is In or Ga
  • R a to R c are independently C1-C7 alkyl
  • R 1 to R 8 are independently hydrogen or C1-C7 alkyl
  • X, X a , X b and X c are independently halogen
  • the method for producing a metal compound according to an embodiment of the present invention may further include adding a polar solvent and stirring after preparing Formula 1 above.
  • the amount of polar solvent added may be 2 to 5 equivalents based on the compound represented by Formula 1.
  • the present invention provides a method of manufacturing a metal-containing thin film using a metal compound or a composition for thin film deposition containing the same according to an embodiment.
  • the method of manufacturing the metal-containing thin film includes the steps of a) raising the temperature of the substrate mounted in the chamber; b) injecting the metal compound or a composition for thin film deposition containing the same into the chamber and adsorbing it to the substrate, and c) injecting a reaction gas into the substrate to which the metal compound or the composition for thin film deposition containing the same is adsorbed to form a metal compound. It may include manufacturing a thin film, and the temperature of the substrate may be 100 to 450°C.
  • the present invention provides a metal-containing thin film manufactured using a metal compound or a composition for thin film deposition containing the same according to an embodiment of the present invention.
  • the metal-containing thin film may have a metal content of 20 to 60% by weight.
  • composition for thin film deposition containing the metal compound of the present invention exhibits high volatility and can have excellent thermal and storage stability by containing a metal compound having a specific structure.
  • the method for producing a metal compound according to an embodiment of the present invention not only achieves high yield through a simple process, but also produces the compound of Formula 1 with high purity.
  • the method for producing a metal-containing thin film of the present invention can exhibit improved deposition rates by employing the composition for thin film deposition of the present invention, and can provide uniform step coverage for a three-dimensional device. Additionally, a metal-containing thin film manufactured using the composition for thin film deposition of the present invention may have uniform components and uniform thickness, and may exhibit excellent electrical performance.
  • Figure 1 is a diagram showing the TGA analysis results of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
  • Figure 2 is a diagram showing the vapor pressure measurement results of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
  • Figure 3 is a diagram showing the results of measuring the thermal stability of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
  • Figure 4 is a diagram showing the deposition rate according to precursor injection time in Example 3 and Comparative Example 1.
  • Figure 5 is a diagram showing the deposition rate according to the precursor vapor pressure of Example 3 and Comparative Example 1.
  • Figure 6 is a diagram showing the deposition rate according to the silicon substrate temperature of Example 3 and Comparative Example 1.
  • Figure 7 is a diagram showing the deposition thickness according to the process cycle of Example 3 and Comparative Example 1.
  • Figure 8 is a diagram showing the XRD patterns of Example 3 and Comparative Example 1.
  • composition for thin film deposition containing the metal compound of the present invention the method for manufacturing a metal-containing thin film using the same, and the metal-containing thin film manufactured by employing the same will be described in detail.
  • the numerical range used in the present invention includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • C1-C7 alkyl means alkyl with 1 to 7 carbon atoms that does not include the carbon number of the alkyl substituent.
  • the present invention provides a composition for thin film deposition containing a metal compound represented by the following formula (1).
  • M is In or Ga
  • R a to R c are independently C1-C7 alkyl
  • R 1 to R 8 are independently hydrogen or C1-C7 alkyl
  • the metal compound represented by Formula 1 can have a chiral center, the compound can be used in optically pure form or provided as a diastereomeric mixture or racemic mixture.
  • racemic mixture means a mixture of two enantiomers in equal proportions.
  • the metal compound may have a single evaporation step at 50°C or higher, and the residue mass at 500°C may be 0.001 to 1% by weight, specifically 0.01 to 0.9% by weight, and more specifically 0.1 to 0.7% by weight.
  • the metal compound has higher volatility and improved vapor pressure, so it can exhibit a high deposition rate. It is a compound with improved thermal stability, has excellent stability during storage, and can be easy to handle.
  • M in Formula 1 is In or Ga, is a single bond or a double bond, R a to R c may be independently C1-C4 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C4 alkyl.
  • M is In or Ga, is a single bond or a double bond, R a to R c may be independently C1-C3 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C3 alkyl.
  • the metal compound according to an embodiment of the present invention may be represented by the following formula (2).
  • M is In or Ga
  • R is C1-C7alkyl
  • R 11 to R 14 are independently hydrogen or C1-C7 alkyl.
  • M in Formula 2 is In or Ga, is a single bond or a double bond, R is C1-C4 alkyl, and R 11 to R 14 may independently be hydrogen or C1-C4 alkyl.
  • the metal compound according to one embodiment may be represented by the following formula (3).
  • M is In or Ga
  • R is C1-C3 alkyl
  • R 21 to R 24 are independently hydrogen or C1-C4 alkyl.
  • the present invention provides a method for producing a metal compound represented by the following Chemical Formula 1 according to an embodiment, and specifically, reacting compounds represented by the following Chemical Formulas 11 to 15 to prepare a metal compound represented by the following Chemical Formula 1: Includes.
  • M is In or Ga
  • R a to R c are independently C1-C7 alkyl
  • R 1 to R 8 are independently hydrogen or C1-C7 alkyl
  • X, X a , X b and X c are independently halogen
  • the step of preparing the compound of Formula 1 includes adding a solvent to the compound represented by Formula 11, then adding the compounds represented by Formulas 12 to 15 at 0 to 30 ° C, and then adding a solvent to the compound represented by Formula 11, and then adding a solvent to the compound represented by Formula 11 at 0 to 30 ° C.
  • the reaction may be performed for 15 hours, specifically at 10 to 40°C for 1 to 12 hours, and more specifically at 15 to 35°C for 1 to 10 hours.
  • Formulas 12 to 14 may be the same compound, and may be a Grignard reagent contained in the solution of Formula 15.
  • the method for producing a metal compound according to an embodiment of the present invention may further include adding a polar solvent and stirring after reacting the compounds of Formulas 11 to 15 to produce the compound of Formula 1.
  • the polar solvent according to an embodiment of the present invention may be one or two or more selected from Acetonitrile, DMSO (Dimethylsulfoxide), DMF (Dimethylformamide), and THF (Tetrahydrofuran), specifically DMF (Dimethylformamide), THF (Tetrahydrofuran) or these. It may be a mixture of, and more specifically, THF (Tetrahydrofuran), but is not limited thereto.
  • the amount of the polar solvent according to an embodiment of the present invention may be 2 to 5 equivalents, specifically 2 to 4.5 equivalents, and more specifically 2 to 4 equivalents, based on the compound represented by Formula 11.
  • MgCl 2 precipitate may be generated, which is considered a reaction by-product that is not easily removed by a filter due to the small size of the particles and requires a long filtration time, which can greatly reduce the purity and yield of the final compound.
  • the metal compound represented by Formula 1 can be easily obtained with high purity. can be separated easily.
  • a polar solvent can be added to the reaction products of Formulas 11 to 15 and stirred for 0.5 to 5 hours.
  • any common organic solvent can be used as the solvent, but it can be one or two or more selected from Hexane, Pentane, DCM (Dichloromethane), Benzene, and Toluene. However, it is not limited to this.
  • Each reaction in the above production method can be terminated after confirming that the starting material is completely consumed through NMR, and after completion of the reaction, the compound is extracted through conventional methods such as extraction, distillation of the solvent under reduced pressure, and tube chromatography. A further process of separation and purification can be performed.
  • the method for producing the metal compound can produce a high-purity metal compound in high yield and can be manufactured through a mild and simple process, making it easy for industrial use.
  • the metal compound can have a constant vapor pressure during the deposition process, so the composition of the thin film is maintained constant, thereby producing a uniform thin film with constant composition.
  • the thickness of the film is uniform and excellent step coverage can be achieved, making it possible to manufacture a thin film with excellent physical properties even in a three-dimensional device.
  • the present invention provides a method of manufacturing a metal-containing thin film using a metal compound or a composition for thin film deposition containing the same according to an embodiment.
  • the method of manufacturing a metal-containing thin film according to an embodiment of the present invention can produce a thin film with a multi-layer structure containing a different metal, by sequentially depositing the metal compound or a composition for depositing a metal-containing thin film and a precursor of the different metal. It may have a laminated structure, and may be deposited by mixing the metal compound or composition for metal-containing thin film deposition with a precursor of a different metal.
  • the method of manufacturing the metal-containing thin film includes a) raising the temperature of the substrate mounted in the chamber; b) injecting a metal compound or the thin film deposition composition according to an embodiment of the present invention into the chamber and adsorbing it on a substrate; and c) injecting a reaction gas into the substrate to which the metal compound or the thin film deposition composition is adsorbed. It may include manufacturing a metal-containing thin film.
  • the reaction gases include oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O), and nitrogen dioxide (NO 2 ). , ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, hydrogen (H 2 ), argon (Ar), and helium (He).
  • the transport gas is an inert gas and may be any one or two or more selected from argon (Ar), helium (He), and nitrogen (N 2 ), and may specifically be nitrogen (N 2 ), but is limited thereto. It doesn't work.
  • the method for manufacturing a metal-containing thin film according to an embodiment of the present invention uses steps b) and c) as one cycle, and the cycle can be repeatedly performed until a metal-containing thin film of the desired thickness is manufactured. It may be 50 to 5,000 cycles, and more specifically, 200 to 2,000 cycles, but is not limited thereto.
  • the temperature of the substrate in step a) may be 100 to 450°C, specifically 150 to 300°C, and more specifically 150 to 250°C.
  • the composition for thin film deposition according to an embodiment of the present invention can be deposited without thermal decomposition of the metal compound even at a temperature as high as the above temperature, and thus stability and productivity can be improved during the deposition process.
  • the content of impurities such as carbon in the metal-containing thin film produced by the above-mentioned metal-containing thin film manufacturing method is surprisingly reduced, so that a high-quality metal-containing thin film can be produced.
  • the substrate used in the method of manufacturing a metal-containing thin film according to an embodiment is glass, silicon, metal polyester (PE), polyethyleneterephthalate (PET), polyethylene napthalate (PEN), and polycarbohydrate.
  • One or more substrates selected from polycarbonate (PC), polyetherimide (PEI), polyethersulfone (PES), polyetheretherketone (PEEK), and polyimide (PI) It may include, but is not limited to this.
  • step b) of the method for producing a metal-containing thin film the composition for metal-containing thin film deposition is filled into a stainless steel bubbler container and heated at 20 to 100 ° C, specifically 30 to 90 ° C, more specifically 40 to 70 ° C. can be maintained at a temperature of
  • the conditions of the deposition process in step b) can be adjusted depending on the structure and thermal characteristics of the thin film.
  • the input flow rate of the metal compound is a bubbler type in the range of 1 to 1000 sccm
  • the input flow rate of the transport gas is 1 to 5000 sccm
  • the input flow rate of the reaction gas is 10 to 5000 sccm
  • the pressure is in the range of 0.1 to 10 torr. It can be adjusted, and the injection time can be 0.1 to 20 seconds, preferably 0.1 to 15 seconds, more preferably 0.1 to 10 seconds, but is not limited thereto.
  • a method of manufacturing a metal-containing thin film according to an embodiment includes purging with a transport gas to remove unadsorbed metal compounds or a composition for thin film deposition containing the same, or to remove reaction by-products and remaining reaction gas generated after injection of the reaction gas.
  • a purge step may be further included.
  • the method for manufacturing an indium-containing thin film is atomic layer deposition (ALD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), and plasma enhanced chemical vapor deposition. It may be performed by PECVD, plasma enhanced atomic layer deposition (PEALD), or pulsed laser deposition (PLD), and is preferably performed by atomic layer deposition (ALD), chemical vapor deposition (CVD), or metal organic chemical vapor deposition (MOCVD). ) may be performed.
  • the present invention provides a metal-containing thin film manufactured using a metal compound or a composition for thin film deposition containing the same according to an embodiment of the present invention, and the metal-containing thin film has uniform components and can exhibit excellent electrical performance. there is.
  • the metal-containing thin film may have a metal content of 20 to 60% by weight.
  • the metal compound according to the present invention and the composition for thin film deposition containing the same, the method for manufacturing a metal-containing thin film using the same, and the metal-containing thin film manufactured therefrom will be described in more detail through specific examples.
  • Figure 1 shows a TGA graph of the metal compound InMe 3 (THF) of Example 2, and [(3-dimethylamino)propyl]dimethylindium (hereinafter DADI, DOCK/CHEMICALS), which is commonly used in the deposition of existing indium-containing thin films.
  • DADI [(3-dimethylamino)propyl]dimethylindium
  • the metal compound has a single evaporation step from about 50 °C
  • the temperature of the 1/2 weight loss portion is 12 °C lower than that of DADI
  • the residue mass at 500 °C is 0.4%. It was confirmed. From the above results, it can be seen that the metal compound of Example 2 of the present invention exhibits faster vaporization characteristics than DADI and vaporizes more than 99% without thermal decomposition.
  • Example 2 InMe 3 (THF)
  • DADI vapor pressure
  • Example 2 InMe 3 (THF) will be very advantageous over existing indium precursors when depositing an indium-containing thin film by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • Example 2 InMe 3 (THF)
  • DADI DADI
  • Example 2 InMe 3 (THF)
  • DADI DADI
  • Example 2 (InMe 3 (THF)) of the present invention has significantly superior stability under high temperature conditions compared to DADI, which is widely used for indium-containing thin film deposition.
  • An indium-containing oxide thin film was manufactured by plasma-enhanced atomic layer deposition (PEALD) using InMe 3 (THF) according to Example 2 and nitrous oxide (N 2 O) as a reaction gas.
  • PEALD plasma-enhanced atomic layer deposition
  • THF InMe 3
  • N 2 O nitrous oxide
  • a silicon substrate was loaded into the deposition chamber, and the temperature of the substrate was maintained at a constant temperature.
  • InMe 3 (THF) was filled in a stainless steel bubbler container and maintained at a temperature corresponding to a certain vapor pressure.
  • the InMe 3 (THF) precursor was injected into the deposition chamber for a certain period of time and adsorbed. Afterwards, purging was performed for 3 seconds using argon gas (600 sccm) to remove InMe 3 (THF) and reaction by-products remaining in the deposition chamber.
  • argon gas 600 sccm
  • An indium-containing oxide thin film was formed using plasma while injecting nitrous oxide (N 2 O) as a reaction gas. Afterwards, purging was performed for 3 seconds using argon gas (600 sccm) to remove residual reaction gas and reaction by-products.
  • nitrous oxide N 2 O
  • purging was performed for 3 seconds using argon gas (600 sccm) to remove residual reaction gas and reaction by-products.
  • An indium-containing oxide thin film was manufactured by performing 70 to 700 cycles of the above-described processes as 1 cycle, and the thickness of the deposited indium oxide thin film was measured using an ellipsometer.
  • Table 1 below shows the deposition conditions for the indium oxide thin film.
  • a metal-containing oxide thin film was manufactured by plasma-enhanced atomic layer deposition (PEALD) using DADI, which is currently widely used in the production of indium-containing thin films, and nitrous oxide (N 2 O) as a reaction gas.
  • PEALD plasma-enhanced atomic layer deposition
  • DADI nitrous oxide
  • An indium oxide thin film was formed in the same manner as in Example 3 except that DADI was used as the precursor, and the deposition conditions for the indium oxide thin film are shown in Table 1 below.
  • Figure 4 shows the deposition rate per cycle according to the precursor injection time of Example 3 and Comparative Example 1.
  • the deposition rate of Example 3 and Comparative Example 1 shows a tendency to increase due to physical adsorption as the injection time increases, but it can be seen that the deposition rate is saturated at an injection time of 0.3 seconds or more and the deposition rate hardly increases. .
  • Example 3 shows a deposition rate that is significantly improved by more than 40% compared to Comparative Example 1.
  • Figure 5 shows the deposition rate per cycle according to the vapor pressure of the precursors of Example 3 and Comparative Example 1. It can be seen that the vapor pressure of the precursor of Example 3 and Comparative Example 1 is stabilized at 1 Torr or more. In particular, Example 3 shows a relatively constant deposition rate even at a high vapor pressure of 12 Torr, showing self-limiting reaction (self-limiting reaction), which is a characteristic of ALD. Self-limited reaction) can be confirmed. In addition, similar to the previous results, it can be seen that Example 3 showed a significantly improved result of more than 40% compared to Comparative Example 1 in terms of deposition rate according to vapor pressure.
  • Figure 6 shows the deposition rate per cycle according to the silicon substrate temperature of Example 3 and Comparative Example 1. Similar to the previous results, it can be confirmed that Example 3 showed a significantly improved deposition rate by 40% more than Comparative Example 1 in terms of deposition rate depending on the silicon substrate temperature.
  • Figure 7 shows the thickness of the thin film according to the process cycle in Example 3 and Comparative Example 1. It can be seen that the thickness increases linearly as the process cycle increases, and from this, the self-limited reaction, which is a characteristic of ALD, can be confirmed.
  • the deposition rate which can be confirmed by the slope in the graph of the thickness according to the deposition cycle, is 1.0 ⁇ cycle in Example 3, which shows a significantly improved deposition rate compared to the 0.65 ⁇ cycle in Comparative Example 1.
  • Figure 8 shows the XRD patterns of Example 3 and Comparative Example 1.
  • Specific deposition conditions were a silicon substrate temperature of 200°C, precursor injection for 0.5 seconds, a plasma step using 400 sccm of nitrous oxide (N 2 O) and a power of 400 W for 3 seconds, and a purging step using 600 sccm of argon. Each proceeded for 3 seconds.
  • the thickness of each thin film was approximately 350 ⁇ and was formed by adjusting the process cycle.
  • Table 2 shows the results of each composition and thin film density through XPS and XRR analysis of the indium oxide thin film. As shown in Table 2, it can be seen that a pure indium oxide thin film without carbon or nitrogen impurities was formed, and the density of the thin film was 7.3 g/m 3 , which was confirmed to be similar to the bulk density of 7.2 g/m 3 It has been done.
  • the metal compound according to an embodiment of the present invention is a liquid compound and has surprisingly improved thermal stability, high volatility, and high vapor pressure.
  • the deposition thickness per cycle is about 40% higher than that of [(3-dimethylamino)propyl]dimethyl indium (DADI), a commercial material.
  • DADI [(3-dimethylamino)propyl]dimethyl indium
  • composition for thin film deposition of the present invention it is possible to provide a thin film of uniform thickness for a three-dimensional device, it is possible to manufacture a thin film showing an appropriate composition ratio of metal and oxygen, and the time consumption of the process can be greatly reduced. It is possible to economically manufacture thin films.

Abstract

The present invention relates to a metal-containing composition for depositing thin film containing a metal compound, a method for manufacturing a metal-containing thin film employing same, and a metal-containing thin film manufactured by using same, and the present invention enables manufacturing a high-quality metal-containing thin film that has uniform components deposited at an improved rate.

Description

금속 화합물을 포함하는 박막증착용 조성물, 이를 이용한 금속 함유 박막의 제조방법 및 이를 이용하여 제조된 금속 함유 박막Composition for thin film deposition containing a metal compound, method for manufacturing a metal-containing thin film using the same, and metal-containing thin film manufactured using the same
본 발명은 금속 화합물을 포함하는 박막증착용 조성물, 금속 화합물의 제조방법, 이를 이용하는 금속 함유 박막의 제조방법 및 이로부터 제조된 금속 함유 박막에 관한 것이다.The present invention relates to a composition for thin film deposition containing a metal compound, a method for producing a metal compound, a method for producing a metal-containing thin film using the same, and a metal-containing thin film manufactured therefrom.
최근 액정 표시, 유기 발광 다이오드 등의 박막형 디스플레이 전자 소자에 대한 수요가 급증하고 있고, 이에 따라 저전력, 고해상도, 고신뢰성을 가지는 우수한 성능을 나타내는 박막물질이 요구되고 있다.Recently, demand for thin-film display electronic devices such as liquid crystal displays and organic light-emitting diodes is rapidly increasing, and accordingly, thin-film materials that exhibit excellent performance with low power, high resolution, and high reliability are required.
기존에는 디스플레이 전자 소자에 이용되는 박막물질로 실리콘이 가장 많이 사용되었으나, 현재 보다 전하 이동도가 높고 다결정 실리콘에 비하여 저온 공정이 수월한 금속 산화물이 사용되고 있다. 금속 산화물은 에너지 밴드갭이 넓고 광투과도가 우수하여 기존의 실리콘의 단점인 균일도와 이동도를 향상시킬 수 있는 물질로 기대되고 있다.Previously, silicon was the most widely used thin film material for display electronic devices, but metal oxides, which have higher charge mobility and are easier to process at low temperatures than polycrystalline silicon, are currently being used. Metal oxide has a wide energy band gap and excellent light transmittance, so it is expected to be a material that can improve uniformity and mobility, which are shortcomings of existing silicon.
특히 13족 금속 산화물은 투명 산화물 반도체 소재로 이용될 수 있으며, 전극, 전도성 코팅재료 등으로도 응용이 가능하다. 13족 금속 중 인듐과 갈륨은 마모에 대한 저항력이 뛰어나고 알루미늄 전선에 접촉 시 저항이 낮다는 특성 때문에 유용하게 이용되고 있다.In particular, group 13 metal oxides can be used as transparent oxide semiconductor materials and can also be applied as electrodes and conductive coating materials. Among group 13 metals, indium and gallium are useful because they have excellent resistance to wear and tear and have low resistance when contacting aluminum wires.
상기와 같은 금속 박막을 스퍼터(Sputter) 타겟을 이용하여 스퍼터링에 의해 형성할 경우, 증착된 박막의 조성은 스퍼터 타겟에 의해 결정되므로 박막의 조성을 균일하게 조절하는 데에 한계가 있고, 대면적 증착 시 균일한 박막조성 및 균일한 두께를 유지하기 어렵다.When forming a metal thin film as described above by sputtering using a sputter target, the composition of the deposited thin film is determined by the sputter target, so there is a limit to uniformly controlling the composition of the thin film, and when depositing on a large area, It is difficult to maintain uniform thin film composition and uniform thickness.
따라서 상기 문제점을 극복하고자 스퍼터링(Spittering) 방식 대신 원자층증착법(Atomic layer Deposition, ALD), 화학기상증착법(Chemical Vapor Deposition, CVD) 및 펄스레이저증착법(Pulsed Laser Deposition, PLD)과 같은 방식으로 제조하게 된다. 기존에 이용되었던 금속 전구체인 염화인듐(III)은 원자층증착법, 화학기상증착법 및 펄스레이저증착법 등의 방식을 이용한 박막증착 시에 염소의 오염이 있을 수 있고 외부로부터의 산소원을 필요로하는 단점을 가진다. 또한 기존에 널리 사용되었던 트리메틸인듐 및 트리에틸인듐과 같은 트리알킬인듐(III) 전구체는 산소와 수분에 매우 민감하며, 고체이므로 증기압 조절 및 균일한 막의 재현성 측면에서 문제가 나타날 수 있다.Therefore, to overcome the above problems, instead of sputtering, it is manufactured using methods such as Atomic Layer Deposition (ALD), Chemical Vapor Deposition (CVD), and Pulsed Laser Deposition (PLD). do. Indium(III) chloride, a previously used metal precursor, has the disadvantage of being chlorine-contaminated and requiring an external oxygen source when depositing thin films using methods such as atomic layer deposition, chemical vapor deposition, and pulsed laser deposition. has In addition, trialkylindium (III) precursors such as trimethyl indium and triethyl indium, which have been widely used in the past, are very sensitive to oxygen and moisture, and since they are solid, problems may arise in terms of vapor pressure control and reproducibility of a uniform film.
따라서 상기와 같은 문제점을 해결할 수 있는 물질로, 할로겐을 함유하지 않으며, 고온에 대한 열 안정성이 우수하고 휘발성이 높은 고품질의 금속 전구체에 대한 개발이 필요한 상황이다.Therefore, there is a need to develop a high-quality metal precursor that does not contain halogen, has excellent thermal stability at high temperatures, and is highly volatile, as a material that can solve the above problems.
본 발명의 목적은 우수한 휘발성과 열 안정성을 나타내는 금속 화합물을 포함하는 박막증착용 조성물을 제공하는 것이다.The purpose of the present invention is to provide a composition for thin film deposition containing a metal compound exhibiting excellent volatility and thermal stability.
본 발명의 또 다른 목적은 금속 화합물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a metal compound.
본 발명의 또 다른 목적은 상기 박막증착용 조성물을 이용하여 향상된 증착 속도 및 재현성을 나타낼 수 있는 박막의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a thin film that can exhibit improved deposition speed and reproducibility using the composition for thin film deposition.
본 발명은 상기 박막증착용 조성물을 채용하여 일정한 성분을 가지며 균일한 두께를 나타내는 고품질의 금속 함유 박막을 제공한다.The present invention provides a high-quality metal-containing thin film having constant composition and uniform thickness by employing the composition for thin film deposition.
본 발명은 하기 화학식 1로 표시되는 금속 화합물을 포함하는 박막증착용 조성물을 제공한다.The present invention provides a composition for thin film deposition containing a metal compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023012751-appb-img-000001
Figure PCTKR2023012751-appb-img-000001
[상기 화학식 1에서,[In Formula 1 above,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000002
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000002
is a single bond or a double bond;
Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
상기
Figure PCTKR2023012751-appb-img-000003
가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
remind
Figure PCTKR2023012751-appb-img-000003
If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
상기 화학식 1의 M은 In 또는 Ga이고,
Figure PCTKR2023012751-appb-img-000004
는 단일결합 또는 이중결합이며, Ra 내지 Rc는 서로 독립적으로 C1-C4알킬이고, R1 내지 R8은 서로 독립적으로 수소 또는 C1-C4알킬일 수 있다.
M in Formula 1 is In or Ga,
Figure PCTKR2023012751-appb-img-000004
is a single bond or a double bond, R a to R c may be independently C1-C4 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C4 alkyl.
본 발명의 일 실시예에 따른 상기 금속 화합물은 하기 화학식 2로 표시되는 것일 수 있다.The metal compound according to an embodiment of the present invention may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2023012751-appb-img-000005
Figure PCTKR2023012751-appb-img-000005
[상기 화학식 2에서,[In Formula 2 above,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000006
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000006
is a single bond or a double bond;
R은 C1-C7알킬이고;R is C1-C7alkyl;
R11 내지 R14는 서로 독립적으로 수소 또는 C1-C7알킬이다.]R 11 to R 14 are independently hydrogen or C1-C7 alkyl.]
상기 화학식 2의 M은 In 또는 Ga이고,
Figure PCTKR2023012751-appb-img-000007
는 단일결합 또는 이중결합이며, R은 C1-C4알킬이고, R11 내지 R14는 서로 독립적으로 수소 또는 C1-C4알킬일 수 있다.
M in Formula 2 is In or Ga,
Figure PCTKR2023012751-appb-img-000007
is a single bond or a double bond, R is C1-C4 alkyl, and R 11 to R 14 may independently be hydrogen or C1-C4 alkyl.
일 실시예에 따른 상기 금속 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.The metal compound according to one embodiment may be represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2023012751-appb-img-000008
Figure PCTKR2023012751-appb-img-000008
[상기 화학식 3에서,[In Formula 3 above,
M은 In 또는 Ga이고;M is In or Ga;
R은 C1-C3알킬이며;R is C1-C3 alkyl;
R21 내지 R24는 서로 독립적으로 수소 또는 C1-C4알킬이다.]R 21 to R 24 are independently hydrogen or C1-C4 alkyl.]
본 발명은 일 실시예에 따른 하기 화학식 1로 표시되는 금속 화합물의 제조방법을 제공하며, 구체적으로 하기 화학식 11 내지 15로 표시되는 화합물을 반응시켜 하기 화학식 1로 표시되는 화합물을 제조하는 단계를 포함한다.The present invention provides a method for producing a metal compound represented by the following Chemical Formula 1 according to an embodiment, and specifically includes the step of reacting compounds represented by the following Chemical Formulas 11 to 15 to prepare a compound represented by the following Chemical Formula 1: do.
[화학식 1] [Formula 1]
Figure PCTKR2023012751-appb-img-000009
Figure PCTKR2023012751-appb-img-000009
[화학식 11][Formula 11]
MX3 MX 3
[화학식 12][Formula 12]
RaMgXa R a MgX a
[화학식 13][Formula 13]
RbMgXb R b MgX b
[화학식 14][Formula 14]
RcMgXc R c MgX c
[화학식 15][Formula 15]
Figure PCTKR2023012751-appb-img-000010
Figure PCTKR2023012751-appb-img-000010
[상기 화학식 1 및 화학식 11 내지 15에서,[In Formula 1 and Formulas 11 to 15,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000011
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000011
is a single bond or a double bond;
Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
X, Xa, Xb 및 Xc는 서로 독립적으로 할로겐이며;X, X a , X b and X c are independently halogen;
상기
Figure PCTKR2023012751-appb-img-000012
가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
remind
Figure PCTKR2023012751-appb-img-000012
If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
본 발명의 일 실시예에 따른 금속 화합물의 제조방법은 상기 화학식 1을 제조하는 단계 이후 극성용매를 투입하여 교반시키는 단계를 더 포함할 수 있다. The method for producing a metal compound according to an embodiment of the present invention may further include adding a polar solvent and stirring after preparing Formula 1 above.
투입되는 극성용매의 양은 화학식 1로 표시되는 화합물에 대하여 2 내지 5 당량일 수 있다.The amount of polar solvent added may be 2 to 5 equivalents based on the compound represented by Formula 1.
본 발명은 일 실시예에 따른 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 이용하는 금속 함유 박막의 제조방법을 제공한다.The present invention provides a method of manufacturing a metal-containing thin film using a metal compound or a composition for thin film deposition containing the same according to an embodiment.
상기 금속 함유 박막의 제조방법은 a) 챔버 내에 장착된 기판을 승온시키는 단계; b) 상기 챔버 내에 상기 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 주입하여 기판에 흡착시키는 단계 및 c) 상기 금속 화합물 또는 이를 포함하는 박막증착용 조성물이 흡착된 기판에 반응가스를 주입하여 금속 함유 박막을 제조하는 단계;를 포함할 수 있으며, 상기 기판의 온도는 100 내지 450 ℃일 수 있다.The method of manufacturing the metal-containing thin film includes the steps of a) raising the temperature of the substrate mounted in the chamber; b) injecting the metal compound or a composition for thin film deposition containing the same into the chamber and adsorbing it to the substrate, and c) injecting a reaction gas into the substrate to which the metal compound or the composition for thin film deposition containing the same is adsorbed to form a metal compound. It may include manufacturing a thin film, and the temperature of the substrate may be 100 to 450°C.
본 발명은 본 발명의 일 실시예에 따른 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 이용하여 제조되는 금속 함유 박막을 제공한다.The present invention provides a metal-containing thin film manufactured using a metal compound or a composition for thin film deposition containing the same according to an embodiment of the present invention.
상기 금속 함유 박막은 금속함량이 20 내지 60 중량%일 수 있다.The metal-containing thin film may have a metal content of 20 to 60% by weight.
본 발명의 금속 화합물을 포함하는 박막증착용 조성물은 특정한 구조를 가지는 금속 화합물을 포함함으로써 높은 휘발성을 나타내며 우수한 열 안정성 및 보관 안정성을 가질 수 있다.The composition for thin film deposition containing the metal compound of the present invention exhibits high volatility and can have excellent thermal and storage stability by containing a metal compound having a specific structure.
본 발명의 일 실시예에 따른 금속 화합물의 제조방법은 단순한 공정으로 높은 수율을 얻을 수 있을 뿐만 아니라 높은 순도로 화학식 1의 화합물을 제조할 수 있다.The method for producing a metal compound according to an embodiment of the present invention not only achieves high yield through a simple process, but also produces the compound of Formula 1 with high purity.
본 발명의 금속 함유 박막의 제조방법은 본 발명의 상기 박막증착용 조성물을 채용함으로써 향상된 증착 속도를 나타낼 수 있으며, 입체적인 장치에 대한 균일한 스텝커버리지의 제공이 가능하다. 또한 본 발명의 상기 박막증착용 조성물을 이용하여 제조된 금속 함유 박막은 균일한 성분 및 균일한 두께를 가질 수 있고, 전기적으로 우수한 성능을 나타낼 수 있다.The method for producing a metal-containing thin film of the present invention can exhibit improved deposition rates by employing the composition for thin film deposition of the present invention, and can provide uniform step coverage for a three-dimensional device. Additionally, a metal-containing thin film manufactured using the composition for thin film deposition of the present invention may have uniform components and uniform thickness, and may exhibit excellent electrical performance.
도 1은 본 발명의 실시예 2 및 [(3-디메틸아미노)프로필]디메틸인듐(DADI)의 TGA 분석결과를 나타낸 도이다.Figure 1 is a diagram showing the TGA analysis results of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
도 2는 본 발명의 실시예 2 및 [(3-디메틸아미노)프로필]디메틸인듐(DADI)의 증기압 측정 결과를 나타낸 도이다.Figure 2 is a diagram showing the vapor pressure measurement results of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
도 3은 본 발명의 실시예 2 및 [(3-디메틸아미노)프로필]디메틸인듐(DADI)의 열 안정성을 측정한 결과를 나타낸 도이다.Figure 3 is a diagram showing the results of measuring the thermal stability of Example 2 of the present invention and [(3-dimethylamino)propyl]dimethylindium (DADI).
도 4는 실시예 3 및 비교예 1의 전구체 주입시간에 따른 증착 속도를 나타내는 도이다.Figure 4 is a diagram showing the deposition rate according to precursor injection time in Example 3 and Comparative Example 1.
도 5는 실시예 3 및 비교예 1의 전구체 증기압에 따른 증착 속도를 나타내는 도이다.Figure 5 is a diagram showing the deposition rate according to the precursor vapor pressure of Example 3 and Comparative Example 1.
도 6은 실시예 3 및 비교예 1의 실리콘 기판 온도에 따른 증착 속도를 나타내는 도이다.Figure 6 is a diagram showing the deposition rate according to the silicon substrate temperature of Example 3 and Comparative Example 1.
도 7은 실시예 3 및 비교예 1의 공정 주기에 따른 증착 두께를 나타내는 도이다.Figure 7 is a diagram showing the deposition thickness according to the process cycle of Example 3 and Comparative Example 1.
도 8은 실시예 3 및 비교예 1의 XRD 패턴을 나타내는 도이다.Figure 8 is a diagram showing the XRD patterns of Example 3 and Comparative Example 1.
이하, 본 발명의 금속 화합물을 포함하는 박막증착용 조성물, 이를 이용한 금속 함유 박막의 제조방법 및 이를 채용하여 제조되는 금속 함유 박막에 대하여 상세히 설명한다.Hereinafter, the composition for thin film deposition containing the metal compound of the present invention, the method for manufacturing a metal-containing thin film using the same, and the metal-containing thin film manufactured by employing the same will be described in detail.
본 발명에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.As used herein, the singular forms “a,” “an,” and “the” are intended to also include the plural forms, unless the context clearly dictates otherwise.
또한, 본 발명에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in the present invention includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
본 발명에 기재된, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.As used in the present invention, “comprises” is an open description with the same meaning as expressions such as “comprises,” “contains,” “has,” or “characterized by” elements that are not additionally listed; Does not exclude materials or processes.
본 발명에 기재된 탄소수는 치환기의 탄소수를 포함하지 않은 것으로, 일례로 C1-C7알킬은 알킬의 치환기의 탄소수가 포함되지 않은 탄소수 1 내지 7의 알킬을 의미한다.The carbon number described in the present invention does not include the carbon number of the substituent. For example, C1-C7 alkyl means alkyl with 1 to 7 carbon atoms that does not include the carbon number of the alkyl substituent.
이하, 본 발명에 대하여 구체적으로 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the present invention will be described in detail. At this time, if there is no other definition in the technical and scientific terms used, they have meanings commonly understood by those skilled in the art to which this invention pertains, and the following description will not unnecessarily obscure the gist of the present invention. Descriptions of possible notification functions and configurations are omitted.
본 발명은 하기 화학식 1로 표시되는 금속 화합물을 포함하는 박막증착용 조성물을 제공한다.The present invention provides a composition for thin film deposition containing a metal compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023012751-appb-img-000013
Figure PCTKR2023012751-appb-img-000013
[상기 화학식 1에서,[In Formula 1 above,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000014
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000014
is a single bond or a double bond;
Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
상기
Figure PCTKR2023012751-appb-img-000015
가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
remind
Figure PCTKR2023012751-appb-img-000015
If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
상기 화학식 1로 표시되는 금속 화합물이 카이랄 중심을 가질 수 있는 만큼, 상기 화합물은 광학적으로 순수한 형태로 사용되거나 또는 부분입체 이성질체 혼합물(diastereomeric mixture) 또는 라세믹 혼합물(racemic mixture)로서 제공될 수 있다. 상기 용어 "라세믹 혼합물"은 동일한 비율의 2개의 거울상이성체의 혼합물을 의미한다.To the extent that the metal compound represented by Formula 1 can have a chiral center, the compound can be used in optically pure form or provided as a diastereomeric mixture or racemic mixture. . The term “racemic mixture” means a mixture of two enantiomers in equal proportions.
상기 금속 화합물은 50 ℃이상에서 단일 증발 단계를 가질 수 있으며, 500 ℃에서의 residue mass는 0.001 내지 1 중량%, 구체적으로 0.01 내지 0.9 중량%, 보다 구체적으로 0.1 내지 0.7 중량%일 수 있다. 상기 금속 화합물은 보다 높은 휘발성 및 향상된 증기압을 가져 높은 증착 속도를 나타낼 수 있으며, 보다 향상된 열 안정성을 가지는 화합물로 보관 시에 안정성이 우수하고, 취급이 용이할 수 있다.The metal compound may have a single evaporation step at 50°C or higher, and the residue mass at 500°C may be 0.001 to 1% by weight, specifically 0.01 to 0.9% by weight, and more specifically 0.1 to 0.7% by weight. The metal compound has higher volatility and improved vapor pressure, so it can exhibit a high deposition rate. It is a compound with improved thermal stability, has excellent stability during storage, and can be easy to handle.
상기 화학식 1의 M은 In 또는 Ga이고,
Figure PCTKR2023012751-appb-img-000016
는 단일결합 또는 이중결합이며, Ra 내지 Rc는 서로 독립적으로 C1-C4알킬이고, R1 내지 R8은 서로 독립적으로 수소 또는 C1-C4알킬일 수 있다.
M in Formula 1 is In or Ga,
Figure PCTKR2023012751-appb-img-000016
is a single bond or a double bond, R a to R c may be independently C1-C4 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C4 alkyl.
상세하게 상기 화학식 1로 표시되는 금속 화합물은 M이 In 또는 Ga이고,
Figure PCTKR2023012751-appb-img-000017
는 단일결합 또는 이중결합이며, Ra 내지 Rc는 서로 독립적으로 C1-C3알킬이고, R1 내지 R8은 서로 독립적으로 수소 또는 C1-C3알킬일 수 있다.
In detail, in the metal compound represented by Formula 1, M is In or Ga,
Figure PCTKR2023012751-appb-img-000017
is a single bond or a double bond, R a to R c may be independently C1-C3 alkyl, and R 1 to R 8 may be independently hydrogen or C1-C3 alkyl.
본 발명의 일 실시예에 따른 상기 금속 화합물은 하기 화학식 2로 표시되는 것일 수 있다.The metal compound according to an embodiment of the present invention may be represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2023012751-appb-img-000018
Figure PCTKR2023012751-appb-img-000018
[상기 화학식 2에서,[In Formula 2 above,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000019
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000019
is a single bond or a double bond;
R은 C1-C7알킬이고;R is C1-C7alkyl;
R11 내지 R14는 서로 독립적으로 수소 또는 C1-C7알킬이다.]R 11 to R 14 are independently hydrogen or C1-C7 alkyl.]
상기 화학식 2에서
Figure PCTKR2023012751-appb-img-000020
가 단일결합일 경우
Figure PCTKR2023012751-appb-img-000021
고리의 각 탄소에는 R11 내지 R14와 표시되지 않은 별도의 수소가 하나씩 존재하며,
Figure PCTKR2023012751-appb-img-000022
가 이중결합일 경우 상기 R11 내지 R14만 존재한다.
In Formula 2 above,
Figure PCTKR2023012751-appb-img-000020
If is a single bond
Figure PCTKR2023012751-appb-img-000021
At each carbon of the ring, R 11 to R 14 and an unmarked separate hydrogen exist,
Figure PCTKR2023012751-appb-img-000022
When is a double bond, only R 11 to R 14 exist.
상기 화학식 2의 M은 In 또는 Ga이고,
Figure PCTKR2023012751-appb-img-000023
는 단일결합 또는 이중결합이며, R은 C1-C4알킬이고, R11 내지 R14는 서로 독립적으로 수소 또는 C1-C4알킬일 수 있다.
M in Formula 2 is In or Ga,
Figure PCTKR2023012751-appb-img-000023
is a single bond or a double bond, R is C1-C4 alkyl, and R 11 to R 14 may independently be hydrogen or C1-C4 alkyl.
일 실시예에 따른 상기 금속 화합물은 하기 화학식 3으로 표시되는 것일 수 있다.The metal compound according to one embodiment may be represented by the following formula (3).
[화학식 3][Formula 3]
Figure PCTKR2023012751-appb-img-000024
Figure PCTKR2023012751-appb-img-000024
[상기 화학식 3에서,[In Formula 3 above,
M은 In 또는 Ga이고;M is In or Ga;
R은 C1-C3알킬이며;R is C1-C3 alkyl;
R21 내지 R24는 서로 독립적으로 수소 또는 C1-C4알킬이다.]R 21 to R 24 are independently hydrogen or C1-C4 alkyl.]
또한 본 발명은 일 실시예에 따른 하기 화학식 1로 표시되는 금속 화합물의 제조방법을 제공하며, 구체적으로 하기 화학식 11 내지 15로 표시되는 화합물을 반응시켜 하기 화학식 1로 표시되는 금속 화합물을 제조하는 단계를 포함한다.In addition, the present invention provides a method for producing a metal compound represented by the following Chemical Formula 1 according to an embodiment, and specifically, reacting compounds represented by the following Chemical Formulas 11 to 15 to prepare a metal compound represented by the following Chemical Formula 1: Includes.
[화학식 1][Formula 1]
Figure PCTKR2023012751-appb-img-000025
Figure PCTKR2023012751-appb-img-000025
[화학식 11][Formula 11]
MX3 MX 3
[화학식 12][Formula 12]
RaMgXa R a MgX a
[화학식 13][Formula 13]
RbMgXb R b MgX b
[화학식 14][Formula 14]
RcMgXc R c MgX c
[화학식 15][Formula 15]
Figure PCTKR2023012751-appb-img-000026
Figure PCTKR2023012751-appb-img-000026
[상기 화학식 1 및 화학식 11 내지 15에서,[In Formula 1 and Formulas 11 to 15,
M은 In 또는 Ga이고;M is In or Ga;
Figure PCTKR2023012751-appb-img-000027
는 단일결합 또는 이중결합이며;
Figure PCTKR2023012751-appb-img-000027
is a single bond or a double bond;
Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
X, Xa, Xb 및 Xc는 서로 독립적으로 할로겐이며;X, X a , X b and X c are independently halogen;
상기
Figure PCTKR2023012751-appb-img-000028
가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
remind
Figure PCTKR2023012751-appb-img-000028
If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
구체적으로 상기 화학식 1의 화합물을 제조하는 단계는 화학식 11로 표시되는 화합물에 용매를 투입한 후 화학식 12 내지 화학식 15로 표시되는 화합물을 0 내지 30 ℃에서 투입한 뒤, 5 내지 50 ℃에서 1 내지 15 시간 동안 반응시킬 수 있으며, 구체적으로 10 내지 40 ℃에서 1 내지 12 시간 동안, 보다 구체적으로 15 내지 35 ℃에서 1 내지 10 시간 동안 수행되는 것일 수 있다.Specifically, the step of preparing the compound of Formula 1 includes adding a solvent to the compound represented by Formula 11, then adding the compounds represented by Formulas 12 to 15 at 0 to 30 ° C, and then adding a solvent to the compound represented by Formula 11, and then adding a solvent to the compound represented by Formula 11 at 0 to 30 ° C. The reaction may be performed for 15 hours, specifically at 10 to 40°C for 1 to 12 hours, and more specifically at 15 to 35°C for 1 to 10 hours.
또 다른 양태로 화학식 12 내지 화학식 14가 동일한 화합물일 수 있으며, 화학식 15의 용액에 포함된 그리나드 시약일 수 있다.In another embodiment, Formulas 12 to 14 may be the same compound, and may be a Grignard reagent contained in the solution of Formula 15.
본 발명의 일 실시예에 따른 금속 화합물의 제조방법은 화학식 11 내지 화학식 15의 화합물을 반응시켜 상기 화학식 1의 화합물을 제조하는 단계 이후에 극성용매를 투입하여 교반시키는 단계를 더 포함할 수 있다.The method for producing a metal compound according to an embodiment of the present invention may further include adding a polar solvent and stirring after reacting the compounds of Formulas 11 to 15 to produce the compound of Formula 1.
본 발명의 일 실시예에 따른 극성용매는 Acetonitrile, DMSO(Dimethylsulfoxide), DMF(Dimethylformamide) 및 THF(Tetrahydrofuran)에서 선택되는 하나 또는 둘 이상일 수 있으며, 구체적으로 DMF(Dimethylformamide), THF(Tetrahydrofuran) 또는 이들의 혼합물일 수 있고, 보다 구체적으로 THF(Tetrahydrofuran)일 수 있으나, 이에 한정되는 것은 아니다.The polar solvent according to an embodiment of the present invention may be one or two or more selected from Acetonitrile, DMSO (Dimethylsulfoxide), DMF (Dimethylformamide), and THF (Tetrahydrofuran), specifically DMF (Dimethylformamide), THF (Tetrahydrofuran) or these. It may be a mixture of, and more specifically, THF (Tetrahydrofuran), but is not limited thereto.
또한 본 발명의 일 실시예에 따른 극성용매의 양은 상기 화학식 11로 표시되는 화합물에 대하여 2 내지 5 당량일 수 있으며, 구체적으로 2 내지 4.5 당량, 보다 구체적으로 2 내지 4 당량일 수 있다.Additionally, the amount of the polar solvent according to an embodiment of the present invention may be 2 to 5 equivalents, specifically 2 to 4.5 equivalents, and more specifically 2 to 4 equivalents, based on the compound represented by Formula 11.
상기 금속 화합물 제조과정에서 MgCl2 침전물이 생성될 수 있으며, 이는 입자의 크기가 작아 필터로 쉽게 제거되지 않고 여과 시간이 오래 걸려 최종 화합물의 순도 및 수율을 크게 감소시킬 수 있는 반응 부산물로 여겨진다. During the manufacturing process of the metal compound, MgCl 2 precipitate may be generated, which is considered a reaction by-product that is not easily removed by a filter due to the small size of the particles and requires a long filtration time, which can greatly reduce the purity and yield of the final compound.
따라서 본 발명의 금속 화합물의 제조방법에 따르면, 생성되는 MgCl2 침전물에 극성용매를 투입하는 단계, 특히 극성용매를 과량 투입하는 단계를 포함하면, 상기 화학식 1로 표시되는 금속 화합물을 높은 순도로 용이하게 분리할 수 있다.Therefore, according to the method for producing a metal compound of the present invention, including the step of adding a polar solvent to the produced MgCl 2 precipitate, especially the step of adding an excessive amount of the polar solvent, the metal compound represented by Formula 1 can be easily obtained with high purity. can be separated easily.
이는 극성용매와 MgCl2의 착화합물이 생성되어 부산물과 금속 화합물의 분리가 용이할뿐더러 금속 화합물의 순도 및 수율이 높은 것으로 판단된다.This is believed to be due to the formation of a complex between the polar solvent and MgCl 2 , making it easy to separate the by-product and the metal compound, and the purity and yield of the metal compound are high.
구체적으로 THF 등의 극성용매를 이용하면 MgCl2(THF)n (n=2, 3)형태의 착화합물이 형성될 것으로 예상된다. 이렇게 착화합물로 형성된 화합물은 여과성이 매우 향상되어 이들 착화합물을 용이하게 여과하여 제거함으로써, 최종 생성물의 순도와 수율이 현저하게 향상될 수 있는 것으로 판단된다. Specifically, when a polar solvent such as THF is used, a complex in the form of MgCl 2 (THF) n (n=2, 3) is expected to be formed. It is believed that the filterability of compounds formed from complex compounds in this way is greatly improved, and by easily filtering and removing these complex compounds, the purity and yield of the final product can be significantly improved.
본 발명의 일 실시예에 따른 금속 화합물의 제조방법은 상기 화학식 11 내지 화학식 15의 반응생성물에 극성용매를 투입하여 0.5 내지 5시간동안 교반시킬 수 있다.In the method for producing a metal compound according to an embodiment of the present invention, a polar solvent can be added to the reaction products of Formulas 11 to 15 and stirred for 0.5 to 5 hours.
또한 상기 화학식 11 내지 15를 반응시켜 상기 화학식 1의 화합물을 제조하는 단계에서 용매는 통상의 유기용매이면 모두 가능하나, Hexane, Pentane, DCM(Dichloromethane), Benzene 및 Toluene에서 선택되는 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.In addition, in the step of preparing the compound of Chemical Formula 1 by reacting Chemical Formulas 11 to 15, any common organic solvent can be used as the solvent, but it can be one or two or more selected from Hexane, Pentane, DCM (Dichloromethane), Benzene, and Toluene. However, it is not limited to this.
상기 제조방법의 각 반응은 NMR을 통하여 출발물질이 완전히 소모됨을 확인한 후 종결시키도록 할 수 있으며, 반응종료 후 추출과정, 갑압 하에서 용매를 증류시키는 과정 및 관 크로마토그래피 등의 통상적인 방법을 통하여 화합물을 분리 정제하는 과정을 더 수행할 수 있다.Each reaction in the above production method can be terminated after confirming that the starting material is completely consumed through NMR, and after completion of the reaction, the compound is extracted through conventional methods such as extraction, distillation of the solvent under reduced pressure, and tube chromatography. A further process of separation and purification can be performed.
상기 금속 화합물의 제조방법은 높은 수율로 고순도의 금속 화합물을 제조할 수 있고 온화하고 단순한 공정으로 제조가 가능하여 산업적 이용이 용이할 수 있다.The method for producing the metal compound can produce a high-purity metal compound in high yield and can be manufactured through a mild and simple process, making it easy for industrial use.
상기 금속 화합물은 증착 공정 중 일정한 증기압을 가질 수 있어 박막의 조성이 일정하게 유지됨으로써 성분이 일정한 균일한 박막을 제조할 수 있다. 또한 막의 두께도 균일하고 우수한 스텝커버리지를 나타낼 수 있어 입체적인 장치에서도 우수한 물성을 나타내는 박막을 제조할 수 있다.The metal compound can have a constant vapor pressure during the deposition process, so the composition of the thin film is maintained constant, thereby producing a uniform thin film with constant composition. In addition, the thickness of the film is uniform and excellent step coverage can be achieved, making it possible to manufacture a thin film with excellent physical properties even in a three-dimensional device.
본 발명은 일 실시예에 따른 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 이용하는 금속 함유 박막의 제조방법을 제공한다.The present invention provides a method of manufacturing a metal-containing thin film using a metal compound or a composition for thin film deposition containing the same according to an embodiment.
본 발명의 일 실시예에 따른 금속 함유 박막의 제조방법은 이종금속이 포함되는 다층 구조의 박막으로 제조될 수 있으며, 상기 금속 화합물 또는 금속 함유 박막증착용 조성물과 이종 금속의 전구체를 순차적으로 증착하여 적층된 구조일 수 있고, 상기 금속 화합물 또는 금속 함유 박막증착용 조성물과 이종 금속의 전구체를 혼합하여 증착한 것일 수 있다.The method of manufacturing a metal-containing thin film according to an embodiment of the present invention can produce a thin film with a multi-layer structure containing a different metal, by sequentially depositing the metal compound or a composition for depositing a metal-containing thin film and a precursor of the different metal. It may have a laminated structure, and may be deposited by mixing the metal compound or composition for metal-containing thin film deposition with a precursor of a different metal.
상기 금속 함유 박막의 제조방법은 a) 챔버 내에 장착된 기판을 승온시키는 단계; b) 상기 챔버 내에 본 발명의 일 실시예에 따른 금속 화합물 또는 상기 박막증착용 조성물을 주입하여 기판에 흡착시키는 단계 및 c) 상기 금속 화합물 또는 박막증착용 조성물이 흡착된 기판에 반응가스를 주입하여 금속 함유 박막을 제조하는 단계;를 포함할 수 있다.The method of manufacturing the metal-containing thin film includes a) raising the temperature of the substrate mounted in the chamber; b) injecting a metal compound or the thin film deposition composition according to an embodiment of the present invention into the chamber and adsorbing it on a substrate; and c) injecting a reaction gas into the substrate to which the metal compound or the thin film deposition composition is adsorbed. It may include manufacturing a metal-containing thin film.
상기 반응가스는 산소(O2), 오존(O3), 수증기(H2O), 과산화수소(H2O2), 일산화질소(NO), 아산화질소(N2O), 이산화질소(NO2), 암모니아(NH3), 질소(N2), 하이드라진(N2H4), 아민, 다이아민, 수소(H2), 아르곤(Ar), 및 헬륨(He)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 이송가스는 불활성 가스로, 아르곤(Ar), 헬륨(He) 및 질소(N2)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 구체적으로 질소(N2)일 수 있으나, 이에 한정되는 것은 아니다.The reaction gases include oxygen (O 2 ), ozone (O 3 ), water vapor (H 2 O), hydrogen peroxide (H 2 O 2 ), nitrogen monoxide (NO), nitrous oxide (N 2 O), and nitrogen dioxide (NO 2 ). , ammonia (NH 3 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), amine, diamine, hydrogen (H 2 ), argon (Ar), and helium (He). The transport gas is an inert gas and may be any one or two or more selected from argon (Ar), helium (He), and nitrogen (N 2 ), and may specifically be nitrogen (N 2 ), but is limited thereto. It doesn't work.
또한 본 발명의 일 실시예에 따른 금속 함유 박막의 제조방법은 상기 b) 및 c)단계를 한 주기로 하여, 목적하는 두께의 금속 함유 박막이 제조될 때까지 상기 주기를 반복 수행할 수 있으며, 구체적으로 50 내지 5,000 사이클일 수 있고, 보다 구체적으로 200 내지 2,000 사이클일 수 있으나, 이에 한정되는 것은 아니다.In addition, the method for manufacturing a metal-containing thin film according to an embodiment of the present invention uses steps b) and c) as one cycle, and the cycle can be repeatedly performed until a metal-containing thin film of the desired thickness is manufactured. It may be 50 to 5,000 cycles, and more specifically, 200 to 2,000 cycles, but is not limited thereto.
상기 a)단계의 기판의 온도는 100 내지 450 ℃일 수 있고, 구체적으로 150 내지 300 ℃일 수 있으며, 보다 구체적으로 150 내지 250 ℃일 수 있다. 본 발명의 일 실시예에 따른 박막증착용 조성물은 상기 온도와 같이 높은 온도에서도 금속 화합물의 열분해 없이 증착이 가능하여, 증착 공정을 운행함에 있어 안정성 및 생산성이 향상될 수 있다.The temperature of the substrate in step a) may be 100 to 450°C, specifically 150 to 300°C, and more specifically 150 to 250°C. The composition for thin film deposition according to an embodiment of the present invention can be deposited without thermal decomposition of the metal compound even at a temperature as high as the above temperature, and thus stability and productivity can be improved during the deposition process.
또한 상기 금속 함유 박막의 제조방법으로 제조된 금속 함유 박막은 탄소 등의 불순물의 함량이 놀랍도록 감소되어 고품질의 금속 함유 박막을 제조될 수 있다.In addition, the content of impurities such as carbon in the metal-containing thin film produced by the above-mentioned metal-containing thin film manufacturing method is surprisingly reduced, so that a high-quality metal-containing thin film can be produced.
일 실시예에 따른 금속 함유 박막의 제조방법에서 이용되는 기판은 유리, 실리콘, 금속 폴리에스테르(Polyester, PE), 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(Polyethylenenapthalate, PEN), 폴리카르보네이트(Polycarbonate, PC), 폴리에테르이미드(Polyetherimide, PEI), 폴리에테르설폰(Polyethersulfone,PES), 폴리에테르에테르케톤(Polyetheretherketone, PEEK) 및 폴리이미드(Polyimide, PI)에서 선택되는 하나 또는 둘 이상의 기재를 포함할 수 있으나, 이에 한정되는 것은 아니다.The substrate used in the method of manufacturing a metal-containing thin film according to an embodiment is glass, silicon, metal polyester (PE), polyethyleneterephthalate (PET), polyethylene napthalate (PEN), and polycarbohydrate. One or more substrates selected from polycarbonate (PC), polyetherimide (PEI), polyethersulfone (PES), polyetheretherketone (PEEK), and polyimide (PI) It may include, but is not limited to this.
일 실시예에 따른 금속 함유 박막의 제조방법의 b)단계에서 금속 함유 박막증착용 조성물은 스테인레스 스틸 버블러 용기 내에 충진하여 20 내지 100 ℃, 구체적으로 30 내지 90 ℃, 보다 구체적으로 40 내지 70 ℃의 온도로 유지될 수 있다.In step b) of the method for producing a metal-containing thin film according to an embodiment, the composition for metal-containing thin film deposition is filled into a stainless steel bubbler container and heated at 20 to 100 ° C, specifically 30 to 90 ° C, more specifically 40 to 70 ° C. can be maintained at a temperature of
또한 상기 b)단계인 증착과정의 조건은 박막의 구조 및 열적 특성에 따라 조절될 수 있다. 일 실시예에 따른 금속 화합물의 투입 유량은 버블러 타입으로 1 내지 1000 sccm, 이송가스의 투입 유량은 1 내지 5000 sccm, 반응가스의 투입 유량은 10 내지 5000 sccm, 압력은 0.1 내지 10 torr범위에서 조절될 수 있고, 주입 시간은 0.1 내지 20 초, 바람직하게 0.1 내지 15 초, 보다 바람직하게 0.1 내지 10 초일 수 있으나 이에 한정되는 것은 아니다. 상기 범위내에서 금속 함유 박막을 제조하면 박막의 두께의 균일도가 매우 향상되어 복잡한 형상의 기판에서도 우수한 스텝커버리지를 유지할 수 있다.Additionally, the conditions of the deposition process in step b) can be adjusted depending on the structure and thermal characteristics of the thin film. According to one embodiment, the input flow rate of the metal compound is a bubbler type in the range of 1 to 1000 sccm, the input flow rate of the transport gas is 1 to 5000 sccm, the input flow rate of the reaction gas is 10 to 5000 sccm, and the pressure is in the range of 0.1 to 10 torr. It can be adjusted, and the injection time can be 0.1 to 20 seconds, preferably 0.1 to 15 seconds, more preferably 0.1 to 10 seconds, but is not limited thereto. When a metal-containing thin film is manufactured within the above range, the uniformity of the thickness of the thin film is greatly improved, and excellent step coverage can be maintained even on complex-shaped substrates.
일 실시예에 따른 금속 함유 박막의 제조방법은 미 흡착된 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 제거하거나 반응가스 주입 후 생성된 반응부산물 및 잔류되어 있는 반응가스를 제거하기 위하여 이송가스로 퍼지(purge)하는 단계를 더 포함할 수 있다.A method of manufacturing a metal-containing thin film according to an embodiment includes purging with a transport gas to remove unadsorbed metal compounds or a composition for thin film deposition containing the same, or to remove reaction by-products and remaining reaction gas generated after injection of the reaction gas. A purge step may be further included.
본 발명의 일 실시예에 따른 인듐 함유 박막의 제조방법은 원자층증착법(ALD), 화학기상증착법(CVD), 유기금속 화학기상증착법(MOCVD), 저압 화학기상증착법 (LPCVD), 플라즈마강화 화학기상증착법(PECVD), 플라즈마 강화 원자층증착법(PEALD) 또는 펄스레이저증착법(PLD)으로 수행되는 것일 수 있으며, 바람직하게 원자층증착법(ALD), 화학기상증착법(CVD) 또는 유기금속 화학기상증착법(MOCVD)으로 수행되는 것일 수 있다.The method for manufacturing an indium-containing thin film according to an embodiment of the present invention is atomic layer deposition (ALD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), and plasma enhanced chemical vapor deposition. It may be performed by PECVD, plasma enhanced atomic layer deposition (PEALD), or pulsed laser deposition (PLD), and is preferably performed by atomic layer deposition (ALD), chemical vapor deposition (CVD), or metal organic chemical vapor deposition (MOCVD). ) may be performed.
본 발명은 본 발명의 일 실시예에 따른 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 이용하여 제조되는 금속 함유 박막을 제공하며, 상기 금속 함유 박막은 균일한 성분을 가지는 전기적으로 우수한 성능을 나타낼 수 있다.The present invention provides a metal-containing thin film manufactured using a metal compound or a composition for thin film deposition containing the same according to an embodiment of the present invention, and the metal-containing thin film has uniform components and can exhibit excellent electrical performance. there is.
상기 금속 함유 박막은 금속함량이 20 내지 60 중량%일 수 있다.The metal-containing thin film may have a metal content of 20 to 60% by weight.
이하, 구체적인 실시예를 통해 본 발명에 따른 금속 화합물 및 이를 포함하는 박막증착용 조성물, 이를 이용한 금속 함유 박막의 제조방법 및 이로부터 제조되는 금속 함유 박막에 대하여 더욱 상세히 설명한다.Hereinafter, the metal compound according to the present invention and the composition for thin film deposition containing the same, the method for manufacturing a metal-containing thin film using the same, and the metal-containing thin film manufactured therefrom will be described in more detail through specific examples.
다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. 또한 본 발명에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.However, the following examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms. Additionally, the terms used in the description in the present invention are only intended to effectively describe specific embodiments and are not intended to limit the present invention.
또한 다르게 주지되지 않는 한, 모든 실시예들은 불활성 분위기, 예를 들어 정제된 질소(N2) 또는 아르곤(Ar) 하에서, 당업계에서 보편적으로 알려진 공기-민감성 물질을 취급하는 기술들, 예를 들어 "Schlenk techniques"을 사용하여 수행되었다.Also, unless otherwise noted, all embodiments are described under an inert atmosphere, e.g. purified nitrogen (N 2 ) or argon (Ar), using techniques for handling air-sensitive materials commonly known in the art, e.g. It was performed using “Schlenk techniques”.
[실시예 1] 인듐 화합물(InMe3(THF))의 제조[Example 1] Preparation of indium compound (InMe 3 (THF))
교반기와 환류 장치(condenser)를 포함하는 5L 3목 플라스크에 InCl3 100 g(0.45 mol)를 투입 후 진공 건조하였다. n-Hexane 1000 ml를 투입 후, 10 ℃로 유지하며 MeMgCl 452 ml(3.0 M solution in THF)을 서서히 투입한 후 상온에서 8시간 교반시켜 연회색의 침전물이 생성되었다. 그 후 반응물을 여과한 다음, 여과액의 용매 및 휘발성 부산물을 감압 하에 제거하였으며, 감압 증류(23 ℃, 0.8 Torr) 하여 무색의 액체인 금속 화합물 37.1 g을 얻었다(수율 35%). 100 g (0.45 mol) of InCl 3 was added to a 5L three-necked flask containing a stirrer and a reflux device (condenser) and then dried under vacuum. After adding 1000 ml of n-Hexane, maintaining the temperature at 10°C, 452 ml of MeMgCl (3.0 M solution in THF) was slowly added and stirred at room temperature for 8 hours to produce a light gray precipitate. Afterwards, the reaction product was filtered, the solvent and volatile by-products of the filtrate were removed under reduced pressure, and distilled under reduced pressure (23° C., 0.8 Torr) to obtain 37.1 g of the metal compound as a colorless liquid (yield 35%).
1H NMR(400 MHz, C6D6) δ 3.2(m, 4H), 1.1(m, 4H), -0.1(s, 9H) 1 H NMR (400 MHz, C6D6) δ 3.2 (m, 4H), 1.1 (m, 4H), -0.1 (s, 9H)
[실시예 2] 인듐 화합물(InMe3(THF))의 제조[Example 2] Preparation of indium compound (InMe 3 (THF))
교반기와 환류 장치(condenser)를 포함하는 5L 3목 플라스크에 InCl3 100 g(0.45 mol)를 투입 후 진공 건조하였다. n-Hexane 1000 ml를 투입 후, 10 ℃로 유지하며 MeMgCl 452 ml(3.0 M solution in THF)을 서서히 투입한 후 상온에서 8시간 교반시켰다. 반응이 완료된 반응물에 THF 3 당량을 추가로 상온에서 투입 후 2 시간을 교반시킨 뒤, 여과한 다음, 여과액의 용매 및 휘발성 부산물을 감압 하에 제거하였으며, 감압 증류(23 ℃, 0.8 Torr) 하여 무색의 액체인 금속 화합물 77.3 g을 얻었다(수율 73 %).100 g (0.45 mol) of InCl 3 was added to a 5L three-necked flask containing a stirrer and a reflux device (condenser) and then dried under vacuum. After adding 1000 ml of n-Hexane, the temperature was maintained at 10°C and 452 ml of MeMgCl (3.0 M solution in THF) was slowly added and stirred at room temperature for 8 hours. After the reaction was completed, 3 equivalents of THF was added to the reactant at room temperature, stirred for 2 hours, filtered, and the solvent and volatile by-products of the filtrate were removed under reduced pressure, and colorless was obtained by reduced-pressure distillation (23°C, 0.8 Torr). 77.3 g of a liquid metal compound was obtained (yield 73%).
1H NMR(400 MHz, C6D6) δ 3.2(m, 4H), 1.1(m, 4H), -0.1(s, 9H) 1 H NMR (400 MHz, C6D6) δ 3.2 (m, 4H), 1.1 (m, 4H), -0.1 (s, 9H)
도 1에 실시예 2의 금속 화합물 InMe3(THF)의 TGA 그래프를 나타내었으며, 기존 인듐 함유 박막증착에 일반적으로 사용되는 [(3-디메틸아미노)프로필]디메틸인듐(이하 DADI, DOCK/CHEMICALS)의 TGA 그래프와 비교하여 본 결과 상기 금속 화합물이 약 50 ℃에서부터 단일 증발 단계를 가지는 것을 알 수 있고, 1/2 중량 감소 부분의 온도가 DADI보다 12℃ 낮게 나타나며, 500 ℃에서 residue mass는 0.4 %로 확인되었다. 상기 결과로부터 본 발명의 실시예 2의 금속 화합물이 DADI보다 빠른 기화 특징을 나타내며 열 분해 없이 99 %이상 기화되는 것을 알 수 있다.Figure 1 shows a TGA graph of the metal compound InMe 3 (THF) of Example 2, and [(3-dimethylamino)propyl]dimethylindium (hereinafter DADI, DOCK/CHEMICALS), which is commonly used in the deposition of existing indium-containing thin films. As a result of comparing with the TGA graph, it can be seen that the metal compound has a single evaporation step from about 50 ℃, the temperature of the 1/2 weight loss portion is 12 ℃ lower than that of DADI, and the residue mass at 500 ℃ is 0.4%. It was confirmed. From the above results, it can be seen that the metal compound of Example 2 of the present invention exhibits faster vaporization characteristics than DADI and vaporizes more than 99% without thermal decomposition.
실시예 2(InMe3(THF))의 향상된 증기압 특성 확인을 위하여 증기압을 측정하고, DADI의 증기압과 비교하여 도 2에 나타내었다.In order to confirm the improved vapor pressure characteristics of Example 2 (InMe 3 (THF)), the vapor pressure was measured and compared with the vapor pressure of DADI, and is shown in FIG. 2.
도 2에 나타낸 바와 같이, 증기압 측정 결과, DADI의 증기압(41 ℃ @ 1 Torr)과 비교하여 실시예 2(InMe3(THF))의 증기압(26℃@1Torr)이 월등히 향상되었음을 확인하였다.As shown in Figure 2, as a result of vapor pressure measurement, it was confirmed that the vapor pressure (26°C @ 1 Torr) of Example 2 (InMe 3 (THF)) was significantly improved compared to the vapor pressure of DADI (41°C @ 1 Torr).
이러한 결과로 실시예 2(InMe3(THF))을 사용하여 화학기상증착법(CVD)이나 원자층증착법(ALD)으로 인듐 함유 박막을 증착할 때, 기존의 인듐 전구체보다 매우 유리할 것임을 알 수 있다.These results show that Example 2 (InMe 3 (THF)) will be very advantageous over existing indium precursors when depositing an indium-containing thin film by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
아르곤 분위기의 글로브 박스에서 봉인이 가능한 스테인리스 용기에 정해진 용량(3 g)의 실시예 2(InMe3(THF)) 및 DADI를 각각 넣어 밀봉하고 정해진 온도(100 ℃, 120 ℃)와 시간(1 일, 4 일, 7 일)의 조건에서 보관 후 각각의 샘플을 1H NMR로 분석하여 peak의 변화를 확인하는 방법으로 실시예 2(InMe3(THF)) 및 DADI의 열 안정성을 측정하여 도 3에 나타내었다.A set amount (3 g) of Example 2 (InMe 3 (THF)) and DADI were placed in a sealable stainless steel container in an argon atmosphere glove box, sealed, and incubated at a set temperature (100°C, 120°C) and time (1 day). , 4 days, and 7 days), each sample was analyzed by 1 H NMR to determine the change in peak, and the thermal stability of Example 2 (InMe 3 (THF)) and DADI was measured, as shown in Figure 3. shown in
도 3에 나타낸 바와 같이, 100 ℃에서는 7 일까지 실시예 2(InMe3(THF)) 및 DADI가 모두 변화를 나타내지 않고 안정한 것으로 나타났다. 그러나 120 ℃에서는 본 발명의 실시예 2(InMe3(THF))은 변화가 없는 반면, DADI 는 4 일째부터 부산물이 생성되는 것이 확인되었다.As shown in Figure 3, both Example 2 (InMe 3 (THF)) and DADI showed no change and were stable for up to 7 days at 100°C. However, at 120°C, it was confirmed that while there was no change in Example 2 (InMe 3 (THF)) of the present invention, by-products were produced in DADI from the 4th day.
이로써 인듐 함유 박막증착에 널리 이용되고 있는 DADI와 대비하여 본 발명의 실시예 2(InMe3(THF))이 높은 온도 조건에서 안정성이 현저하게 우수한 것을 알 수 있다.As a result, it can be seen that Example 2 (InMe 3 (THF)) of the present invention has significantly superior stability under high temperature conditions compared to DADI, which is widely used for indium-containing thin film deposition.
[실시예 3] 인듐 산화 박막의 제조[Example 3] Preparation of indium oxide thin film
상기 실시예 2에 따른 InMe3(THF)를 이용하고, 반응가스로 아산화질소(N2O)를 사용하여 플라즈마강화 원자층증착법(PEALD)에 의해 인듐 함유 산화 박막을 제조하였다.An indium-containing oxide thin film was manufactured by plasma-enhanced atomic layer deposition (PEALD) using InMe 3 (THF) according to Example 2 and nitrous oxide (N 2 O) as a reaction gas.
증착 챔버 내부에 실리콘 기판을 로딩하고, 상기 기판 온도를 일정 온도로 유지시켰다. 스테인레스 스틸 버블러 용기 내에 InMe3(THF)을 충진하고 일정 증기압에 해당하는 온도로 유지시켰다.A silicon substrate was loaded into the deposition chamber, and the temperature of the substrate was maintained at a constant temperature. InMe 3 (THF) was filled in a stainless steel bubbler container and maintained at a temperature corresponding to a certain vapor pressure.
아르곤 가스를 이송가스로 하여 InMe3(THF) 전구체를 일정 시간동안 증착 챔버 내부로 주입하여 흡착시켰다. 이후, 아르곤 가스(600 sccm)를 이용하여 3 초 동안 퍼징을 실시하여 상기 증착 챔버 내에 잔류하는 상기 InMe3(THF) 및 반응 부산물을 제거하였다.Using argon gas as a transport gas, the InMe 3 (THF) precursor was injected into the deposition chamber for a certain period of time and adsorbed. Afterwards, purging was performed for 3 seconds using argon gas (600 sccm) to remove InMe 3 (THF) and reaction by-products remaining in the deposition chamber.
반응가스로서 아산화질소(N2O)를 주입하면서 플라즈마를 이용하여 인듐 함유 산화 박막을 형성하였다. 이후, 아르곤 가스(600 sccm)를 이용하여 3 초 동안 퍼징을 실시하여 잔류 반응가스 및 반응 부산물을 제거하였다.An indium-containing oxide thin film was formed using plasma while injecting nitrous oxide (N 2 O) as a reaction gas. Afterwards, purging was performed for 3 seconds using argon gas (600 sccm) to remove residual reaction gas and reaction by-products.
상술한 공정들을 1 주기로 하여 70 내지 700 주기를 진행하여 인듐 함유 산화 박막을 제조하였으며 증착된 인듐 산화 박막은 엘립소 미터를 이용하여 두께를 측정하였다.An indium-containing oxide thin film was manufactured by performing 70 to 700 cycles of the above-described processes as 1 cycle, and the thickness of the deposited indium oxide thin film was measured using an ellipsometer.
하기 표 1에 인듐 산화 박막의 증착 조건을 나타내었다.Table 1 below shows the deposition conditions for the indium oxide thin film.
[비교예 1] 인듐 산화 박막의 제조[Comparative Example 1] Preparation of indium oxide thin film
인듐 함유 박막의 제조에 현재 널리 이용되고 있는 DADI를 이용하고, 반응가스로 아산화질소(N2O)를 사용하여 플라즈마강화 원자층증착법(PEALD)에 의해 금속 함유 산화 박막을 제조하였다.A metal-containing oxide thin film was manufactured by plasma-enhanced atomic layer deposition (PEALD) using DADI, which is currently widely used in the production of indium-containing thin films, and nitrous oxide (N 2 O) as a reaction gas.
전구체를 DADI를 사용한 것을 제외하고 실시예 3과 동일하게 인듐 산화 박막을 형성하였으며, 하기 표 1에 인듐 산화 박막의 증착 조건을 나타내었다.An indium oxide thin film was formed in the same manner as in Example 3 except that DADI was used as the precursor, and the deposition conditions for the indium oxide thin film are shown in Table 1 below.
평가
항목
evaluation
item
Vapor PressureVapor Pressure Wafer Temp.Wafer Temp. Source Feeding TimeSource Feeding Time ReactantReactant CycleCycle
Bubble
Ar
Bubble
Ar
TimeTime N2O N2O RF
Power
RF
Power
TimeTime
TorrTorr sccmsccm secsec sccmsccm WW secsec No.No.
실시예 3Example 3 Source Feeding TimeSource Feeding Time 44 200200 5050 0.10.1 400400 400400 33 300300
44 200200 5050 0.30.3 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
Vapor PressureVapor Pressure 1One 200200 5050 0.50.5 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
55 200200 5050 0.50.5 400400 400400 33 300300
1212 200200 5050 0.50.5 400400 400400 33 300300
Wafer Temp.Wafer Temp. 44 140140 5050 0.50.5 400400 400400 33 300300
44 150150 5050 0.50.5 400400 400400 33 300300
44 180180 5050 0.50.5 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
44 220220 5050 0.50.5 400400 400400 33 300300
LinearityLinearity 44 200200 5050 0.50.5 400400 400400 33 70~70070~700
비교예 1Comparative Example 1 Source Feeding TimeSource Feeding Time 44 200200 5050 0.10.1 400400 400400 33 300300
44 200200 5050 0.30.3 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
Vapor PressureVapor Pressure 1One 200200 5050 0.50.5 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
55 200200 5050 0.50.5 400400 400400 33 300300
Wafer Temp.Wafer Temp. 44 140140 5050 0.50.5 400400 400400 33 300300
44 150150 5050 0.50.5 400400 400400 33 300300
44 180180 5050 0.50.5 400400 400400 33 300300
44 200200 5050 0.50.5 400400 400400 33 300300
44 220220 5050 0.50.5 400400 400400 33 300300
LinearityLinearity 44 200200 5050 0.50.5 400400 400400 33 70~70070~700
도 4에 실시예 3 및 비교예 1의 전구체 주입시간에 따른 1 주기당 증착 속도를 나타내었다. 실시예 3 및 비교예 1의 증착 속도는 주입시간이 증가할수록 물리적인 흡착으로 인하여 증착 속도가 증가하는 경향을 나타내지만, 0.3 초 이상의 주입시간에서는 포화되어 증착 속도가 거의 증가하지 않는 것을 알 수 있다. 특히, 실시예 3이 비교예 1에 대비하여 40 % 이상으로 현저하게 향상된 증착 속도를 나타내는 것을 알 수 있다.Figure 4 shows the deposition rate per cycle according to the precursor injection time of Example 3 and Comparative Example 1. The deposition rate of Example 3 and Comparative Example 1 shows a tendency to increase due to physical adsorption as the injection time increases, but it can be seen that the deposition rate is saturated at an injection time of 0.3 seconds or more and the deposition rate hardly increases. . In particular, it can be seen that Example 3 shows a deposition rate that is significantly improved by more than 40% compared to Comparative Example 1.
도 5에 실시예 3 및 비교예 1의 전구체의 증기압에 따른 1 주기당 증착 속도를 나타내었다. 실시예 3 및 비교예 1의 전구체의 증기압은 1 Torr 이상에서 안정화되는 것을 알 수 있으며, 특히, 실시예 3의 경우 12 Torr의 높은 증기압에서도 비교적 일정한 증착 속도를 나타내어 ALD의 특성인 자기 제한 반응(Self-limited reaction)을 확인할 수 있다. 또한 앞서의 결과와 유사하게 증기압에 따른 증착 속도에서도 실시예 3이 비교예 1보다 40 % 이상의 현저하게 향상된 결과를 나타내는 것을 알 수 있다.Figure 5 shows the deposition rate per cycle according to the vapor pressure of the precursors of Example 3 and Comparative Example 1. It can be seen that the vapor pressure of the precursor of Example 3 and Comparative Example 1 is stabilized at 1 Torr or more. In particular, Example 3 shows a relatively constant deposition rate even at a high vapor pressure of 12 Torr, showing self-limiting reaction (self-limiting reaction), which is a characteristic of ALD. Self-limited reaction) can be confirmed. In addition, similar to the previous results, it can be seen that Example 3 showed a significantly improved result of more than 40% compared to Comparative Example 1 in terms of deposition rate according to vapor pressure.
도 6에 실시예 3 및 비교예 1의 실리콘 기판 온도에 따른 1 주기당 증착 속도를 나타내었다. 앞서의 결과들과 마찬가지로, 실리콘 기판 온도에 따른 증착 속도에서도 실시예 3이 비교예 1보다 40 % 이상의 결과를 나타내어 현저하게 향상된 증착 속도를 나타내는 것을 확인 할 수 있다.Figure 6 shows the deposition rate per cycle according to the silicon substrate temperature of Example 3 and Comparative Example 1. Similar to the previous results, it can be confirmed that Example 3 showed a significantly improved deposition rate by 40% more than Comparative Example 1 in terms of deposition rate depending on the silicon substrate temperature.
도 7에 실시예 3 및 비교예 1에서 공정 주기에 따른 박막의 두께를 나타내었다. 공정 주기 증가에 따른 두께는 선형적으로 증가하는 것을 알 수 있으며, 이로부터 ALD의 특성인 자기 제한 반응(Self-limited reaction)을 확인할 수 있다. 또한 증착 주기에 따른 두께의 그래프에서 기울기로 확인할 수 있는 증착 속도는 실시예 3이 1.0 Å주기로 비교예 1의 0.65 Å주기와 대비하여 뛰어나게 향상된 증착 속도를 나타내는 것을 알 수 있다.Figure 7 shows the thickness of the thin film according to the process cycle in Example 3 and Comparative Example 1. It can be seen that the thickness increases linearly as the process cycle increases, and from this, the self-limited reaction, which is a characteristic of ALD, can be confirmed. In addition, the deposition rate, which can be confirmed by the slope in the graph of the thickness according to the deposition cycle, is 1.0 Å cycle in Example 3, which shows a significantly improved deposition rate compared to the 0.65 Å cycle in Comparative Example 1.
도 8에 실시예 3 및 비교예 1의 XRD 패턴을 나타내었다. 구체적인 증착조건은 실리콘 기판의 온도 200 ℃, 전구체 주입은 0.5 초, 플라즈마를 이용하는 단계는 아산화질소(N2O) 400 sccm, 400 W의 파워로 3 초 동안 수행하였으며, 퍼징 단계는 600 sccm의 아르곤으로 각 3초간 진행하였다. 각 박막의 두께는 약 350 Å으로 공정주기를 조절하여 형성시켰다.Figure 8 shows the XRD patterns of Example 3 and Comparative Example 1. Specific deposition conditions were a silicon substrate temperature of 200°C, precursor injection for 0.5 seconds, a plasma step using 400 sccm of nitrous oxide (N 2 O) and a power of 400 W for 3 seconds, and a purging step using 600 sccm of argon. Each proceeded for 3 seconds. The thickness of each thin film was approximately 350 Å and was formed by adjusting the process cycle.
증착된 인듐 함유 산화 박막은 Cubic 구조임을 확인할 수 있었으며, 표 2에 산화 인듐 박막의 XPS와 XRR 분석을 통하여 각 조성과 박막 밀도의 결과를 나타내었다. 표 2에 나타낸 바와 같이, 탄소나 질소의 불순물이 없는 순수한 인듐 산화 박막이 형성되었음을 알 수 있으며, 박막의 밀도는 7.3 g/m3으로 벌크 상태의 밀도인 7.2 g/m3와 유사함이 확인되었다.It was confirmed that the deposited indium-containing oxide thin film had a cubic structure, and Table 2 shows the results of each composition and thin film density through XPS and XRR analysis of the indium oxide thin film. As shown in Table 2, it can be seen that a pure indium oxide thin film without carbon or nitrogen impurities was formed, and the density of the thin film was 7.3 g/m 3 , which was confirmed to be similar to the bulk density of 7.2 g/m 3 It has been done.
XPS를 통한 조성비 (%)Composition ratio (%) through XPS 박막의 밀도 (g/cm3)Density of thin film (g/cm 3 )
In3dIn3d O1sO1s C1sC1s NN
비교예 1Comparative Example 1 41.441.4 58.658.6 0.00.0 0.00.0 7.37.3
실시예 3Example 3 41.241.2 58.858.8 0.00.0 0.00.0 7.37.3
이로써 본 발명의 일 실시예에 따른 금속 화합물은 액체상태의 화합물로 놀랍도록 향상된 열 안정성, 높은 휘발성 및 높은 증기압을 가지는 것을 알 수 있다. 또한 상기 금속 화합물을 포함하는 박막증착용 조성물로 박막을 제조하면 상용물질인 [(3-디메틸아미노)프로필]디메틸인듐(DADI)과 대비하여 약 40 %이상 높은 1 주기당 증착 두께를 나타내어, 본 발명의 실시예를 이용한 경우에서 매우 향상된 증착 속도를 나타내는 것을 알 수 있으며, 균일한 성분의 높은 신뢰도를 나타내는 박막을 형성시킬 수 있다.From this, it can be seen that the metal compound according to an embodiment of the present invention is a liquid compound and has surprisingly improved thermal stability, high volatility, and high vapor pressure. In addition, when a thin film is manufactured with a composition for thin film deposition containing the above metal compound, the deposition thickness per cycle is about 40% higher than that of [(3-dimethylamino)propyl]dimethyl indium (DADI), a commercial material. In the case of using the embodiment of the invention, it can be seen that the deposition rate is greatly improved, and a thin film with uniform components and high reliability can be formed.
본 발명의 박막증착용 조성물을 이용하면 입체적인 장치에 대하여 균일한 두께의 박막을 제공할 수 있고, 금속과 산소의 적합한 조성비를 나타내는 박막의 제조가 가능하며, 공정의 시간소요도 감소시킬 수 있어 매우 경제적으로 박막의 제조가 가능하다.Using the composition for thin film deposition of the present invention, it is possible to provide a thin film of uniform thickness for a three-dimensional device, it is possible to manufacture a thin film showing an appropriate composition ratio of metal and oxygen, and the time consumption of the process can be greatly reduced. It is possible to economically manufacture thin films.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 비교예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described with specific details and limited examples and comparative examples, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above examples. Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (13)

  1. 하기 화학식 1로 표시되는 금속 화합물을 포함하는 박막증착용 조성물.A composition for thin film deposition containing a metal compound represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2023012751-appb-img-000029
    Figure PCTKR2023012751-appb-img-000029
    [상기 화학식 1에서,[In Formula 1 above,
    M은 In 또는 Ga이고;M is In or Ga;
    Figure PCTKR2023012751-appb-img-000030
    는 단일결합 또는 이중결합이며;
    Figure PCTKR2023012751-appb-img-000030
    is a single bond or a double bond;
    Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
    R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
    Figure PCTKR2023012751-appb-img-000031
    가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
    Figure PCTKR2023012751-appb-img-000031
    If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
  2. 제1항에 있어서,According to paragraph 1,
    상기 화학식 1의 M은 In 또는 Ga이고;M in Formula 1 is In or Ga;
    Figure PCTKR2023012751-appb-img-000032
    는 단일결합 또는 이중결합이며;
    Figure PCTKR2023012751-appb-img-000032
    is a single bond or a double bond;
    Ra 내지 Rc는 서로 독립적으로 C1-C4알킬이고;R a to R c are independently C1-C4 alkyl;
    R1 내지 R8은 서로 독립적으로 수소 또는 C1-C4알킬인, 박막증착용 조성물.R 1 to R 8 are each independently hydrogen or C1-C4 alkyl, a composition for thin film deposition.
  3. 제1항에 있어서,According to paragraph 1,
    상기 금속 화합물은 하기 화학식 2로 표시되는 것인, 박막증착용 조성물.A composition for thin film deposition, wherein the metal compound is represented by the following formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2023012751-appb-img-000033
    Figure PCTKR2023012751-appb-img-000033
    [상기 화학식 2에서,[In Formula 2 above,
    M은 In 또는 Ga이고;M is In or Ga;
    Figure PCTKR2023012751-appb-img-000034
    는 단일결합 또는 이중결합이며;
    Figure PCTKR2023012751-appb-img-000034
    is a single bond or a double bond;
    R은 C1-C7알킬이고;R is C1-C7alkyl;
    R11 내지 R14는 서로 독립적으로 수소 또는 C1-C7알킬이다.]R 11 to R 14 are independently hydrogen or C1-C7 alkyl.]
  4. 제3항에 있어서,According to paragraph 3,
    상기 화학식 2의 M은 In 또는 Ga이고;M in Formula 2 is In or Ga;
    Figure PCTKR2023012751-appb-img-000035
    는 단일결합 또는 이중결합이며;
    Figure PCTKR2023012751-appb-img-000035
    is a single bond or a double bond;
    R은 C1-C4알킬이고;R is C1-C4alkyl;
    R11 내지 R14는 서로 독립적으로 수소 또는 C1-C4알킬인, 박막증착용 조성물.R 11 to R 14 are each independently hydrogen or C1-C4 alkyl, a composition for thin film deposition.
  5. 제1항에 있어서,According to paragraph 1,
    상기 금속 화합물은 하기 화학식 3으로 표시되는 것인, 박막증착용 조성물.A composition for thin film deposition, wherein the metal compound is represented by the following formula (3).
    [화학식 3][Formula 3]
    Figure PCTKR2023012751-appb-img-000036
    Figure PCTKR2023012751-appb-img-000036
    [상기 화학식 3에서,[In Formula 3 above,
    M은 In 또는 Ga이고;M is In or Ga;
    R은 C1-C3알킬이며;R is C1-C3 alkyl;
    R21 내지 R24는 서로 독립적으로 수소 또는 C1-C4알킬이다.]R 21 to R 24 are independently hydrogen or C1-C4 alkyl.]
  6. 하기 화학식 11 내지 15로 표시되는 화합물을 반응시켜 하기 화학식 1의 화합물을 제조하는 단계;를 포함하는 하기 화학식 1로 표시되는 금속 화합물의 제조방법.A method for producing a metal compound represented by Formula 1, comprising: reacting compounds represented by Formulas 11 to 15 to produce a compound represented by Formula 1 below.
    [화학식 1][Formula 1]
    Figure PCTKR2023012751-appb-img-000037
    Figure PCTKR2023012751-appb-img-000037
    [화학식 11][Formula 11]
    MX3 MX 3
    [화학식 12][Formula 12]
    RaMgXa R a MgX a
    [화학식 13][Formula 13]
    RbMgXb R b MgX b
    [화학식 14][Formula 14]
    RcMgXc R c MgX c
    [화학식 15][Formula 15]
    Figure PCTKR2023012751-appb-img-000038
    Figure PCTKR2023012751-appb-img-000038
    [상기 화학식 1 및 화학식 11 내지 15에서,[In Formula 1 and Formulas 11 to 15,
    M은 In 또는 Ga이고;M is In or Ga;
    Figure PCTKR2023012751-appb-img-000039
    는 단일결합 또는 이중결합이며;
    Figure PCTKR2023012751-appb-img-000039
    is a single bond or a double bond;
    Ra 내지 Rc는 서로 독립적으로 C1-C7알킬이고;R a to R c are independently C1-C7 alkyl;
    R1 내지 R8은 서로 독립적으로 수소 또는 C1-C7알킬이며;R 1 to R 8 are independently hydrogen or C1-C7 alkyl;
    X, Xa, Xb 및 Xc는 서로 독립적으로 할로겐이며,X, X a , X b and X c are independently halogen,
    Figure PCTKR2023012751-appb-img-000040
    가 이중결합일 경우 R1, R3, R5 및 R7은 존재하지 않는다.]
    Figure PCTKR2023012751-appb-img-000040
    If is a double bond, R 1 , R 3 , R 5 and R 7 do not exist.]
  7. 제6항에 있어서,According to clause 6,
    상기 화학식 1의 화합물을 제조하는 단계 후에 극성용매를 투입하여 교반시키는 단계를 더 포함하는, 금속 화합물의 제조방법.A method for producing a metal compound, further comprising adding a polar solvent and stirring after preparing the compound of Formula 1.
  8. 제7항에 있어서,In clause 7,
    상기 극성용매는 상기 화학식 1의 화합물에 대하여 2 내지 5당량으로 사용되는, 금속 화합물의 제조방법.A method for producing a metal compound, wherein the polar solvent is used in an amount of 2 to 5 equivalents based on the compound of Formula 1.
  9. 하기 화학식 1로 표시되는 금속 화합물 또는 이를 포함하는 박막 증착용 조성물을 이용하는 금속 함유 박막의 제조방법.A method for producing a metal-containing thin film using a metal compound represented by the following formula (1) or a composition for thin film deposition containing the same.
    [화학식 1][Formula 1]
    Figure PCTKR2023012751-appb-img-000041
    Figure PCTKR2023012751-appb-img-000041
    상기 화학식 1에서,In Formula 1,
    M,
    Figure PCTKR2023012751-appb-img-000042
    , Ra 내지 Rc 및 R1 내지 R8은 상기 제1항에서의 정의와 동일하다.
    M,
    Figure PCTKR2023012751-appb-img-000042
    , R a to R c and R 1 to R 8 are the same as the definitions in paragraph 1 above.
  10. 제9항에 있어서,According to clause 9,
    a) 챔버 내에 장착된 기판을 승온시키는 단계;a) raising the temperature of the substrate mounted in the chamber;
    b) 상기 챔버 내에 상기 금속 화합물 또는 이를 포함하는 박막증착용 조성물을 주입하여 기판에 흡착시키는 단계; 및b) injecting the metal compound or a thin film deposition composition containing the same into the chamber and adsorbing it to the substrate; and
    c) 상기 금속 화합물 또는 이를 포함하는 박막증착용 조성물이 흡착된 기판에 반응가스를 주입하여 금속 함유 박막을 제조하는 단계;c) manufacturing a metal-containing thin film by injecting a reaction gas into a substrate on which the metal compound or a composition for thin film deposition containing the same is adsorbed;
    를 포함하는, 금속 함유 박막의 제조방법.Method for producing a metal-containing thin film, including.
  11. 제10항에 있어서,According to clause 10,
    상기 기판의 온도는 100 내지 450 ℃인, 금속 함유 박막의 제조방법.A method of manufacturing a metal-containing thin film, wherein the temperature of the substrate is 100 to 450 °C.
  12. 하기 화학식 1로 표시되는 금속 화합물 또는 이를 포함하는 박막 증착용 조성물을 이용하여 제조되는 금속 함유 박막.A metal-containing thin film manufactured using a metal compound represented by the following formula (1) or a composition for thin film deposition containing the same.
    [화학식 1][Formula 1]
    Figure PCTKR2023012751-appb-img-000043
    Figure PCTKR2023012751-appb-img-000043
    상기 화학식 1에서,In Formula 1,
    M,
    Figure PCTKR2023012751-appb-img-000044
    , Ra 내지 Rc 및 R1 내지 R8은 상기 제1항에서의 정의와 동일하다.
    M,
    Figure PCTKR2023012751-appb-img-000044
    , R a to R c and R 1 to R 8 are the same as the definitions in paragraph 1 above.
  13. 제12항에 있어서,According to clause 12,
    상기 금속 함유 박막은 금속함량이 20 내지 60 중량%인, 금속 함유 박막.The metal-containing thin film has a metal content of 20 to 60% by weight.
PCT/KR2023/012751 2022-09-02 2023-08-29 Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same WO2024049150A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0111582 2022-09-02
KR1020220111582A KR20240032512A (en) 2022-09-02 2022-09-02 Composition for thin film deposition containing a metal compound, method for manufacturing a metal-containing thin film using the same, and metal-containing thin film manufactured using the same

Publications (1)

Publication Number Publication Date
WO2024049150A1 true WO2024049150A1 (en) 2024-03-07

Family

ID=90098274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012751 WO2024049150A1 (en) 2022-09-02 2023-08-29 Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same

Country Status (2)

Country Link
KR (1) KR20240032512A (en)
WO (1) WO2024049150A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464233A (en) * 1981-11-25 1984-08-07 The Secretary Of State For Defense In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Preparation of adducts which may be used in the preparation of compound semiconductor materials
US20120231611A1 (en) * 2009-09-02 2012-09-13 L'air Liquide Societe Anonyme Pour L'exploitation Des Procedes Georges Claude Dihalide germanium(ii) precursors for germanium-containing film depositions
CN104587939A (en) * 2015-01-07 2015-05-06 安徽亚格盛电子新材料有限公司 Device for directly preparing gallium trichloride-tetrahydrofuran solution at normal temperature
KR20210052305A (en) * 2019-10-30 2021-05-10 솔브레인 주식회사 Indium precursor compound, preparing method of thin film using the same, and substrate prepared thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029071B1 (en) 2016-11-21 2019-10-07 한국화학연구원 Group 13 metal precursor, composition for depositing thin film comprising the same, and a process for producing the thin film using the composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464233A (en) * 1981-11-25 1984-08-07 The Secretary Of State For Defense In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Preparation of adducts which may be used in the preparation of compound semiconductor materials
US20120231611A1 (en) * 2009-09-02 2012-09-13 L'air Liquide Societe Anonyme Pour L'exploitation Des Procedes Georges Claude Dihalide germanium(ii) precursors for germanium-containing film depositions
CN104587939A (en) * 2015-01-07 2015-05-06 安徽亚格盛电子新材料有限公司 Device for directly preparing gallium trichloride-tetrahydrofuran solution at normal temperature
KR20210052305A (en) * 2019-10-30 2021-05-10 솔브레인 주식회사 Indium precursor compound, preparing method of thin film using the same, and substrate prepared thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN Y.-J., ET AL.: "CHEMICAL VAPOR DEPOSITION OF COCA AND PTGA2 THIN FILMS FROM MIXED-METALORGANOMETALLIC COMPOUNDS.", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 55., no. 26., 25 December 1989 (1989-12-25), 2 Huntington Quadrangle, Melville, NY 11747, pages 2760 - 2762., XP000127427, ISSN: 0003-6951, DOI: 10.1063/1.102370 *

Also Published As

Publication number Publication date
KR20240032512A (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2024049150A1 (en) Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2023113308A1 (en) Molybdenum compound, method for preparing same, and composition comprising same for thin film deposition
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2022169232A1 (en) Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same
WO2022250400A1 (en) Semiconductor thin film-forming metal precursor compound and metal-containing thin film manufactured using same
WO2022055201A1 (en) Group 4 metal element-containing compound, precursor composition including same, and method for manufacturing thin film using same
WO2021145661A2 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2022255837A1 (en) Method for manufacturing organometallic compound and method for forming thin film using same
WO2024058431A1 (en) Precursor for forming yttrium- or scandium-containing thin film, method for forming yttrium- or scandium-containing thin film using same, and semiconductor element including yttrium- or scandium-containing thin film
WO2022019712A1 (en) Niobium precursor compound, film-forming precursor composition comprising same, and method for forming niobium-containing film
WO2024090836A1 (en) Gallium compound, thin film deposition composition containing same, and method for producing thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860826

Country of ref document: EP

Kind code of ref document: A1