WO2022169232A1 - Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same - Google Patents

Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same Download PDF

Info

Publication number
WO2022169232A1
WO2022169232A1 PCT/KR2022/001606 KR2022001606W WO2022169232A1 WO 2022169232 A1 WO2022169232 A1 WO 2022169232A1 KR 2022001606 W KR2022001606 W KR 2022001606W WO 2022169232 A1 WO2022169232 A1 WO 2022169232A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
thin film
formula
metal compound
Prior art date
Application number
PCT/KR2022/001606
Other languages
French (fr)
Korean (ko)
Inventor
정택모
박보근
이가연
김창균
김건환
엄태용
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022169232A1 publication Critical patent/WO2022169232A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present invention relates to a Group 4 transition metal compound, a method for preparing the same, and a method for forming a thin film using the same.
  • silicon oxide SiO 2
  • k dielectric constant
  • the semiconductor structure becomes more direct and miniaturized, it is applied to various processes (eg, atomic layer deposition (ALD), chemical vapor deposition (CVD)) with excellent step coverage even in fine patterns.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the Group 4 transition metal compound may include a titanium precursor, a zirconium precursor, a hafnium precursor, and the like, and the preparation of the Group 4 transition metal oxide thin film through an atomic layer deposition method or a chemical vapor deposition method using the same depends on the ligand structure of these precursors. developed in various ways.
  • group 4 transition metal inorganic salts such as ZrCl 4 , ZrI 4 , and ZrF 4 are known.
  • inorganic salts Cl - , F - , I -
  • the roughness of the zirconium oxide film cannot be arbitrarily adjusted, and it is difficult to adjust the thickness of the zirconium oxide film.
  • Non-Patent Document 1 a zirconium alkoxide precursor and a zirconium oxide thin film using the same are known.
  • the zirconium alkoxide precursor has a very short shelf life because it has a very high reactivity, so it is very difficult to handle in a thin film manufacturing process, and it causes a catalytic hydrolytic decomposition reaction even with a trace amount of moisture.
  • Non-Patent Document 2 a zirconium compound to which an amido ligand is coordinated and a zirconium oxide thin film using the same as a precursor are known.
  • all of the precursors represented by the zirconium compound eg, Zr(NMeEt) 4 or Zr(NEt 2 ) 4
  • Zr(NMeEt) 4 or Zr(NEt 2 ) 4 exist in a liquid state with low viscosity at room temperature, have a very high vapor pressure, and an amido ligand by ozone and water vapor It is easy to remove the zirconium oxide thin film through the atomic layer deposition method.
  • the zirconium compound is very reactive, so long-term storage is not easy, and in particular, it has low thermal stability, so it is decomposed during vaporization to cause deterioration of the quality of the thin film.
  • Patent Document 1 discloses a zirconium precursor having a cyclopentadiene group as a ligand, but has not yet obtained satisfactory results.
  • An object of the present invention is to provide a novel Group 4 transition metal compound useful as a precursor for thin film deposition due to its thermal stability, high volatility and excellent cohesion, and a method for preparing the same.
  • Another object of the present invention is to provide a method for manufacturing a thin film containing a Group 4 transition metal of high density and high purity prepared by using the Group 4 transition metal compound of the present invention.
  • M is a Group 4 transition metal
  • R 1 to R 5 are each independently C 1 -C 10 alkyl
  • n is an integer independently selected from 1-4.
  • M is titanium, zirconium, or hafnium; wherein R 1 to R 5 are each independently C 1 -C 7 alkyl; The n may be an integer selected from 1 to 3.
  • R 1 and R 2 are the same as each other C 1 -C 4 alkyl;
  • the R 3 to R 5 may be each independently C 1 -C 4 alkyl.
  • R 1 and R 2 are methyl or ethyl in the same manner as each other; At least one of R 3 to R 5 may be ethyl, propyl, or butyl, and the rest may be methyl, ethyl, propyl, or butyl.
  • M is a Group 4 transition metal
  • R 1 to R 5 are each independently C 1 -C 10 alkyl
  • n is an integer independently selected from 1-4.
  • the present invention provides a composition for depositing a thin film containing a Group 4 transition metal comprising the Group 4 transition metal compound represented by Formula 1 above.
  • the Group 4 transition metal of the Group 4 transition metal compound may be titanium, zirconium, or hafnium.
  • the present invention provides a method for producing a Group 4 transition metal-containing thin film using the Group 4 transition metal compound.
  • the manufacturing method may be performed by a chemical vapor deposition method or an atomic layer deposition method.
  • the Group 4 transition metal compound according to the present invention has high thermal stability and excellent volatility, so it is very useful as a precursor of a Group 4 transition metal-containing thin film and can be applied to various thin film deposition methods. Furthermore, it is possible to prepare a thin film containing a group 4 transition metal of good quality due to its excellent adsorption to the substrate.
  • the Group 4 transition metal compound according to the present invention is not decomposed even at a high process temperature, and has excellent storage stability.
  • Group 4 transition metal compound according to the present invention when employed, it is possible to manufacture a high dielectric thin film having high density and purity and excellent physical and electrical properties.
  • the Group 4 transition metal compound according to the present invention can be applied to various thin film deposition methods, and the deposition rate is fast and easy with high volatility. It can be formed with a uniform thickness on the top. Accordingly, according to the present invention, it is possible to provide a method for manufacturing a thin film containing a Group 4 transition metal that can satisfy all of the stability, efficiency and reliability of the semiconductor manufacturing process.
  • Example 1 shows a TGA graph of Example 1 according to the present invention
  • Figure 2 shows the TGA graph of Example 2 according to the present invention
  • Example 3 shows a TGA graph of Example 3 according to the present invention.
  • alkyl is a monovalent substituent and includes both linear and branched forms.
  • the term "substantially the same” as used herein refers to a range that does not cause changes in the state and structure of the compound before and after the specified treatment, that is, the compound before and after the specified treatment can fall within the scope of identity. means there is
  • the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio.
  • Group 4 transition metal compound may be represented by Formula 1, and has an equivalent meaning to expressions such as “precursor” or “precursor compound”.
  • thermal stability may mean that physical properties do not change even during a continuous heating process or a high temperature process, and specifically, it means that the structure does not change even when exposed for a long time under the harsh conditions described above. do.
  • a precursor is introduced into the chamber by using a precursor introduction device such as a bubbling system or an injection system.
  • a precursor introduction device such as a bubbling system or an injection system.
  • the precursor is vaporized by bubbling a precursor in a liquid state with a carrier gas, or a precursor in a solid state is vaporized to introduce the precursor in a vapor state into the chamber together with the carrier gas. That is, the precursors, which are liquid or solid at room temperature, are heated and converted to a vapor state before being provided into the chamber.
  • the precursors used to form the thin film are required to have excellent thermal stability. If the precursors are thermally unstable and easily decomposed by heat, it is difficult to control process conditions, it is difficult to form a thin film having a uniform thickness, and it is difficult to control the electrical characteristics of the semiconductor device.
  • the present inventors have devised a novel Group 4 transition metal compound that can solve the problems by paying attention to the above-described problems.
  • the Group 4 transition metal compound of the present invention is a heteroleptic compound to which two kinds of ligands having different reactivity are bound.
  • the Group 4 transition metal compound of the present invention having such structural characteristics has high thermal stability that does not change physical properties even during a continuous heating process or a high temperature process, and can provide a high-quality and reliable thin film containing a Group 4 transition metal with excellent volatility. There is, the present invention is proposed.
  • the Group 4 transition metal compound according to an embodiment of the present invention is a novel compound, and exhibits improved thermal stability and excellent volatility. In addition, it has high reactivity and when a thin film is manufactured using it, the growth rate of the thin film is excellent and a good quality thin film can be manufactured even at a relatively low temperature, so it is useful as a precursor for manufacturing a thin film containing a group 4 transition metal. can do.
  • the Group 4 transition metal compound according to the present invention is represented by the following formula (1).
  • M is a Group 4 transition metal
  • R 1 to R 5 are each independently C 1 -C 10 alkyl
  • n is an integer independently selected from 1-4.
  • the Group 4 transition metal compound according to an embodiment of the present invention has a structure including an alkoxyimideamide ligand. Accordingly, the Group 4 transition metal compound effectively provides electrons to the central metal and exhibits improved stability due to intermolecular bonding. In addition, the thermal stability is very excellent, so that it is not decomposed even in a continuous heating process, so that a thin film of good quality can be manufactured.
  • the Group 4 transition metal compound according to an embodiment of the present invention forms a highly crystalline structure by implementing excellent cohesion as well as implementing excellent volatility, so that the growth rate of the thin film is excellent and good quality even at a relatively low temperature.
  • a thin film may be provided.
  • the Group 4 transition metal compound of the present invention since the Group 4 transition metal compound of the present invention has excellent thermal stability, volatility and reactivity, it can be deposited by various deposition methods, and a high-density, high-purity Group 4 transition metal-containing thin film can be manufactured at a high deposition rate.
  • M is titanium, zirconium, or hafnium; wherein R 1 to R 5 are each independently C 1 -C 7 alkyl; The n may be an integer selected from 1 to 3.
  • M is titanium; zirconium or hafnium; wherein R 1 and R 2 are the same as each other C 1 -C 4 alkyl;
  • R 3 to R 5 may be each independently C 1 -C 4 alkyl.
  • M is titanium, zirconium, or hafnium; wherein R 1 and R 2 are the same as methyl or ethyl; At least one of R 3 to R 5 may be ethyl, propyl, or butyl, and the rest may be methyl, ethyl, propyl, or butyl.
  • n may be an integer of 1 or 2.
  • M is titanium; wherein R 1 and R 2 are the same as methyl or ethyl; at least one of R 3 to R 5 is ethyl, propyl or butyl, and the other is methyl or ethyl; n is an integer of 1, or in Formula 1, M is zirconium or hafnium; wherein R 1 and R 2 are the same as methyl or ethyl; at least one of R 3 to R 5 is ethyl, propyl or butyl, and the other is methyl or ethyl; The n may be an integer of 2.
  • R 3 to R 5 may be ethyl, n -propyl, i -propyl, n -butyl, s -butyl or t -butyl, and the rest may be methyl or ethyl.
  • the stability to heat is extremely improved so that it is not decomposed at a high temperature for a long time. Accordingly, it is possible to prevent the deposition of solid impurities generated during the decomposition of the precursor during the formation of the thin film or the filling of holes or the like on the substrate. In addition, the vaporized precursor is uniformly supplied on the substrate, so that excellent step coverage can be imparted.
  • the Group 4 transition metal compound according to an embodiment of the present invention may have a molecular weight of 1,500 or less.
  • the molecular weight of the Group 4 transition metal compound may be, specifically, 400 to 1,000, and more specifically, 500 to 800.
  • Group 4 transition metal compound according to an embodiment of the present invention may be selected from the following structure, but is not limited thereto.
  • M is titanium, zirconium or hafnium.
  • the Group 4 transition metal compound represented by the following Chemical Formula 1 may be prepared through various synthesis methods, and specifically, it may be prepared by reacting the following Chemical Formulas A and B.
  • M is a Group 4 transition metal
  • R 1 to R 5 are each independently C 1 -C 10 alkyl
  • n is an integer independently selected from 1-4.
  • the reaction according to an embodiment of the present invention may be carried out under an organic solvent, and the usable organic solvent is not limited, but an organic solvent having high solubility for the reactants may be used, and specifically, hexane (Hexane) ), one or more mixed organic solvents selected from diethylether, toluene, tetrahydrofuran (THF), etc. may be used.
  • an organic solvent having high solubility for the reactants may be used, and specifically, hexane (Hexane) ), one or more mixed organic solvents selected from diethylether, toluene, tetrahydrofuran (THF), etc.
  • reactants may be appropriately changed and used in a stoichiometric equivalent ratio according to a desired ligand ratio.
  • Formula B may be used in an amount of 1 to 5 moles, or 1 to 4 moles, or 1 to 3 moles, based on 1 mole of Formula A.
  • reaction may be performed under an inert gas atmosphere such as nitrogen or argon.
  • the compound of Formula A and the compound of Formula B are reacted at 10 to 35° C. for 5 to 30 hours,
  • the Group 4 transition metal compound of Formula 1 can be obtained in high yield (70% or more).
  • the purification may be performed by recrystallization, column chromatography, sublimation, or the like.
  • the present invention provides a composition for depositing a Group 4 transition metal-containing thin film comprising the Group 4 transition metal compound represented by Formula 1 of the present invention and a Group 4 transition metal-containing thin film prepared using the Group 4 transition metal compound. A manufacturing method will be described.
  • composition for depositing a Group 4 transition metal-containing thin film includes the Group 4 transition metal compound of Formula 1, and the amount of the Group 4 transition metal compound used in the composition of the present invention depends on the film formation conditions of the thin film or Of course, it may be included within the range recognized by those skilled in the art in consideration of the thickness and characteristics of the thin film.
  • a composition for depositing a Group 4 transition metal-containing thin film includes a linear, branched or cyclic alkane compound having 5 to 10 carbon atoms; aromatic hydrocarbon compounds having 6 to 12 carbon atoms; an alkylamine compound having 2 to 10 carbon atoms; and heterocycloalkyl compounds containing oxygen, nitrogen, and the like; It may further include one solvent or a mixed solvent of two or more selected from the like.
  • the alkane compound may include hexane, heptane, octane, cyclohexane, and neopentane
  • the aromatic hydrocarbon compound may include benzene, toluene, and xylene
  • the alkylamine compound may include dimethylamine, di Ethylamine, ethylmethylamine, triethylamine, tributylamine, tetramethylethylenediamine, etc. are mentioned.
  • the heterocycloalkyl compound may include tetrahydrofuran, pyridine, and the like.
  • composition for depositing a Group 4 transition metal-containing thin film may contain 0.1 to 10 moles, or 0.2 to 5 moles, or 0.5 to 3 moles of the solvent based on 1 mole of the Group 4 transition metal compound.
  • the group 4 transition metal-containing composition for thin film deposition may be used for thin film deposition through a conventional solution process.
  • the viscosity (Viscosity, Cp, measured at 28.3 ° C.) is 1 to 50 Cp. may be, specifically 1 to 30Cp, more specifically 1 to 20Cp.
  • composition for depositing a Group 4 transition metal-containing thin film according to an embodiment of the present invention or the Group 4 transition metal compound of the present invention is employed, it is possible to provide a thin film containing a Group 4 transition metal of high purity with high volatility and reactivity.
  • group 4 transition metal-containing thin film prepared therefrom is useful as a high-density, high-k thin film material.
  • the present invention provides a method for producing a Group 4 transition metal-containing thin film comprising; preparing a Group 4 transition metal-containing thin film using the Group 4 transition metal compound of the present invention described above.
  • the method for manufacturing a Group 4 transition metal-containing thin film may provide a Group 4 transition metal-containing thin film on a substrate through a known deposition method.
  • the deposition method may be chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), low pressure vapor deposition, plasma enhanced atomic layer deposition, etc. .
  • the Group 4 transition metal compound according to an embodiment of the present invention has excellent volatility and is not easily decomposed even at a high temperature, and can maintain a stable vapor state even after vaporization, so it can be effective in the deposition method described above.
  • the alkoxyimideamide ligand bound to the Group 4 transition metal compound is introduced onto the substrate and then the It may be chemically bonded to the substrate to form a thin film.
  • one or more reactive gases selected from oxygen (O 2 ), ozone (O 3 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), etc. may include more.
  • the alkoxyimideamide ligand bound to the Group 4 transition metal compound is chemically adsorbed on the substrate. After that, a thin film may be formed on the substrate. In this case, of course, it may further include a step of substituting with the above-described reaction gas.
  • the Group 4 transition metal-containing thin film prepared through the deposition method may include a titanium thin film, a zirconium thin film, and a hafnium thin film; titanium oxide thin film, zirconium oxide thin film, hafnium oxide thin film; titanium oxynitride thin film, zirconium oxynitride thin film, hafnium oxynitride thin film; or a group 4 transition metal-containing composite oxynitride thin film; etc.
  • the substrate is not limited as long as it is a conventional substrate, and non-limiting examples thereof include a substrate including at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP, a silicon on insulator (SOI).
  • a substrate including at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP a silicon on insulator (SOI).
  • a rigid substrate such as a substrate, a quartz substrate, or a glass substrate for a display, or polyimide, polyethylene terephthalate (PET, PolyEthylene Terephthalate), polyethylene naphthalate (PEN, PolyEthylene Naphthalate), polymethyl methacrylate (PMMA, Poly Methyl MethAcrylate), polycarbonate (PC, PolyCarbonate), polyether sulfone (PES), may be a flexible plastic substrate such as polyester (Polyester).
  • PET PolyEthylene Terephthalate
  • PEN PolyEthylene Naphthalate
  • PMMA Poly Methyl MethAcrylate
  • PC PolyCarbonate
  • PES polyether sulfone
  • the method for manufacturing a group 4 transition metal-containing thin film includes the first step of maintaining the temperature of the substrate mounted in the chamber at 80 to 400 °C; and a second step of supplying energy to the substrate.
  • the step of supplying the energy is to activate a reaction for deposition, and may be a step of supplying energy by plasma, light, heat, voltage, or the like.
  • the temperature of the substrate may be specifically 100 to 350 °C, more specifically 200 to 325 °C range.
  • a deposition source in which the Group 4 transition metal compound is vaporized may be provided.
  • an additional reaction gas may be further provided.
  • the reaction gas may be provided simultaneously with the deposition source or may be provided subsequently.
  • the deposition source may be moved through a transport gas that does not react therewith.
  • the reaction gas may be one or a mixture of two or more selected from oxygen (O 2 ), ozone (O 3 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), and the like.
  • the reaction gas may be provided at a flow rate of 1 to 1,000 sccm, specifically 100 to 500 sccm, more specifically 150 to 400 sccm.
  • the transport gas may be provided at a flow rate of 1 to 200 sccm, but is not limited thereto.
  • each step may further include a purge step.
  • the purge gas in the purge step is not limited as long as it does not react with the Group 4 transition metal compound of the present invention, and non-limiting examples thereof include helium, neon, argon, krypton, xenon, radon, etc. It may be one or two or more mixed gases.
  • the purge gas may be provided at a flow rate of 1 sccm to 3,000 sccm, specifically 100 sccm to 1,500 sccm, more specifically 300 to 1,300 sccm.
  • the pressure in the chamber may be 0.1 to 10 torr, specifically 0.1 to 5 torr, more specifically 0.5 to 3 torr.
  • an additional heat treatment step may be further performed on the Group 4 transition metal-containing thin film obtained through the method for manufacturing the Group 4 transition metal-containing thin film according to an embodiment of the present invention.
  • the group 4 transition metal-containing thin film prepared according to the method for manufacturing a group 4 transition metal-containing thin film according to an embodiment of the present invention is a high-density high-k thin film material. That is, according to the method for manufacturing a Group 4 transition metal-containing thin film according to the present invention, a desired high-density high-k thin film material is easily supplied through an ALD process or a CVD process, so that wiring of semiconductor devices, gate insulating films of transistors, It can be used in various ways, such as forming a dielectric film of a capacitor or a coating film of an electronic component.
  • Examples of the Group 4 transition metal compound according to the present invention were carried out in an inert argon or nitrogen atmosphere using a glove box or a Schlenk line, and the structural analysis of the obtained title compound was performed by 1 H NMR and 13 C NMR It was measured through a spectrum (Bruker Advance 400 NMR).
  • a thermogravimetric analysis (TGA) method was used in order to measure the thermal stability, volatility, and decomposition temperature of the Group 4 transition metal compound.
  • the TGA method was measured under nitrogen gas injection at a pressure of 1.5 bar/min while warming the obtained title compound to 800°C at a rate of 5°C/min.
  • 1 H NMR spectra measured using the same sample left at room temperature and 130° C. for 4 days were compared.
  • the thickness of the Group 4 transition metal thin film prepared using the Group 4 transition metal compound according to the present invention was measured using an ellipsometer.
  • one amide ligand is decomposed and decreased by about 11% from room temperature, and then one alkoxyimimidamide ligand and the remaining amide ligand are decomposed and the weight is reduced by about 50%. looks like Compound 3 also shows a decrease of about 9% by decomposition of one amide ligand from room temperature, followed by a reduction in weight by about 49% as one alkoxy imidamide ligand and amide ligand are decomposed.
  • Compound 2 and Compound 3 are substantially sublimated or distilled, it should not be interpreted as deterioration of thermal stability.
  • a thin film was deposited through atomic layer deposition.
  • the silicon substrate was maintained at 300 °C, and the compound 1 obtained in Example 1 was filled in a stainless steel bubbler container and maintained at 110 °C.
  • compound 1 vaporized in a stainless steel bubbler vessel was supplied to a silicon substrate using argon gas (50 sccm) as a transport gas, but the deposition rate of the thin film was measured as the supply time was increased from 1 second to 7 seconds.
  • H 2 O reaction gas was supplied by increasing the supply time from 1 second to 5 seconds to measure the thin film deposition rate according to the supply time.
  • the supply time of the compound 1 was 5 seconds
  • the supply time of H 2 O was 3 seconds
  • the reaction by-products and residual reaction gas were removed for about 10 seconds using argon gas (1000 sccm).
  • a titanium oxide thin film (Ti oxide thin film) was formed by repeating 100 cycles of the above process as one cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a Group 4 transition metal compound, a method for manufacturing same, and a method for forming a thin film using same. The Group 4 transition metal compound according to the present invention is thermally stable, and has excellent volatility and high storage stability. Accordingly, by using same as a precursor, a Group 4 transition metal-containing thin film of high density and high purity and a method for manufacturing same can be provided.

Description

4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법 Group 4 transition metal compound, manufacturing method thereof, and method of forming thin film using the same
본 발명은 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법에 관한 것이다.The present invention relates to a Group 4 transition metal compound, a method for preparing the same, and a method for forming a thin film using the same.
반도체 공정에 있어서, 실리콘산화물(SiO2)은 제조 공정이 비교적 단순하기 때문에 주로 게이트 유전체로 사용되어 왔다. 상기 실리콘산화물의 제조공정은 단순하나, 비교적 낮은 유전상수(k)를 지니기 때문에 두께가 얇을 경우, 게이트로부터 채널로 누설 전류(gate-to-channel leakage current)가 발생하는 문제점을 가진다.In the semiconductor process, silicon oxide (SiO 2 ) has been mainly used as a gate dielectric because the manufacturing process is relatively simple. Although the manufacturing process of the silicon oxide is simple, since it has a relatively low dielectric constant (k), when the thickness is thin, there is a problem in that a gate-to-channel leakage current occurs.
이러한 문제점을 해결하기 위해, 절연성이 뛰어나고 높은 유전상수를 지니는 고유전 박막 재료 및 공정 기술에 관한 연구가 활발하게 진행되고 있다.In order to solve this problem, research on materials and process technologies for high dielectric thin films having excellent insulating properties and high dielectric constants is being actively conducted.
한편, 반도체 구조가 직접화 미세화 되어감에 따라 미세한 패턴에서도 우수한 단차 피복성을 가지는 다양한 공정(예, 원자층 증착법(ALD: atomic layer deposition), 화학 기상 증착법(CVD: chemical vapor deposition))에 적용이 가능할 수 있는 고유전 박막 재료로서, 높은 열안정성을 가지는 전구체 화합물에 대한 요구가 높아지고 있다.On the other hand, as the semiconductor structure becomes more direct and miniaturized, it is applied to various processes (eg, atomic layer deposition (ALD), chemical vapor deposition (CVD)) with excellent step coverage even in fine patterns. As a high-k thin film material capable of this, there is an increasing demand for a precursor compound having high thermal stability.
이러한 고유전 박막 재료의 일 예로, 4족 전이금속 화합물이 제안되었다. 구체적으로, 4족 전이금속 화합물은 티타늄 전구체, 지르코늄 전구체, 하프늄 전구체 등을 들 수 있으며, 이를 이용한 원자층 증착법 또는 화학 기상 증착법을 통한 4족 전이금속산화물 박막의 제조는 이들 전구체의 리간드 구조에 따라 다양하게 발전해왔다.As an example of such a high-k thin film material, a Group 4 transition metal compound has been proposed. Specifically, the Group 4 transition metal compound may include a titanium precursor, a zirconium precursor, a hafnium precursor, and the like, and the preparation of the Group 4 transition metal oxide thin film through an atomic layer deposition method or a chemical vapor deposition method using the same depends on the ligand structure of these precursors. developed in various ways.
일 예로, ZrCl4, ZrI4, ZrF4 등의 4족 전이금속 무기염이 공지되었다. 이를 이용한 원자층 증착법 또는 화학 기상 증착법을 통한 지르코늄산화물 박막은, 박막 내부에 무기염(Cl-, F-, I-)이 잔존하여 박막의 전기적 특성이 열화되고 박막의 응집(aggromeration) 상이 발생하기 쉬운 문제점을 가졌다. 또한 지르코늄산화막의 조도를 임의로 조정할 수 없으며, 박막두께의 조정도 어려운 문제점을 가졌다.As an example, group 4 transition metal inorganic salts such as ZrCl 4 , ZrI 4 , and ZrF 4 are known. In the zirconium oxide thin film using the atomic layer deposition method or the chemical vapor deposition method using this, inorganic salts (Cl - , F - , I - ) remain inside the thin film, so that the electrical properties of the thin film are deteriorated and an aggromeration phase of the thin film occurs. I had an easy problem. In addition, the roughness of the zirconium oxide film cannot be arbitrarily adjusted, and it is difficult to adjust the thickness of the zirconium oxide film.
일 예로, 비특허문헌1에는 지르코늄 알콕사이드 전구체 및 이를 이용한 지르코늄산화물 박막을 공지하고 있다. 그러나, 상기 지르코늄 알콕사이드 전구체는 반응성이 매우 높아 박막 제조 공정에서 다루기가 매우 까다롭고 미량의 수분에도 촉매적 가수분해(catalytic hydrolytic decomposition) 반응을 일으키므로 저장 수명이 매우 짧은 문제점을 가졌다.For example, in Non-Patent Document 1, a zirconium alkoxide precursor and a zirconium oxide thin film using the same are known. However, the zirconium alkoxide precursor has a very short shelf life because it has a very high reactivity, so it is very difficult to handle in a thin film manufacturing process, and it causes a catalytic hydrolytic decomposition reaction even with a trace amount of moisture.
일 예로, 비특허문헌2에 아미도 리간드가 배위되어 있는 지르코늄 화합물 및 이를 전구체로 이용한 지르코늄산화물 박막을 공지하고 있다. 그러나, 상기 지르코늄 화합물(예, Zr(NMeEt)4 또는 Zr(NEt2)4)로 대표되는 전구체는 모두 상온에서 점성이 낮은 액체상태로 존재하며, 증기압이 매우 높고 오존 및 수증기에 의해 아미도 리간드의 제거가 용이하여 원자층 증착법을 통한 지르코늄산화물 박막의 제조가 가능하다. 그러나, 상기 지르코늄 화합물은 매우 반응성이 높아 장기 보관성이 용이하지 않으며, 특히 열적 안정성이 낮아 기화 도중에 분해되어 박막의 품질저하를 야기하는 등의 문제점을 가졌다.For example, in Non-Patent Document 2, a zirconium compound to which an amido ligand is coordinated and a zirconium oxide thin film using the same as a precursor are known. However, all of the precursors represented by the zirconium compound (eg, Zr(NMeEt) 4 or Zr(NEt 2 ) 4 ) exist in a liquid state with low viscosity at room temperature, have a very high vapor pressure, and an amido ligand by ozone and water vapor It is easy to remove the zirconium oxide thin film through the atomic layer deposition method. However, the zirconium compound is very reactive, so long-term storage is not easy, and in particular, it has low thermal stability, so it is decomposed during vaporization to cause deterioration of the quality of the thin film.
이와 같은 종래 기술의 문제점을 해결하기 위해, 특허문헌1에서는 시클로펜타다이엔기를 리간드로 가지는 지르코늄 전구체 공지하고 있으나, 아직까지 만족할만한 결과를 얻지 못하였다.In order to solve the problems of the prior art, Patent Document 1 discloses a zirconium precursor having a cyclopentadiene group as a ligand, but has not yet obtained satisfactory results.
따라서, 종래 고유전 박막 재료로 사용된 전구체 화합물 대비하여, 보다 우수한 특성을 가지는 전구체 화합물에 대한 연구는 여전히 요구된다.Therefore, there is still a need for research on a precursor compound having superior properties compared to the precursor compound used as a conventional high-k thin film material.
본 발명의 목적은 열적으로 안정하고 휘발성이 높고 응집력이 우수하여 박막증착용 전구체로 유용한 신규 4족 전이금속 화합물 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide a novel Group 4 transition metal compound useful as a precursor for thin film deposition due to its thermal stability, high volatility and excellent cohesion, and a method for preparing the same.
또한, 본 발명의 목적은 본 발명의 4족 전이금속 화합물을 포함하는 4족 전이금속함유 박막증착용 조성물을 제공하는 것이다.In addition, it is an object of the present invention to provide a composition for depositing a thin film containing a Group 4 transition metal comprising the Group 4 transition metal compound of the present invention.
또한, 본 발명의 목적은 본 발명의 4족 전이금속 화합물을 이용하여 제조된 고밀도 및 고순도의 4족 전이금속함유 박막의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a thin film containing a Group 4 transition metal of high density and high purity prepared by using the Group 4 transition metal compound of the present invention.
상기 목적을 달성하기 위하여, 본 발명에서는 하기 화학식1로 표시되는 4족 전이금속 화합물이 제공된다.In order to achieve the above object, in the present invention, there is provided a Group 4 transition metal compound represented by the following formula (1).
[화학식1][Formula 1]
Figure PCTKR2022001606-appb-img-000001
Figure PCTKR2022001606-appb-img-000001
[상기 화학식1에서,[In Formula 1,
M은 4족 전이금속이고;M is a Group 4 transition metal;
R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.]n is an integer independently selected from 1-4.]
본 발명의 일 실시예에 따른 상기 화학식1에서, 상기 M은 티타늄, 지르코늄 또는 하프늄이고; 상기 R1 내지 R5는 서로 독립적으로 C1-C7의 알킬이고; 상기 n은 1 내지 3에서 선택되는 정수일 수 있다.In Formula 1 according to an embodiment of the present invention, M is titanium, zirconium, or hafnium; wherein R 1 to R 5 are each independently C 1 -C 7 alkyl; The n may be an integer selected from 1 to 3.
본 발명의 일 실시예에 따른 상기 화학식1에서, 상기 R1 및 R2는 서로 동일하게 C1-C4알킬이고; 상기 R3 내지 R5는 서로 독립적으로 C1-C4알킬일 수 있다.In Formula 1 according to an embodiment of the present invention, R 1 and R 2 are the same as each other C 1 -C 4 alkyl; The R 3 to R 5 may be each independently C 1 -C 4 alkyl.
본 발명의 일 실시예에 따른 상기 화학식1에서, 상기 R1 및 R2는 서로 동일하게 메틸 또는 에틸이고; 상기 R3 내지 R5중 적어도 하나는 에틸, 프로필 또는 부틸이고, 나머지는 메틸, 에틸, 프로필 또는 부틸일 수 있다.In Formula 1 according to an embodiment of the present invention, R 1 and R 2 are methyl or ethyl in the same manner as each other; At least one of R 3 to R 5 may be ethyl, propyl, or butyl, and the rest may be methyl, ethyl, propyl, or butyl.
본 발명에서는 하기 화학식A와 화학식B를 반응시켜, 하기 화학식1로 표시되는 4족 전이금속 화합물을 제조하는 방법이 제공된다.In the present invention, there is provided a method for preparing a Group 4 transition metal compound represented by the following Chemical Formula 1 by reacting the following Chemical Formulas A and B.
[화학식A][Formula A]
M(NR1R2)4 M(NR 1 R 2 ) 4
[화학식B][Formula B]
Figure PCTKR2022001606-appb-img-000002
Figure PCTKR2022001606-appb-img-000002
[화학식1][Formula 1]
Figure PCTKR2022001606-appb-img-000003
Figure PCTKR2022001606-appb-img-000003
[상기 화학식A, 화학식B 및 화학식1에서,[In Formula A, Formula B and Formula 1,
M은 4족 전이금속이고;M is a Group 4 transition metal;
R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.]n is an integer independently selected from 1-4.]
또한, 본 발명에서는 상기 화학식1로 표시되는 4족 전이금속 화합물을 포함하는 4족 전이금속함유 박막증착용 조성물이 제공된다.In addition, the present invention provides a composition for depositing a thin film containing a Group 4 transition metal comprising the Group 4 transition metal compound represented by Formula 1 above.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막증착용 조성물에 있어서, 상기 4족 전이금속 화합물의 4족 전이금속은 티타늄, 지르코늄 또는 하프늄 등일 수 있다.In the composition for depositing a Group 4 transition metal-containing thin film according to an embodiment of the present invention, the Group 4 transition metal of the Group 4 transition metal compound may be titanium, zirconium, or hafnium.
또한, 본 발명에서는 상기 4족 전이금속 화합물을 이용한 4족 전이금속함유 박막의 제조방법이 제공된다. 이때, 상기 제조방법은 화학 기상 증착법 또는 원자층 증착법 등에 의하여 수행되는 것일 수 있다.In addition, the present invention provides a method for producing a Group 4 transition metal-containing thin film using the Group 4 transition metal compound. In this case, the manufacturing method may be performed by a chemical vapor deposition method or an atomic layer deposition method.
본 발명에 따른 4족 전이금속 화합물은 열적 안정성이 높고 휘발성이 우수하여, 4족 전이금속 함유 박막의 전구체로 매우 유용하고 다양한 박막 증착 방법에 적용이 가능하다. 나아가, 기판과의 흡착이 우수하여 양질의 4족 전이금속함유 박막의 제조가 가능하다.The Group 4 transition metal compound according to the present invention has high thermal stability and excellent volatility, so it is very useful as a precursor of a Group 4 transition metal-containing thin film and can be applied to various thin film deposition methods. Furthermore, it is possible to prepare a thin film containing a group 4 transition metal of good quality due to its excellent adsorption to the substrate.
또한, 본 발명에 따른 4족 전이금속 화합물은 높은 공정온도 중에도 분해되지 않으며, 저장안정성이 매우 우수하다.In addition, the Group 4 transition metal compound according to the present invention is not decomposed even at a high process temperature, and has excellent storage stability.
또한, 본 발명에 따른 4족 전이금속 화합물을 채용하는 경우, 밀도 및 순도가 높고 물리적·전기적 특성이 매우 우수한 고유전 박막의 제조가 가능하다.In addition, when the Group 4 transition metal compound according to the present invention is employed, it is possible to manufacture a high dielectric thin film having high density and purity and excellent physical and electrical properties.
이와 같은 특성으로, 본 발명에 따른 4족 전이금속 화합물은 다양한 박막 증착 방법에 적용 가능하고, 높은 휘발성으로 증착 속도가 빠르고 용이하며, 뛰어난 응집력과 우수한 단차피복성으로 고유전 박막을 다양한 형태의 기판상에 균일한 두께로 형성할 수 있다. 이로써, 본 발명에 따르면 반도체 제조 공정의 안정성, 효율성 및 신뢰성 모두를 만족시킬 수 있는 4족 전이금속함유 박막의 제조방법을 제공할 수 있다.With these characteristics, the Group 4 transition metal compound according to the present invention can be applied to various thin film deposition methods, and the deposition rate is fast and easy with high volatility. It can be formed with a uniform thickness on the top. Accordingly, according to the present invention, it is possible to provide a method for manufacturing a thin film containing a Group 4 transition metal that can satisfy all of the stability, efficiency and reliability of the semiconductor manufacturing process.
도1은 본 발명에 따른 실시예1의 TGA 그래프를 나타낸 것이고,1 shows a TGA graph of Example 1 according to the present invention,
도2는 본 발명에 따른 실시예2의 TGA 그래프를 나타낸 것이고,Figure 2 shows the TGA graph of Example 2 according to the present invention,
도3은 본 발명에 따른 실시예3의 TGA 그래프를 나타낸 것이다.3 shows a TGA graph of Example 3 according to the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 이하 본 발명에 따른 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법에 관하여 상세히 설명하기로 한다.Advantages and features of the present invention, and methods for achieving them, will become apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be embodied in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Hereinafter, the Group 4 transition metal compound according to the present invention, a method for preparing the same, and a method for forming a thin film using the same will be described in detail.
본 명세서의 용어, "알킬"은 1가의 치환체로, 선형 또는 분지형의 형태를 모두 포함한다.As used herein, the term “alkyl” is a monovalent substituent and includes both linear and branched forms.
또한 본 명세서의 용어, "포함한다"는 표현은 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.In addition, the term "comprising" as used herein is an open-ended description having an equivalent meaning to expressions such as "comprises", "contains", "has" or "characterized by", and is not listed further. It does not exclude elements, materials or processes that are not
또한 본 명세서의 용어, "실질적으로 동일하다"는 표현은 특정된 처리 전·후 화합물의 상태 및 구조 등의 변화를 일으키지 않는 범위, 즉 특정된 처리 전·후 화합물 서로가 동일성의 범주에 들 수 있는 것임을 의미한다.In addition, the term "substantially the same" as used herein refers to a range that does not cause changes in the state and structure of the compound before and after the specified treatment, that is, the compound before and after the specified treatment can fall within the scope of identity. means there is
또한 본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular form used herein may be intended to include the plural form as well, unless the context specifically dictates otherwise.
또한 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미한다.In addition, in the present specification, the unit used without special mention is based on the weight, for example, the unit of % or ratio means weight % or weight ratio.
또한 본 명세서의 용어, "4족 전이금속 화합물"은 화학식1로 대표될 수 있으며, "전구체" 또는 "전구체 화합물" 등의 표현과 등가의 의미를 가진다.In addition, as used herein, the term "Group 4 transition metal compound" may be represented by Formula 1, and has an equivalent meaning to expressions such as "precursor" or "precursor compound".
또한 본 명세서의 용어, "열적 안정성"은 지속적인 가온 공정 또는 높은 온도의 공정 중에도 물성이 변화되지 않는 것을 의미하는 것일 수 있으며, 구체적으로 상술된 가혹조건 하에 장기적으로 노출되어도 구조 변화를 일으키지 않는 것을 의미한다.In addition, as used herein, the term "thermal stability" may mean that physical properties do not change even during a continuous heating process or a high temperature process, and specifically, it means that the structure does not change even when exposed for a long time under the harsh conditions described above. do.
원자층 증착 공정 또는 화학 기상 증착 공정 등을 수행하여 박막을 형성하는 경우, 버블링 시스템, 인젝션 시스템과 같은 전구체 유입 장치를 이용하여 전구체를 챔버에 도입하게 된다. 일 예로, 버블링 시스템에서는 액체 상태의 전구체를 캐리어 가스로 버블링하여 전구체를 기화시키거나 고체 상태의 전구체를 기화시켜 증기 상태의 전구체를 캐리어 가스와 함께 챔버로 유입시킨다. 즉, 상온에서 액체 또는 고체인 전구체들은 챔버 내부로 제공되기 전에 가열되어 증기 상태로 전환된다. 이와 같이 챔버로 전구체를 도입하는 동안 전구체에 에너지가 가해지게 되고, 원자층 적층 공정 또는 화학 기상 증착 공정이 수행되는 챔버도 높은 온도 상태를 유지하게 된다. 따라서 박막을 형성하는데 이용되는 전구체들은 우수한 열적 안정성을 가질 것이 요구된다. 만약, 전구체들이 열적으로 불안정하여 열에 의해 쉽게 분해되는 경우, 공정 조건을 조절하기 어려우며 균일한 두께를 가지는 박막을 형성하기 어렵고 반도체 장치의 전기적 특성을 조절하기 어렵다.When a thin film is formed by performing an atomic layer deposition process or a chemical vapor deposition process, a precursor is introduced into the chamber by using a precursor introduction device such as a bubbling system or an injection system. For example, in the bubbling system, the precursor is vaporized by bubbling a precursor in a liquid state with a carrier gas, or a precursor in a solid state is vaporized to introduce the precursor in a vapor state into the chamber together with the carrier gas. That is, the precursors, which are liquid or solid at room temperature, are heated and converted to a vapor state before being provided into the chamber. As such, energy is applied to the precursor while the precursor is introduced into the chamber, and the chamber in which the atomic layer deposition process or the chemical vapor deposition process is performed also maintains a high temperature state. Therefore, the precursors used to form the thin film are required to have excellent thermal stability. If the precursors are thermally unstable and easily decomposed by heat, it is difficult to control process conditions, it is difficult to form a thin film having a uniform thickness, and it is difficult to control the electrical characteristics of the semiconductor device.
이에, 본 발명자는 상술된 문제점에 착안하여, 이의 문제점을 해결할 수 있는 신규한 4족 전이금속 화합물을 고안하였다. 본 발명의 4족 전이금속 화합물은 반응성이 상이한 2종의 리간드가 결합된 헤테로렙틱(heteroleptic) 화합물이다.Accordingly, the present inventors have devised a novel Group 4 transition metal compound that can solve the problems by paying attention to the above-described problems. The Group 4 transition metal compound of the present invention is a heteroleptic compound to which two kinds of ligands having different reactivity are bound.
이러한 구조적 특징을 갖는 본 발명의 4족 전이금속 화합물은 지속적인 가온 공정 또는 높은 온도의 공정 중에도 물성이 변화되지 않는 높은 열적 안정성을 가지며 우수한 휘발성으로 신뢰성 높은 양질의 4족 전이금속함유 박막을 제공할 수 있어, 본 발명을 제안한다.The Group 4 transition metal compound of the present invention having such structural characteristics has high thermal stability that does not change physical properties even during a continuous heating process or a high temperature process, and can provide a high-quality and reliable thin film containing a Group 4 transition metal with excellent volatility. There is, the present invention is proposed.
이하, 본 발명에 따른 4족 전이금속 화합물에 대하여 설명한다.Hereinafter, the Group 4 transition metal compound according to the present invention will be described.
본 발명의 일 실시예에 따른 4족 전이금속 화합물은 신규한 화합물로서, 향상된 열적 안정성과 우수한 휘발성을 나타낸다. 또한 높은 반응성을 가져 이를 이용하여 박막을 제조할 경우, 박막의 성장 속도(growth rate)가 우수하고 비교적 낮은 온도에서도 양질의 박막을 제조할 수 있어, 4족 전이금속함유 박막 제조를 위한 전구체로 유용할 수 있다.The Group 4 transition metal compound according to an embodiment of the present invention is a novel compound, and exhibits improved thermal stability and excellent volatility. In addition, it has high reactivity and when a thin film is manufactured using it, the growth rate of the thin film is excellent and a good quality thin film can be manufactured even at a relatively low temperature, so it is useful as a precursor for manufacturing a thin film containing a group 4 transition metal. can do.
구체적으로, 본 발명에 따른 4족 전이금속 화합물은 하기 화학식1로 표시된다.Specifically, the Group 4 transition metal compound according to the present invention is represented by the following formula (1).
[화학식1][Formula 1]
Figure PCTKR2022001606-appb-img-000004
Figure PCTKR2022001606-appb-img-000004
[상기 화학식1에서,[In Formula 1,
M은 4족 전이금속이고;M is a Group 4 transition metal;
R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.]n is an integer independently selected from 1-4.]
상술한 바와 같이, 본 발명의 일 실시예에 따른 4족 전이금속 화합물은 알콕시이미드아미드 리간드를 포함하는 구조를 갖는다. 이에, 상기 4족 전이금속 화합물은 중심금속에 전자를 효과적으로 제공하고, 분자간 결합으로 향상된 안정성을 나타낸다. 또한, 열적 안정성이 매우 우수하여 지속적인 가온공정에서도 분해되지 않아 양질의 박막을 제조할 수 있다.As described above, the Group 4 transition metal compound according to an embodiment of the present invention has a structure including an alkoxyimideamide ligand. Accordingly, the Group 4 transition metal compound effectively provides electrons to the central metal and exhibits improved stability due to intermolecular bonding. In addition, the thermal stability is very excellent, so that it is not decomposed even in a continuous heating process, so that a thin film of good quality can be manufactured.
뿐만 아니라, 본 발명의 일 실시예에 따른 4족 전이금속 화합물은 우수한 휘발성의 구현은 물론 뛰어난 응집력의 구현으로 높은 결정성 구조를 형성하여, 박막의 성장 속도가 우수하고, 비교적 낮은 온도에서도 양질의 박막을 제공할 수 있다. 또한, 본 발명의 4족 전이금속 화합물은 열적 안정성, 휘발성 및 반응성이 우수하여 다양한 증착방법으로도 증착이 가능하며, 높은 증착율로 고밀도, 고순도의 4족 전이금속 함유 박막의 제조가 가능하다.In addition, the Group 4 transition metal compound according to an embodiment of the present invention forms a highly crystalline structure by implementing excellent cohesion as well as implementing excellent volatility, so that the growth rate of the thin film is excellent and good quality even at a relatively low temperature. A thin film may be provided. In addition, since the Group 4 transition metal compound of the present invention has excellent thermal stability, volatility and reactivity, it can be deposited by various deposition methods, and a high-density, high-purity Group 4 transition metal-containing thin film can be manufactured at a high deposition rate.
본 발명의 일 실시예에 따른 4족 전이금속 화합물은 향상된 휘발성의 구현을 위해, 구체적으로 상기 화학식1에서 상기 M은 티타늄, 지르코늄 또는 하프늄이고; 상기 R1 내지 R5는 서로 독립적으로 C1-C7의 알킬이고; 상기 n은 1 내지 3에서 선택되는 정수인 것일 수 있다.In the Group 4 transition metal compound according to an embodiment of the present invention, in order to implement improved volatility, specifically, in Formula 1, M is titanium, zirconium, or hafnium; wherein R 1 to R 5 are each independently C 1 -C 7 alkyl; The n may be an integer selected from 1 to 3.
본 발명의 일 실시예에 따른 4족 전이금속 화합물은 박막 형성시 기판 표면에 화학결합을 형성하기 전 또는 기화된 후 열에 의해 쉽게 분해되지 않는 측면에서, 구체적으로 상기 화학식1에서 상기 M은 티타늄, 지르코늄 또는 하프늄이고; 상기 R1 및 R2는 서로 동일하게 C1-C4알킬이고; 상기 R3 내지 R5는 서로 독립적으로 C1-C4알킬인 것일 수 있다.In the aspect that the Group 4 transition metal compound according to an embodiment of the present invention is not easily decomposed by heat before forming a chemical bond on the substrate surface or after vaporization when forming a thin film, specifically, in Formula 1, M is titanium; zirconium or hafnium; wherein R 1 and R 2 are the same as each other C 1 -C 4 alkyl; The R 3 to R 5 may be each independently C 1 -C 4 alkyl.
보다 구체적으로, 상기 4족 전이금속 화합물은, 상기 화학식1에서 상기 M은 티타늄, 지르코늄 또는 하프늄이고; 상기 R1 및 R2는 서로 동일하게 메틸 또는 에틸이고; 상기 R3 내지 R5중 적어도 하나는 에틸, 프로필 또는 부틸이고, 나머지는 메틸, 에틸, 프로필 또는 부틸인 것일 수 있다. 또한, 상기 화학식1에서 상기 n은 1 또는 2의 정수인 것일 수 있다.More specifically, in the Group 4 transition metal compound, in Formula 1, M is titanium, zirconium, or hafnium; wherein R 1 and R 2 are the same as methyl or ethyl; At least one of R 3 to R 5 may be ethyl, propyl, or butyl, and the rest may be methyl, ethyl, propyl, or butyl. In addition, in Formula 1, n may be an integer of 1 or 2.
일 예로, 상기 4족 전이금속 화합물은 상기 화학식1에서, 상기 M이 티타늄이고; 상기 R1 및 R2는 서로 동일하게 메틸 또는 에틸이고; 상기 R3 내지 R5중 적어도 하나는 에틸, 프로필 또는 부틸이고, 나머지는 메틸 또는 에틸이고; 상기 n은 1의 정수이거나, 상기 화학식1에서, 상기 M이 지르코늄 또는 하프늄이고; 상기 R1 및 R2는 서로 동일하게 메틸 또는 에틸이고; 상기 R3 내지 R5중 적어도 하나는 에틸, 프로필 또는 부틸이고, 나머지는 메틸 또는 에틸이고; 상기 n은 2의 정수인 것일 수 있다.For example, in the Group 4 transition metal compound, in Formula 1, M is titanium; wherein R 1 and R 2 are the same as methyl or ethyl; at least one of R 3 to R 5 is ethyl, propyl or butyl, and the other is methyl or ethyl; n is an integer of 1, or in Formula 1, M is zirconium or hafnium; wherein R 1 and R 2 are the same as methyl or ethyl; at least one of R 3 to R 5 is ethyl, propyl or butyl, and the other is methyl or ethyl; The n may be an integer of 2.
일 예로, 상기 R3 내지 R5중 적어도 하나는 에틸, n-프로필, i-프로필, n-부틸, s-부틸 또는 t-부틸일 수 있고, 나머지는 메틸 또는 에틸인 것일 수 있다.For example, at least one of R 3 to R 5 may be ethyl, n -propyl, i -propyl, n -butyl, s -butyl or t -butyl, and the rest may be methyl or ethyl.
본 발명의 일 실시예에 따른 4족 전이금속 화합물에 있어서, 리간드에 치환되는 치환체가 탄소수 1 내지 4를 만족하는 경우, 높은 온도에서 장시간동안 분해되지 않도록 열에 대한 안정성이 극히 향상되어 좋다. 이에, 박막 형성시 전구체의 분해 과정에서 생성되는 고체 불순물들이 기판상에 증착되거나 홀 등을 매립하는 현상 등을 방지할 수 있다. 또한 기화된 전구체가 기판상에 균일하게 공급되어, 우수한 단차피복성을 부여할 수 있어 좋다.In the Group 4 transition metal compound according to an embodiment of the present invention, when the substituent substituted for the ligand satisfies 1 to 4 carbon atoms, the stability to heat is extremely improved so that it is not decomposed at a high temperature for a long time. Accordingly, it is possible to prevent the deposition of solid impurities generated during the decomposition of the precursor during the formation of the thin film or the filling of holes or the like on the substrate. In addition, the vaporized precursor is uniformly supplied on the substrate, so that excellent step coverage can be imparted.
또한, 본 발명의 일 실시예에 따른 4족 전이금속 화합물은 1,500이하의 분자량을 갖는 것일 수 있다. 상기 4족 전이금속 화합물의 분자량은, 구체적으로 400 내지 1,000, 보다 구체적으로 500 내지 800인 것일 수 있다.In addition, the Group 4 transition metal compound according to an embodiment of the present invention may have a molecular weight of 1,500 or less. The molecular weight of the Group 4 transition metal compound may be, specifically, 400 to 1,000, and more specifically, 500 to 800.
가장 구체적으로, 본 발명의 일 실시예에 따른 4족 전이금속 화합물은 하기 구조에서 선택되는 것일 수 있으나, 이에 한정되는 것은 아니다.Most specifically, the Group 4 transition metal compound according to an embodiment of the present invention may be selected from the following structure, but is not limited thereto.
Figure PCTKR2022001606-appb-img-000005
Figure PCTKR2022001606-appb-img-000005
Figure PCTKR2022001606-appb-img-000006
Figure PCTKR2022001606-appb-img-000006
Figure PCTKR2022001606-appb-img-000007
Figure PCTKR2022001606-appb-img-000007
Figure PCTKR2022001606-appb-img-000008
Figure PCTKR2022001606-appb-img-000008
[상기 구조에서,[In the above structure,
M은 티타늄, 지르코늄 또는 하프늄이다.]M is titanium, zirconium or hafnium.]
본 발명의 일 실시예에 따른 하기 화학식1로 표시되는 4족 전이금속 화합물은 다양한 합성방법을 통해 제조될 수 있으며, 구체적으로는 하기 화학식A와 화학식B를 반응시켜 제조될 수 있다.The Group 4 transition metal compound represented by the following Chemical Formula 1 according to an embodiment of the present invention may be prepared through various synthesis methods, and specifically, it may be prepared by reacting the following Chemical Formulas A and B.
[화학식A][Formula A]
M(NR1R2)4 M(NR 1 R 2 ) 4
[화학식B][Formula B]
Figure PCTKR2022001606-appb-img-000009
Figure PCTKR2022001606-appb-img-000009
[화학식1][Formula 1]
Figure PCTKR2022001606-appb-img-000010
Figure PCTKR2022001606-appb-img-000010
[상기 화학식A, 화학식B 및 화학식1에서,[In Formula A, Formula B and Formula 1,
M은 4족 전이금속이고;M is a Group 4 transition metal;
R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.]n is an integer independently selected from 1-4.]
본 발명의 일 실시예에 따른 반응은 유기용매 하에서 수행될 수 있으며, 사용 가능한 유기용매는 한정되지는 않지만, 상기 반응물들에 대하여 높은 용해도를 가지는 유기 용매를 사용할 수 있으며, 구체적으로는 헥산(Hexane), 디에틸에테르(diethylether), 톨루엔(toluene), 테트라하이드로퓨란(THF) 등에서 선택되는 하나 또는 둘 이상의 혼합유기용매를 사용할 수 있다.The reaction according to an embodiment of the present invention may be carried out under an organic solvent, and the usable organic solvent is not limited, but an organic solvent having high solubility for the reactants may be used, and specifically, hexane (Hexane) ), one or more mixed organic solvents selected from diethylether, toluene, tetrahydrofuran (THF), etc. may be used.
또한, 상기 반응물들은 목적하는 리간드 비율에 따라 화학양론적 당량비로 적절하게 변경 사용될 수 있음은 물론이다.In addition, of course, the reactants may be appropriately changed and used in a stoichiometric equivalent ratio according to a desired ligand ratio.
일 예로, 상기 화학식B는 상기 화학식A 1몰에 대하여, 1 내지 5몰, 또는 1 내지 4몰, 또는 1 내지 3몰로 사용될 수 있다.For example, Formula B may be used in an amount of 1 to 5 moles, or 1 to 4 moles, or 1 to 3 moles, based on 1 mole of Formula A.
또한, 상기 반응은 질소, 아르곤 등의 비활성기체 분위기하에서 수행될 수 있다.In addition, the reaction may be performed under an inert gas atmosphere such as nitrogen or argon.
일 예로, 상기 반응은, 헥산, 디에틸에테르, 톨루엔, 테트라하이드로퓨란 또는 이들의 혼합유기용매 하에서, 상기 화학식A의 화합물과 화학식B의 화합물을 10 내지 35℃에서 5 내지 30시간 동안 반응시켜, 상기 화학식1의 4족 전이금속 화합물을 높은 수율(70%이상)로 수득할 수 있다. 이때, 상기 반응 후 필요에 따라서, 재결정, 칼럼 크로마토그래피 또는 승화 등으로 정제해도 된다.For example, in the reaction, in hexane, diethyl ether, toluene, tetrahydrofuran or a mixed organic solvent thereof, the compound of Formula A and the compound of Formula B are reacted at 10 to 35° C. for 5 to 30 hours, The Group 4 transition metal compound of Formula 1 can be obtained in high yield (70% or more). At this time, after the reaction, if necessary, the purification may be performed by recrystallization, column chromatography, sublimation, or the like.
또한, 본 발명은 본 발명의 상기 화학식1로 표시되는 4족 전이금속 화합물을 포함하는 4족 전이금속함유 박막증착용 조성물 및 상기 4족 전이금속 화합물을 사용하여 제조되는 4족 전이금속함유 박막의 제조방법에 대하여 설명한다.In addition, the present invention provides a composition for depositing a Group 4 transition metal-containing thin film comprising the Group 4 transition metal compound represented by Formula 1 of the present invention and a Group 4 transition metal-containing thin film prepared using the Group 4 transition metal compound. A manufacturing method will be described.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막증착용 조성물은 상기 화학식1의 4족 전이금속 화합물을 포함하며, 본 발명의 조성물 내 상기 4족 전이금속 화합물의 사용량은 박막의 성막조건 또는 박막의 두께 및 특성 등을 고려하여 당업자가 인식할 수 있는 범위 내로 포함될 수 있음은 물론이다.The composition for depositing a Group 4 transition metal-containing thin film according to an embodiment of the present invention includes the Group 4 transition metal compound of Formula 1, and the amount of the Group 4 transition metal compound used in the composition of the present invention depends on the film formation conditions of the thin film or Of course, it may be included within the range recognized by those skilled in the art in consideration of the thickness and characteristics of the thin film.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막증착용 조성물은 탄소수 5 내지 10의 선형, 분지형 또는 고리형 알칸 화합물; 탄소수 6 내지 12의 방향족 탄화수소 화합물; 탄소수 2 내지 10의 알킬아민 화합물; 및 산소, 질소 등을 포함하는 헤테로시클로알킬 화합물; 등에서 선택되는 하나의 용매 또는 둘 이상의 혼합용매를 더 포함할 수 있다.A composition for depositing a Group 4 transition metal-containing thin film according to an embodiment of the present invention includes a linear, branched or cyclic alkane compound having 5 to 10 carbon atoms; aromatic hydrocarbon compounds having 6 to 12 carbon atoms; an alkylamine compound having 2 to 10 carbon atoms; and heterocycloalkyl compounds containing oxygen, nitrogen, and the like; It may further include one solvent or a mixed solvent of two or more selected from the like.
일 예로, 상기 알칸 화합물은 헥산, 헵탄, 옥탄, 시클로헥산, 네오펜탄 등을 들 수 있으며, 상기 방향족 탄화수소 화합물은 벤젠, 톨루엔, 자일렌 등을 들 수 있고, 상기 알킬아민 화합물은 디메틸아민, 디에틸아민, 에틸메틸아민, 트리에틸아민, 트리부틸아민, 테트라메틸에틸렌디아민 등을 들 수 있다.For example, the alkane compound may include hexane, heptane, octane, cyclohexane, and neopentane, the aromatic hydrocarbon compound may include benzene, toluene, and xylene, and the alkylamine compound may include dimethylamine, di Ethylamine, ethylmethylamine, triethylamine, tributylamine, tetramethylethylenediamine, etc. are mentioned.
일 예로, 상기 헤테로시클로알킬 화합물은 테트라히드로푸란, 피리딘 등을 들 수 있다.For example, the heterocycloalkyl compound may include tetrahydrofuran, pyridine, and the like.
또한, 상기 4족 전이금속함유 박막증착용 조성물은 상기 4족 전이금속 화합물 1몰을 기준으로, 상기 용매를 0.1 내지 10몰, 또는 0.2 내지 5몰, 또는 0.5 내지 3몰로 포함할 수 있다.In addition, the composition for depositing a Group 4 transition metal-containing thin film may contain 0.1 to 10 moles, or 0.2 to 5 moles, or 0.5 to 3 moles of the solvent based on 1 mole of the Group 4 transition metal compound.
일 예로, 상기 4족 전이금속함유 박막증착용 조성물은 통상적인 용액공정을 통한 박막증착 용도로 사용되는 것일 수 있다.For example, the group 4 transition metal-containing composition for thin film deposition may be used for thin film deposition through a conventional solution process.
일 예로, 상기 4족 전이금속함유 박막증착용 조성물이 상기 4족 전이금속 화합물 및 용매를 1:1몰비로 혼합된 것일 경우, 이의 점도(Viscosity, Cp, 28.3 ℃에 측정)는 1 내지 50Cp일 수 있으며, 구체적으로는 1 내지 30Cp, 보다 구체적으로는 1 내지 20Cp일 수 있다.For example, when the group 4 transition metal-containing composition for thin film deposition is a mixture of the group 4 transition metal compound and the solvent in a 1:1 molar ratio, the viscosity (Viscosity, Cp, measured at 28.3 ° C.) is 1 to 50 Cp. may be, specifically 1 to 30Cp, more specifically 1 to 20Cp.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막증착용 조성물 또는 본 발명의 4족 전이금속 화합물을 채용하는 경우, 높은 휘발성 및 반응성으로 고순도의 4족 전이금속함유 박막을 제공할 수 있다. 또한 이로부터 제조된 4족 전이금속함유 박막은 고밀도의 고유전 박막 재료로서 유용하다.When the composition for depositing a Group 4 transition metal-containing thin film according to an embodiment of the present invention or the Group 4 transition metal compound of the present invention is employed, it is possible to provide a thin film containing a Group 4 transition metal of high purity with high volatility and reactivity. In addition, the group 4 transition metal-containing thin film prepared therefrom is useful as a high-density, high-k thin film material.
또한, 본 발명은 상술된 본 발명의 4족 전이금속 화합물을 이용하여 4족 전이금속함유 박막을 제조하는 단계;를 포함하는 4족 전이금속함유 박막의 제조방법을 제공한다.In addition, the present invention provides a method for producing a Group 4 transition metal-containing thin film comprising; preparing a Group 4 transition metal-containing thin film using the Group 4 transition metal compound of the present invention described above.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막의 제조방법은 기판 상에 공지의 증착방법을 통해 4족 전이금속함유 박막을 제공할 수 있다. 구체적으로, 상기 증착방법은 화학 기상 증착 (chemical vapor deposition, CVD), 플라즈마 강화 화학 기상 증착 (PECVD), 원자층 증착(atomic layer deposition, ALD), 저압 기상 증착, 플라즈마 강화 원자층 증착 등일 수 있다.The method for manufacturing a Group 4 transition metal-containing thin film according to an embodiment of the present invention may provide a Group 4 transition metal-containing thin film on a substrate through a known deposition method. Specifically, the deposition method may be chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), low pressure vapor deposition, plasma enhanced atomic layer deposition, etc. .
본 발명의 일 실시예에 따른 4족 전이금속 화합물은 우수한 휘발성은 물론 높은 온도 중에도 쉽게 분해되지 않으며, 기화 후에도 안정적인 증기 상태를 유지할 수 있어 상술된 증착방법에 효과적일 수 있다.The Group 4 transition metal compound according to an embodiment of the present invention has excellent volatility and is not easily decomposed even at a high temperature, and can maintain a stable vapor state even after vaporization, so it can be effective in the deposition method described above.
일 예로, 상기 4족 전이금속 화합물을 이용하여 화학 기상 증착법을 통한 4족 전이금속함유 박막의 제조방법의 경우, 상기 4족 전이금속 화합물에 결합된 알콕시이미드아미드 리간드가 기판 상에 도입된 후 상기 기판 상에 화학결합되어 박막을 형성할 수 있다. 또한, 상기 리간드가 기판 상에 도입된 후 산소(O2), 오존(O3), 아산화질소(N2O), 이산화탄소(CO2) 등에서 선택되는 하나 또는 둘 이상의 반응가스와 치환되는 단계를 더 포함할 수 있다.For example, in the case of a method for producing a Group 4 transition metal-containing thin film through chemical vapor deposition using the Group 4 transition metal compound, the alkoxyimideamide ligand bound to the Group 4 transition metal compound is introduced onto the substrate and then the It may be chemically bonded to the substrate to form a thin film. In addition, after the ligand is introduced on the substrate, one or more reactive gases selected from oxygen (O 2 ), ozone (O 3 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), etc. may include more.
일 예로, 상기 4족 전이금속 화합물을 이용하여 원자층 증착법을 통한 4족 전이금속함유 박막의 제조방법의 경우, 상기 4족 전이금속 화합물에 결합된 알콕시이미드아미드 리간드가 상기 기판 상에 화학흡착된 후 상기 기판 상에 박막을 형성할 수 있다. 이때, 상술된 반응가스와 치환되는 단계를 더 포함할 수 있음은 물론이다.For example, in the case of a method for producing a Group 4 transition metal-containing thin film through atomic layer deposition using the Group 4 transition metal compound, the alkoxyimideamide ligand bound to the Group 4 transition metal compound is chemically adsorbed on the substrate. After that, a thin film may be formed on the substrate. In this case, of course, it may further include a step of substituting with the above-described reaction gas.
상기 증착방법을 통해 제조되는 4족 전이금속함유 박막은 티타늄 박막, 지르코늄 박막, 하프늄 박막; 티타늄 산화물박막, 지르코늄 산화물박막, 하프늄 산화물박막; 티타늄 산질화물박막, 지르코늄 산질화물박막, 하프늄 산질화물박막; 또는 4족 전이금속함유 복합산질화물박막; 등일 수 있다.The Group 4 transition metal-containing thin film prepared through the deposition method may include a titanium thin film, a zirconium thin film, and a hafnium thin film; titanium oxide thin film, zirconium oxide thin film, hafnium oxide thin film; titanium oxynitride thin film, zirconium oxynitride thin film, hafnium oxynitride thin film; or a group 4 transition metal-containing composite oxynitride thin film; etc.
상기 기판은 통상의 기판이라면 제한되지 않으며, 이의 비한정적인 일 예로는 Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs 및 InP중 하나 이상의 반도체 재료를 포함하는 기판, SOI(Silicon On Insulator)기판, 석영 기판 또는 디스플레이용 유리 기판 등의 강성 기판이거나, 폴리이미드(polyimide), 폴리에틸렌 테레프탈레이트(PET, PolyEthylene Terephthalate), 폴리에틸렌 나프탈레이트(PEN, PolyEthylene Naphthalate), 폴리 메틸메타크릴레이트(PMMA, Poly Methyl MethAcrylate), 폴리카보네이트(PC, PolyCarbonate), 폴리에테르술폰(PES), 폴리에스테르(Polyester) 등의 가요성 플라스틱 기판일 수 있다.The substrate is not limited as long as it is a conventional substrate, and non-limiting examples thereof include a substrate including at least one semiconductor material of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs and InP, a silicon on insulator (SOI). ) a rigid substrate, such as a substrate, a quartz substrate, or a glass substrate for a display, or polyimide, polyethylene terephthalate (PET, PolyEthylene Terephthalate), polyethylene naphthalate (PEN, PolyEthylene Naphthalate), polymethyl methacrylate (PMMA, Poly Methyl MethAcrylate), polycarbonate (PC, PolyCarbonate), polyether sulfone (PES), may be a flexible plastic substrate such as polyester (Polyester).
구체적으로, 본 발명의 일 실시예에 따른 4족 전이금속함유 박막을 제조하는 방법은 챔버 내에 장착된 기판의 온도를 80 내지 400℃로 유지하는 1단계; 및 상기 기판에 에너지를 공급하는 2단계;를 포함하는 것일 수 있다.Specifically, the method for manufacturing a group 4 transition metal-containing thin film according to an embodiment of the present invention includes the first step of maintaining the temperature of the substrate mounted in the chamber at 80 to 400 ℃; and a second step of supplying energy to the substrate.
일 예로, 상기 에너지를 공급하는 단계는 증착을 위해 반응을 활성화시키기 위한 것으로, 플라즈마, 빛, 열, 전압 등에 의한 에너지를 공급하는 단계일 수 있다.For example, the step of supplying the energy is to activate a reaction for deposition, and may be a step of supplying energy by plasma, light, heat, voltage, or the like.
일 예로, 상기 기판의 온도는 구체적으로 100 내지 350℃, 보다 구체적으로 200 내지 325℃범위일 수 있다.For example, the temperature of the substrate may be specifically 100 to 350 °C, more specifically 200 to 325 °C range.
상기 1단계에서, 상기 4족 전이금속 화합물이 기화된 증착소스가 제공될 수 있다. 상술한 바와 같이, 상기 1단계에서는 추가의 반응가스를 더 제공할 수 있다. 이때, 상기 반응가스는 상기 증착소스와 동시에 제공되거나 후속으로 제공될 수도 있다. 또한, 상기 증착소스는 이와 반응하지 않는 이송가스를 통해 이동될 수 있다.In the first step, a deposition source in which the Group 4 transition metal compound is vaporized may be provided. As described above, in the first step, an additional reaction gas may be further provided. In this case, the reaction gas may be provided simultaneously with the deposition source or may be provided subsequently. Also, the deposition source may be moved through a transport gas that does not react therewith.
일 예로, 상기 반응가스는 산소(O2), 오존(O3), 아산화질소(N2O), 이산화탄소(CO2) 등에서 선택되는 하나 또는 둘 이상의 혼합가스일 수 있다.For example, the reaction gas may be one or a mixture of two or more selected from oxygen (O 2 ), ozone (O 3 ), nitrous oxide (N 2 O), carbon dioxide (CO 2 ), and the like.
일 예로, 상기 반응가스는 1 내지 1,000 sccm 의 유량으로 제공될 수 있으며, 구체적으로 100 내지 500 sccm, 보다 구체적으로 150 내지 400 sccm으로 제공될 수 있다. 또한, 상기 이송가스는 1 내지 200 sccm 의 유량으로 제공될 수 있으며, 이에 한정되는 것은 아니다.For example, the reaction gas may be provided at a flow rate of 1 to 1,000 sccm, specifically 100 to 500 sccm, more specifically 150 to 400 sccm. In addition, the transport gas may be provided at a flow rate of 1 to 200 sccm, but is not limited thereto.
또한, 각 단계는 퍼지단계를 더 포함할 수 있다.In addition, each step may further include a purge step.
일 예로, 상기 퍼지단계에서의 퍼지가스는 본 발명의 4족 전이금속 화합물과 반응하지 않는 통상의 것이라면 제한되지 않으며, 이의 비한정적인 일 예로는 헬륨, 네온, 아르곤, 크립톤, 제논, 라돈 등에서 선택되는 하나 또는 둘 이상의 혼합가스일 수 있다.For example, the purge gas in the purge step is not limited as long as it does not react with the Group 4 transition metal compound of the present invention, and non-limiting examples thereof include helium, neon, argon, krypton, xenon, radon, etc. It may be one or two or more mixed gases.
일 예로, 상기 퍼지가스는 1 sccm 내지 3,000 sccm의 유량으로 제공될 수 있으며, 구체적으로 100 sccm 내지 1,500 sccm, 보다 구체적으로 300 내지 1,300 sccm으로 제공될 수 있다.For example, the purge gas may be provided at a flow rate of 1 sccm to 3,000 sccm, specifically 100 sccm to 1,500 sccm, more specifically 300 to 1,300 sccm.
일 예로, 상기 챔버 내의 압력은 0.1 내지 10torr일 수 있으며, 구체적으로 0.1 내지 5torr, 보다 구체적으로 0.5 내지 3torr일 것일 수 있다.For example, the pressure in the chamber may be 0.1 to 10 torr, specifically 0.1 to 5 torr, more specifically 0.5 to 3 torr.
또한, 본 발명의 일 실시예에 따른 4족 전이금속함유 박막의 제조방법을 통해 수득된 4족 전이금속함유 박막에 추가의 열처리 단계를 더 수행할 수 있다.In addition, an additional heat treatment step may be further performed on the Group 4 transition metal-containing thin film obtained through the method for manufacturing the Group 4 transition metal-containing thin film according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 4족 전이금속함유 박막의 제조방법에 따라 제조된 4족 전이금속함유 박막은 고밀도의 고유전 박막 재료이다. 즉, 본 발명에 따른 4족 전이금속함유 박막의 제조방법에 따르면, ALD 공정 또는 CVD 공정 등을 통해 용이하게 목적하는 고밀도의 고유전 박막 재료를 공급함에 따라 반도체 소자의 배선, 트랜지스터의 게이트 절연막, 커패시터의 유전막 또는 전자부품의 코팅막 형성 등에 다양하게 활용될 수 있다The group 4 transition metal-containing thin film prepared according to the method for manufacturing a group 4 transition metal-containing thin film according to an embodiment of the present invention is a high-density high-k thin film material. That is, according to the method for manufacturing a Group 4 transition metal-containing thin film according to the present invention, a desired high-density high-k thin film material is easily supplied through an ALD process or a CVD process, so that wiring of semiconductor devices, gate insulating films of transistors, It can be used in various ways, such as forming a dielectric film of a capacitor or a coating film of an electronic component.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in various different forms and is not limited to the embodiments described herein.
본 발명에 따른 4족 전이금속 화합물의 실시예는 글로브 박스 또는 슐랭크 관(schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기 하에서 수행 하였으며, 수득된 표제 화합물의 구조분석은 1H NMR과 13C NMR 스펙트럼(Bruker Advance 400 NMR)을 통해 측정되었다. 또한, 상기 4족 전이금속 화합물의 열적 안정성 및 휘발성과 분해온도를 측정하기 위해, 열무게 분석(thermogravimetric analysis, TGA)법을 이용하였다. 상기 TGA법은 수득된 표제 화합물을 5℃/분의 속도로 800℃까지 가온시키면서, 1.5bar/분의 압력으로 질소 기체 주입하에 측정되었다. 또한 상기 4족 전이금속 화합물의 열적 안정성을 확인하기 위해, 상온 및 130℃에서 서로 4일동안 방치된 동일 시료를 이용하여 측정된 1H NMR 스펙트럼을 비교하였다.Examples of the Group 4 transition metal compound according to the present invention were carried out in an inert argon or nitrogen atmosphere using a glove box or a Schlenk line, and the structural analysis of the obtained title compound was performed by 1 H NMR and 13 C NMR It was measured through a spectrum (Bruker Advance 400 NMR). In addition, in order to measure the thermal stability, volatility, and decomposition temperature of the Group 4 transition metal compound, a thermogravimetric analysis (TGA) method was used. The TGA method was measured under nitrogen gas injection at a pressure of 1.5 bar/min while warming the obtained title compound to 800°C at a rate of 5°C/min. In addition, in order to confirm the thermal stability of the Group 4 transition metal compound, 1 H NMR spectra measured using the same sample left at room temperature and 130° C. for 4 days were compared.
또한, 본 발명에 따른 4족 전이금속 화합물을 이용하여 제조된 4족 전이금속 박막의 두께는 엘립소미터(Ellipsometer)를 이용하여 측정되었다.In addition, the thickness of the Group 4 transition metal thin film prepared using the Group 4 transition metal compound according to the present invention was measured using an ellipsometer.
(실시예1)(Example 1)
화합물1의 제조Preparation of compound 1
Figure PCTKR2022001606-appb-img-000011
Figure PCTKR2022001606-appb-img-000011
테트라키스(다이메틸아미도)티타늄 (Tetrakis(dimethylamido)titanium, 1.00 g, 4.46 mmol)을 헥산(hexane, 50 ml)에 녹인 뒤 (Z)-N'-에톡시-N-메틸아세트이미드아미드 ((Z)-N'-ethoxy-N-methylacetimidamide, NNOH, 0.52 g, 4.46 mmol)을 적가하였다. 상온(25℃)에서 12시간 교반 후, 감압 하여 헥산을 제거하였다. 이후, 증류(150 ℃/0.5torr) 정제하여, 1.00 g 주황색 액체를 얻었다(76 %).After dissolving tetrakis(dimethylamido)titanium (Tetrakis(dimethylamido)titanium, 1.00 g, 4.46 mmol) in hexane (50 ml), (Z)-N'-ethoxy-N-methylacetimidamide ( (Z)-N'-ethoxy-N-methylacetimidamide, NNOH, 0.52 g, 4.46 mmol) was added dropwise. After stirring at room temperature (25° C.) for 12 hours, the pressure was reduced to remove hexane. Then, it was purified by distillation (150° C./0.5 torr) to obtain 1.00 g of an orange liquid (76 %).
1H NMR (25℃, C6D6, 400 MHz): δ 1.28 (t, 3H, CH3), 1.78 (s, 3H, NCCH3), 2.94 (s, 3H, NCH3), 3.18 (s, 18H, 6NCH3), 4.06-4.12 (q, 2H, CH2). 1 H NMR (25° C., C 6 D 6 , 400 MHz): δ 1.28 (t, 3H, CH 3 ), 1.78 (s, 3H, NCCH 3 ), 2.94 (s, 3H, NCH 3 ), 3.18 (s) , 18H, 6NCH 3 ), 4.06-4.12 (q, 2H, CH 2 ).
13C NMR (C6D6, 100 MHz): δ 13.5, 15.0, 38.6, 45.8, 71.3, 162.4. 13 C NMR (C 6 D 6 , 100 MHz): δ 13.5, 15.0, 38.6, 45.8, 71.3, 162.4.
130℃에서 4일동안 방치된 후, 상기 화합물1의 1H NMR 스펙트럼 역시 상술된 1H NMR 스펙트럼(25℃)과 실질적으로 동일한 상태를 보였다. 이의 결과로부터, 상기 화합물1은 고온의 공정온도 중에도 분해가 일어나지 않고, 우수한 열안정성을 가짐을 확인하였다.After standing at 130° C. for 4 days, the 1 H NMR spectrum of Compound 1 also showed substantially the same state as the 1 H NMR spectrum (25° C.) described above. From these results, it was confirmed that Compound 1 did not decompose even during a high process temperature and had excellent thermal stability.
하기 도1에 따르면, 상온에서부터 세개의 아미드 리간드가 분해되면서 약 45% 감소를 보이며 최종적으로 TiO2 (27 %)가 남는 것으로 보이는 질량감소가 확인되지만 상기 화합물1이 실질적으로 증류되므로, 열안정성의 열화로 해석되지 않아야 한다.According to FIG. 1 below, as the three amide ligands are decomposed from room temperature, a decrease of about 45% is shown, and a decrease in mass that appears to finally remain TiO 2 (27%) is confirmed, but since the compound 1 is substantially distilled, the thermal stability of It should not be construed as deterioration.
(실시예2)(Example 2)
화합물2의 제조Preparation of compound 2
Figure PCTKR2022001606-appb-img-000012
Figure PCTKR2022001606-appb-img-000012
테트라키스(다이메틸아미도)지르코늄 (Tetrakis(dimethylamido) zirconium, 0.50 g, 1.87 mmol)을 헥산(hexane, 50 ml)에 녹인 뒤 (Z)-N'-에톡시-N-메틸아세트이미드아미드 ((Z)-N'-ethoxy-N-methylacetimidamide, NNOH, 0.43 g, 3.74 mmol)을 적가하였다. 상온(25℃)에서 12시간 교반 후, 감압 하여 헥산을 제거하였다. 이후, 승화(65 ℃/0.5 torr)로 정제하여, 0.65 g 흰색 고체를 얻었다(85 %).After dissolving tetrakis (dimethylamido) zirconium (Tetrakis (dimethylamido) zirconium, 0.50 g, 1.87 mmol) in hexane (50 ml) (Z) -N'-ethoxy-N-methylacetimidamide ( (Z)-N'-ethoxy-N-methylacetimidamide, NNOH, 0.43 g, 3.74 mmol) was added dropwise. After stirring at room temperature (25° C.) for 12 hours, the pressure was reduced to remove hexane. Then, it was purified by sublimation (65° C./0.5 torr) to obtain 0.65 g of a white solid (85 %).
1H NMR (25℃, C6D6, 400 MHz): δ 1.28 (t, 6H, CH3), 1.73 (s, 6H, NCCH3), 2.89 (s, 6H, NCH3), 3.10 (s, 12H, 2NCH3), 4.09 (b, 4H, CH2). 1 H NMR (25° C., C 6 D 6 , 400 MHz): δ 1.28 (t, 6H, CH 3 ), 1.73 (s, 6H, NCCH 3 ), 2.89 (s, 6H, NCH 3 ), 3.10 (s) , 12H, 2NCH 3 ), 4.09 (b, 4H, CH 2 ).
13C NMR (C6D6, 100 MHz): δ 13.5, 14.9, 36.0, 43.5, 71.4, 161.9. 13 C NMR (C 6 D 6 , 100 MHz): δ 13.5, 14.9, 36.0, 43.5, 71.4, 161.9.
또한, 수득된 화합물2의 열적 안정성을 확인하기 위해, 130℃에서 서로 4일동안 방치된 시료의 1H NMR 스펙트럼을 비교하였다. 그 결과, 130℃에서 4일동안 방치된 후, 상기 화합물2의 1H NMR 스펙트럼 역시 상술된 1H NMR 스펙트럼(25℃)과 실질적으로 동일한 상태를 보였다.In addition, in order to confirm the thermal stability of the obtained compound 2, 1 H NMR spectra of samples left at 130° C. for 4 days were compared. As a result, after standing at 130° C. for 4 days, the 1 H NMR spectrum of Compound 2 also showed substantially the same state as the 1 H NMR spectrum (25° C.) described above.
(실시예3)(Example 3)
상기 실시예2와 유사한 방법으로 하기 표1에 도시한 출발물질을 사용하여, 화합물3을 수득하였다.Compound 3 was obtained by using the starting materials shown in Table 1 below in a similar manner to Example 2 above.
수득된 화합물3의 열적 안정성을 확인하기 위해, 상온 및 130℃에서 서로 4일동안 방치된 시료의 1H NMR 스펙트럼을 비교하였다. 그 결과, 130℃에서 4일동안 방치된 후, 상기 화합물3의 1H NMR 스펙트럼 역시 상술된 1H NMR 스펙트럼(25℃)과 실질적으로 동일한 상태를 보였다.In order to confirm the thermal stability of the obtained compound 3, 1 H NMR spectra of samples left for 4 days at room temperature and 130° C. were compared. As a result, after standing at 130° C. for 4 days, the 1 H NMR spectrum of Compound 3 also showed substantially the same state as the 1 H NMR spectrum (25° C.) described above.
구조rescue 반응물reactant
1H-NMR 1 H-NMR
실시예3Example 3
Figure PCTKR2022001606-appb-img-000013
Figure PCTKR2022001606-appb-img-000013
Tetrakis(dimethylamido)hafnium / NNOH =(1/1, 몰비)Tetrakis(dimethylamido)hafnium / NNOH = (1/1, molar ratio)
화합물3
1H NMR (25℃, C6D6, 400 MHz): δ 1.27 (t, 6H, CH3), 1.72 (s, 6H, NCCH3), 2.90 (s, 6H, NCH3), 3.16 (s, 12H, 2NCH3), 4.00-4.16 (b, 4H, CH2). 13C NMR (C6D6, 100 MHz): δ 13.3, 14.8, 35.8, 43.3, 71.6, 162.8.
compound 3
1 H NMR (25° C., C 6 D 6 , 400 MHz): δ 1.27 (t, 6H, CH 3 ), 1.72 (s, 6H, NCCH 3 ), 2.90 (s, 6H, NCH 3 ), 3.16 (s) , 12H, 2NCH 3 ), 4.00-4.16 (b, 4H, CH 2 ). 13 C NMR (C 6 D 6 , 100 MHz): δ 13.3, 14.8, 35.8, 43.3, 71.6, 162.8.
하기 도2 및 도3에 따르면, 상기 화합물2는 상온에서부터 한 개의 아미드 리간드가 분해되며 약 11% 감소를 보이고, 이어서 한 개의 알콕시 이미드아미드 리간드와 나머지 아미드 리간드가 분해되며 약 50%까지 무게 감소를 보인다. 화합물3도 상온에서부터 한 개의 아미드 리간드가 분해되며 약 9% 감소를 보이고, 이어서 한 개의 알콕시 이미드아미드 리간드와 아미드 리간드가 분해되며 약 49%까지 무게 감소를 보인다. 하지만 상기 화합물2와 화합물3이 실질적으로 승화 또는 증류되므로, 열안정성의 열화로 해석되지 않아야 한다.According to Figures 2 and 3 below, in Compound 2, one amide ligand is decomposed and decreased by about 11% from room temperature, and then one alkoxyimimidamide ligand and the remaining amide ligand are decomposed and the weight is reduced by about 50%. looks like Compound 3 also shows a decrease of about 9% by decomposition of one amide ligand from room temperature, followed by a reduction in weight by about 49% as one alkoxy imidamide ligand and amide ligand are decomposed. However, since Compound 2 and Compound 3 are substantially sublimated or distilled, it should not be interpreted as deterioration of thermal stability.
(실시예4)(Example 4)
Ti산화 박막의 제조Production of Ti Oxide Thin Film
원자층증착법(atomic layer deposition)을 통해, 박막을 증착하였다.A thin film was deposited through atomic layer deposition.
실리콘 기판은 300 ℃로 유지하였고, 실시예1에서 수득된 화합물1을 스테인레스 스틸 버블러 용기에 충진하여 110℃로 유지하였다. 먼저, 스테인레스 스틸 버블러 용기내에서 증기화된 화합물1을 아르곤 가스(50sccm)를 이송가스로 하여 실리콘 기판으로 공급하되 공급시간을 1초에서 7초로 증가시킴에 따른 박막의 증착율을 측정하였다. 또한, H2O 반응가스를 공급시간을 1초에서 5초로 증가시켜 공급하여 공급시간에 따른 박막증착율을 측정하였다.The silicon substrate was maintained at 300 °C, and the compound 1 obtained in Example 1 was filled in a stainless steel bubbler container and maintained at 110 °C. First, compound 1 vaporized in a stainless steel bubbler vessel was supplied to a silicon substrate using argon gas (50 sccm) as a transport gas, but the deposition rate of the thin film was measured as the supply time was increased from 1 second to 7 seconds. In addition, H 2 O reaction gas was supplied by increasing the supply time from 1 second to 5 seconds to measure the thin film deposition rate according to the supply time.
상기 화합물1의 경우, 5초 이후에 전구체(화합물1)의 공급시간이 증가하여도 박막증착율이 일정하게 유지되는 것을 확인하였다. 이로써, 5초 이후에는 전구체가 기판에 포함됨을 알 수 있으며, H2O 반응가스는 3초 이후에서 박막의 두께가 일정한 것으로 3초 이후에 포화되는 것을 알 수 있다. 이로부터 전구체의 공급시간은 5초, H2O의 공급시간은 3초로 정하였다.In the case of Compound 1, it was confirmed that the thin film deposition rate was maintained constant even when the supply time of the precursor (Compound 1) was increased after 5 seconds. Accordingly, it can be seen that the precursor is included in the substrate after 5 seconds, and the H 2 O reaction gas is saturated after 3 seconds with a constant thickness of the thin film after 3 seconds. From this, the supply time of the precursor was set to 5 seconds, and the supply time of H 2 O was set to 3 seconds.
상기 결과로부터, 상기 화합물1의 공급시간은 5초, H2O의 공급시간은 3초로 공급한 다음 아르곤 가스(1000sccm)을 이용하여 약 10초간 반응 부산물 및 잔류 반응가스를 제거하였다. 위와 같은 공정을 1주기로 하여 100주기를 반복하여 티타늄 산화 박막(Ti산화 박막)을 형성하였다.From the results, the supply time of the compound 1 was 5 seconds, the supply time of H 2 O was 3 seconds, and then the reaction by-products and residual reaction gas were removed for about 10 seconds using argon gas (1000 sccm). A titanium oxide thin film (Ti oxide thin film) was formed by repeating 100 cycles of the above process as one cycle.
마찬가지로 추가 300주기를 반복하여 티타늄 산화 박막을 형성하였다. 그 결과, 증착사이클이 증가함에 따라 박막의 두께가 linear하게 증가하는 것을 확인하였으며, 증착률은 약 1.0 Å/cycle이었다.Similarly, an additional 300 cycles were repeated to form a titanium oxide thin film. As a result, it was confirmed that the thickness of the thin film increased linearly as the deposition cycle increased, and the deposition rate was about 1.0 Å/cycle.
또한, 티타늄 산화 박막의 XPS 및 XRF 분석하였다. 그 결과, C1s에서 peak이 없는 것으로 보아 티타늄 산화 박막 내에 불순물로서 탄소가 거의 없어 제조된 티타늄 산화 박막의 순도가 우수함을 알 수 있다.In addition, XPS and XRF analysis of the titanium oxide thin film was performed. As a result, since there is no peak in C1s, it can be seen that the purity of the prepared titanium oxide thin film is excellent because there is almost no carbon as an impurity in the titanium oxide thin film.
또한, 상기 제조방법으로 수득된 박막(두께:40Å)의 투과전자현미경(TEM) 이미지를 확인한 결과, 높은 단차피복성과 결정성을 갖는 고밀도 박막이 수득됨을 확인하였다.In addition, as a result of checking a transmission electron microscope (TEM) image of the thin film (thickness: 40 Å) obtained by the above preparation method, it was confirmed that a high-density thin film having high step coverage and crystallinity was obtained.
상기 본 발명은 전술한 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.The present invention is not limited by the above-described embodiments, and it is those of ordinary skill in the art to which the present invention pertains that various substitutions, modifications and changes are possible without departing from the technical spirit of the present invention. will be clear to

Claims (10)

  1. 하기 화학식1로 표시되는 4족 전이금속 화합물:A group 4 transition metal compound represented by the following formula (1):
    [화학식1][Formula 1]
    Figure PCTKR2022001606-appb-img-000014
    Figure PCTKR2022001606-appb-img-000014
    상기 화학식1에서,In Formula 1,
    M은 4족 전이금속이고;M is a Group 4 transition metal;
    R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
    n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.n is an integer independently selected from 1-4.
  2. 제 1항에 있어서,The method of claim 1,
    상기 화학식1에서,In Formula 1,
    상기 M은 티타늄, 지르코늄 또는 하프늄이고;M is titanium, zirconium or hafnium;
    상기 R1 내지 R5는 서로 독립적으로 C1-C7의 알킬이고;wherein R 1 to R 5 are each independently C 1 -C 7 alkyl;
    상기 n은 1 내지 3에서 선택되는 정수인, 4족 전이금속 화합물.Wherein n is an integer selected from 1 to 3, Group 4 transition metal compound.
  3. 제 1항에 있어서,The method of claim 1,
    상기 화학식1에서,In Formula 1,
    상기 R1 및 R2는 서로 동일하게 C1-C4알킬이고;wherein R 1 and R 2 are the same as each other C 1 -C 4 alkyl;
    상기 R3 내지 R5는 서로 독립적으로 C1-C4알킬인, 4족 전이금속 화합물.The R 3 To R 5 Are each independently C 1 -C 4 Alkyl, Group 4 transition metal compound.
  4. 제 1항에 있어서,The method of claim 1,
    상기 화학식1에서,In Formula 1,
    상기 R1 및 R2는 서로 동일하게 메틸 또는 에틸이고;wherein R 1 and R 2 are the same as methyl or ethyl;
    상기 R3 내지 R5중 적어도 하나는 에틸, 프로필 또는 부틸이고, 나머지는 메틸, 에틸, 프로필 또는 부틸인, 4족 전이금속 화합물.At least one of R 3 to R 5 is ethyl, propyl or butyl, and the rest is methyl, ethyl, propyl or butyl, a Group 4 transition metal compound.
  5. 제 1항에 있어서,The method of claim 1,
    하기 구조에서 선택되는 것인, 4족 전이금속 화합물:A Group 4 transition metal compound, which is selected from the following structure:
    Figure PCTKR2022001606-appb-img-000015
    Figure PCTKR2022001606-appb-img-000015
    Figure PCTKR2022001606-appb-img-000016
    Figure PCTKR2022001606-appb-img-000016
    Figure PCTKR2022001606-appb-img-000017
    Figure PCTKR2022001606-appb-img-000017
    Figure PCTKR2022001606-appb-img-000018
    Figure PCTKR2022001606-appb-img-000018
    상기 구조에서,In the above structure,
    M은 티타늄, 지르코늄 또는 하프늄이다.M is titanium, zirconium or hafnium.
  6. 하기 화학식A와 화학식B를 반응시켜, 하기 화학식1로 표시되는 4족 전이금속 화합물을 제조하는 방법:A method for preparing a Group 4 transition metal compound represented by the following Chemical Formula 1 by reacting the following Chemical Formulas A and B:
    [화학식A][Formula A]
    M(NR1R2)4 M(NR 1 R 2 ) 4
    [화학식B][Formula B]
    Figure PCTKR2022001606-appb-img-000019
    Figure PCTKR2022001606-appb-img-000019
    [화학식1][Formula 1]
    Figure PCTKR2022001606-appb-img-000020
    Figure PCTKR2022001606-appb-img-000020
    상기 화학식A, 화학식B 및 화학식1에서,In Formula A, Formula B and Formula 1,
    M은 4족 전이금속이고;M is a Group 4 transition metal;
    R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
    n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.n is an integer independently selected from 1-4.
  7. 하기 화학식1로 표시되는 4족 전이금속 화합물을 포함하는 4족 전이금속함유 박막증착용 조성물:A composition for depositing a group 4 transition metal-containing thin film comprising a group 4 transition metal compound represented by the following formula (1):
    [화학식1][Formula 1]
    Figure PCTKR2022001606-appb-img-000021
    Figure PCTKR2022001606-appb-img-000021
    상기 화학식1에서,In Formula 1,
    M은 4족 전이금속이고;M is a Group 4 transition metal;
    R1 내지 R5는 서로 독립적으로 C1-C10의 알킬이고;R 1 to R 5 are each independently C 1 -C 10 alkyl;
    n은 서로 독립적으로 1 내지 4에서 선택되는 정수이다.n is an integer independently selected from 1-4.
  8. 제 7항에 있어서,8. The method of claim 7,
    상기 4족 전이금속 화합물의 4족 전이금속은,The Group 4 transition metal of the Group 4 transition metal compound is,
    티타늄, 지르코늄 또는 하프늄인, 4족 전이금속함유 박막증착용 조성물.Titanium, zirconium or hafnium, a composition for thin film deposition containing a Group 4 transition metal.
  9. 제 1항 내지 제 5항에서 선택되는 어느 한 항의 4족 전이금속 화합물을 이용하여, 4족 전이금속함유 박막을 제조하는 단계;를 포함하는 4족 전이금속함유 박막의 제조방법.Using the Group 4 transition metal compound of any one of claims 1 to 5, preparing a Group 4 transition metal-containing thin film; A method of manufacturing a Group 4 transition metal-containing thin film comprising a.
  10. 제 9항에 있어서,10. The method of claim 9,
    화학 기상 증착법 또는 원자층 증착법에 의하여 수행되는 것인, 4족 전이금속함유 박막의 제조방법.A method for producing a thin film containing a Group 4 transition metal, which is performed by a chemical vapor deposition method or an atomic layer deposition method.
PCT/KR2022/001606 2021-02-05 2022-01-28 Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same WO2022169232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0016711 2021-02-05
KR1020210016711A KR102567107B1 (en) 2021-02-05 2021-02-05 Group iv transition metal compounds, preparation method thereof and process for the formation of thin films using the same

Publications (1)

Publication Number Publication Date
WO2022169232A1 true WO2022169232A1 (en) 2022-08-11

Family

ID=82742310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001606 WO2022169232A1 (en) 2021-02-05 2022-01-28 Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same

Country Status (2)

Country Link
KR (1) KR102567107B1 (en)
WO (1) WO2022169232A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338196B1 (en) * 1999-04-30 2002-05-27 정명식 Organometallic complex, process for the preparation thereof and metal organic chemical vapor deposition using same
KR20040100208A (en) * 2003-05-22 2004-12-02 한국화학연구원 Precursors of group iv transition metal oxide and preparing method thereof
KR20200077046A (en) * 2018-12-20 2020-06-30 한국화학연구원 Novel group iv transition metal compounds and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804413B1 (en) 2006-06-21 2008-02-20 (주)디엔에프 A precursor for zirconium dioxide thin film deposition and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100338196B1 (en) * 1999-04-30 2002-05-27 정명식 Organometallic complex, process for the preparation thereof and metal organic chemical vapor deposition using same
KR20040100208A (en) * 2003-05-22 2004-12-02 한국화학연구원 Precursors of group iv transition metal oxide and preparing method thereof
KR20200077046A (en) * 2018-12-20 2020-06-30 한국화학연구원 Novel group iv transition metal compounds and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYO YEON KIM, EUN AE JUNG, GEUMBI MUN, RAPHAEL E. AGBENYEKE, BO KEUN PARK, JIN-SEONG PARK, SEUNG UK SON, DONG JU JEON, SANG-HEE KO: "Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl( N -ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 40, 12 October 2016 (2016-10-12), US , pages 26924 - 26931, XP055715717, ISSN: 1944-8244, DOI: 10.1021/acsami.6b07332 *
MAHENDRA PAL, KAPOOR R N: "Reactions of Aluminium(III), Titanium(IV) & Zirconium(IV) Isopropoxides with Arylhydroxamic acids", INDIAN JOURNAL OF CHEMISTRY, vol. 19A, 1 September 1980 (1980-09-01), DE , pages 912 - 914, XP055715716, ISSN: 0376-4699 *

Also Published As

Publication number Publication date
KR102567107B1 (en) 2023-08-16
KR20220113029A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2021133080A1 (en) Yttrium/lanthanide metal precursor compound, composition comprising same for forming film, and method for forming yttrium/lanthanide metal-containing film using composition
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2019103500A1 (en) Composition for deposition of silicon-containing thin film, and method for manufacturing silicon-containing thin film by using same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
WO2019156400A1 (en) Organometallic compounds and thin film using same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2017135715A1 (en) Group 4 metal element-containing compound, method for preparing same, precursor composition containing same for film deposition, and method for depositing film using same
WO2020130216A1 (en) Rare earth precursor, manufacturing method therefor, and method for forming thin film by using same
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2022169232A1 (en) Group 4 transition metal compound, method for manufacturing same, and method for forming thin film using same
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2017082541A1 (en) Metal precursor, manufacturing method therefor, and method for forming thin film by using same
WO2023113308A1 (en) Molybdenum compound, method for preparing same, and composition comprising same for thin film deposition
WO2018182305A9 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
WO2024058431A1 (en) Precursor for forming yttrium- or scandium-containing thin film, method for forming yttrium- or scandium-containing thin film using same, and semiconductor element including yttrium- or scandium-containing thin film
WO2023113309A1 (en) Molybdenum compound, method for preparing same, and method for manufacturing thin film comprising same
WO2024058624A1 (en) Precursor for forming lanthanide metal-containing thin film, method for forming lanthanide metal-containing thin film using same, and semiconductor element including lanthanide metal-containing thin film
WO2023090910A1 (en) Method for forming thin film by using organic metal compound, and thin film manufactured thereby
WO2022250400A1 (en) Semiconductor thin film-forming metal precursor compound and metal-containing thin film manufactured using same
WO2024090836A1 (en) Gallium compound, thin film deposition composition containing same, and method for producing thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749982

Country of ref document: EP

Kind code of ref document: A1