WO2024090836A1 - Gallium compound, thin film deposition composition containing same, and method for producing thin film using same - Google Patents

Gallium compound, thin film deposition composition containing same, and method for producing thin film using same Download PDF

Info

Publication number
WO2024090836A1
WO2024090836A1 PCT/KR2023/015314 KR2023015314W WO2024090836A1 WO 2024090836 A1 WO2024090836 A1 WO 2024090836A1 KR 2023015314 W KR2023015314 W KR 2023015314W WO 2024090836 A1 WO2024090836 A1 WO 2024090836A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
thin film
formula
compound
alkyl
Prior art date
Application number
PCT/KR2023/015314
Other languages
French (fr)
Korean (ko)
Inventor
이경은
박주호
박희권
김소연
양택승
송창호
김진동
Original Assignee
주식회사 레이크머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230130640A external-priority patent/KR20240059546A/en
Application filed by 주식회사 레이크머티리얼즈 filed Critical 주식회사 레이크머티리얼즈
Publication of WO2024090836A1 publication Critical patent/WO2024090836A1/en

Links

Images

Definitions

  • the present invention relates to a gallium compound, a method for producing the same, a composition for thin film deposition containing the same, and a method for producing a thin film using the same. More specifically, a gallium compound useful as a precursor for depositing a gallium-containing thin film, a method for producing the same, and a composition containing the same. It relates to a composition for depositing a gallium-containing thin film and a method of manufacturing a gallium-containing thin film using the same.
  • the development of new technologies and materials in the semiconductor industry has made possible miniaturization, high reliability, high speed, high functionality, and high integration of devices such as semiconductor integrated circuits. Accordingly, the properties required for precursors to form thin films have also changed.
  • the characteristics required for a thin film deposition precursor are a gas or liquid compound with high vapor pressure, excellent thermal stability, and easy transfer to the deposition chamber, and furthermore, reactivity with the reaction gases used depending on the type of thin film being manufactured. must also be excellent.
  • PVD method physical vapor growth method
  • CVD method chemical vapor growth method
  • precursors containing Group 13 metals have excellent stability and conductivity, and are attracting attention as precursors for thin film deposition.
  • group 13 metal oxides can be used as transparent oxide semiconductor materials and can be applied as electrodes, conductive coating materials, etc.
  • Gallium oxide which contains gallium among Group 13 metals, has a wide band gap energy and is used in display fields such as gas sensors and transparent conductors, as well as next-generation solar cells, specifically phosphor raw materials, semiconductors, and CIGS (copper).
  • indium gallium selenide It is used as a material applicable to solar cells, ultra-thin liquid crystal displays (TFT-LCD), and organic light-emitting diodes (OLED).
  • gallium oxide is an electrical insulator at room temperature and a semiconductor at temperatures above 500°C, having a chemically and thermally stable monoclinic form.
  • Trimethylgallium is the most widely used gallium precursor, but it is very sensitive to air and ignites spontaneously when exposed, making it difficult to handle.
  • Gallium fluoride (GaF) is formed due to fluorine, causing contamination in the thin film, which can cause serious deterioration of device characteristics and reliability problems during the semiconductor device process.
  • gallium alkoxide dimers or tetramers were reported, but they did not correspond to a single monomer and had low volatility to be used as a precursor for thin film deposition.
  • Precursors for thin film deposition necessarily require high volatility and thermal stability, but previously reported gallium compounds have insufficient volatility to be used as precursors or have problems of contaminating thin films with halogen elements, including halogen elements. .
  • the compound itself does not contain halogen elements such as fluorine, but contains gallium that can be applied to ALD and CVD processes with high volatility and thermal stability. There is a need for the development of precursors for thin film deposition.
  • the present invention provides a gallium compound that has improved volatility and thermal stability and is very useful for producing high-quality gallium-containing thin films, and a method for producing the same.
  • the present invention provides a composition for depositing a gallium-containing thin film containing the gallium compound of the present invention.
  • the present invention provides a method for producing a gallium-containing thin film using the gallium compound or the composition for depositing a gallium-containing thin film of the present invention.
  • One aspect of the present invention is to provide a gallium compound that is very useful as a precursor for gallium-containing thin films due to its excellent volatility and stability.
  • the gallium compound of the present invention is represented by the following formula (1).
  • R 1 is C1-C10 alkyl
  • R 2 is C1-C10 alkyl, -OR' or -SR';
  • R' is C1-C10 alkyl or C2-C10 alkenyl
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl
  • the alkenyl of R' may be further substituted with one or more C1-C10 alkyl.
  • Another aspect of the present invention is to provide a method for producing the gallium compound.
  • the method for producing the gallium compound of the present invention is to react a trialkyl gallium compound of the following formula (3) and an allyl compound of the formula (4) to obtain a compound of the formula (1-1): It includes; manufacturing a gallium compound.
  • R 1 , R 2a and R 3a are each independently C1-C10 alkyl
  • R 2b is C1-C10 alkyl or ego
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl.
  • Another aspect of the present invention provides a composition for depositing a gallium-containing thin film containing a gallium compound represented by Formula 1 according to an embodiment, and a method of forming a gallium-containing thin film using the same.
  • Another aspect of the present invention provides a method of forming a gallium-containing thin film using a gallium compound represented by Formula 1 according to an embodiment.
  • the gallium compound of the present invention has good thermal stability, high volatility, and excellent cohesiveness, so it is useful as a precursor for gallium-containing thin films. Furthermore, it has excellent adsorption with a substrate, making it possible to produce higher quality gallium-containing thin films.
  • the gallium compound of the present invention exists in a liquid state at room temperature and a manageable pressure, making it easy to handle.
  • the gallium compound of the present invention exists in a liquid state at room temperature, it is supplied at a uniform concentration to a large-area substrate and has excellent thin film thickness uniformity.
  • the gallium compound of the present invention does not decompose even during high processing temperatures and is stored. Stability is excellent.
  • the method for manufacturing a gallium-containing thin film of the present invention enables the production of a high-quality gallium-containing thin film with excellent thermal stability and durability by manufacturing a gallium-containing thin film using the gallium compound or a composition for gallium-containing thin film deposition containing the gallium compound. .
  • Figure 3 Growth rate per cycle of gallium-containing thin films as a function of injection time of gallium compound 1.
  • gallium compound may be represented by Chemical Formula 1 and has an equivalent meaning to expressions such as “gallium precursor” or “gallium precursor compound.”
  • thermal stability may mean that physical properties do not change even during a continuous heating process or a high temperature process, and specifically means that no structural change occurs even when exposed to the harsh conditions described above for a long period of time. .
  • alkyl refers to a saturated straight-chain or branched non-cyclic hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. “Lower alkyl” means straight-chain or branched alkyl having 1 to 4 carbon atoms.
  • saturated straight-chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl, while saturated branched alkyls include Alkyl is isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, 2-methylhexyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3 -Methylhexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2,3-dimethylbutyl, 2,3- Dimethylpentyl, 2,4-di
  • C1-C10 When written as “C1-C10” in this specification, it means that the number of carbon atoms is 1 to 10.
  • C1-C4alkyl refers to alkyl having 1 to 4 carbon atoms. Specific examples may be methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, or tert-butyl. .
  • alkenyl refers to a saturated straight-chain or branched group containing 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms and at least one carbon-carbon double bond. refers to terrestrial non-cyclic hydrocarbons.
  • Representative straight-chain and branched (C2-C10) alkenyls include vinyl, allyl, 1-butenyl, 2-butenyl, isobutenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 1-heptenyl, 2-heptenyl, 3- Heptenyl, 1-octenyl, 2-octenyl, 3-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 2-decenyl, and 3-decenyl Includes. These alkenyl groups may be optionally substituted.
  • One aspect of the present invention is to provide a gallium compound that can be very useful as a precursor for a gallium-containing thin film.
  • the gallium compound of the present invention is represented by the following formula (1).
  • R 1 is C1-C10 alkyl
  • R 2 is C1-C10 alkyl, -OR' or -SR';
  • R' is C1-C10 alkyl or C2-C10 alkenyl
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl
  • the alkenyl of R' may be further substituted with one or more C1-C10 alkyl.
  • R 1 is C1-C10 alkyl
  • R 2 is C1-C10 alkyl, -OR' or -SR'
  • R' is C1-C10 alkyl or allyl
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl
  • Allyl of R' may be further substituted with one or more C1-C10 alkyl.
  • R 1 is C1-C6 alkyl
  • R 2 is C1-C6alkyl or -OR'
  • R' is C1-C6alkyl or allyl
  • X 1 is O
  • R a and R b are independently hydrogen or C1-C6alkyl
  • Allyl of R' may be further substituted with one or more C1-C6alkyl.
  • the gallium compound of Chemical Formula 1 may be represented by the following Chemical Formula 1-1.
  • R 1 is C1-C10 alkyl
  • R 2b is C1-C10 alkyl or ego
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl.
  • R 1 is C1-C6 alkyl
  • R 2b is C1-C6alkyl or ego
  • X 1 is O
  • R a and R b may independently be hydrogen or C1-C6alkyl.
  • the gallium compound of Formula 1 may be represented by the following Formula 2.
  • R 1 is C1-C4alkyl
  • R 2 is C1-C4alkyl or ego
  • R a , R b , R c and R d are independently hydrogen or C1-C4alkyl.
  • the gallium compound of Formula 2 may be represented by the following Formula 2-1 or Formula 2-2.
  • R 1 is C1-C4alkyl
  • R 2'' is C1-C4alkyl
  • R e is hydrogen or C1-C4alkyl.
  • R 1 is methyl or ethyl
  • R 2'' is methyl or ethyl
  • R e may be hydrogen, methyl or ethyl
  • the gallium compound according to one embodiment may be selected from the following compounds, but is not limited thereto.
  • the gallium compound of the present invention has a structure in which at least one alkyl ligand and one allyloxy or allylthio ligand are bonded to gallium (Ga), a central metal, and the thermal stability and reactivity are significantly improved due to the introduction of a specific ligand. Due to its high volatility, high-quality thin films can be manufactured.
  • gallium compound of the present invention exists in liquid form at room temperature and pressure, it has high storage stability and excellent volatility, so it can be used as a precursor for deposition of gallium-containing thin films to produce high-density, high-purity gallium-containing thin films.
  • Atomic layer deposition is a method of supplying reaction raw materials separately. During one cycle of deposition, a thin film of less than a monolayer is grown through surface reaction, and the ligand of the reaction raw material adsorbed on the substrate is later It is removed through a chemical reaction with other reaction raw materials supplied to it.
  • the liquid phase can be much more advantageous in terms of reaction speed and process than the solid phase.
  • Another aspect of the present invention is to provide a method for producing the gallium compound.
  • the method for producing the gallium compound of the present invention is to react a trialkyl gallium compound of the following formula (3) and an allyl compound of the formula (4) to obtain a compound of the formula (1-1): It includes; manufacturing a gallium compound.
  • R 1 , R 2a and R 3a are each independently C1-C10 alkyl
  • R 2b is C1-C10 alkyl or ego
  • X 1 is O or S
  • R a and R b are independently hydrogen or C1-C10 alkyl.
  • the gallium compound of the present invention can be manufactured by the same method as described above, but any other method is possible within the range recognized by a person skilled in the art.
  • the method for producing a gallium compound according to an embodiment may include reacting a trialkyl gallium compound of Formula 3 below and an allyl alcohol compound of Formula 4-1 below to produce a gallium compound of Formula 2 below. .
  • R 1 , R 2a and R 3a are each independently C1-C4 alkyl
  • R 2b is C1-C4alkyl or ego
  • R a and R b are independently hydrogen or C1-C4alkyl.
  • the allyl compound of Formula 4 may be used in an amount of 1.0 to 3.0 mol, preferably 1.0 to 2.0 mol, per 1 mole of the trialkyl gallium compound of Formula 3.
  • the reaction may be performed in an organic solvent, and the usable organic solvent is not limited, but an organic solvent having high solubility for the reactants may be used, specifically n-hexane.
  • an organic solvent having high solubility for the reactants may be used, specifically n-hexane.
  • one (single solvent) or a mixture of two or more solvents selected from chlorobenzene, toluene, dichloroethane (DCE), dioxane, diethyl ether, and dichloromethane (DCM) may be used, and more preferably, the reaction yield, etc.
  • n-hexane, ether, or diethyl ether can be used.
  • the reaction may be performed under an inert gas atmosphere such as nitrogen or argon, and the solution containing the trialkyl gallium compound of Formula 3 is cooled to a low temperature below 0° C. and then added to the solution of Formula 4.
  • the reaction can be performed at 20 to 30° C. after slowly adding the allyl compound.
  • Another aspect of the present invention provides a composition for depositing a gallium-containing thin film containing a gallium compound represented by Formula 1 according to an embodiment, and a method of forming a gallium-containing thin film using the same.
  • Another aspect of the present invention provides a method of forming a gallium-containing thin film using a gallium compound represented by Formula 1 according to an embodiment.
  • the method of manufacturing the gallium-containing thin film is a common method used in the industry, specifically atomic layer deposition (ALD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), and low pressure chemical vapor deposition (LPCVD). , it may be plasma-enhanced chemical vapor deposition (PECVD) or plasma-enhanced atomic layer deposition (PEALD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • PEALD plasma-enhanced atomic layer deposition
  • the method for manufacturing the gallium-containing thin film according to an embodiment may be atomic layer deposition (ALD), chemical vapor deposition (CVD), or metal organic chemical vapor deposition (MOCVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • a gallium-containing thin film according to an embodiment may be manufactured by a common method used in the art, for example, metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure vapor deposition (LPCVD), and plasma enhanced Examples include vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD), but atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) is preferred.
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • LPCVD low pressure vapor deposition
  • PECVD plasma enhanced atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • the gallium-containing thin film of the present invention may be manufactured by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • a method of manufacturing a gallium-containing thin film includes forming a thin film by depositing the gallium compound on a substrate, and specifically, a) adsorbing the gallium compound on the substrate; b) purging non-adsorbed gallium compounds; c) forming a gallium-containing thin film by injecting a reaction gas; and d) purging residual reaction gas and reaction by-products.
  • a method of manufacturing a gallium-containing thin film may include forming a single-layer or multi-layer thin film by depositing the gallium compound and at least one selected from an indium precursor and a zinc precursor on a substrate, wherein the gallium compound, The indium precursor and the zinc precursor can be deposited on a substrate simultaneously, or the gallium compound, the indium precursor, and the zinc precursor can be mixed and deposited on the substrate to form a thin film with a single-layer structure, and the indium precursor, the gallium compound, and the zinc precursor can be deposited on the substrate. may be sequentially deposited on a substrate to form a thin film with a multilayer structure.
  • the indium precursor may be trimethylindium (TMI) or dimethylaminopropyldimethylindium (3-(Dimethylamino)propryl](dimethyl)indium; (DADI), and the zinc precursor may be diethylzinc (DEZ). ), but is not limited to this.
  • the multilayered thin film may be an indium-gallium-zinc oxide film (IGZO thin film), and the composition ratio of indium:gallium:zinc is 1 to 10:1 to 10:1 to 10. It may be 1 to 5:1 to 5:1 to 5, and more specifically 1:1:1.
  • the gallium-containing thin film according to one embodiment is manufactured using the gallium compound, and is not limited, but is preferably a gallium nitride film, a gallium oxide film, or an indium-gallium-zinc oxide film, and is preferably a gallium oxide film or an indium-gallium-zinc oxide film. It may be a zinc oxide film.
  • the method for producing a gallium-containing thin film of the present invention uses the gallium compound of the present invention, which has high volatility and thermal stability, as a precursor, and the produced gallium-containing thin film has extremely excellent physical, electrical, and chemical properties.
  • the injection temperature of the gallium compound of the present invention may be room temperature (25°C to 120°C, and due to the high volatility of the gallium compound of the present invention, the temperature of the substrate on which the gallium compound will be deposited is 100 to 450°C, and the pressure inside the chamber may be 0.1 to 10 torr.
  • the reaction gas used in the method for manufacturing a gallium-containing thin film according to an embodiment is not limited, but includes hydrogen (H 2 ), hydrazine (N 2 H 4 ), dimethylhydrazine (Me 2 N 2 H 2 ), and ozone ( O 3 ), oxygen (O 2 ), water (H 2 O), ammonia (NH 3 ), nitrogen (N 2 ), silane (SiH 4 ), borane (BH 3 ), diborane (B 2 H 6 ), and
  • One or more mixed gases selected from phosphine (PH 3 ) can be used, and the reaction gas is not limited, but can be supplied at a flow rate of 10 to 10,000 sccm, specifically 50 to 1,000 sccm. It can be.
  • oxidizing reaction gases such as water vapor (H 2 O), oxygen (O 2 ), or ozone (O 3 )
  • a gallium oxide film may be formed, and ammonia (NH 3 ) or hydrazine (N 2 H 4 )
  • a nitrogen-containing reaction gas such as, a gallium nitride film may be formed.
  • the purge gas is an inert gas, but is not limited thereto, and may be one or a mixture of two or more gases selected from argon (Ar) and helium (He).
  • the substrate used in the method of manufacturing a gallium-containing thin film includes a substrate containing one or more semiconductor materials selected from the group consisting of Si, SiO2, Pt, TiN, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP; SOI (Silicon On Insulator) substrate; Quartz substrate; or a glass substrate for display; Polyimide, Polyethylene Terephthalate (PET), PolyEthylene Naphthalate (PEN), Poly Methyl MethAcrylate (PMMA), Polycarbonate (PC, PolyCarbonate), Polyether Sulfone Flexible plastic substrates such as (PES) and polyester; It may be, but is not limited to this.
  • the method for manufacturing a gallium-containing thin film according to an embodiment has high volatility and high thermal stability, and by using it as a precursor for thin film deposition, the gallium-containing thin film has excellent physical, electrical and chemical properties, and is high-density and high-purity, high-quality, uniform gallium-containing thin film. can be formed.
  • the synthesis of the gallium compound according to the present invention was performed using a standard Schlenk flask or purge box under an inert argon or nitrogen atmosphere, except where otherwise noted.
  • the structure of the obtained gallium compound was analyzed through 1 H NMR spectrum and elemental analysis.
  • the thickness of the deposited gallium-containing thin film was measured using an ellipsometer (Ellipsometer, Thermowave, Optiprobe 2600) and X-ray photoelectron spectroscopy (XPS, X-ray Photoelectron Spectroscopy, ThermoFisher Scientific, K-Alpha+).
  • the composition of the thin film was analyzed.
  • the oven-dried 500ml Schlenk flask and 250ml Schlenk flask were placed in a purge box and purged for more than 30 minutes to remove as much moisture inside the glassware as possible.
  • 20 g (0.1742 mol) of trimethyl gallium was added to a 500 ml Schlenk flask (A), and 10.12 g (0.1742 mol) of allyl alcohol was added to a 250 ml Schlenk flask (B).
  • the two flasks were moved to a fume hood to create a nitrogen atmosphere for each.
  • 200ml of n-hexane was added to flask A and cooled to 0°C using an acetone/dry ice bath.
  • the obtained concentrate was purified by distillation under the conditions of tower bottom temperature: 48°C, tower top temperature: 25°C, pressure: 730 mtorr [converted temperature: 186°C], and the title gallium compound 1 was obtained as a transparent liquid (yield 86%). ).
  • a concentrate was obtained by reacting in the same manner as in Example 1, except that 18.21 ml (0.1742 mol) of 2-methyl-3-buten-2-ol was used instead of 10.12 g (0.1742 mol) of allyl alcohol. did.
  • the obtained concentrate was purified by distillation under the conditions of tower bottom temperature: 60°C, tower top temperature: 55°C, pressure: 846 mtorr [converted temperature: 223°C], and the title gallium compound 2 was obtained as a transparent liquid (yield 82%).
  • thermogravimetric analysis TGA was used (TGA conditions: heating to 300°C at a rate of 10°C/min) Argon injection at a pressure of 1.5 bar/min). Graphs of the TGA analysis results are shown in Figures 1 and 2, respectively.
  • gallium compound 1 prepared in Example 1 begins to decrease around 120°C, and the mass decreases by about 50% at 135.7°C.
  • gallium compound 2 prepared in Example 2 begins to lose mass around 157°C and loses mass by about 50% at 172.6°C. From this, it can be seen that the gallium compound of the present invention has excellent thermal stability.
  • Gallium Compound 1 prepared in Example 1 was used as a precursor for deposition of gallium-containing thin films, ozone (O 3 ) was used as a reaction gas, the concentration of ozone was 200 g/m3, and argon ( A gallium-containing thin film was formed by atomic layer deposition (ALD) using Ar).
  • ozone O 3
  • argon A gallium-containing thin film was formed by atomic layer deposition (ALD) using Ar).
  • a silicon oxide film was used as a substrate.
  • a silicon oxide film substrate was loaded into the deposition chamber, and the substrate temperature was set to 250°C.
  • gallium compound 1 was placed in a stainless steel bubbler and maintained at 30°C.
  • Thin film deposition using a gallium precursor was performed by repeating 100 cycles of four sequential steps: gallium precursor injection - purge (Ar) - ozone (O 3 ) injection - purge (Ar) to deposit a gallium-containing thin film.
  • Table 1 shows detailed deposition conditions and results.
  • TMG trimethylgallium
  • Example Comparative Example 1 3 4 5 6 7 8 9 10 Process pressure (Torr) One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One Silicon substrate temperature (°C) 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 gallium precursor Heating temperature (°C) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
  • the growth rate per cycle (GPC) according to the injection time of gallium compound 1 was measured and shown in FIG. 3. From Table 1 and Figure 3, the GPC of the gallium precursor according to the present invention increases from 0.5 to 3 seconds of injection time, and the GPC is maintained at a constant level from 4 seconds of injection time, resulting in saturation from 4 seconds of injection time of the gallium precursor. It was confirmed that the growth rate of the gallium-containing thin film was constant.
  • Table 2 shows the content of each atom in the thin film based on the composition of the prepared gallium-containing thin film analyzed using X-ray photoelectron spectroscopy.
  • Example 8 (Gallium Compound 1) Comparative Example 1 (TMG) Atomic % Atomic % C1s 6.5 5.4 Ga3d 37.8 39.9 O1s 55.7 54.7 Ga:O ratio 1:1.47 1:1.37
  • the XPS analysis results for the gallium-containing thin film prepared in Example 8 are published in the published literature [ J. Mater. Chem. Binding Energy (eV) similar to Ga 2 O 3 described in [C, 2019, 7, 69-77] was confirmed ( Figure 4).
  • Gallium Compound 1 prepared in Example 1 was used as a gallium precursor, dimethylaminopropyldimethylindium (DADI) was used as an indium precursor, and diethyl zinc (DEZ) was used as a zinc precursor.
  • Ozone (O 3 ) was used as a reaction gas, and the concentration of ozone was 210 g/m3, and an IGZO thin film was formed by atomic layer deposition (ALD) using argon (Ar) as a carrier gas and purge gas. formed.
  • ALD atomic layer deposition
  • Ar argon
  • a silicon substrate was used.
  • a silicon substrate was loaded inside the deposition chamber, and the substrate temperature was set to 250°C.
  • the substrate temperature was set to 250°C.
  • the flow rate of ozone (O 3 ), a reaction gas was fixed at 200 sccm
  • the flow rate of carrier gas (Ar) was fixed at 50 sccm
  • the flow rate of purge gas (Ar) was fixed at 100 sccm
  • the process pressure was 0.3 Torr. It was maintained as .
  • Thin film deposition repeats the four sequential steps of indium precursor injection - purge (Ar) - ozone (O 3 ) injection - purge (Ar) four times, then gallium precursor injection - purge (Ar) - ozone (O 3 ) injection.
  • - Purge (Ar) Zinc precursor injection - Purge (Ar) - Ozone (O 3 ) injection - Purge (Ar) 8 sequential steps were considered as 1 cycle, and 100 cycles were repeated to deposit the IGZO thin film. Table 3 below shows detailed deposition conditions and results.
  • An IGZO thin film was deposited in the same manner as Example 11, using trimethylgallium (TMG) as a gallium precursor.
  • TMG trimethylgallium
  • Example 11 Comparative Example 2 Process pressure (Torr) 0.3 0.3 Silicon substrate temperature (°C) 250 250 indium precursor Heating temperature (°C) 50 50 Injection time (seconds) One One Fudge (Ar) Flow rate (sccm) 100 100 time (seconds) 15 15 Ozone (O 3 ) Flow rate (sccm) 200 200 time (seconds) 10 10 Fudge (Ar) Flow rate (sccm) 100 100 time (seconds) 15 15 gallium precursor Heating temperature (°C) 30 5 Injection time (seconds) One One Fudge (Ar) Flow rate (sccm) 100 100 time (seconds) 20 25 Ozone (O 3 ) Flow rate (sccm) 200 200 time (seconds) 120 15 Fudge (Ar) Flow rate (sccm) 100 100 time (seconds) 15 20 zinc precursor Heating temperature (°C) 30 30 Injection time (seconds) One One Fudge (Ar) Flow rate (sccm) 100 100 time (seconds) 20
  • FIG. 5 A graph comparing the theoretical and actual experimental values of GPC measured in Example 11 and Comparative Example 2 is shown in Figure 5.
  • TMG trimethyl gallium
  • the theoretical value of GPC was 0.455 ⁇ /cycle, but the actual experimental value was measured to be 0.279 ⁇ /cycle.
  • the IGZO thin film prepared using gallium compound 1 of the present invention as a gallium precursor was measured as a GPC theoretical value of 0.475 ⁇ /cycle and an actual experimental value of 0.391 ⁇ /cycle.
  • the IGZO thin film made with trimethyl gallium as the gallium precursor had a large difference between the theoretical value and the experimental value, but the error in the IGZO thin film made with gallium compound 1 of the present invention as the gallium precursor was significantly reduced.
  • the theoretical value was 0.07 and the actual experimental value was 0.3
  • the theoretical value was 0.12 and the experimental value was 0.19. Therefore, it was confirmed that the error value of the gallium content of the IGZO thin film containing the gallium compound of the present invention was significantly improved compared to the IGZO thin film containing trimethyl gallium as a precursor.
  • the gallium compound according to the present invention when used as a precursor, it is easy to control the gallium content ratio in the thin film, making it possible to produce a high-quality gallium-containing thin film.
  • the gallium compound according to the present invention has excellent thermal stability and volatility, making it useful as a precursor for gallium-containing thin films, and has a high vapor pressure, enabling uniform thin film deposition through uniform composition control through uniform precursor supply during thin film production. And, high-density and high-purity gallium-containing thin films can be easily manufactured.

Abstract

The present invention pertains to: a gallium compound; a method for producing same; a thin film deposition composition containing same; and a method for producing a thin film using same. The gallium compound of the present invention has excellent volatility and stability, thus being very useful as a precursor for a gallium-containing thin film, and has excellent adsorption to a substrate, thus making it possible to produce a higher quality gallium-containing thin film.

Description

갈륨 화합물, 이를 포함하는 박막 증착용 조성물 및 이를 이용한 박막의 제조 방법Gallium compound, composition for thin film deposition containing the same, and method for producing a thin film using the same
본 발명은 갈륨 화합물, 이의 제조방법, 이를 포함하는 박막 증착용 조성물 및 이를 이용한 박막의 제조 방법에 관한 것으로, 보다 상세하게는 갈륨 함유 박막 증착용 전구체로 유용한 갈륨 화합물, 이의 제조방법, 이를 포함하는 갈륨 함유 박막 증착용 조성물 및 이를 이용한 갈륨 함유 박막의 제조 방법에 관한 것이다.The present invention relates to a gallium compound, a method for producing the same, a composition for thin film deposition containing the same, and a method for producing a thin film using the same. More specifically, a gallium compound useful as a precursor for depositing a gallium-containing thin film, a method for producing the same, and a composition containing the same. It relates to a composition for depositing a gallium-containing thin film and a method of manufacturing a gallium-containing thin film using the same.
반도체 산업에서의 신기술 및 재료의 개발로 인해 반도체 집적회로와 같은 소자의 미세화, 고신뢰화, 고속화, 고기능화, 고집적화 등이 가능해졌다. 이에 따라 박막을 형성하기 위한 전구체에 요구되는 특성도 변화되어 왔다. 일반적으로 박막증착용 전구체에 요구되는 특성은 증기압이 높고 열 안정성이 우수하며 증착 챔버로의 이송이 쉬운 기체 또는 액체상의 화합물이어야 하고, 나아가 제조되는 박막의 종류에 따라 사용되는 반응 가스들과의 반응성도 우수해야 한다.The development of new technologies and materials in the semiconductor industry has made possible miniaturization, high reliability, high speed, high functionality, and high integration of devices such as semiconductor integrated circuits. Accordingly, the properties required for precursors to form thin films have also changed. In general, the characteristics required for a thin film deposition precursor are a gas or liquid compound with high vapor pressure, excellent thermal stability, and easy transfer to the deposition chamber, and furthermore, reactivity with the reaction gases used depending on the type of thin film being manufactured. must also be excellent.
또한 반도체용 소자 제조에 이용되고 있는 박막의 형성방법으로서는, 스퍼터링에 의한 물리기상성장법(PVD법) 및 화학기상성장법(CVD법)을 들 수 있다. 그러나 차세대 이후의 반도체 제조에서는, 미세화한 소자의 복잡한 3차원 구조의 표면에도 균일한 박막이 요구됨에 따라, 요철이 있는 면에 균일한 막을 형성하는 것이 어려운 PVD법은 적절하지는 않다.In addition, thin film formation methods used in the manufacture of semiconductor devices include physical vapor growth method (PVD method) and chemical vapor growth method (CVD method) by sputtering. However, in the next generation of semiconductor manufacturing, a uniform thin film is required even on the surface of a complex three-dimensional structure of a miniaturized device, so the PVD method is not suitable because it is difficult to form a uniform film on the uneven surface.
이에 따라, 단차 피복성이 우수한 박막을 형성하는 방법으로, 원료를 기체로서 반응조로 이송시키고, 분해시켜 막을 형성시키는 CVD법 또는 기판 표면에 흡착시킨 원료를 분해시켜 막을 퇴적시키는 원자층 증착법(ALD법)에 의한 박막 형성법이 검토되고 주로 사용되고 있다.Accordingly, as a method of forming a thin film with excellent step coverage, a CVD method in which raw materials are transferred to a reaction tank as a gas and decomposed to form a film, or an atomic layer deposition (ALD) method in which raw materials adsorbed on the substrate surface are decomposed and a film is deposited ) Thin film formation method has been reviewed and is mainly used.
한편 13족 금속을 포함하는 전구체는 우수한 안정성 및 전도성을 가지는 전구체로서, 박막 증착을 위한 전구체로서 각광을 받고 있다. 특히, 13족 금속 산화물은 투명 산화물 반도체 소재로 사용 가능하며 전극, 전도성 코팅재료 등으로 응용이 가능하다.Meanwhile, precursors containing Group 13 metals have excellent stability and conductivity, and are attracting attention as precursors for thin film deposition. In particular, group 13 metal oxides can be used as transparent oxide semiconductor materials and can be applied as electrodes, conductive coating materials, etc.
13족 금속 중 갈륨을 함유하는 산화갈륨(gallium oxide, Ga2O3)은 밴드 갭 에너지가 넓어 가스 센서 및 투과성 전도체 등의 디스플레이 분야 및 차세대 태양전지, 구체적으로, 형광체 원료, 반도체, CIGS(copper indium gallium selenide) 태양전지, 초박막액정표시장치(TFT-LCD), 유기발광다이오드(OLED) 등에 적용 가능한 재료로 사용되고 있다. 또한, 산화갈륨은 상온에서는 전기 절연체(electrical insulator)이고, 화학적, 열적으로 안정한 단사결정계 형태(monoclinic form)를 갖는 500 ℃ 이상의 온도에서는 반도체(semiconducting)이다.Gallium oxide (Ga 2 O 3 ), which contains gallium among Group 13 metals, has a wide band gap energy and is used in display fields such as gas sensors and transparent conductors, as well as next-generation solar cells, specifically phosphor raw materials, semiconductors, and CIGS (copper). indium gallium selenide) It is used as a material applicable to solar cells, ultra-thin liquid crystal displays (TFT-LCD), and organic light-emitting diodes (OLED). In addition, gallium oxide is an electrical insulator at room temperature and a semiconductor at temperatures above 500°C, having a chemically and thermally stable monoclinic form.
갈륨 전구체로는 트리메틸갈륨(trimethylgallium, TMG)이 가장 널리 사용되고 있으나, 이는 공기 중에 매우 민감하여 노출되었을 때 자연 발화되므로 취급이 용이하지 않았다. 그 외 [Ga(hfac)]3 (hfac = hexafluoroacetylacetonate) 및 [Ga(OCH(CF3)2)3(HNMe2)] 등의 갈륨 착화합물이 보고 되었으나, 이는 할로겐 원소, 특히 불소를 포함하고 있어 박막 증착시 불소로 인해 불화갈륨(GaF)이 형성되어 박막에 오염을 발생시켜, 반도체 소자 공정 중에 심각한 소자 특성 저하 및 신뢰도 문제를 야기할 수 있다. 또한, 갈륨 알콕사이드 이량체 또는 사량체가 보고되었으나, 이는 단일 단위체에 해당되지 않아 박막 증착을 위한 전구체로 사용하기에 낮은 휘발성을 가졌다.Trimethylgallium (TMG) is the most widely used gallium precursor, but it is very sensitive to air and ignites spontaneously when exposed, making it difficult to handle. In addition, gallium complexes such as [Ga(hfac)]3 (hfac = hexafluoroacetylacetonate) and [Ga(OCH(CF3)2)3(HNMe2)] have been reported, but they contain halogen elements, especially fluorine, so they are difficult to deposit when depositing thin films. Gallium fluoride (GaF) is formed due to fluorine, causing contamination in the thin film, which can cause serious deterioration of device characteristics and reliability problems during the semiconductor device process. In addition, gallium alkoxide dimers or tetramers were reported, but they did not correspond to a single monomer and had low volatility to be used as a precursor for thin film deposition.
박막증착용 전구체는 높은 휘발성과 열안정성이 필수적으로 요구되나, 기보고된 갈륨 화합물들은 전구체로 사용하기에는 충분치 못한 휘발성을 갖거나, 할로겐 원소를 포함하여 할로겐 원소에 의해 박막을 오염시키는 문제점을 가지고 있다.Precursors for thin film deposition necessarily require high volatility and thermal stability, but previously reported gallium compounds have insufficient volatility to be used as precursors or have problems of contaminating thin films with halogen elements, including halogen elements. .
따라서, 수분이나 공기 중에서 반응성이 적어 자연발화의 우려가 없고 취급이 용이하며, 화합물 자체에 불소와 같은 할로겐 원소를 포함하지 않으면서, 높은 휘발성과 열안정성을 갖는 ALD 및 CVD 공정에 적용 가능한 갈륨 함유 박막증착용 전구체의 개발이 요구되고 있다.Therefore, it is less reactive in moisture or air, so there is no risk of spontaneous combustion and is easy to handle. The compound itself does not contain halogen elements such as fluorine, but contains gallium that can be applied to ALD and CVD processes with high volatility and thermal stability. There is a need for the development of precursors for thin film deposition.
본 발명은 향상된 휘발성 및 열안정성을 가져 양질의 갈륨 함유 박막의 제조에 매우 유용한 갈륨 화합물 및 이의 제조방법을 제공한다.The present invention provides a gallium compound that has improved volatility and thermal stability and is very useful for producing high-quality gallium-containing thin films, and a method for producing the same.
또한 본 발명은 본 발명의 갈륨 화합물을 포함하는 갈륨 함유 박막 증착용 조성물을 제공한다.Additionally, the present invention provides a composition for depositing a gallium-containing thin film containing the gallium compound of the present invention.
또한 본 발명은 본 발명의 갈륨 화합물 또는 갈륨 함유 박막 증착용 조성물을 이용하는 갈륨 함유 박막의 제조방법을 제공한다.Additionally, the present invention provides a method for producing a gallium-containing thin film using the gallium compound or the composition for depositing a gallium-containing thin film of the present invention.
본 발명의 일 측면은 휘발성 및 안정성이 우수하여 갈륨 함유 박막의 전구체로 매우 유용한 갈륨 화합물을 제공하는 것으로, 본 발명의 갈륨 화합물은 하기 화학식 1로 표시된다.One aspect of the present invention is to provide a gallium compound that is very useful as a precursor for gallium-containing thin films due to its excellent volatility and stability. The gallium compound of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023015314-appb-img-000001
Figure PCTKR2023015314-appb-img-000001
상기 화학식 1에서,In Formula 1,
R1은 C1-C10알킬이고;R 1 is C1-C10 alkyl;
R2는 C1-C10알킬, -OR' 또는 -SR'이고;R 2 is C1-C10 alkyl, -OR' or -SR';
R'는 C1-C10알킬 또는 C2-C10알케닐이고;R' is C1-C10 alkyl or C2-C10 alkenyl;
X1은 O 또는 S이고;X 1 is O or S;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이고;R a and R b are independently hydrogen or C1-C10 alkyl;
상기 R'의 알케닐은 하나 이상의 C1-C10알킬로 더 치환될 수 있다.The alkenyl of R' may be further substituted with one or more C1-C10 alkyl.
본 발명의 다른 측면은 상기 갈륨 화합물의 제조방법을 제공하는 것으로, 본 발명의 갈륨 화합물의 제조방법은 하기 화학식 3의 트리알킬갈륨 화합물 및 하기 화학식 4의 알릴 화합물을 반응시켜 하기 화학식 1-1의 갈륨 화합물을 제조하는 단계;를 포함한다.Another aspect of the present invention is to provide a method for producing the gallium compound. The method for producing the gallium compound of the present invention is to react a trialkyl gallium compound of the following formula (3) and an allyl compound of the formula (4) to obtain a compound of the formula (1-1): It includes; manufacturing a gallium compound.
[화학식 1-1][Formula 1-1]
Figure PCTKR2023015314-appb-img-000002
Figure PCTKR2023015314-appb-img-000002
[화학식 3][Formula 3]
Figure PCTKR2023015314-appb-img-000003
Figure PCTKR2023015314-appb-img-000003
[화학식 4][Formula 4]
Figure PCTKR2023015314-appb-img-000004
Figure PCTKR2023015314-appb-img-000004
상기 화학식 1-1, 3 및 4에서,In Formulas 1-1, 3 and 4,
R1, R2a 및 R3a는 각각 독립적으로 C1-C10알킬이고;R 1 , R 2a and R 3a are each independently C1-C10 alkyl;
R2b는 C1-C10알킬 또는
Figure PCTKR2023015314-appb-img-000005
이고;
R 2b is C1-C10 alkyl or
Figure PCTKR2023015314-appb-img-000005
ego;
X1은 O 또는 S이고;X 1 is O or S;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이다.R a and R b are independently hydrogen or C1-C10 alkyl.
본 발명의 또 다른 측면은 일 실시예에 따른 화학식 1로 표시되는 갈륨 화합물을 포함하는 갈륨 함유 박막증착용 조성물 및 이를 이용하여 갈륨 함유 박막의 형성방법을 제공한다.Another aspect of the present invention provides a composition for depositing a gallium-containing thin film containing a gallium compound represented by Formula 1 according to an embodiment, and a method of forming a gallium-containing thin film using the same.
본 발명의 또 다른 측면은 일 실시예에 따른 화학식 1로 표시되는 갈륨 화합물을 이용하여 갈륨 함유 박막의 형성방법을 제공한다.Another aspect of the present invention provides a method of forming a gallium-containing thin film using a gallium compound represented by Formula 1 according to an embodiment.
본 발명의 갈륨 화합물은 열적 안정성이 양호하며 휘발성이 높고 응집력이 우수하여 갈륨 함유 박막의 전구체로 유용하고 나아가 기판과의 흡착이 우수하여 보다 양질의 갈륨 함유 박막을 제조할 수 있다. 또한, 본 발명의 갈륨 화합물은 실온 및 취급이 가능한 압력 하에서 액체 상태로 존재하여 취급이 용이하다. 또한, 본 발명의 갈륨 화합물은 상온에서 액상으로 존재함에 따라 대면적 기판에 균일한 농도로 공급되어 박막 두께의 균일성이 우수하다 또한, 본 발명의 갈륨 화합물은 높은 공정온도 중에도 분해되지 않으며, 저장안정성이 우수하다.The gallium compound of the present invention has good thermal stability, high volatility, and excellent cohesiveness, so it is useful as a precursor for gallium-containing thin films. Furthermore, it has excellent adsorption with a substrate, making it possible to produce higher quality gallium-containing thin films. In addition, the gallium compound of the present invention exists in a liquid state at room temperature and a manageable pressure, making it easy to handle. In addition, since the gallium compound of the present invention exists in a liquid state at room temperature, it is supplied at a uniform concentration to a large-area substrate and has excellent thin film thickness uniformity. In addition, the gallium compound of the present invention does not decompose even during high processing temperatures and is stored. Stability is excellent.
또한, 본 발명의 갈륨 화합물 또는 이를 포함하는 박막증착용 조성물을 이용하여 갈륨 함유 박막의 제조시, 높은 증착율로 우수한 응집력을 가져 고밀도 및 고순도의 균일한 박막을 제조할 수 있다. In addition, when manufacturing a gallium-containing thin film using the gallium compound of the present invention or a composition for thin film deposition containing the gallium compound, it is possible to produce a uniform thin film with high density and high purity due to excellent cohesion at a high deposition rate.
또한, 본 발명의 갈륨 함유 박막의 제조방법은 상기 갈륨 화합물 또는 이를 포함하는 갈륨 함유 박막증착용 조성물을 이용하여 갈륨 함유 박막을 제조함으로써 열적 안정성 및 내구성이 뛰어난 고품질의 갈륨 함유 박막의 제조가 가능하다. In addition, the method for manufacturing a gallium-containing thin film of the present invention enables the production of a high-quality gallium-containing thin film with excellent thermal stability and durability by manufacturing a gallium-containing thin film using the gallium compound or a composition for gallium-containing thin film deposition containing the gallium compound. .
도 1 - 실시예 1에서 제조된 갈륨 화합물 1의 TGA 분석 결과Figure 1 - TGA analysis results of gallium compound 1 prepared in Example 1
도 2 - 실시예 2에서 제조된 갈륨 화합물 2의 TGA 분석 결과Figure 2 - TGA analysis results of gallium compound 2 prepared in Example 2
도 3 - 갈륨 화합물 1의 주입 시간에 따른 갈륨 함유 박막의 주기당 성장률Figure 3 - Growth rate per cycle of gallium-containing thin films as a function of injection time of gallium compound 1.
도 4 - 실시예 8에서 제조된 갈륨 함유 박막의 XPS 분석 결과Figure 4 - XPS analysis results of gallium-containing thin film prepared in Example 8
도 5 - 실시예 11 및 비교예 2에서 제조된 IGZO 박막의 오차 분석 결과Figure 5 - Error analysis results of IGZO thin films prepared in Example 11 and Comparative Example 2
도 6 - 실시예 11 및 비교예 2에서 제조된 IGZO 박막의 오차 분석 결과Figure 6 - Error analysis results of IGZO thin films prepared in Example 11 and Comparative Example 2
이하, 본 발명에 대하여 보다 구체적으로 설명한다. 이 때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the present invention will be described in more detail. Unless otherwise defined, the technical and scientific terms used herein have meanings commonly understood by those skilled in the art to which this invention pertains, and the following description will not unnecessarily obscure the gist of the present invention. Descriptions of possible notification functions and configurations are omitted.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.As used herein, the singular forms “a,” “an,” and “the” are intended to also include the plural forms, unless the context clearly dictates otherwise.
본 명세서에 기재된, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.As used herein, “comprises” is an open description that has the equivalent meaning to expressions such as “comprises,” “contains,” “has,” or “characterized by” elements that are not additionally listed; Does not exclude materials or processes.
본 명세서의 용어, "갈륨 화합물"은 화학식 1로 대표될 수 있으며, "갈륨 전구체" 또는 "갈륨 전구체 화합물" 등의 표현과 등가의 의미를 가진다.As used herein, the term “gallium compound” may be represented by Chemical Formula 1 and has an equivalent meaning to expressions such as “gallium precursor” or “gallium precursor compound.”
본 명세서의 용어, "열적 안정성"은 지속적인 가온 공정 또는 높은 온도의 공정 중에도 물성이 변화되지 않는 것을 의미하는 것일 수 있으며, 구체적으로 상술된 가혹조건 하에 장기적으로 노출되어도 구조 변화를 일으키지 않는 것을 의미한다.As used herein, the term “thermal stability” may mean that physical properties do not change even during a continuous heating process or a high temperature process, and specifically means that no structural change occurs even when exposed to the harsh conditions described above for a long period of time. .
본 명세서에 기재된 "알킬"은 탄소수 1 내지 10, 바람직하게 탄소수 1 내지 6, 보다 바람직하게 탄소수 1 내지 4를 가진 포화된 직쇄상 또는 분지상의 비-고리(cyclic) 탄화수소를 의미한다. "저급 알킬"은 탄소수가 1 내지 4인 직쇄상 또는 분지상 알킬을 의미한다. 대표적인 포화 직쇄상 알킬은 메틸, 에틸, n-프로필, n-부틸, n-펜틸, n-헥실, n-헵틸, n-옥틸, n-노닐과 n-데실을 포함하고, 반면에 포화 분지상 알킬은 이소프로필, sec-부틸, 이소부틸, tert-부틸, 이소펜틸, 2-메틸헥실, 3-메틸부틸, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 2-메틸헥실, 3-메틸헥실, 4-메틸헥실, 5- 메틸헥실, 2,3-디메틸부틸, 2,3-디메틸펜틸, 2,4-디메틸펜틸, 2,3-디메틸헥실, 2,4-디메틸헥실, 2,5-디메틸헥실, 2,2-디메틸펜틸, 2,2-디메틸헥실, 3,3-디메틸펜틸, 3,3-디메틸헥실, 4,4-디메틸헥실, 2-에틸펜틸, 3-에틸펜틸, 2-데틸헥실, 3-에틸헥실, 4-에틸헥실, 2-메틸-2-에틸펜틸, 2-메틸-3-에틸펜틸, 2-메틸-4-에틸펜틸, 2-메틸-2-에틸헥실, 2-메틸-3-에틸헥실, 2-메틸-4-에틸헥실, 2,2-디에틸펜틸, 3,3-디에틸헥실, 2,2-디에틸헥실, 및 3,3-디에틸헥실을 포함한다.As used herein, “alkyl” refers to a saturated straight-chain or branched non-cyclic hydrocarbon having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms. “Lower alkyl” means straight-chain or branched alkyl having 1 to 4 carbon atoms. Representative saturated straight-chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl, while saturated branched alkyls include Alkyl is isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, 2-methylhexyl, 3-methylbutyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3 -Methylhexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 2,3-dimethylbutyl, 2,3- Dimethylpentyl, 2,4-dimethylpentyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2-dimethylpentyl, 2,2-dimethylhexyl, 3,3-dimethyl Pentyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylpentyl, 3-ethylpentyl, 2-dethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl-2-ethylpentyl, 2-methyl-3-ethylpentyl, 2-methyl-4-ethylpentyl, 2-methyl-2-ethylhexyl, 2-methyl-3-ethylhexyl, 2-methyl-4-ethylhexyl, 2,2-di Includes ethylpentyl, 3,3-diethylhexyl, 2,2-diethylhexyl, and 3,3-diethylhexyl.
본 명세서에서 "C1-C10"와 같이 기재된 경우, 이는 탄소수가 1 내지 10개임을 의미한다. 예를 들어, C1-C4알킬은 탄소 수가 1 내지 4인 알킬을 의미한다. 구체적인 일례로 메틸(methyl), 에틸(ethyl), 프로필(propyl), 이소프로필(iso-propyl), 부틸(butyl), 이소부틸(iso-butyl) 또는 tert-부틸(tert-butyl)일 수 있다.When written as “C1-C10” in this specification, it means that the number of carbon atoms is 1 to 10. For example, C1-C4alkyl refers to alkyl having 1 to 4 carbon atoms. Specific examples may be methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, or tert-butyl. .
본 명세서에 기재된 "알케닐"은 2 내지 10개, 바람직하게 2 내지 6의 탄소 원자, 보다 바람직하게 2 내지 4의 탄소원자 및 적어도 하나의 탄소-탄소 이중 결합을 포함하는 포화된 직쇄상 또는 분지상 비-고리 탄화수소를 의미한다. 대표적인 직쇄상 및 분지상 (C2-C10) 알케닐은 비닐, 알릴, 1-부테닐, 2-부테닐, 이소부테닐, 1-펜테닐, 2-펜테닐, 3-메틸-1-부테닐, 2-메틸-2-부테닐, 2,3-디메틸-2-부테닐, 1-헥세닐(hexenyl), 2-헥세닐, 3-헥세닐, 1-헵테닐, 2-헵테닐, 3-헵테닐, 1-옥테닐, 2-옥테닐, 3옥테닐, 1-노네닐(nonenyl), 2-노네닐, 3-노네닐, 1-데세닐, 2-데세닐, 및 3-데세닐을 포함한다. 이러한 알케닐 그룹은 선택적으로 치환될 수 있다.As used herein, “alkenyl” refers to a saturated straight-chain or branched group containing 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms and at least one carbon-carbon double bond. refers to terrestrial non-cyclic hydrocarbons. Representative straight-chain and branched (C2-C10) alkenyls include vinyl, allyl, 1-butenyl, 2-butenyl, isobutenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 1-heptenyl, 2-heptenyl, 3- Heptenyl, 1-octenyl, 2-octenyl, 3-octenyl, 1-nonenyl, 2-nonenyl, 3-nonenyl, 1-decenyl, 2-decenyl, and 3-decenyl Includes. These alkenyl groups may be optionally substituted.
본 발명의 일 측면은 갈륨 함유 박막의 전구체로 매우 유용하게 사용가능한 갈륨 화합물을 제공하는 것으로, 본 발명의 갈륨 화합물은 하기 화학식 1로 표시된다.One aspect of the present invention is to provide a gallium compound that can be very useful as a precursor for a gallium-containing thin film. The gallium compound of the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023015314-appb-img-000006
Figure PCTKR2023015314-appb-img-000006
상기 화학식 1에서,In Formula 1,
R1은 C1-C10알킬이고;R 1 is C1-C10 alkyl;
R2는 C1-C10알킬, -OR' 또는 -SR'이고;R 2 is C1-C10 alkyl, -OR' or -SR';
R'는 C1-C10알킬 또는 C2-C10알케닐이고;R' is C1-C10 alkyl or C2-C10 alkenyl;
X1은 O 또는 S이고;X 1 is O or S;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이고;R a and R b are independently hydrogen or C1-C10 alkyl;
상기 R'의 알케닐은 하나 이상의 C1-C10알킬로 더 치환될 수 있다.The alkenyl of R' may be further substituted with one or more C1-C10 alkyl.
일 실시예에 따른 상기 화학식 1에서 상기 R1은 C1-C10알킬이고; R2는 C1-C10알킬, -OR' 또는 -SR'이고; R'는 C1-C10알킬 또는 알릴이고; X1은 O 또는 S이고; Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이고; 상기 R'의 알릴은 하나 이상의 C1-C10알킬로 더 치환될 수 있으며, 바람직하게 일 실시예에 따른 상기 화학식 1에서 상기 R1은 C1-C6알킬이고; R2는 C1-C6알킬 또는 -OR'이고; R'는 C1-C6알킬 또는 알릴이고; X1은 O이고; Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C6알킬이고; 상기 R'의 알릴은 하나 이상의 C1-C6알킬로 더 치환될 수 있다.In Formula 1 according to one embodiment, R 1 is C1-C10 alkyl; R 2 is C1-C10 alkyl, -OR' or -SR';R' is C1-C10 alkyl or allyl; X 1 is O or S; R a and R b are independently hydrogen or C1-C10 alkyl; Allyl of R' may be further substituted with one or more C1-C10 alkyl. Preferably, in Formula 1 according to one embodiment, R 1 is C1-C6 alkyl; R 2 is C1-C6alkyl or -OR';R' is C1-C6alkyl or allyl; X 1 is O; R a and R b are independently hydrogen or C1-C6alkyl; Allyl of R' may be further substituted with one or more C1-C6alkyl.
바람직하게 일 실시예에 있어서, 상기 화학식 1의 갈륨 화합물은 하기 화학식 1-1로 표시될 수 있다.Preferably, in one embodiment, the gallium compound of Chemical Formula 1 may be represented by the following Chemical Formula 1-1.
[화학식 1-1][Formula 1-1]
Figure PCTKR2023015314-appb-img-000007
Figure PCTKR2023015314-appb-img-000007
상기 화학식 1-1에서,In Formula 1-1,
R1은 C1-C10알킬이고;R 1 is C1-C10 alkyl;
R2b는 C1-C10알킬 또는
Figure PCTKR2023015314-appb-img-000008
이고;
R 2b is C1-C10 alkyl or
Figure PCTKR2023015314-appb-img-000008
ego;
X1은 O 또는 S이고;X 1 is O or S;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이다.R a and R b are independently hydrogen or C1-C10 alkyl.
일 실시예에 따른 상기 화학식 1-1에서 상기 R1은 C1-C6알킬이고; R2b는 C1-C6알킬 또는
Figure PCTKR2023015314-appb-img-000009
이고; X1은 O이고; Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C6알킬일 수 있다.
In Formula 1-1 according to one embodiment, R 1 is C1-C6 alkyl; R 2b is C1-C6alkyl or
Figure PCTKR2023015314-appb-img-000009
ego; X 1 is O; R a and R b may independently be hydrogen or C1-C6alkyl.
전이금속 함유 박막증착용 전구체로 휘발성이 높고 열안정성이 높아 양질의 전이금속 함유 박막을 얻기 위한 측면에서 바람직하게 일 실시예에 따른 상기 화학식 1의 갈륨 화합물은 하기 화학식 2로 표시될 수 있다.In terms of obtaining a high-quality transition metal-containing thin film as a precursor for transition metal-containing thin film deposition due to its high volatility and high thermal stability, the gallium compound of Formula 1 according to an embodiment may be represented by the following Formula 2.
[화학식 2][Formula 2]
Figure PCTKR2023015314-appb-img-000010
Figure PCTKR2023015314-appb-img-000010
상기 화학식 2에서,In Formula 2,
R1은 C1-C4알킬이고; R 1 is C1-C4alkyl;
R2는 C1-C4알킬 또는
Figure PCTKR2023015314-appb-img-000011
이고;
R 2 is C1-C4alkyl or
Figure PCTKR2023015314-appb-img-000011
ego;
Ra, Rb, Rc 및 Rd는 서로 독립적으로 수소 또는 C1-C4알킬이다.R a , R b , R c and R d are independently hydrogen or C1-C4alkyl.
보다 바람직하게 일 실시예에 따른 화학식 2의 갈륨 화합물은 하기 화학식 2-1 또는 화학식 2-2로 표시될 수 있다.More preferably, the gallium compound of Formula 2 according to one embodiment may be represented by the following Formula 2-1 or Formula 2-2.
[화학식 2-1][Formula 2-1]
Figure PCTKR2023015314-appb-img-000012
Figure PCTKR2023015314-appb-img-000012
[화학식 2-2][Formula 2-2]
Figure PCTKR2023015314-appb-img-000013
Figure PCTKR2023015314-appb-img-000013
상기 화학식 2-1 및 2-2에서In Formulas 2-1 and 2-2,
R1은 C1-C4알킬이고; R 1 is C1-C4alkyl;
R2''는 C1-C4알킬이고;R 2'' is C1-C4alkyl;
Re는 수소 또는 C1-C4알킬이다.R e is hydrogen or C1-C4alkyl.
일 구체예에 있어서, 상기 R1는 메틸 또는 에틸이고; R2''는 메틸 또는 에틸이고; Re는 수소, 메틸 또는 에틸일 수 있다.In one embodiment, R 1 is methyl or ethyl; R 2'' is methyl or ethyl; R e may be hydrogen, methyl or ethyl.
구체적으로 일 실시예에 따른 갈륨 화합물은 하기 화합물에서 선택될 수 있으나, 이에 한정이 있는 것은 아니다.Specifically, the gallium compound according to one embodiment may be selected from the following compounds, but is not limited thereto.
Figure PCTKR2023015314-appb-img-000014
Figure PCTKR2023015314-appb-img-000014
본 발명의 갈륨 화합물은 중심금속인 갈륨(Ga)에 적어도 하나의 알킬 리간드 및 하나의 알릴옥시 또는 알릴티오 리간드가 결합된 구조로, 특정 리간드의 도입으로 인하여 열안정성 및 반응성이 현저하게 향상되는 동시에 휘발성이 높아 양질의 박막을 제조할 수 있다.The gallium compound of the present invention has a structure in which at least one alkyl ligand and one allyloxy or allylthio ligand are bonded to gallium (Ga), a central metal, and the thermal stability and reactivity are significantly improved due to the introduction of a specific ligand. Due to its high volatility, high-quality thin films can be manufactured.
또한 본 발명의 갈륨 화합물은 상온 및 상압에서 액체 형태로 존재하므로, 저장안정성이 높고, 휘발성이 뛰어나 이를 갈륨 함유 박막증착용 전구체로 이용하여 밀도가 높은 고순도의 갈륨 함유 박막을 제조할 수 있다.In addition, since the gallium compound of the present invention exists in liquid form at room temperature and pressure, it has high storage stability and excellent volatility, so it can be used as a precursor for deposition of gallium-containing thin films to produce high-density, high-purity gallium-containing thin films.
원자층 증착(ALD)에 있어서, 반응물은 휘발성이 높고, 물질이 안정해야 하며, 반응성이 높아야 한다. 원자층 증착법(ALD)은 반응 원료를 각각 분리하여 공급하는 방식으로 한 주기(cycle) 증착 시 표면 반응에 의해 단층(monolayer) 이하의 박막이 성장되게 되며, 기판 위에 흡착된 반응 원료의 리간드는 이후에 공급되는 다른 반응 원료와 화학 반응을 통해 제거된다. 원자층 증착을 위해 반응물인 전구체 화합물을 가열할 시에 액상일 경우 고체상보다 반응속도 및 공정에 있어 훨씬 유리할 수 있다.In atomic layer deposition (ALD), the reactants must be highly volatile, the material must be stable, and the reactivity must be high. Atomic layer deposition (ALD) is a method of supplying reaction raw materials separately. During one cycle of deposition, a thin film of less than a monolayer is grown through surface reaction, and the ligand of the reaction raw material adsorbed on the substrate is later It is removed through a chemical reaction with other reaction raw materials supplied to it. When heating a precursor compound as a reactant for atomic layer deposition, the liquid phase can be much more advantageous in terms of reaction speed and process than the solid phase.
본 발명의 다른 측면은 상기 갈륨 화합물의 제조방법을 제공하는 것으로, 본 발명의 갈륨 화합물의 제조방법은 하기 화학식 3의 트리알킬갈륨 화합물 및 하기 화학식 4의 알릴 화합물을 반응시켜 하기 화학식 1-1의 갈륨 화합물을 제조하는 단계;를 포함한다.Another aspect of the present invention is to provide a method for producing the gallium compound. The method for producing the gallium compound of the present invention is to react a trialkyl gallium compound of the following formula (3) and an allyl compound of the formula (4) to obtain a compound of the formula (1-1): It includes; manufacturing a gallium compound.
[화학식 1-1][Formula 1-1]
Figure PCTKR2023015314-appb-img-000015
Figure PCTKR2023015314-appb-img-000015
[화학식 3][Formula 3]
Figure PCTKR2023015314-appb-img-000016
Figure PCTKR2023015314-appb-img-000016
[화학식 4][Formula 4]
Figure PCTKR2023015314-appb-img-000017
Figure PCTKR2023015314-appb-img-000017
상기 화학식 1-1, 3 및 4에서,In Formulas 1-1, 3 and 4,
R1, R2a 및 R3a는 각각 독립적으로 C1-C10알킬이고;R 1 , R 2a and R 3a are each independently C1-C10 alkyl;
R2b는 C1-C10알킬 또는
Figure PCTKR2023015314-appb-img-000018
이고;
R 2b is C1-C10 alkyl or
Figure PCTKR2023015314-appb-img-000018
ego;
X1은 O 또는 S이고;X 1 is O or S;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이다.R a and R b are independently hydrogen or C1-C10 alkyl.
본 발명의 갈륨 화합물의 제조방법은 일례로 상기와 같은 방법으로 제조될 수 있으나, 이외에 당업자가 인식할 수 있는 범위 내에서 가능한 방법이라면 모두 가능하다.For example, the gallium compound of the present invention can be manufactured by the same method as described above, but any other method is possible within the range recognized by a person skilled in the art.
바람직하게 일 실시예에 따른 갈륨 화합물의 제조방법은 하기 화학식 3의 트리알킬갈륨 화합물 및 하기 화학식 4-1의 알릴알콜 화합물을 반응시켜 하기 화학식 2의 갈륨 화합물을 제조하는 단계;를 포함할 수 있다.Preferably, the method for producing a gallium compound according to an embodiment may include reacting a trialkyl gallium compound of Formula 3 below and an allyl alcohol compound of Formula 4-1 below to produce a gallium compound of Formula 2 below. .
[화학식 2][Formula 2]
Figure PCTKR2023015314-appb-img-000019
Figure PCTKR2023015314-appb-img-000019
[화학식 3][Formula 3]
Figure PCTKR2023015314-appb-img-000020
Figure PCTKR2023015314-appb-img-000020
[화학식 4-1][Formula 4-1]
Figure PCTKR2023015314-appb-img-000021
Figure PCTKR2023015314-appb-img-000021
상기 화학식 2, 3 및 4-1에서,In Formulas 2, 3 and 4-1,
R1, R2a 및 R3a는 각각 독립적으로 C1-C4알킬이고;R 1 , R 2a and R 3a are each independently C1-C4 alkyl;
R2b는 C1-C4알킬 또는
Figure PCTKR2023015314-appb-img-000022
이고;
R 2b is C1-C4alkyl or
Figure PCTKR2023015314-appb-img-000022
ego;
Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C4알킬이다.R a and R b are independently hydrogen or C1-C4alkyl.
일 실시예에 있어서, 상기 화학식 4의 알릴 화합물은 상기 화학식 3의 트리알킬갈륨 화합물 1몰에 대하여 1.0 내지 3.0몰로 사용될 수 있으며, 바람직하게 1.0 내지 2.0몰로 사용될 수 있다.In one embodiment, the allyl compound of Formula 4 may be used in an amount of 1.0 to 3.0 mol, preferably 1.0 to 2.0 mol, per 1 mole of the trialkyl gallium compound of Formula 3.
일 실시예에 있어서, 상기 반응은 유기 용매 내에서 수행될 수 있으며, 사용 가능한 유기 용매는 한정되지는 않지만, 상기 반응물들에 대하여 높은 용해도를 가지는 유기 용매를 사용할 수 있으며, 구체적으로는 n-헥산, 클로로벤젠, 톨루엔, 다이클로로에탄(DCE), 다이옥산, 디에틸에테르 및 디클로로메테인(DCM)에서 선택되는 하나(단독용매) 또는 둘이상의 혼합용매가 사용될 수 있으며, 보다 바람직하게 수율 등의 반응효율을 높이기 위한 측면에서 n-헥산, 에테르 또는 디에틸에테르를 사용할 수 있다.In one embodiment, the reaction may be performed in an organic solvent, and the usable organic solvent is not limited, but an organic solvent having high solubility for the reactants may be used, specifically n-hexane. , one (single solvent) or a mixture of two or more solvents selected from chlorobenzene, toluene, dichloroethane (DCE), dioxane, diethyl ether, and dichloromethane (DCM) may be used, and more preferably, the reaction yield, etc. In terms of increasing efficiency, n-hexane, ether, or diethyl ether can be used.
일 실시예에 있어서, 상기 반응은 질소, 아르곤 등의 비활성 기체 분위기 하에서 수행될 수 있으며, 상기 화학식 3의 트리알킬갈륨 화합물을 포함하는 용액을 0℃ 미만의 저온로 냉각시킨 후 여기에 화학식 4의 알릴 화합물을 천천히 첨가한 후 20 내지 30℃에서 반응이 수행될 수 있다.In one embodiment, the reaction may be performed under an inert gas atmosphere such as nitrogen or argon, and the solution containing the trialkyl gallium compound of Formula 3 is cooled to a low temperature below 0° C. and then added to the solution of Formula 4. The reaction can be performed at 20 to 30° C. after slowly adding the allyl compound.
본 발명의 또 다른 측면은 일 실시예에 따른 화학식 1로 표시되는 갈륨 화합물을 포함하는 갈륨 함유 박막증착용 조성물 및 이를 이용하여 갈륨 함유 박막의 형성방법을 제공한다.Another aspect of the present invention provides a composition for depositing a gallium-containing thin film containing a gallium compound represented by Formula 1 according to an embodiment, and a method of forming a gallium-containing thin film using the same.
본 발명의 또 다른 측면은 일 실시예에 따른 화학식 1로 표시되는 갈륨 화합물을 이용하여 갈륨 함유 박막의 형성방법을 제공한다.Another aspect of the present invention provides a method of forming a gallium-containing thin film using a gallium compound represented by Formula 1 according to an embodiment.
상기 갈륨 함유 박막의 제조방법은 당업계에서 사용되는 통상적인 방법, 구체적으로는 원자층 증착법(ALD), 화학기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 화학기상 증착법(LPCVD), 플라즈마강화 화학기상 증착법(PECVD) 또는 플라즈마강화 원자층 증착법(PEALD)일 수 있다.The method of manufacturing the gallium-containing thin film is a common method used in the industry, specifically atomic layer deposition (ALD), chemical vapor deposition (CVD), metal organic chemical vapor deposition (MOCVD), and low pressure chemical vapor deposition (LPCVD). , it may be plasma-enhanced chemical vapor deposition (PECVD) or plasma-enhanced atomic layer deposition (PEALD).
보다 바람직하게 일 실시예에 따른 상기 갈륨 함유 박막의 제조방법은 원자층 증착법(ALD), 화학기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD) 등 일 수 있다.More preferably, the method for manufacturing the gallium-containing thin film according to an embodiment may be atomic layer deposition (ALD), chemical vapor deposition (CVD), or metal organic chemical vapor deposition (MOCVD).
일 실시예에 따른 갈륨 함유 박막은 당업계에서 사용되는 통상적인 방법으로 제조될 수 있으며, 일례로 유기금속 화학기상 증착법(MOCVD), 원자층 증착법(ALD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD) 또는 플라즈마 강화 원자층 증착법(PEALD)등을 들 수 있으나, 바람직하게 원자층 증착법(ALD) 또는 플라즈마 강화 원자층 증착법(PEALD)일 수 있다.A gallium-containing thin film according to an embodiment may be manufactured by a common method used in the art, for example, metal organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), low pressure vapor deposition (LPCVD), and plasma enhanced Examples include vapor deposition (PECVD) or plasma enhanced atomic layer deposition (PEALD), but atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) is preferred.
일 실시예에 있어서, 본 발명의 갈륨 함유 박막은 원자층 증착법(ALD)에 의해 제조될 수 있다.In one embodiment, the gallium-containing thin film of the present invention may be manufactured by atomic layer deposition (ALD).
일 실시예에 따른 갈륨 함유 박막의 제조방법은 상기 갈륨 화합물을 기판 상에 증착하여 박막을 형성하는 단계를 포함하며, 구체적으로는 a) 기판 상에 상기 갈륨 화합물을 흡착시키는 단계; b) 미흡착된 갈륨 화합물을 퍼지하는 단계; c) 반응가스를 주입하여 갈륨 함유 박막을 형성시키는 단계; 및 d) 잔류 반응가스 및 반응 부산물을 퍼지하는 단계;를 포함할 수 있다.A method of manufacturing a gallium-containing thin film according to an embodiment includes forming a thin film by depositing the gallium compound on a substrate, and specifically, a) adsorbing the gallium compound on the substrate; b) purging non-adsorbed gallium compounds; c) forming a gallium-containing thin film by injecting a reaction gas; and d) purging residual reaction gas and reaction by-products.
일 실시예에 따른 갈륨 함유 박막의 제조방법은 상기 갈륨 화합물과 인듐 전구체 및 아연 전구체 중에서 선택된 1종 이상을 기재 상에 증착하여 단층 또는 다층 박막을 형성하는 단계를 포함할 수 있으며, 상기 갈륨 화합물, 인듐 전구체 및 아연 전구체를 기판 상에 동시에 증착하거나, 상기 갈륨 화합물, 인듐 전구체 및 아연 전구체를 혼합한 후 기판 상에 증착하여 단층 구조의 박막을 형성할 수 있고, 인듐 전구체, 상기 갈륨 화합물 및 아연 전구체를 기재 상에 순차적으로 증착하여 다층 구조의 박막을 형성할 수도 있다. 구체적으로 상기 인듐 전구체는 트리메틸인듐(Trimethylindium; TMI) 또는 디메틸아미노프로필디메틸인듐(3-(Dimethylamino)propryl](dimethyl)indium; (DADI)일 수 있으며, 상기 아연 전구체는 디에틸징크(diethylzinc; DEZ)일 수 있으나, 이에 한정되는 것은 아니다. 상기 다층 구조의 박막은 인듐-갈륨-아연 산화막(IGZO 박막)일 수 있으며, 인듐 : 갈륨 : 아연의 조성비는 1 내지 10 : 1 내지 10 : 1 내지 10일 수 있으며, 구체적으로 1 내지 5 : 1 내지 5 : 1 내지 5, 보다 구체적으로 1 : 1 : 1일 수 있다.A method of manufacturing a gallium-containing thin film according to an embodiment may include forming a single-layer or multi-layer thin film by depositing the gallium compound and at least one selected from an indium precursor and a zinc precursor on a substrate, wherein the gallium compound, The indium precursor and the zinc precursor can be deposited on a substrate simultaneously, or the gallium compound, the indium precursor, and the zinc precursor can be mixed and deposited on the substrate to form a thin film with a single-layer structure, and the indium precursor, the gallium compound, and the zinc precursor can be deposited on the substrate. may be sequentially deposited on a substrate to form a thin film with a multilayer structure. Specifically, the indium precursor may be trimethylindium (TMI) or dimethylaminopropyldimethylindium (3-(Dimethylamino)propryl](dimethyl)indium; (DADI), and the zinc precursor may be diethylzinc (DEZ). ), but is not limited to this. The multilayered thin film may be an indium-gallium-zinc oxide film (IGZO thin film), and the composition ratio of indium:gallium:zinc is 1 to 10:1 to 10:1 to 10. It may be 1 to 5:1 to 5:1 to 5, and more specifically 1:1:1.
일 실시예에 따른 갈륨 함유 박막은 상기 갈륨 화합물을 이용하여 제조되며, 한정이 있는 것은 아니나 바람직하게 갈륨질화막, 갈륨산화막 또는 인듐-갈륨-아연 산화막일 수 있으며, 바람직하게 갈륨산화막 또는 인듐-갈륨-아연 산화막일 수 있다.The gallium-containing thin film according to one embodiment is manufactured using the gallium compound, and is not limited, but is preferably a gallium nitride film, a gallium oxide film, or an indium-gallium-zinc oxide film, and is preferably a gallium oxide film or an indium-gallium-zinc oxide film. It may be a zinc oxide film.
본 발명의 갈륨 함유 박막의 제조방법은 높은 휘발성 및 열안정성을 가지는 본 발명의 갈륨 화합물을 전구체로 사용하여 제조됨으로써 제조된 갈륨 함유 박막은 물리적, 전기적, 화학적 특성이 극히 우수하다.The method for producing a gallium-containing thin film of the present invention uses the gallium compound of the present invention, which has high volatility and thermal stability, as a precursor, and the produced gallium-containing thin film has extremely excellent physical, electrical, and chemical properties.
일 실시예에 따른 갈륨 함유 박막의 제조방법에서 본 발명의 갈륨 화합물의 주입온도는 상온(25℃내지 120℃일 수 있으며, 본 발명의 갈륨 화합물의 높은 휘발성으로 인해 갈륨 화합물이 증착될 기판의 온도는 100 내지 450℃이고, 챔버 내부 압력은 0.1 내지 10 torr일 수 있다.In the method for manufacturing a gallium-containing thin film according to an embodiment, the injection temperature of the gallium compound of the present invention may be room temperature (25°C to 120°C, and due to the high volatility of the gallium compound of the present invention, the temperature of the substrate on which the gallium compound will be deposited is 100 to 450°C, and the pressure inside the chamber may be 0.1 to 10 torr.
일 실시예에 따른 갈륨 함유 박막의 제조방법에서 사용되는 반응가스는 한정이 있는 것은 아니나, 수소(H2), 히드라진(N2H4), 디메틸히드라진(Me2N2H2), 오존(O3), 산소(O2), 물(H2O), 암모니아(NH3), 질소(N2), 실란(SiH4), 보란(BH3), 디보란(B2H6) 및 포스핀(PH3)에서 선택되는 하나 또는 하나이상의 혼합기체를 사용할 수 있으며, 상기 반응가스는 한정이 있는 것은 아니나, 10 내지 10,000 sccm의 유량으로 공급될 수 있으며, 구체적으로 50 내지 1,000 sccm으로 공급될 수 있다.The reaction gas used in the method for manufacturing a gallium-containing thin film according to an embodiment is not limited, but includes hydrogen (H 2 ), hydrazine (N 2 H 4 ), dimethylhydrazine (Me 2 N 2 H 2 ), and ozone ( O 3 ), oxygen (O 2 ), water (H 2 O), ammonia (NH 3 ), nitrogen (N 2 ), silane (SiH 4 ), borane (BH 3 ), diborane (B 2 H 6 ), and One or more mixed gases selected from phosphine (PH 3 ) can be used, and the reaction gas is not limited, but can be supplied at a flow rate of 10 to 10,000 sccm, specifically 50 to 1,000 sccm. It can be.
구체적으로 수증기(H2O), 산소(O2) 또는 오존(O3) 등의 산화성 반응가스 존재 하에서 증착이 이루어지는 경우 갈륨산화막이 형성될 수 있으며, 암모니아(NH3) 또는 하이드라진(N2H4) 등의 질소-함유 반응가스 존재 하에서 증착이 이루어 지는 경우에는 갈륨질화막이 형성될 수 있다.Specifically, when deposition is performed in the presence of oxidizing reaction gases such as water vapor (H 2 O), oxygen (O 2 ), or ozone (O 3 ), a gallium oxide film may be formed, and ammonia (NH 3 ) or hydrazine (N 2 H 4 ) If deposition is carried out in the presence of a nitrogen-containing reaction gas such as, a gallium nitride film may be formed.
상기 퍼지 가스는 불활성 가스로, 한정이 있는 것은 아니나, 아르곤(Ar) 및 헬륨(He)에서 선택되는 하나 또는 둘 이상의 혼합기체일 수 있다.The purge gas is an inert gas, but is not limited thereto, and may be one or a mixture of two or more gases selected from argon (Ar) and helium (He).
일 실시예에 따른 갈륨 함유 박막의 제조방법에서 사용되는 기판은 Si, SiO2, Pt, TiN, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs 및 InP 중 하나 이상의 반도체 재료를 포함하는 기판; SOI(Silicon On Insulator) 기판; 석영 기판; 또는 디스플레이용 유리 기판; 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이트(PET, PolyEthylene Terephthalate), 폴리에틸렌 나프탈레이트(PEN, PolyEthylene Naphthalate), 폴리 메틸메타크릴레이트(PMMA, Poly Methyl MethAcrylate), 폴리카보네이트(PC, PolyCarbonate), 폴리에테르술폰(PES), 폴리에스테르(Polyester) 등의 가요성 플라스틱 기판; 등일 수 있으나, 이에 한정되는 것은 아니다.The substrate used in the method of manufacturing a gallium-containing thin film according to an embodiment includes a substrate containing one or more semiconductor materials selected from the group consisting of Si, SiO2, Pt, TiN, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP; SOI (Silicon On Insulator) substrate; Quartz substrate; or a glass substrate for display; Polyimide, Polyethylene Terephthalate (PET), PolyEthylene Naphthalate (PEN), Poly Methyl MethAcrylate (PMMA), Polycarbonate (PC, PolyCarbonate), Polyether Sulfone Flexible plastic substrates such as (PES) and polyester; It may be, but is not limited to this.
일 실시예에 따른 갈륨 함유 박막의 제조방법은 높은 휘발성과 높은 열적 안정성을 가지며, 이를 박막증착용 전구체로 사용함으로써 물리적, 전기적 및 화학적 특성이 매우 우수하며 고밀도 및 고순도의 양질의 균일한 갈륨 함유 박막을 형성할 수 있다.The method for manufacturing a gallium-containing thin film according to an embodiment has high volatility and high thermal stability, and by using it as a precursor for thin film deposition, the gallium-containing thin film has excellent physical, electrical and chemical properties, and is high-density and high-purity, high-quality, uniform gallium-containing thin film. can be formed.
이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한된 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail through examples. However, the following examples are intended to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
이하 본 발명에 따른 갈륨 화합물의 합성은 별도로 언급되는 경우를 제외하고 비활성 아르곤 또는 질소 분위기 하에서 표준 슐렝크 플라스크 (Schlenk flask) 또는 퍼지박스(purge box)를 사용하여 수행하였다. 1H NMR 스펙트럼 및 원소 분석을 통해 수득된 갈륨 화합물의 구조를 분석하였다. 또한, 증착된 갈륨 함유 박막은 엘립소미터(Ellipsometer, Thermowave, Optiprobe 2600)를 이용하여 두께를 측정하였고, X-선 광전자 분석(XPS, X-ray Photoelectron Spectroscopy, ThermoFisher Scientific, K-Alpha+)을 이용하여 박막의 조성을 분석하였다.Hereinafter, the synthesis of the gallium compound according to the present invention was performed using a standard Schlenk flask or purge box under an inert argon or nitrogen atmosphere, except where otherwise noted. The structure of the obtained gallium compound was analyzed through 1 H NMR spectrum and elemental analysis. In addition, the thickness of the deposited gallium-containing thin film was measured using an ellipsometer (Ellipsometer, Thermowave, Optiprobe 2600) and X-ray photoelectron spectroscopy (XPS, X-ray Photoelectron Spectroscopy, ThermoFisher Scientific, K-Alpha+). The composition of the thin film was analyzed.
[실시예 1] 갈륨 화합물 1의 합성[Example 1] Synthesis of gallium compound 1
Figure PCTKR2023015314-appb-img-000023
Figure PCTKR2023015314-appb-img-000023
오븐에서 건조된 500ml 슐렝크 플라스크와 250ml 슐렝크 플라스크를 퍼지박스에 넣고 30분 이상 퍼지를 진행하여 초자 내부의 수분을 최대한 제거하였다. 퍼지박스 내에서 500ml 슐렝크 플라스크에 트리메틸갈륨 20g (0.1742mol)을 넣고(A), 250ml 슐렝크 플라스크에 알릴알콜 10.12g (0.1742mol)을 넣었다(B). 그 후 두개의 플라스크를 흄후드로 이동시켜 각각 질소 분위를 만들어 주었다. 상기 플라스크 A에 n-헥산 200ml를 가하고 acetone/dry ice bath를 이용하여 0°C까지 냉각시켰다. 그 후 상기 플라스크 B에 n-헥산 30mL를 넣어 묽혀 주었다. 다음으로 캐뉼러를 이용하여 플라스크 B의 리간드 용액을 플라스크 A로 천천히 첨가하였다. 이때, 발열이 있으며, 플라스크 내부의 온도가 20°C를 넘지 않게 유지하며 진행하였다. 플라스크 B의 리간드 용액을 첨가한 후 acetone/dry ice bath를 제거하여 상온까지 승온하고, 그 후 16시간 교반시켰다. 반응이 완료되면 진공건조를 통해 잔여 용매를 제거하였으며, 농축물을 수득하였다. 상기 수득된 농축물을 탑저 온도: 48℃, 탑정 온도: 25℃, 압력: 730mtorr [환산온도: 186℃]의 조건으로 증류정제를 진행하여 표제의 갈륨 화합물 1을 투명한 액체로 얻었다(수율 86%).The oven-dried 500ml Schlenk flask and 250ml Schlenk flask were placed in a purge box and purged for more than 30 minutes to remove as much moisture inside the glassware as possible. In the purge box, 20 g (0.1742 mol) of trimethyl gallium was added to a 500 ml Schlenk flask (A), and 10.12 g (0.1742 mol) of allyl alcohol was added to a 250 ml Schlenk flask (B). Afterwards, the two flasks were moved to a fume hood to create a nitrogen atmosphere for each. 200ml of n-hexane was added to flask A and cooled to 0°C using an acetone/dry ice bath. Afterwards, 30 mL of n-hexane was added to flask B to dilute it. Next, the ligand solution from flask B was slowly added to flask A using a cannula. At this time, there was fever, and the process was carried out while maintaining the temperature inside the flask not exceeding 20°C. After adding the ligand solution from flask B, the acetone/dry ice bath was removed, the temperature was raised to room temperature, and the mixture was stirred for 16 hours. When the reaction was completed, the remaining solvent was removed through vacuum drying, and a concentrate was obtained. The obtained concentrate was purified by distillation under the conditions of tower bottom temperature: 48°C, tower top temperature: 25°C, pressure: 730 mtorr [converted temperature: 186°C], and the title gallium compound 1 was obtained as a transparent liquid (yield 86%). ).
1H NMR 400MHz(C6D6) : δ -0.1068 (s, 6H), 4.1053 (d, 2H), 4.9703 (d, 1H), 5.1502 (d, 1H), 5.7023 (m, 1H) 1 H NMR 400MHz(C 6 D 6 ): δ -0.1068 (s, 6H), 4.1053 (d, 2H), 4.9703 (d, 1H), 5.1502 (d, 1H), 5.7023 (m, 1H)
[실시예 2] 갈륨 화합물 2의 합성[Example 2] Synthesis of gallium compound 2
Figure PCTKR2023015314-appb-img-000024
Figure PCTKR2023015314-appb-img-000024
실시예 1의 알릴알콜 10.12g (0.1742mol) 대신에 2-메틸-3-부텐-2-올 18.21ml (0.1742 mol)을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 반응시켜 농축물을 수득하였다. 상기 수득된 농축물을 탑저 온도: 60℃, 탑정 온도: 55℃, 압력: 846mtorr [환산온도: 223℃]의 조건으로 증류정제를 진행하여 표제의 갈륨 화합물 2를 투명한 액체로 얻었다(수율 82%).A concentrate was obtained by reacting in the same manner as in Example 1, except that 18.21 ml (0.1742 mol) of 2-methyl-3-buten-2-ol was used instead of 10.12 g (0.1742 mol) of allyl alcohol. did. The obtained concentrate was purified by distillation under the conditions of tower bottom temperature: 60°C, tower top temperature: 55°C, pressure: 846 mtorr [converted temperature: 223°C], and the title gallium compound 2 was obtained as a transparent liquid (yield 82%). ).
1H NMR 400MHz(C6D6) : δ -0.0336 (s, 6H), 1.2123 (s, 6H), 4.8207 (d, 1H), 4.9281 (d, 1H), 5.9176 (dd,1H) 1 H NMR 400MHz(C 6 D 6 ): δ -0.0336 (s, 6H), 1.2123 (s, 6H), 4.8207 (d, 1H), 4.9281 (d, 1H), 5.9176 (dd,1H)
실험예 1: 갈륨 화합물의 물질 분석Experimental Example 1: Material analysis of gallium compounds
상기 실시예 1 및 2에서 제조된 갈륨 화합물 1 및 2의 열적 안정성 및 분해 온도를 측정하기 위해, 열무게 분석법(TGA)을 이용하였다(TGA 조건: 10℃/분의 속도로 300℃까지 가온 시키면서 1.5bar/분의 압력으로 아르곤 주입). TGA 분석 결과 그래프를 도 1 및 도 2에 각각 도시하였다. To measure the thermal stability and decomposition temperature of gallium compounds 1 and 2 prepared in Examples 1 and 2, thermogravimetric analysis (TGA) was used (TGA conditions: heating to 300°C at a rate of 10°C/min) Argon injection at a pressure of 1.5 bar/min). Graphs of the TGA analysis results are shown in Figures 1 and 2, respectively.
도 1로부터 실시예 1에서 제조된 갈륨 화합물 1은 120℃ 부근에서 질량 감소가 일어나기 시작하여 135.7℃에서 약50%의 질량 감소를 확인할 수 있다. 또한, 도 2로부터 실시예 2에서 제조된 갈륨 화합물 2는 157℃ 부근에서 질량 감소가 일어나기 시작하여 172.6℃에서 약50%의 질량 감소를 확인할 수 있다. 이로부터 본 발명의 갈륨 화합물은 열안정성이 우수함을 알 수 있다.From Figure 1, it can be seen that the mass of gallium compound 1 prepared in Example 1 begins to decrease around 120°C, and the mass decreases by about 50% at 135.7°C. In addition, from FIG. 2, it can be seen that gallium compound 2 prepared in Example 2 begins to lose mass around 157°C and loses mass by about 50% at 172.6°C. From this, it can be seen that the gallium compound of the present invention has excellent thermal stability.
[실시예 3 내지 10] 갈륨 함유 박막의 제조[Examples 3 to 10] Preparation of gallium-containing thin films
실시예 1에서 제조된 갈륨 화합물 1을 갈륨 함유 박막증착용 전구체로 사용하고, 반응가스로 오존(O3)을 사용하였으며, 오존의 농도는 200 g/㎥이었으며, 운반 가스 및 퍼지 가스로 아르곤(Ar)을 사용하여 원자층 증착법(Atomic layer deposition; ALD)에 의해 갈륨 함유 박막을 형성하였다. Gallium Compound 1 prepared in Example 1 was used as a precursor for deposition of gallium-containing thin films, ozone (O 3 ) was used as a reaction gas, the concentration of ozone was 200 g/㎥, and argon ( A gallium-containing thin film was formed by atomic layer deposition (ALD) using Ar).
실리콘 산화막을 기판으로 사용하였다. 증착 챔버 내부에 실리콘 산화막 기판을 로딩하고, 상기 기판 온도를 250℃로 설정하였다. 갈륨 화합물의 증기압을 적절히 유지하는 동시에 응축을 방지하기 위해 스테인리스 스틸 버블러(stainless steel bubbler) 내에 갈륨 화합물 1을 층진하고 30℃로 유지하였다. 반응 가스인 오존(O3)의 유속은 200 sccm으로 고정하고, 운반 가스(Ar)의 유속은 50 sccm으로 고정하고, 퍼지 가스(Ar)의 유속은 100 sccm으로 고정하였으며, 공정 압력을 1 Torr로 유지하였다. 갈륨 전구체를 이용한 박막 증착은 갈륨 전구체 주입 - 퍼지(Ar) - 오존(O3) 주입 - 퍼지(Ar)의 4개의 순차적 단계를 1주기로 하여 100주기를 반복하여 갈륨 함유 박막을 증착하였다. 하기 표 1에 상세한 증착 조건 및 결과를 나타내었다.A silicon oxide film was used as a substrate. A silicon oxide film substrate was loaded into the deposition chamber, and the substrate temperature was set to 250°C. In order to appropriately maintain the vapor pressure of the gallium compound and prevent condensation, gallium compound 1 was placed in a stainless steel bubbler and maintained at 30°C. The flow rate of ozone (O 3 ), a reaction gas, was fixed at 200 sccm, the flow rate of carrier gas (Ar) was fixed at 50 sccm, the flow rate of purge gas (Ar) was fixed at 100 sccm, and the process pressure was 1 Torr. It was maintained as . Thin film deposition using a gallium precursor was performed by repeating 100 cycles of four sequential steps: gallium precursor injection - purge (Ar) - ozone (O 3 ) injection - purge (Ar) to deposit a gallium-containing thin film. Table 1 below shows detailed deposition conditions and results.
[비교예 1] 갈륨 함유 박막의 제조[Comparative Example 1] Preparation of gallium-containing thin film
트리메틸갈륨(trimethylgallium, TMG)을 이용하여 상기 실시예 8과 동일한 방법으로 갈륨 함유 박막을 증착하였다. 하기 표 1에 상세한 증착 조건 및 결과를 나타내었다.A gallium-containing thin film was deposited using trimethylgallium (TMG) in the same manner as Example 8. Table 1 below shows detailed deposition conditions and results.
실시예Example 비교예 1Comparative Example 1
33 44 55 66 77 88 99 1010
공정 압력 (Torr)Process pressure (Torr) 1One 1One 1One 1One 1One 1One 1One 1One 1One
실리콘 기판 온도 (℃)Silicon substrate temperature (℃) 250250 250250 250250 250250 250250 250250 250250 250250 250250
갈륨
전구체
gallium
precursor
가열온도 (℃)Heating temperature (℃) 3030 3030 3030 3030 3030 3030 3030 3030 3030
주입 시간 (초)Injection time (seconds) 0.50.5 1One 22 33 44 66 88 1010 66
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100 100100 100100 100100 100100 100100 100100 100100
시간 (초)time (seconds) 55 55 55 55 55 55 55 55 55
오존(O3)Ozone (O 3 ) 유량 (sccm)Flow rate (sccm) 200200 200200 200200 200200 200200 200200 200200 200200 200200
시간 (초)time (seconds) 66 66 66 66 66 66 66 66 66
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100 100100 100100 100100 100100 100100 100100 100100
시간 (초)time (seconds) 55 55 55 55 55 55 55 55 55
증착 횟수Number of depositions 주기to give 100100 100100 100100 100100 100100 100100 100100 100100 100100
박막 두께 (Å)Thin film thickness (Å) 8888 8989 9999 100100 108108 105105 107107 107107 107107
GPC (Å)GPC (Å) 0.880.88 0.890.89 0.990.99 1.001.00 1.081.08 1.051.05 1.071.07 1.071.07 1.071.07
갈륨 화합물 1의 주입시간에 따른 주기당 성장률(growth per cycle; GPC)을 측정하여 이를 도 3에 도시하였다. 상기 표 1 및 도 3으로부터 본 발명에 따른 갈륨 전구체는 주입 시간 0.5 내지 3초까지는 GPC가 증가하고, 주입시간 4초부터는 GPC가 일정 수준으로 유지되어 갈륨 전구체의 주입 시간 4초부터 포화(Saturation)되어 갈륨 함유 박막의 성장률이 일정한 것을 확인할 수 있었다.The growth rate per cycle (GPC) according to the injection time of gallium compound 1 was measured and shown in FIG. 3. From Table 1 and Figure 3, the GPC of the gallium precursor according to the present invention increases from 0.5 to 3 seconds of injection time, and the GPC is maintained at a constant level from 4 seconds of injection time, resulting in saturation from 4 seconds of injection time of the gallium precursor. It was confirmed that the growth rate of the gallium-containing thin film was constant.
상기 실시예 8에서 제조된 갈륨 함유 박막의 XPS 분석 결과를 하기 표 2에 기재하고, 도 4에 도시하였다. 표 2는 제조된 갈륨 함유 박막을 X-선 광전자분광기를 이용해 분석한 조성을 기반으로 박 막 내의 원자별 함유량 값을 나타낸다.The XPS analysis results of the gallium-containing thin film prepared in Example 8 are listed in Table 2 below and shown in FIG. 4. Table 2 shows the content of each atom in the thin film based on the composition of the prepared gallium-containing thin film analyzed using X-ray photoelectron spectroscopy.
실시예 8
(갈륨 화합물 1)
Example 8
(Gallium Compound 1)
비교예 1
(TMG)
Comparative Example 1
(TMG)
Atomic %Atomic % Atomic %Atomic %
C1sC1s 6.56.5 5.45.4
Ga3dGa3d 37.837.8 39.939.9
O1sO1s 55.755.7 54.754.7
Ga:O 비율Ga:O ratio 1:1.471:1.47 1:1.371:1.37
표 2로부터, 본 발명의 실시예 8에서 제조된 갈륨 함유 박막의 원자 함량은 갈륨 원소와 산소 원소의 화학양론적 비가 1 대 1.47 로, Ga2O3 박막이 형성된 것으로 확인되었다. 이는 비교예 1의 TMG를 사용하여 제조된 갈륨 함유 박막(Ga:O = 1:1.37)에 비해 갈륨 원소와 산소 원소의 화학양론적 비가 1 대 1.5인 이론값에 매우 근접하였다. 또한, 실시예 8에서 제조된 갈륨 함유 박막에 대한 XPS분석 결과는 공지문헌[J. Mater. Chem. C, 2019, 7, 69-77]에 기재된 Ga2O3와 유사한 결합 에너지(Binding Energy, eV)가 확인되었다(도 4). From Table 2, the atomic content of the gallium-containing thin film prepared in Example 8 of the present invention was confirmed that the stoichiometric ratio of gallium element and oxygen element was 1 to 1.47, and a Ga 2 O 3 thin film was formed. This was very close to the theoretical value of the stoichiometric ratio of gallium and oxygen elements of 1 to 1.5 compared to the gallium-containing thin film (Ga:O = 1:1.37) manufactured using TMG in Comparative Example 1. In addition, the XPS analysis results for the gallium-containing thin film prepared in Example 8 are published in the published literature [ J. Mater. Chem. Binding Energy (eV) similar to Ga 2 O 3 described in [C, 2019, 7, 69-77] was confirmed (Figure 4).
[실시예 11] 인듐 갈륨 아연 산화물(IGZO) 박막의 제조[Example 11] Preparation of indium gallium zinc oxide (IGZO) thin film
실시예 1에서 제조된 갈륨 화합물 1을 갈륨 전구체로 사용하고, 디메틸아미노프로필디메틸인듐(DADI)를 인듐 전구체로 사용하고, 디에틸징크(DEZ)를 아연 전구체로 사용하였다. 반응가스로 오존(O3)을 사용하였으며, 오존의 농도는 210 g/㎥이었으며, 운반 가스 및 퍼지 가스로 아르곤(Ar)을 사용하여 원자층 증착법(Atomic layer deposition; ALD)에 의해 IGZO 박막을 형성하였다. Gallium Compound 1 prepared in Example 1 was used as a gallium precursor, dimethylaminopropyldimethylindium (DADI) was used as an indium precursor, and diethyl zinc (DEZ) was used as a zinc precursor. Ozone (O 3 ) was used as a reaction gas, and the concentration of ozone was 210 g/㎥, and an IGZO thin film was formed by atomic layer deposition (ALD) using argon (Ar) as a carrier gas and purge gas. formed.
실리콘 기판을 사용하였다. 증착 챔버 내부에 실리콘 기판을 로딩하고, 상기 기판 온도를 250℃로 설정하였다. 전구체의 증기압을 적절히 유지하는 동시에 응축을 방지하기 위해 스테인리스 스틸 버블러(stainless steel bubbler) 내에 충진하고 30℃로 유지하였다. 반응 가스인 오존(O3)의 유속은 200 sccm으로 고정하고, 운반 가스(Ar)의 유속은 50 sccm으로 고정하고, 퍼지 가스(Ar)의 유속은 100 sccm으로 고정하였으며, 공정 압력을 0.3 Torr로 유지하였다. A silicon substrate was used. A silicon substrate was loaded inside the deposition chamber, and the substrate temperature was set to 250°C. In order to properly maintain the vapor pressure of the precursor and prevent condensation, it was filled in a stainless steel bubbler and maintained at 30°C. The flow rate of ozone (O 3 ), a reaction gas, was fixed at 200 sccm, the flow rate of carrier gas (Ar) was fixed at 50 sccm, the flow rate of purge gas (Ar) was fixed at 100 sccm, and the process pressure was 0.3 Torr. It was maintained as .
박막 증착은 인듐 전구체 주입 - 퍼지(Ar) - 오존(O3) 주입 - 퍼지(Ar)의 4개의 순차적 단계를 4회 반복한 후, 갈륨 전구체 주입 - 퍼지(Ar) - 오존(O3) 주입 - 퍼지(Ar) - 아연 전구체 주입 - 퍼지(Ar) - 오존(O3) 주입 - 퍼지(Ar)의 8개의 순차적 단계까지를 1주기로 하여 100주기를 반복하여 IGZO 박막을 증착하였다. 하기 표 3에 상세한 증착 조건 및 결과를 나타내었다.Thin film deposition repeats the four sequential steps of indium precursor injection - purge (Ar) - ozone (O 3 ) injection - purge (Ar) four times, then gallium precursor injection - purge (Ar) - ozone (O 3 ) injection. - Purge (Ar) - Zinc precursor injection - Purge (Ar) - Ozone (O 3 ) injection - Purge (Ar) 8 sequential steps were considered as 1 cycle, and 100 cycles were repeated to deposit the IGZO thin film. Table 3 below shows detailed deposition conditions and results.
[비교예 2] 인듐 갈륨 아연 산화물(IGZO) 박막의 제조[Comparative Example 2] Preparation of indium gallium zinc oxide (IGZO) thin film
트리메틸갈륨(trimethylgallium, TMG)을 갈륨 전구체로 이용하여 상기 실시예 11과 동일한 방법으로 IGZO 박막을 증착하였다. 하기 표 3에 상세한 증착 조건 및 결과를 나타내었다.An IGZO thin film was deposited in the same manner as Example 11, using trimethylgallium (TMG) as a gallium precursor. Table 3 below shows detailed deposition conditions and results.
실시예 11Example 11 비교예 2Comparative Example 2
공정 압력 (Torr)Process pressure (Torr) 0.30.3 0.30.3
실리콘 기판 온도 (℃)Silicon substrate temperature (℃) 250250 250250
인듐
전구체
indium
precursor
가열온도 (℃)Heating temperature (℃) 5050 5050
주입 시간 (초)Injection time (seconds) 1One 1One
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 1515 1515
오존(O3)Ozone (O 3 ) 유량 (sccm)Flow rate (sccm) 200200 200200
시간 (초)time (seconds) 1010 1010
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 1515 1515
갈륨
전구체
gallium
precursor
가열온도 (℃)Heating temperature (℃) 3030 55
주입 시간 (초)Injection time (seconds) 1One 1One
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 2020 2525
오존(O3)Ozone (O 3 ) 유량 (sccm)Flow rate (sccm) 200200 200200
시간 (초)time (seconds) 120120 1515
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 1515 2020
아연
전구체
zinc
precursor
가열온도 (℃)Heating temperature (℃) 3030 3030
주입 시간 (초)Injection time (seconds) 1One 1One
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 2020 2020
오존(O3)Ozone (O 3 ) 유량 (sccm)Flow rate (sccm) 200200 200200
시간 (초)time (seconds) 1010 1010
퍼지
(Ar)
Fudge
(Ar)
유량 (sccm)Flow rate (sccm) 100100 100100
시간 (초)time (seconds) 2020 2020
증착 횟수Number of depositions 주기to give 100100 100100
박막 두께 (Å)Thin film thickness (Å) 39.139.1 27.927.9
GPC (Å)GPC (Å) 0.3910.391 0.2790.279
상기 실시예 11 및 비교예 2에서 측정된 GPC의 이론값 대비 실제 실험값을 비교한 그래프를 도 5에 도시하였다. 트리메틸갈륨(TMG)을 갈륨 전구체로 제조된 IGZO 박막의 경우, GPC의 이론값은 0.455 Å/cycle 이나 실제 실험값은 0.279 Å/cycle으로 측정되었다. 반면, 본 발명의 갈륨 화합물 1을 갈륨 전구체로 제조된 IGZO 박막은 GPC의 이론값이 0.475 Å/cycle, 실제 실험값이 0.391 Å/cycle으로 측정되었다. 따라서, 트리메틸갈륨을 갈륨 전구체로 제조된 IGZO 박막은 이론값과 실험값의 차이가 크지만, 본 발명의 갈륨 화합물 1을 갈륨 전구체로 제조된 IGZO 박막은 그 오차가 현저하게 감소하였음을 확인하였다.A graph comparing the theoretical and actual experimental values of GPC measured in Example 11 and Comparative Example 2 is shown in Figure 5. In the case of the IGZO thin film made with trimethyl gallium (TMG) as a gallium precursor, the theoretical value of GPC was 0.455 Å/cycle, but the actual experimental value was measured to be 0.279 Å/cycle. On the other hand, the IGZO thin film prepared using gallium compound 1 of the present invention as a gallium precursor was measured as a GPC theoretical value of 0.475 Å/cycle and an actual experimental value of 0.391 Å/cycle. Therefore, it was confirmed that the IGZO thin film made with trimethyl gallium as the gallium precursor had a large difference between the theoretical value and the experimental value, but the error in the IGZO thin film made with gallium compound 1 of the present invention as the gallium precursor was significantly reduced.
또한, XRF를 통해 실시예 11 및 비교예 2에서 제조된 IGZO 박막 내 갈륨 함량을 인듐, 갈륨 및 아연의 총 함량으로 나눈 값의 이론값 및 실제 실험값을 비교한 그래프를 도 6에 도시하였다.In addition, a graph comparing the theoretical value and the actual experimental value of the gallium content in the IGZO thin film prepared in Example 11 and Comparative Example 2 divided by the total content of indium, gallium, and zinc through XRF is shown in FIG. 6.
트리메틸갈륨을 갈륨 전구체로 제조된 IGZO 박막의 경우 이론값이 0.07, 실제 실험값은 0.3이었고, 본 발명의 갈륨 화합물 1을 갈륨 전구체로 제조된 IGZO 박막은 이론값이 0.12, 실험값은 0.19로 나타났다. 따라서, 본 발명의 갈륨 화합물을 포함하는 IGZO 박막이 트리메틸갈륨을 전구체로 포함하는 IGZO 박막에 비해 현저하게 갈륨 함량의 오차값이 개선되는 것을 확인할 수 있었다.For the IGZO thin film made with trimethyl gallium as a gallium precursor, the theoretical value was 0.07 and the actual experimental value was 0.3, and for the IGZO thin film made with gallium compound 1 of the present invention as a gallium precursor, the theoretical value was 0.12 and the experimental value was 0.19. Therefore, it was confirmed that the error value of the gallium content of the IGZO thin film containing the gallium compound of the present invention was significantly improved compared to the IGZO thin film containing trimethyl gallium as a precursor.
다시말해, 본 발명에 따른 갈륨 화합물을 전구체로 사용할 경우 박막 내 갈륨 함량 비율을 조절하는 것이 용이하여 양질의 갈륨 함유 박막을 제조할 수 있다.In other words, when the gallium compound according to the present invention is used as a precursor, it is easy to control the gallium content ratio in the thin film, making it possible to produce a high-quality gallium-containing thin film.
즉, 본 발명에 따른 갈륨 화합물을 전구체로 사용하는 경우 순도가 보다 높은 양질의 갈륨 함유 박막이 제조됨을 알 수 있다. 반면, 공지물인 트리메틸갈륨을 사용한 경우 본 발명의 실시예와 유사한 박막증착 결과를 나타내었으나, XPS 분석 결과 박막의 순도가 본 발명의 실시예 대비하여 떨어짐이 확인되었다.That is, it can be seen that when the gallium compound according to the present invention is used as a precursor, a high-quality gallium-containing thin film with higher purity is produced. On the other hand, when trimethyl gallium, a known material, was used, thin film deposition results were similar to the examples of the present invention, but as a result of XPS analysis, it was confirmed that the purity of the thin film was lower than that of the examples of the present invention.
따라서, 본 발명에 따른 갈륨 화합물은 우수한 열안정성 및 휘발성을 가져 갈륨 함유 박막의 전구체로 유용하며, 높은 증기압을 가지고 있어 박막 제조시 균일한 전구체 공급을 통하여 균일한 조성제어로 균일한 박막 증착이 가능하고, 고밀도 및 고순도의 갈륨 함유 박막을 용이하게 제조할 수 있다.Therefore, the gallium compound according to the present invention has excellent thermal stability and volatility, making it useful as a precursor for gallium-containing thin films, and has a high vapor pressure, enabling uniform thin film deposition through uniform composition control through uniform precursor supply during thin film production. And, high-density and high-purity gallium-containing thin films can be easily manufactured.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (11)

  1. 하기 화학식 1로 표시되는 갈륨 화합물:A gallium compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2023015314-appb-img-000025
    Figure PCTKR2023015314-appb-img-000025
    상기 화학식 1에서,In Formula 1,
    R1은 C1-C10알킬이고;R 1 is C1-C10 alkyl;
    R2는 C1-C10알킬, -OR' 또는 -SR'이고;R 2 is C1-C10 alkyl, -OR' or -SR';
    R'는 C1-C10알킬 또는 C2-C10알케닐이고;R' is C1-C10 alkyl or C2-C10 alkenyl;
    X1은 O 또는 S이고;X 1 is O or S;
    Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이고;R a and R b are independently hydrogen or C1-C10 alkyl;
    상기 R'의 알케닐은 하나 이상의 C1-C10알킬로 더 치환될 수 있다.The alkenyl of R' may be further substituted with one or more C1-C10 alkyl.
  2. 제 1항에 있어서,According to clause 1,
    상기 R1은 C1-C6알킬이고; R 1 is C1-C6alkyl;
    R2는 C1-C6알킬 또는 -OR'이고;R 2 is C1-C6alkyl or -OR';
    R'는 C1-C6알킬 또는 알릴이고;R' is C1-C6alkyl or allyl;
    X1은 O이고;X 1 is O;
    Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C6알킬이고;R a and R b are independently hydrogen or C1-C6alkyl;
    상기 R'의 알릴은 하나 이상의 C1-C6알킬로 더 치환될 수 있는 것인, 갈륨 화합물.A gallium compound in which allyl of R' may be further substituted with one or more C1-C6alkyl.
  3. 제 1항에 있어서,According to clause 1,
    상기 갈륨 화합물은 하기 화학식 2로 표시되는 것인, 갈륨 화합물:The gallium compound is represented by the following formula (2):
    [화학식 2][Formula 2]
    Figure PCTKR2023015314-appb-img-000026
    Figure PCTKR2023015314-appb-img-000026
    상기 화학식 2에서,In Formula 2,
    R1은 C1-C4알킬이고; R 1 is C1-C4alkyl;
    R2는 C1-C4알킬 또는
    Figure PCTKR2023015314-appb-img-000027
    이고;
    R 2 is C1-C4alkyl or
    Figure PCTKR2023015314-appb-img-000027
    ego;
    Ra, Rb, Rc 및 Rd는 서로 독립적으로 수소 또는 C1-C4알킬이다.R a , R b , R c and R d are independently hydrogen or C1-C4alkyl.
  4. 제 1항에 있어서,According to clause 1,
    상기 갈륨 화합물은 하기 화합물에서 선택되는 것인, 갈륨 화합물:The gallium compound is selected from the following compounds:
    Figure PCTKR2023015314-appb-img-000028
    Figure PCTKR2023015314-appb-img-000028
  5. 하기 화학식 3의 트리알킬갈륨 화합물 및 하기 화학식 4의 알릴 화합물을 반응시켜 하기 화학식 1-1의 갈륨 화합물을 제조하는 단계;를 포함하는 갈륨 화합물의 제조방법. A method for producing a gallium compound comprising: reacting a trialkyl gallium compound of Formula 3 below and an allyl compound of Formula 4 below to prepare a gallium compound of Formula 1-1 below.
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2023015314-appb-img-000029
    Figure PCTKR2023015314-appb-img-000029
    [화학식 3][Formula 3]
    Figure PCTKR2023015314-appb-img-000030
    Figure PCTKR2023015314-appb-img-000030
    [화학식 4][Formula 4]
    Figure PCTKR2023015314-appb-img-000031
    Figure PCTKR2023015314-appb-img-000031
    상기 화학식 1-1, 3 및 4에서,In Formulas 1-1, 3 and 4,
    R1, R2a 및 R3a는 각각 독립적으로 C1-C10알킬이고;R 1 , R 2a and R 3a are each independently C1-C10 alkyl;
    R2b는 C1-C10알킬 또는
    Figure PCTKR2023015314-appb-img-000032
    이고;
    R 2b is C1-C10 alkyl or
    Figure PCTKR2023015314-appb-img-000032
    ego;
    X1은 O 또는 S이고;X 1 is O or S;
    Ra 및 Rb는 서로 독립적으로 수소 또는 C1-C10알킬이다.R a and R b are independently hydrogen or C1-C10 alkyl.
  6. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 따른 갈륨 화합물을 포함하는 갈륨 함유 박막증착용 조성물.A composition for depositing a gallium-containing thin film comprising the gallium compound according to any one of claims 1 to 4.
  7. 제 6항의 갈륨 함유 박막증착용 조성물을 이용하는 갈륨 함유 박막을 형성하는 방법.A method of forming a gallium-containing thin film using the composition for gallium-containing thin film deposition of claim 6.
  8. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 따른 갈륨 화합물을 기판 상에 증착하여 박막을 형성하는 단계를 포함하는, 갈륨 함유 박막의 제조 방법.A method for producing a gallium-containing thin film, comprising forming a thin film by depositing the gallium compound according to any one of claims 1 to 4 on a substrate.
  9. 제 8항에 있어서,According to clause 8,
    상기 박막의 제조 방법은 상기 갈륨 화합물과 인듐 전구체 및 아연 전구체 중에서 선택된 1종 이상을 기재 상에 증착하여 박막을 형성하는 단계를 포함하는, 갈륨 함유 박막의 제조 방법.The method of manufacturing a gallium-containing thin film includes forming a thin film by depositing the gallium compound and at least one selected from an indium precursor and a zinc precursor on a substrate.
  10. 제 8항에 있어서,According to clause 8,
    상기 증착은 화학 기상 증착법(CVD) 또는 원자층 증착법(ALD)에 의해 수행되는 것인, 갈륨 함유 박막의 제조 방법.A method of producing a gallium-containing thin film, wherein the deposition is performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  11. 제 8항에 있어서,According to clause 8,
    상기 갈륨 함유 박막은 갈륨 산화물 박막, 갈륨 박막, 갈륨 질화물 박막 또는 인듐 갈륨 아연 산화물(IGZO) 박막인, 갈륨 함유 박막의 제조 방법.The gallium-containing thin film is a gallium oxide thin film, a gallium thin film, a gallium nitride thin film, or an indium gallium zinc oxide (IGZO) thin film.
PCT/KR2023/015314 2022-10-27 2023-10-05 Gallium compound, thin film deposition composition containing same, and method for producing thin film using same WO2024090836A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220139974 2022-10-27
KR10-2022-0139974 2022-10-27
KR1020230130640A KR20240059546A (en) 2022-10-27 2023-09-27 Gallium compound, composition for depositing thin film comprising the same, and a process for producing the thin film using the same
KR10-2023-0130640 2023-09-27

Publications (1)

Publication Number Publication Date
WO2024090836A1 true WO2024090836A1 (en) 2024-05-02

Family

ID=90831137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015314 WO2024090836A1 (en) 2022-10-27 2023-10-05 Gallium compound, thin film deposition composition containing same, and method for producing thin film using same

Country Status (1)

Country Link
WO (1) WO2024090836A1 (en)

Similar Documents

Publication Publication Date Title
KR101656890B1 (en) Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process
WO2020101336A1 (en) Method for manufacturing molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2010071364A9 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019156400A1 (en) Organometallic compounds and thin film using same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2015130108A1 (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using same
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
TWI752701B (en) Indium precursor compound, preparing method of thin film using the same, and substrate prepared thereof
WO2024090836A1 (en) Gallium compound, thin film deposition composition containing same, and method for producing thin film using same
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2022114782A1 (en) Tantalum compound, preparation method therefor, and tantalum-containing thin film deposition composition comprising same
WO2023113308A1 (en) Molybdenum compound, method for preparing same, and composition comprising same for thin film deposition
WO2022169232A1 (en) Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same
KR20240059546A (en) Gallium compound, composition for depositing thin film comprising the same, and a process for producing the thin film using the same
WO2010126274A2 (en) Cigt thin film and method for fabricating same
WO2024049150A1 (en) Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same
WO2024058431A1 (en) Precursor for forming yttrium- or scandium-containing thin film, method for forming yttrium- or scandium-containing thin film using same, and semiconductor element including yttrium- or scandium-containing thin film
KR20220039318A (en) New Group 4 organometallic precursor compound with excellent thermal stability, manufacturing method thereof, and thin film formation method using the same.