WO2021145661A2 - Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same - Google Patents

Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same Download PDF

Info

Publication number
WO2021145661A2
WO2021145661A2 PCT/KR2021/000443 KR2021000443W WO2021145661A2 WO 2021145661 A2 WO2021145661 A2 WO 2021145661A2 KR 2021000443 W KR2021000443 W KR 2021000443W WO 2021145661 A2 WO2021145661 A2 WO 2021145661A2
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
ald
group
compound
precursor compound
Prior art date
Application number
PCT/KR2021/000443
Other languages
French (fr)
Korean (ko)
Other versions
WO2021145661A3 (en
Inventor
염규현
문기영
이현경
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2021145661A2 publication Critical patent/WO2021145661A2/en
Publication of WO2021145661A3 publication Critical patent/WO2021145661A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a precursor compound and, more specifically, to: a precursor compound comprising a metal of Group 13 of the Periodic Table and available for thin film deposition through atomic layer deposition (ALD) or chemical vapor deposition (CVD); and a method for manufacturing a thin film by using same. 

Description

원자층 증착용(ALD), 화학 기상 증착용(CVD) 전구체 화합물 및 이를 이용한 ALD/CVD 증착법Atomic layer deposition (ALD), chemical vapor deposition (CVD) precursor compound and ALD/CVD deposition method using the same
본 발명은 신규한 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition; ALD) 및 화학 기상 증착법(Chemical Vapor Deposition; CVD)을 통하여 박막 증착이 가능한 전구체 화합물 및 이를 이용한 ALD/CVD 증착법에 관한 것이다.The present invention relates to a novel precursor compound, and more particularly, a precursor compound capable of depositing a thin film through atomic layer deposition (ALD) and chemical vapor deposition (CVD), and ALD/CVD using the same It relates to vapor deposition.
Al2O3 박막은 화학적 불활성 및 높은 열 전도도를 요구하는 분야의 반도체 산업에 주로 적용되고 있다. The Al 2 O 3 thin film is mainly applied to the semiconductor industry in fields requiring chemical inertness and high thermal conductivity.
이들은 액정 디스플레이, 전기발광 디스플레이, 태양 전지, 이극(bipolar) 디바이스 및 절연체 상 실리콘 (silicon on insulator, SOI) 디바이스의 제조에 사용된다. 또한, Al2O3는 도구 제조 산업에 사용되는 내마모성 및 내부식성 코팅재료도 사용된다. They are used in the manufacture of liquid crystal displays, electroluminescent displays, solar cells, bipolar devices and silicon on insulator (SOI) devices. In addition, Al 2 O 3 is also used as a wear-resistant and corrosion-resistant coating material used in the tool manufacturing industry.
특히, 최근 ALD/CVD 공정을 이용하여 Al2O3 박막을 제작하는 방법은 유기 전자 장치의 난제인 습기로 인한 금속 물질의 부식 방지 및 습기 차단, 중간 절연체, 태양전지의 보호막(passivation) 등에 적용 가능한 기술로 각광받고 있다. In particular, the recent method of manufacturing an Al 2 O 3 thin film using the ALD/CVD process is applied to prevention of corrosion and moisture blocking of metal materials due to moisture, which is a difficult problem in organic electronic devices, intermediate insulators, and passivation of solar cells. It is considered a possible technology.
Al2O3 박막 공정 과정에는 낮은 증착 온도가 요구되고 기존의 ALD/CVD 공정을 이용한 Al2O3 박막 제조용 전구체로는 TMA(trimethylaluminium, Al(CH3)3)가 많이 사용되고 있다.Al 2 O 3 thin film manufacturing process has a low deposition temperature has been required as Al 2 O 3 thin film for preparing the precursor using conventional ALD / CVD process is widely used in the TMA (trimethylaluminium, Al (CH 3 ) 3).
TMA는 이상적인 ALD 박막 증착율을 가지나, 치명적인 단점인 자연 발화성을 가지고 있다. 따라서, 산업 스케일의 큰 부피 제조에도 안전한 전구체에 관한 연구는 계속되고 있다.TMA has an ideal ALD thin film deposition rate, but has a fatal flaw, autoignition. Therefore, research on precursors that are safe even for large-volume manufacturing on an industrial scale is ongoing.
한편, 13족의 금속으로 알루미늄(Al)을 포함한 비발화성 전구체 화합물 관련 연구로서 문헌 (Plasma-enhanced and thermal atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide, [Al(CH3)2(μ-OiPr)]2, as an alternative aluminum precursor, J.Vac.Sci.Technol.A, 2012, 30(2), 021505-1)에 [Al(CH3)2(μ-OiPr)]2 (DMAI, iPr=isopropyl)의 제조방법이 개시된 바 있으나, ALD 공정 후 Al2O3 박막의 밀도가 낮은 단점이 있다.On the other hand, as a study related to non-incendive precursor compounds including aluminum (Al) as a group 13 metal, the literature (Plasma-enhanced and thermal atomic layer deposition of Al 2 O 3 using dimethylaluminum isopropoxide, [Al(CH 3 ) 2 (μ-O) i Pr)] 2 , as an alternative aluminum precursor, J.Vac.Sci.Technol.A, 2012, 30(2), 021505-1) in [Al(CH 3 ) 2 (μ-O i Pr)] 2 Although the manufacturing method of (DMAI, i Pr=isopropyl) has been disclosed, there is a disadvantage in that the density of the Al 2 O 3 thin film after the ALD process is low.
또 다른 알루미늄을 포함하는 비발화성 전구체인 아민-알란은 짧은 저장 수명, 고점도 및 낮은 증기압의 단점을 가지고 있다.Another aluminum-containing non-flammable precursor, amine-alane, has the disadvantages of short shelf life, high viscosity and low vapor pressure.
따라서, ALD/CVD 공정에 적용 가능한 비발화성(Nonpyrophoric)이고, 열적 안정성 및 다양한 산화제, 질화제, 또는 환원제와 높은 반응성을 가지는 신규 알루미늄 전구체 화합물 개발의 필요성이 대두되고 있다. Therefore, there is a need to develop a novel aluminum precursor compound that is nonpyrophoric applicable to ALD/CVD processes, has thermal stability, and has high reactivity with various oxidizing agents, nitriding agents, or reducing agents.
이와 더불어, 상온에서 액체 상태이고, 충분한 증기압을 가지며, 균일한 필름을 얻을 수 있는 전구체에 대한 요구도 지속되고 있다.In addition, there is a continuing demand for a precursor that is in a liquid state at room temperature, has a sufficient vapor pressure, and can obtain a uniform film.
따라서, 상기 특성 중 일부, 또는 바람직하게는 모두를 가지는 전구체의 개발이 바람직할 것이다.Accordingly, it would be desirable to develop precursors having some, or preferably all, of the above properties.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국등록특허 제10-1787204호(등록일: 2017.10.11)(Patent Document 1) Korean Patent No. 10-1787204 (Registration Date: 2017.10.11)
이에 상기와 같은 문제를 해결하고자, 본원은 원자층 증착법(ALD) 및 화학 기상 증착법(CVD)에 적용 가능한 신규 전구체 화합물 및 상기 전구체 화합물이 증착된 박막의 제조방법을 제공하는 데 목적이 있다.Accordingly, in order to solve the above problems, an object of the present application is to provide a novel precursor compound applicable to atomic layer deposition (ALD) and chemical vapor deposition (CVD), and a method for manufacturing a thin film on which the precursor compound is deposited.
즉, 본원의 신규 전구체 화합물은 13족의 금속을 포함하고, 자연 발화(Pyrophoric)되지 않으며, 높은 열적 안정성 및 반응성을 구현 할 수 있다.That is, the novel precursor compound of the present application includes a group 13 metal, is not pyrophoric, and can implement high thermal stability and reactivity.
또한, 본원의 전구체 화합물은 다양한 반응 기체와 함께 원자층 증착법(ALD) 또는 화학 기상 증착법(CVD)을 통해 우수한 품질의 박막을 얻을 수 있다.In addition, the precursor compound of the present application can obtain a thin film of excellent quality through atomic layer deposition (ALD) or chemical vapor deposition (CVD) together with various reactive gases.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 일 측면은, 하기 화학식 1로서 표시되는 화합물을 제공한다.One aspect of the present application provides a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2021000443-appb-I000001
Figure PCTKR2021000443-appb-I000001
상기 화학식 1에서, In Formula 1,
M이 주기율표 상 13족의 금속이고,M is a metal of group 13 on the periodic table,
R1, R2, R4 및 R5는 동일하거나 또는 상이하고 각각 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 탄화수소 또는 이들의 이성질체이며,R 1 , R 2 , R 4 and R 5 are the same or different and each is hydrogen, a substituted or unsubstituted linear or branched hydrocarbon having 1 to 4 carbon atoms, or an isomer thereof,
R3는 치환 또는 비치환된 탄소수 4 내지 6의 선형 또는 분지형 탄화수소 또는 이들의 이성질체이다.R 3 is a substituted or unsubstituted linear or branched hydrocarbon having 4 to 6 carbon atoms or an isomer thereof.
본원의 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 제공한다.Another aspect of the present application provides a precursor comprising the compound represented by Formula 1 above.
본원의 또 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 반응기에 도입하는 단계를 포함하는 박막의 제조방법을 제공한다.Another aspect of the present application provides a method for manufacturing a thin film comprising introducing a precursor including the compound represented by Formula 1 into a reactor.
본원의 또 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 이용한 박막의 제조방법에 의해서 제조된 박막은 표면 거칠기(Ra)가 1.4Å이하이고, 밀도가 3 g/cm3 이상을 제공한다.In another aspect of the present application, the thin film prepared by the method for manufacturing a thin film using a precursor containing the compound represented by Formula 1 has a surface roughness (Ra) of 1.4 Å or less, and a density of 3 g/cm 3 or more. to provide.
본원의 또 다른 측면은, 상기 박막을 포함하는 전자 장치를 제공한다.Another aspect of the present application provides an electronic device including the thin film.
본원에 의하면, 13족 (Al: 알루미늄, Ga: 갈륨, In: 인듐 등)의 금속을 포함하는 신규 전구체 화합물 제조가 가능하다. 상기 전구체 화합물은 대기 중에서 자연 발화하지 않고, 높은 열적 안정성 및 반응성을 가지고 있다.According to the present application, it is possible to prepare a novel precursor compound including a metal of Group 13 (Al: aluminum, Ga: gallium, In: indium, etc.). The precursor compound does not spontaneously ignite in the atmosphere and has high thermal stability and reactivity.
또한, 본원의 전구체 화합물은 다양한 반응 기체와 함께 원자층 증착법(ALD) 또는 화학 기상 증착법(CVD)을 통해 우수한 품질의 박막을 얻을 수 있다.In addition, the precursor compound of the present application can obtain a thin film of excellent quality through atomic layer deposition (ALD) or chemical vapor deposition (CVD) together with various reactive gases.
도 1은 본원의 신규 전구체 화합물의 시차주사 열량계(Differential Scanning Calorimetry, DSC) 분석 결과 그래프이다.1 is a graph showing the results of differential scanning calorimetry (DSC) analysis of the novel precursor compound of the present application.
도 2은 본원의 신규 전구체 화합물의 열중량(Thermogravimetric, TG) 분석 결과 그래프이다.2 is a graph showing the results of thermogravimetric (TG) analysis of the novel precursor compound of the present application.
도 3은 본원의 신규 전구체 화합물의 증발율 측정 결과 그래프이다.3 is a graph of the measurement result of the evaporation rate of the novel precursor compound of the present application.
도 4는 X선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)을 이용한 공정 온도에 따른 Al2O3 박막 내 성분 함량 변화를 나타낸 그래프이다.4 is a graph showing changes in component content in Al 2 O 3 thin films according to process temperature using X-ray Photoelectron Spectroscopy (XPS).
도 5는 X선 반사율 측정법(X-ray Reflectivity; XRR)을 이용한 공정 온도에 따른 Al2O3 박막의 밀도 변화를 나타낸 그래프이다.5 is a graph showing the change in density of the Al 2 O 3 thin film according to the process temperature using X-ray reflectivity (XRR).
도 6은 원자힘 현미경(Atomic Force Microscope; AFM)으로 측정한 공정 온도 변화에 따른 Al2O3 박막의 표면 거칠기를 나타낸 그래프이다.6 is a graph showing the surface roughness of the Al 2 O 3 thin film according to the change in process temperature measured with an atomic force microscope (AFM).
도 7은 투과 전자 현미경(Transmission electron microscopy; TEM)을 이용한 트랜치 구조에서의 공정 온도에 따른 단차 피복성(Step coverage)의 변화를 나타내는 이미지이다. 트랜치 구조의 종횡비(Aspect ratio, AR)은 40:1이다.7 is an image illustrating a change in step coverage according to a process temperature in a trench structure using a transmission electron microscopy (TEM). The aspect ratio (AR) of the trench structure is 40:1.
 이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in several different forms, and is not limited to the embodiments described herein.
이에 앞서, 본 명세서에서 사용된 용어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms used in this specification should not be construed as being limited to conventional or dictionary meanings, and the principle that the inventor can appropriately define the concept of the term to describe his invention in the best way It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, "포함하다" 등의 용어는 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, the singular expression includes the plural expression unless the context clearly dictates otherwise. It should also be understood that the term "comprises" and the like does not preclude the possibility of adding or adding one or more other features or numbers, steps, elements, or combinations thereof.
본 명세서에서 수치 값의 범위가 주어지는 경우, 범위가 별도로 개시되는 지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.Where ranges of numerical values are given herein, all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value are specifically disclosed, regardless of whether the range is separately disclosed. should be understood as
본 발명에 따른 화합물은 하기 화학식 1로 표시된다.The compound according to the present invention is represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2021000443-appb-I000002
Figure PCTKR2021000443-appb-I000002
상기 화학식 1에서, In Formula 1,
M이 주기율표 상 13족의 금속이고,M is a metal of group 13 on the periodic table,
R1, R2, R4 및 R5는 동일하거나 또는 상이하고 각각 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 탄화수소 또는 이들의 이성질체이며,R 1 , R 2 , R 4 and R 5 are the same or different and each is hydrogen, a substituted or unsubstituted linear or branched hydrocarbon having 1 to 4 carbon atoms, or an isomer thereof,
R3는 치환 또는 비치환된 탄소수 4 내지 6의 선형 또는 분지형 탄화수소 또는 이들의 이성질체이다.R 3 is a substituted or unsubstituted linear or branched hydrocarbon having 4 to 6 carbon atoms or an isomer thereof.
상기 화학식 1의 M은 Al, In 및 Ga로 이루어진 군에서 선택되는 1종일 수 있다.M in Formula 1 may be one selected from the group consisting of Al, In, and Ga.
상기 화학식 1의 R3는 n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종일 수 있고, 바람직하게는 상기 화학식 1의 R3는 sec-부틸기 또는 tert-부틸기일 수 있다. R 3 of Formula 1 may be one selected from the group consisting of n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, and isomers thereof, preferably R 3 of Formula 1 may be a sec-butyl group or a tert-butyl group.
또한, R1, R2, R4 및 R5는 동일하거나 또는 상이하고 각각 메틸기 또는 에틸기일 수 있다.Also, R 1 , R 2 , R 4 and R 5 may be the same or different and each may be a methyl group or an ethyl group.
본 발명의 화합물은 용매의 존재 하에서 알루미늄 화합물을 리간드인 유기 디아민 화합물과 반응시키는 단계 및 합성된 화합물을 상기 반응 혼합물로부터 분리하는 단계를 포함하는 화합물의 제조 방법에 의해서 제조된다.The compound of the present invention is prepared by a method for preparing a compound comprising reacting an aluminum compound with an organic diamine compound serving as a ligand in the presence of a solvent and separating the synthesized compound from the reaction mixture.
상기 화합물 제조에 사용되는 알루미늄 화합물 출발 물질은 당업계에 공지된 다양한 화합물로부터 선택될 수 있다. 알루미늄 화합물은 예를 들어, Al(CH3)3, Al(CH3)2H, Al(CH3CH2)3, Al(CH3CH2)2(CH3), Al(CH3CH2)2H, Al(CH3CH2 CH2)3 등을 들 수 있다.The aluminum compound starting material used in the preparation of the compound may be selected from various compounds known in the art. The aluminum compound may be, for example, Al(CH 3 ) 3 , Al(CH 3 ) 2 H, Al(CH 3 CH 2 ) 3 , Al(CH 3 CH 2 ) 2 (CH 3 ), Al(CH 3 CH 2 ) ) 2 H, Al(CH 3 CH 2 CH 2 ) 3 and the like.
상기 화합물 제조에 사용되는 유기 디아민 화합물 출발 물질은 화학식 1의 R3 치환기에 해당하는 치환 또는 비치환된 탄소수 4 내지 6의 선형 또는 분지형 탄화수소 또는 이들의 이성질체 치환기를 포함한다.The organic diamine compound starting material used for preparing the compound includes a substituted or unsubstituted linear or branched hydrocarbon having 4 to 6 carbon atoms corresponding to the R 3 substituent of Formula 1 or an isomer substituent thereof.
상기 화합물 제조를 위하여 사용되는 용매는 임의의 포화 및 불포화 탄화수소, 방향족 탄화수소, 방향족 헤테로시클, 알킬 할라이드, 실릴화 탄화수소, 에테르, 폴리에테르, 티오에테르, 에스테르, 티오에스테르, 락톤, 아미드, 아민, 폴리아민, 니트릴, 실리콘 오일, 그 밖의 비양자성 용매, 또는 상기한 것들 중 1종 이상의 혼합물; 더욱 바람직하게는, 디에틸에테르, 펜탄 또는 디메톡시에탄; 가장 바람직하게는 헥산 또는 톨루엔일 수 있다. 의도하는 반응을 심하게 거스르며 방해하지 않는 임의의 적절한 용매가 사용될 수 있다. 필요하다면, 1종 이상의 상이한 용매의 혼합물이 사용될 수 있다. The solvent used for the preparation of the compound includes any saturated and unsaturated hydrocarbons, aromatic hydrocarbons, aromatic heterocycles, alkyl halides, silylated hydrocarbons, ethers, polyethers, thioethers, esters, thioesters, lactones, amides, amines, polyamines. , nitriles, silicone oils, other aprotic solvents, or mixtures of one or more of the foregoing; More preferably, diethyl ether, pentane or dimethoxyethane; Most preferably, it may be hexane or toluene. Any suitable solvent that does not significantly oppose and do not interfere with the intended reaction may be used. If desired, mixtures of one or more different solvents may be used.
본 발명의 화합물은, 재결정화를 통해, 더욱 바람직하게는 반응 잔류물(예를 들어, 헥산)의 추출 및 크로마토그래피를 통해, 가장 바람직하게는 승화 및 증류를 통해 정제할 수 있다.The compounds of the present invention may be purified through recrystallization, more preferably through extraction and chromatography of the reaction residue (eg hexane), most preferably through sublimation and distillation.
본 발명의 화합물은 바람직하게는 실온(20℃)에서 액체 상태이다. The compounds of the present invention are preferably in the liquid state at room temperature (20° C.).
본 발명에 따른 전구체는 상기 화합물을 포함한다.The precursor according to the present invention comprises the above compound.
본 발명에 따른 박막의 제조방법은 상기 전구체를 반응기에 도입하는 단계를 포함한다.The method for producing a thin film according to the present invention includes introducing the precursor into a reactor.
또한, 150℃ 이상의 공정온도로 증착하는 단계를 더 포함할 수 있다. 공정온도는 바람직하게는 230℃ 이상일 수 있고, 더욱 바람직하게는 300℃ 이상일 수 있다.In addition, the method may further include depositing at a process temperature of 150° C. or higher. The process temperature may be preferably 230°C or higher, and more preferably 300°C or higher.
본 발명의 박막의 제조방법은 산화제, 질화제 또는 환원제 등을 사용하는 단계를 포함하여 산화막, 질화막, 또는 금속 박막 등을 제조할 수 있다.The method of manufacturing a thin film of the present invention may include the step of using an oxidizing agent, a nitriding agent, or a reducing agent to prepare an oxide film, a nitride film, or a metal thin film.
상기 박막의 제조방법은 증착에 의한 것일 수 있고, 다른 기체 성분의 존재 하에서 실시될 수 있다. 박막의 증착은 1종 이상의 불활성 캐리어 기체의 존재 하에서 실시될 수 있다. 불활성 캐리어 기체로는 예를 들어, 질소, 아르곤, 헬륨뿐 아니라, 공정 조건 하에서 본 발명의 전구체와 반응하지 않는 다른 기체를 포함한다. The manufacturing method of the thin film may be by vapor deposition or may be performed in the presence of other gas components. The deposition of the thin film may be carried out in the presence of one or more inert carrier gases. Inert carrier gases include, for example, nitrogen, argon, helium, as well as other gases that do not react with the precursors of the present invention under process conditions.
또한, 본 발명의 박막 증착은 1종 이상의 반응성 기체의 존재 하에서 실시될 수 있다. 사용할 수 있는 반응성 기체는 산화제, 질화제, 환원제 등일 수 있다. 예를 들어 히드라진, 공기, 산소, 산소 풍부 공기, 오존, 수소, 질소, 일산화질소, 이산화질소, 아산화질소, 수증기, 유기물질 증기, 암모니아 등을 포함하나, 이에 한정되지는 않는다. In addition, the thin film deposition of the present invention can be carried out in the presence of one or more reactive gases. The reactive gas that can be used may be an oxidizing agent, a nitriding agent, a reducing agent and the like. Examples include, but are not limited to, hydrazine, air, oxygen, oxygen enriched air, ozone, hydrogen, nitrogen, nitric oxide, nitrogen dioxide, nitrous oxide, water vapor, organic vapor, ammonia, and the like.
특히, 당업계에 공지된 바와 같이, 예컨대 공기, 산소, 산소 풍부 공기, 오존, 수증기, 아산화질소 또는 산화성 유기 화합물의 증기와 같은 산화성 가스의 존재는 금속 산화물 박막의 형성에 유리하다.In particular, the presence of oxidizing gases such as air, oxygen, oxygen enriched air, ozone, water vapor, nitrous oxide or vapors of oxidizable organic compounds, as is known in the art, is advantageous for the formation of thin metal oxide films.
본 발명의 증착은 단일의 금속을 포함하는 박막 또는 다종의 금속을 포함하는 박막을 형성하기 위해 실시할 수 있다. The deposition of the present invention can be performed to form a thin film containing a single metal or a thin film containing multiple types of metals.
또한, 본 발명의 증착을 통해서 제조된 박막은 표면 거칠기(Ra)가 1.4Å이하이고, 밀도가 3 g/cm3 이상일 수 있다.In addition, the thin film prepared through the deposition of the present invention may have a surface roughness (Ra) of 1.4 Å or less and a density of 3 g/cm 3 or more.
본 발명의 박막은 다양한 전자 장치에 사용될 수 있고, 특히 반도체, 디스플레이, 태양 전지 등에 사용될 수 있다.The thin film of the present invention may be used in various electronic devices, particularly semiconductors, displays, solar cells, and the like.
본 발명의 전구체는 기판을 전구체, 반응 기체 및 불활성 기체 흐름의 교대 펄스에 순차적으로 노출시키는 원자층 증착 (ALD)에 의하여 박막을 형성할 수 있다. The precursors of the present invention can be formed into thin films by atomic layer deposition (ALD), which sequentially exposes a substrate to alternating pulses of precursor, reactant gas and inert gas flows.
즉, 원자층 증착은 박막 형성에 필요한 원소를 번갈아 공급하여 자기제한적 반응 (Self-limiting reaction)에 의해 박막을 형성 시키는 기술로 매우 얇은 막을 증착할 수 있으며, 원하는 두께와 조성을 정밀하게 제어할 수 있다. 대면적의 기판에서도 균일한 두께의 막을 형성할 수 있으며, 높은 종횡비에서도 우수한 단차 피복성(Step coverage)를 나타낸다. 또한, 박막에 불순물이 적다는 장점을 가지고 있다.In other words, atomic layer deposition is a technology that forms a thin film by a self-limiting reaction by alternately supplying elements necessary for thin film formation, and can deposit a very thin film, and the desired thickness and composition can be precisely controlled. . It can form a film of uniform thickness even on a large-area substrate, and exhibits excellent step coverage even at a high aspect ratio. In addition, it has the advantage that there are few impurities in the thin film.
예를 들어, 한 ALD 주기에서, 기판은 순차적으로, a) 전구체를 운반하는 불활성 캐리어 기체; b) 불활성 기체; c) 반응성 기체(예를 들어 산화제, 환원제, 질화제 등), 또는 불활성 기체 및 반응성 기체 및 d) 불활성 기체에 노출 될 수 있다.For example, in one ALD cycle, the substrate may sequentially comprise: a) an inert carrier gas carrying the precursor; b) an inert gas; c) reactive gases (eg oxidizing agents, reducing agents, nitriding agents, etc.), or inert gases and reactive gases and d) inert gases.
일반적으로, 각 단계는 장비가 허용하는 만큼 짧고 (예를 들어, 밀리초), 공정이 필요로 하는 만큼 길 수 있다 (예를 들어, 수 초 또는 수 분). 한 주기의 길이는 짧게는 수 밀리초, 길게는 수 분일 수 있다. 주기는 수 분에서 수 시간 범위일 수 있는 기간에 걸쳐 반복된다. In general, each step can be as short as the equipment allows (eg, milliseconds), and as long as the process requires (eg, seconds or minutes). The length of one cycle may be as short as several milliseconds and as long as several minutes. The cycle repeats over a period that can range from minutes to hours.
본 발명의 전구체는 단일 알루미늄을 포함하는 필름, 단일 알루미늄 산화물, 단일 알루미늄 질화물 등을 포함하는 박막을 제조하는데 사용될 수 있다. 또한, 혼합 금속 산화물, 질화물 박막 등과 같은 혼합 박막 또한 증착될 수 있다.The precursor of the present invention can be used to prepare a film comprising a single aluminum, a thin film comprising a single aluminum oxide, a single aluminum nitride, and the like. In addition, mixed thin films such as mixed metal oxide, nitride thin films and the like may also be deposited.
이러한 박막은, 예를 들어, 몇몇 유기금속 전구체를 사용하여 제조될 수 있다. 금속 필름은 또한, 예를 들어, 캐리어 기체, 증기 또는 다른 반응성 기체 공급원을 이용하지 않고 제조될 수도 있다.Such thin films can be prepared using, for example, several organometallic precursors. Metal films may also be prepared without the use of, for example, carrier gases, vapors or other reactive gas sources.
이하, 실시예, 실험예 및 제조예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. Hereinafter, the present application will be described in more detail using Examples, Experimental Examples and Preparation Examples, but the present application is not limited thereto.
[실시예 1] [Example 1]
리간드(N1-(tert-butyl)-N2,N2-dimethylethane-1,2-diamine) 합성Ligand (N 1 -(tert-butyl)-N 2 ,N 2 -dimethylethane-1,2-diamine) synthesis
리간드의 합성방법은 하기 식 1과 같다.A method of synthesizing the ligand is shown in Formula 1 below.
[식 1][Equation 1]
Figure PCTKR2021000443-appb-I000003
Figure PCTKR2021000443-appb-I000003
(상기 식 1에서 tBu는 tert-부틸기임)(In Formula 1, tBu is a tert-butyl group)
구체적으로, H2O가 담긴 플라스크에 2-Chloro-N,N-dimethylethylamine hydrochloride를 첨가하고 교반하여 투명한 수용액을 준비한 후, tert-butylamine을 상기 준비된 수용액에 첨가하고, 플라스크를 20 ℃의 항온 수조(water bath)에서 약 24시간 교반시킨다.Specifically, 2-Chloro-N,N-dimethylethylamine hydrochloride was added to a flask containing H 2 O and stirred to prepare a transparent aqueous solution, tert-butylamine was added to the prepared aqueous solution, and the flask was placed in a constant temperature water bath at 20 ° C ( water bath) for about 24 hours.
이어서, 플라스크를 냉수조(ice bath)로 옮겨 냉각시킨 수 NaOH 수용액을 첨가시키고 10분간 교반시킨 후, 헥산(hexane)으로 추출하고 용매를 감압 제거하여 N1-(tert-butyl)-N2,N2-dimethylethane-1,2-diamine를 수득한다.Then, the flask was moved to an ice bath, cooled aqueous NaOH aqueous solution was added, stirred for 10 minutes, extracted with hexane, and the solvent was removed under reduced pressure, N 1 -(tert-butyl)-N 2 , N 2 -dimethylethane-1,2-diamine is obtained.
리간드 N1-(tert-butyl)-N2,N2-dimethylethane-1,2-diamine의 수율은 17~32 %이고, 상온에서 무색의 액체 상태이다.The yield of the ligand N 1 -(tert-butyl)-N 2 ,N 2 -dimethylethane-1,2-diamine is 17-32 %, and it is a colorless liquid at room temperature.
[실시예 2][Example 2]
전구체 화합물(Al(CH3)2[(CH3)2NCH2CH2NtBu]) 합성Synthesis of precursor compound (Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu])
전구체 화합물의 합성방법은 하기 식 2와 같다.A method of synthesizing the precursor compound is shown in Formula 2 below.
[식 2][Equation 2]
Figure PCTKR2021000443-appb-I000004
Figure PCTKR2021000443-appb-I000004
(상기 식2에서 tBu는 tert-부틸기임)(In Formula 2, tBu is a tert-butyl group)
구체적으로, 실시예 1에서 합성된 리간드인 N1-(tert-butyl)-N2,N2-dimethylethane-1,2-diamine 1당량을 -78℃의 헥산 또는 헵탄에 용해된 1M Al(CH3)3 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 24시간 교반한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. Specifically, 1 equivalent of N 1 -(tert-butyl)-N 2 ,N 2 -dimethylethane-1,2-diamine, which is the ligand synthesized in Example 1, 1M Al(CH) dissolved in hexane or heptane at -78°C 3 ) Add to 1 equivalent of 3 , gradually raise the temperature to room temperature, and then stir for about 24 hours. The reaction is complete and the solvent is removed under vacuum.
상기 반응의 수율은 90~97 %이고, 수득된 화합물은 상온에서 엷은 황색의 액체 상태이다.The yield of the reaction is 90 to 97%, and the obtained compound is in a pale yellow liquid state at room temperature.
이후 감압 증류 정제(45-50℃@300 mTorr) 하여, 무색 액체인 전구체 화합물 Al(CH3)2[(CH3)2NCH2CH2NtBu]를 수득한다. 정제 수율은 71~80%이다.Subsequent vacuum distillation purification (45-50℃@300 mTorr) Thus, a colorless liquid precursor compound Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu] is obtained. The purification yield is 71-80%.
수득된 전구체 화합물의 1H NMR은 다음과 같다. 1 H NMR of the obtained precursor compound is as follows.
1H NMR(C6D6): 1 H NMR (C 6 D 6 ):
δ 2.77 Al(CH3)2[(CH3)2NCH2CH2NtBu], t, 2H) δ 2.77 Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu], t, 2H)
δ 2.11 Al(CH3)2[(CH3)2NCH2CH2NtBu], t, 2H) δ 2.11 Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu], t, 2H)
δ 1.66 Al(CH3)2[(CH3)2NCH2CH2NtBu], s, 6H) δ 1.66 Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu], s, 6H)
δ 1.33 Al(CH3)2[(CH3)2NCH2CH2NtBu], s, 9H) δ 1.33 Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu], s, 9H)
δ -0.47 Al(CH3)2[(CH3)2NCH2CH2NtBu], s, 6H)δ -0.47 Al(CH 3 ) 2 [(CH 3 ) 2 NCH 2 CH 2 NtBu], s, 6H)
실시예 2를 통해 합성된 알루미늄 전구체 화합물에 대하여 하기와 같이 시차주사 열량계 분석, 점도 측정, 열중량 분석 및 증발율 측정을 실시하여 물성을 확인하였다. Aluminum synthesized through Example 2 The precursor compound was subjected to differential scanning calorimetry analysis, viscosity measurement, thermogravimetric analysis and evaporation rate measurement as follows to confirm physical properties.
[실험예 1] 시차주사 열량계(Differential Scanning Calorimetry, DSC) 분석[Experimental Example 1] Differential Scanning Calorimetry (DSC) analysis
알루미늄 전구체 화합물의 시차주자 열량계 분석을 실시하였다. 이때, 각 샘플의 무게를 약 7.8 mg 취하여 알루미나 도가니(Alumina crucible)에 넣은 후 10 ℃/min의 승온 속도로 35℃에서 500℃까지 측정하였고, 측정된 결과를 도 1에 나타내었다. Differential runner calorimetry analysis of the aluminum precursor compound was performed. At this time, about 7.8 mg of each sample was weighed, put into an alumina crucible, and measured from 35° C. to 500° C. at a temperature increase rate of 10° C./min, and the measured results are shown in FIG. 1 .
도 1을 참조하면, 알루미늄 전구체 화합물의 열분해 온도는 약 245℃인 것을 확인할 수 있었다.Referring to FIG. 1 , it was confirmed that the thermal decomposition temperature of the aluminum precursor compound was about 245°C.
[실험예 2] 점도 측정 [Experimental Example 2] Viscosity measurement
알루미늄 전구체 화합물의 점도(25 ℃에서 측정)를 글로브 박스(glove box)에서 측정하였다. The viscosity (measured at 25° C.) of the aluminum precursor compound was measured in a glove box.
총 5회 측정하여 평균한 알루미늄 전구체 화합물의 평균 점도는 4.78 cP로 확인되었다.It was confirmed that the average viscosity of the aluminum precursor compound averaged by measuring a total of 5 times was 4.78 cP.
[실험예 3] 열중량(Thermogravimetric, TG) 분석[Experimental Example 3] Thermogravimetric (TG) analysis
알루미늄 전구체 화합물의 열중량 분석을 실시하였다.aluminum Thermogravimetric analysis of the precursor compound was performed.
열중량 분석 시 사용된 기기는 Mettler Toledo사의 TGA/DSC 1 STAR System으로 50μL용량의 알루미나 도가니(Alumina crucible)를 사용하였다. 모든 시료의 양은 10 mg을 사용하였고, 30℃에서 400℃까지 측정하였고, 승온은 10 ℃/min의 속도로 이루어졌다. The instrument used for thermogravimetric analysis was Mettler Toledo's TGA/DSC 1 STAR System, and an alumina crucible with a capacity of 50 μL was used. The amount of all samples was 10 mg, measured from 30°C to 400°C, and the temperature was increased at a rate of 10°C/min.
도 2(a)에 도시된 바와 같이, 열중량 분석을 통하여 측정한 알루미늄 전구체 화합물의 반감기[T1/2(℃)]는 161.9℃이다.As shown in FIG. 2(a), the half-life [T 1/2 (°C)] of the aluminum precursor compound measured through thermogravimetric analysis was 161.9°C.
또한, 200℃에서는 잔류량은 0.8 wt%, 300℃에서는 잔류량은 0.2 wt%임을 확인할 수 있었다. In addition, it was confirmed that the residual amount was 0.8 wt% at 200 °C and 0.2 wt% at 300 °C .
더불어, 도 2(b)에 나타낸 바와 같이 알루미늄 전구체 화합물의 이소 열중량(iso thermogravimetric) 분석을 실시하였다.In addition, as shown in FIG. 2(b), iso thermogravimetric analysis of the aluminum precursor compound was performed.
승온은 20 ℃/min의 속도로 이루어졌고, 80℃, 100℃, 120℃ 및 150℃에서 각각 2시간씩 온도를 유지하면서 이소 열중량 분석을 실시하였다.The temperature was raised at a rate of 20 °C/min, and iso-thermogravimetric analysis was performed while maintaining the temperature at 80 °C, 100 °C, 120 °C and 150 °C for 2 hours, respectively.
이소 열중량 분석을 실시한 결과, 80℃로 2시간을 유지하는 경우 잔류량은 약 80% 정도였고, 100℃로 2시간을 유지하는 경우 잔류량은 약 40% 정도였다.As a result of performing iso-thermogravimetric analysis, the residual amount was about 80% when maintained at 80° C. for 2 hours, and when maintained at 100° C. for 2 hours, the residual amount was about 40%.
온도를 더욱 높여서 100℃로 2시간을 유지하는 경우, 약 85분 후에는 잔류량이 거의 측정되지 않았고, 150℃로 2시간을 유지하는 경우 약 30분 후에는 잔류량이 거의 측정되지 않았다.When the temperature was further increased and maintained at 100° C. for 2 hours, almost no residual amount was measured after about 85 minutes, and when the temperature was maintained at 150° C. for 2 hours, almost no residual amount was measured after about 30 minutes.
[실험예 4] 증발율 측정[Experimental Example 4] Evaporation rate measurement
알루미늄 전구체 화합물의 증발율을 측정하였다.The evaporation rate of the aluminum precursor compound was measured.
도 3(a)에 도시된 바와 같이, 온도가 증가함에 따라서 증발율이 증가함을 알 수 있었다. As shown in Fig. 3(a), it was found that the evaporation rate increased as the temperature increased.
구체적으로 80℃에서는 약 0.02 mg/min·cm2 의 증발율이 측정되었고, 120℃에서는 약 0.06 mg/min·cm2 의 증발율이 측정되었으며, 150℃에서는 증발율이 크게 증가하여 약 0.26 mg/min·cm2 의 증발율이 측정되었다.Specifically, an evaporation rate of about 0.02 mg/min·cm 2 was measured at 80° C., an evaporation rate of about 0.06 mg/min·cm 2 was measured at 120° C., and the evaporation rate increased significantly at 150° C. to about 0.26 mg/min·cm 2 The evaporation rate of cm 2 was measured.
또한, 증발율을 온도 T(T는 절대온도임)에서의 속도상수 k로 측정되며 1/T의 선형함수인 ln(k)로 표현하여 도 3(b)에 도시하였다.In addition, the evaporation rate was measured as a rate constant k at a temperature T (T is an absolute temperature) and expressed as ln(k), which is a linear function of 1/T, and is shown in FIG. 3(b).
알루미늄 전구체 화합물의 증발율은353 K에서 ln(k) 값이 약 -4.0 mg/min·cm2 로 측정되었고, 423 K에서는 ln(k) 값이 약 -2.5 mg/min·cm2 로 측정되었다.The evaporation rate of the aluminum precursor compound was measured to have an ln(k) value of about -4.0 mg/min·cm 2 at 353 K, and an ln(k) value of about -2.5 mg/min·cm 2 at 423 K.
[제조예 1] 원자층 증착(ALD) 공정을 통한 성막[Preparation Example 1] Film formation through atomic layer deposition (ALD) process
실시예 2와 같이 합성한 알루미늄 전구체 화합물의 원자층 증착법(ALD)을 통한 성막을 진행 하였다. 산화제로는 오존을 사용하였고, 불활성 기체인 아르곤을 퍼지 목적으로 사용하였다. 전구체(20초), 아르곤(10초), 오존(5초) 그리고 아르곤(10초)를 주입하는 것을 한 싸이클로 하였으며, 증착은 Si(실리콘) 웨이퍼 상에서 수행하였고, 증착 온도는 150℃ 내지 340℃로 조절하여 Al2O3 박막을 형성하였다.Aluminum synthesized as in Example 2 Film formation was performed by atomic layer deposition (ALD) of the precursor compound. Ozone was used as the oxidizing agent, and argon, an inert gas, was used for the purpose of purging. Precursor (20 sec), argon (10 sec), ozone (5 sec) and argon (10 sec) were injected in one cycle, and deposition was performed on a Si (silicon) wafer, and the deposition temperature was 150° C. to 340° C. to form an Al 2 O 3 thin film.
제조예 1에 의해서 제조된 박막에 대해서는 성막 평가 항목으로 알루미늄 전구체 화합물의 ALD 공정에서 산화제로 오존를 사용하여 상이한 증착 온도 하에서 증착된 Al2O3 박막의 XPS(X-ray photoelectron spectroscopy) 분석을 통한 증착된 박막 내 알루미늄(Al), 산소(O), 탄소(C), 질소(N) 함유량 및 O/Al의 비율, XRR(X-ray reflectivity) 분석을 통한 밀도, AFM(Atomic force microscope) 분석을 통한 표면 거칠기 및 TEM(Transmission electron microscope) 분석을 통한 단차 피복성(Step coverage)를 평가하였다. For the thin film prepared by Preparation Example 1, an Al 2 O 3 thin film deposited under different deposition temperatures using ozone as an oxidizing agent in the ALD process of an aluminum precursor compound as a film formation evaluation item Deposition through XPS (X-ray photoelectron spectroscopy) analysis Aluminum (Al), oxygen (O), carbon (C), nitrogen (N) content and ratio of O/Al in the thin film, density through X-ray reflectivity (XRR) analysis, and atomic force microscope (AFM) analysis Surface roughness and step coverage were evaluated through transmission electron microscope (TEM) analysis.
[제조예 2] X선 광전자 분광법(X-ray Photoelectron Spectroscopy, XPS)분석[Preparation Example 2] X-ray Photoelectron Spectroscopy (XPS) analysis
제조예 1과 같이 알루미늄 전구체 화합물과 산화제로 오존을 사용한 ALD 공정에 있어서, 공정 온도 변화에 따른 원소 함량(Atomic %) 및 원소 비율(Atomic ratio, O/Al ratio)의 변화를 XPS (X-ray photoelectron spectroscopy) 분석을 통해 측정하였다. In the ALD process using ozone as an aluminum precursor compound and an oxidizing agent as in Preparation Example 1, changes in element content (Atomic %) and element ratio (Atomic ratio, O/Al ratio) according to process temperature change were measured by XPS (X-ray It was measured through photoelectron spectroscopy) analysis.
도4에 나타낸 바와 같이, 공정 온도 범위를 230℃ 내지 340℃로 하였을 때 공정 온도의 변화에 따른 정량적 Al2O3 박막의 함량을 확인하였다. As shown in Figure 4, when the process temperature range was 230 °C to 340 °C, the content of the quantitative Al 2 O 3 thin film according to the change in the process temperature was confirmed.
하기 표1에 나타낸 바와 같이, 공정 온도를 230℃, 300℃, 340℃로 하였을 때, C(탄소), N(질소)와 같은 불순물이 존재하지 않았고, Al(알루미늄) 및 O(산소)의 함량 및 O/Al의 비율이 일정하게 유지된다는 것을 확인할 수 있었다.As shown in Table 1 below, when the process temperature was 230°C, 300°C, and 340°C, impurities such as C (carbon) and N (nitrogen) were not present, and Al (aluminum) and O (oxygen) It was confirmed that the content and the ratio of O/Al were kept constant.
공정온도process temperature 농도, at%concentration, at% O/Al의 비율O/Al ratio
AlAl OO CC NN
230℃230℃ 39.939.9 59.959.9 0.00.0 0.20.2 1.501.50
300℃300℃ 40.240.2 59.859.8 0.00.0 0.00.0 1.491.49
340℃340℃ 40.240.2 59.859.8 0.00.0 0.00.0 1.491.49
[제조예 3] X선 반사율 측정법(X-ray Reflectivity, XRR) 분석[Preparation Example 3] X-ray reflectivity (XRR) analysis
제조예 1과 같이 알루미늄 전구체 화합물과 산화제로 오존을 사용한 ALD 공정에 있어서, 공정 온도 변화에 따른 박막의 밀도 변화를 XRR(X-ray reflectivity) 분석을 통하여 측정하였다.In the ALD process using an aluminum precursor compound and ozone as an oxidizing agent as in Preparation Example 1, the change in the density of the thin film according to the process temperature was measured through X-ray reflectivity (XRR) analysis.
도 5 및 하기 표 2에 나타낸 바와 같이 공정 온도가 상승함에 따라 박막의 밀도는 증가하는 경향이 있는 것을 확인하였다.As shown in FIG. 5 and Table 2 below, it was confirmed that the density of the thin film tends to increase as the process temperature increases.
공정온도process temperature
230℃230 300℃300℃ 340℃340℃
밀도
(g/cm3)
density
(g/cm 3 )
3.003.00 3.13.1 3.183.18
Bulk 밀도: 3.95g/cm3 Bulk density: 3.95 g/cm 3
[제조예 4] 원자힘 현미경(Atomic Force Microscope, AFM) 분석[Preparation Example 4] Atomic Force Microscope (AFM) analysis
제조예 1과 같이 알루미늄 전구체 화합물과 산화제로 오존을 사용한 ALD 공정에 있어서, 공정 온도 변화에 따른 박막의 표면 거칠기를 AFM(Atomic force microscope)를 통해 측정하였다. 도 6 및 하기 표 3에 나타낸 바와 같이 공정 온도 범위가 230℃에서 340℃로 상승함에 따라서 대체로 박막의 표면 거칠기(Ra)는 감소하였다. In the ALD process using an aluminum precursor compound and ozone as an oxidizing agent as in Preparation Example 1, the surface roughness of the thin film according to the process temperature change was measured using an atomic force microscope (AFM). As shown in FIG. 6 and Table 3 below, as the process temperature range increased from 230°C to 340°C, the surface roughness (Ra) of the thin film generally decreased.
공정온도process temperature
230℃230 300℃300℃ 340℃340℃
표면 거칠기
(Å)
surface roughness
(Å)
1.371.37 1.081.08 1.101.10
[제조예 5] 투과 전자 현미경(Transmission electron microscopy, TEM)분석[Preparation Example 5] Transmission electron microscopy (TEM) analysis
제조예 1과 같이 알루미늄 전구체 화합물과 산화제로 오존을 사용한 ALD 공정에 있어서, 공정 온도 변화에 따른 트랜치(Trench) 구조의 단차 피복성(Step coverage)에 대해서 TEM (Transmission electron microscopy) 분석을 통해 확인하였다. 공정 온도 범위는 230℃ 내지 340℃이었고, 트랜치 구조의 종횡비는 40:1이다.In the ALD process using ozone as an aluminum precursor compound and an oxidizing agent as in Preparation Example 1, the step coverage of the trench structure according to the process temperature was confirmed through TEM (Transmission electron microscopy) analysis. . The process temperature ranged from 230°C to 340°C, and the trench structure aspect ratio was 40:1.
도 7 및 하기 표 4에 나타낸 바와 같이, 공정 온도가 230℃인 경우에는 바닥 단차 피복성이 84%이었고, 공정 온도가 300℃, 340℃인 경우에는 바닥 단차 피복성이 95% 이상의 수준을 나타내었다. 이에 따라, 알루미늄 전구체 화합물은 넓은 공정 온도 구간에서 우수한 단차 피복성을 가지는 것을 확인할 수 있었다.As shown in FIG. 7 and Table 4 below, when the process temperature was 230 ° C., the floor step coverage was 84%, and when the process temperature was 300 ° C. and 340 ° C., the floor step coverage was 95% or more. It was. Accordingly, it was confirmed that the aluminum precursor compound had excellent step coverage in a wide process temperature range.
단차 피복성step coverage 공정온도process temperature
230℃230 300℃300℃ 340℃340℃
측면side 89%89% 93%93% 97%97%
바닥floor 84%84% 95%95% 96%96%
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The above description of the present application is for illustration, and those of ordinary skill in the art to which the present application pertains will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims, and their equivalents should be construed as being included in the scope of the present application. .
본원에 의하면, 13족 (Al: 알루미늄, Ga: 갈륨, In: 인듐 등)의 금속을 포함하는 신규 전구체 화합물 제조가 가능하다. 상기 전구체 화합물은 대기 중에서 자연 발화하지 않고, 높은 열적 안정성 및 반응성을 가지고 있다.According to the present application, it is possible to prepare a novel precursor compound including a metal of Group 13 (Al: aluminum, Ga: gallium, In: indium, etc.). The precursor compound does not spontaneously ignite in the atmosphere and has high thermal stability and reactivity.
또한, 본원의 전구체 화합물은 다양한 반응 기체와 함께 원자층 증착법(ALD) 또는 화학 기상 증착법(CVD)을 통해 우수한 품질의 박막을 얻을 수 있다.In addition, the precursor compound of the present application can obtain a thin film of excellent quality through atomic layer deposition (ALD) or chemical vapor deposition (CVD) together with various reactive gases.

Claims (13)

  1. 하기 화학식 1로서 표시되는 화합물:A compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2021000443-appb-I000005
    Figure PCTKR2021000443-appb-I000005
    상기 화학식 1에서, In Formula 1,
    M이 주기율표 상 13족의 금속이고,M is a metal of group 13 on the periodic table,
    R1, R2, R4 및 R5는 동일하거나 또는 상이하고 각각 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 탄화수소 또는 이들의 이성질체이며,R 1 , R 2 , R 4 and R 5 are the same or different and each is hydrogen, a substituted or unsubstituted linear or branched hydrocarbon having 1 to 4 carbon atoms, or an isomer thereof,
    R3는 치환 또는 비치환된 탄소수 4 내지 6의 선형 또는 분지형 탄화수소 또는 이들의 이성질체임.R 3 is a substituted or unsubstituted linear or branched hydrocarbon having 4 to 6 carbon atoms or an isomer thereof.
  2. 제1항에 있어서, According to claim 1,
    상기 화학식 1의 M은 Al, In 및 Ga로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 화합물.M in Formula 1 is a compound, characterized in that one selected from the group consisting of Al, In, and Ga.
  3. 제1항에 있어서,According to claim 1,
    상기 화학식 1의 R3는 n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 화합물. R 3 of Formula 1 is a compound, characterized in that one selected from the group consisting of n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, and isomers thereof.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 R1, R2, R4 및 R5는 동일하거나 또는 상이하고 각각 메틸기 또는 에틸기인 것을 특징으로 하는 화합물.The R 1 , R 2 , R 4 and R 5 are the same or different and each represents a methyl group or an ethyl group.
  5. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 전구체.A precursor comprising the compound of any one of claims 1 to 4.
  6. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 전구체를 반응기에 도입하는 단계를 포함하는 박막의 제조방법.A method for producing a thin film comprising the step of introducing a precursor comprising the compound of any one of claims 1 to 4 into a reactor.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제조방법은 원자층 증착(ALD) 또는 화학 기상 증착(CVD)을 포함하는 박막의 제조방법.The manufacturing method is a thin film manufacturing method comprising atomic layer deposition (ALD) or chemical vapor deposition (CVD).
  8. 제6항에 있어서,7. The method of claim 6,
    150℃ 이상의 공정온도로 증착하는 단계를 더 포함하는 박막의 제조방법.Method for producing a thin film further comprising the step of depositing at a process temperature of 150 ℃ or higher.
  9. 제6항에 있어서,7. The method of claim 6,
    산화제, 질화제 또는 환원제로 이루어진 군에서 어느 1종을 사용하는 단계를 더 포함하는 박막의 제조방법.The method of manufacturing a thin film further comprising the step of using any one of the group consisting of an oxidizing agent, a nitriding agent, or a reducing agent.
  10. 제6항에 있어서,7. The method of claim 6,
    상기 박막은 산화막, 질화막, 또는 금속 박막을 포함하는 박막의 제조방법.The thin film is an oxide film, a nitride film, or a method of manufacturing a thin film comprising a metal thin film.
  11. 제6항의 제조방법에 의해서 제조된 표면 거칠기(Ra)가 1.4 Å이하이고, 밀도가 3 g/cm3 이상인 박막.The surface roughness (Ra) manufactured by the manufacturing method of claim 6 is 1.4 A thin film of less than Å and a density of 3 g/cm 3 or more.
  12. 제11항의 박막을 포함하는 전자 장치.An electronic device comprising the thin film of claim 11 .
  13. 제12항에 있어서,13. The method of claim 12,
    상기 전자 장치는 반도체, 디스플레이 및 태양 전지로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 전자 장치.The electronic device is any one selected from the group consisting of a semiconductor, a display, and a solar cell.
PCT/KR2021/000443 2020-01-17 2021-01-13 Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same WO2021145661A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0006636 2020-01-17
KR1020200006636A KR20210093011A (en) 2020-01-17 2020-01-17 Precursor compound for atomic layer deposition(ald), chemical vapor deposition(cvd) and ald/cvd deposition using the same

Publications (2)

Publication Number Publication Date
WO2021145661A2 true WO2021145661A2 (en) 2021-07-22
WO2021145661A3 WO2021145661A3 (en) 2021-09-10

Family

ID=76864784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000443 WO2021145661A2 (en) 2020-01-17 2021-01-13 Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same

Country Status (3)

Country Link
KR (1) KR20210093011A (en)
TW (1) TWI771864B (en)
WO (1) WO2021145661A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100246155B1 (en) * 1997-07-28 2000-04-01 최형수 Amidoalane precursors for chemical vapor deposition of aluminum
US20060193984A1 (en) * 2005-02-14 2006-08-31 Peters David W Organoaluminum precursor compounds
US7348445B2 (en) * 2005-02-14 2008-03-25 Praxair Technology, Inc. Organoaluminum precursor compounds
US9663538B2 (en) * 2012-12-25 2017-05-30 Adeka Corporation Aluminum compound, thin-film forming raw material, and method for producing thin film
KR101787204B1 (en) 2015-11-23 2017-10-18 주식회사 한솔케미칼 Organic metal precursor compound for atomic layer deposition and ald deposition using the same

Also Published As

Publication number Publication date
WO2021145661A3 (en) 2021-09-10
TWI771864B (en) 2022-07-21
KR20210093011A (en) 2021-07-27
TW202128720A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2010071364A2 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
WO2015142053A1 (en) Organic germanium amine compound and method for depositing thin film using same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2015130108A1 (en) Precursor composition for forming zirconium-containing film and method for forming zirconium-containing film using same
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2021145661A2 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2023219428A1 (en) Precursor compound for forming metal film and metal film using same
WO2022255837A1 (en) Method for manufacturing organometallic compound and method for forming thin film using same
WO2024058431A1 (en) Precursor for forming yttrium- or scandium-containing thin film, method for forming yttrium- or scandium-containing thin film using same, and semiconductor element including yttrium- or scandium-containing thin film
WO2023090910A1 (en) Method for forming thin film by using organic metal compound, and thin film manufactured thereby
WO2024071976A1 (en) Silicon precursor compound in asymmetric structure, method for preparing the same, and method for preparing a silicon-containing thin film
WO2024049150A1 (en) Composition for depositing thin film containing metal compound, method for manufacturing metal-containing thin film using same, and metal-containing thin film manufactured by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741709

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741709

Country of ref document: EP

Kind code of ref document: A2