WO2024048895A1 - Aluminum alloy casting material and brake disc comprising same - Google Patents

Aluminum alloy casting material and brake disc comprising same Download PDF

Info

Publication number
WO2024048895A1
WO2024048895A1 PCT/KR2023/005785 KR2023005785W WO2024048895A1 WO 2024048895 A1 WO2024048895 A1 WO 2024048895A1 KR 2023005785 W KR2023005785 W KR 2023005785W WO 2024048895 A1 WO2024048895 A1 WO 2024048895A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
aluminum alloy
casting material
alloy casting
experimental example
Prior art date
Application number
PCT/KR2023/005785
Other languages
French (fr)
Korean (ko)
Inventor
이정무
조영희
손현우
이승욱
이지영
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230054914A external-priority patent/KR20240031866A/en
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2024048895A1 publication Critical patent/WO2024048895A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy casting material, and more specifically, to an aluminum alloy casting material having excellent high-temperature strength and corrosion resistance and a brake disc containing the same.
  • brake discs which are braking parts of automobiles, are mainly manufactured from cast iron.
  • braking is performed only by mechanical braking.
  • the braking environment required for mechanical braking applied to electric vehicles can be alleviated compared to internal combustion engine vehicles. Due to this braking environment, attempts are being made to use aluminum alloy castings as brake discs in electric vehicles.
  • the technical problem to be achieved by the technical idea of the present invention is to provide an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance, and a brake disc containing the same.
  • an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance and a brake disc including the same are provided.
  • the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may include aluminum (Al) and inevitable impurities.
  • it may further include more than 0% by weight to 1.0% by weight of manganese (Mn).
  • it may further include more than 0% by weight to 1.5% by weight of nickel (Ni).
  • it may further include zirconium (Zr) in an amount greater than 0% by weight to 0.25% by weight.
  • titanium (Ti) in an amount greater than 0% by weight to 0.05% by weight; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight.
  • the aluminum alloy cast material may have a microstructure consisting of at least one of eutectic Si, eutectic Mg 2 Si, primary Si, and primary Mg 2 Si.
  • the aluminum alloy casting material may have a corrosion rate of 0.2 mm/year or less.
  • the aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 190 MPa to 230 MPa.
  • the aluminum alloy casting material may be subjected to solution treatment and then subjected to aging treatment.
  • the aluminum alloy casting material may be aged without solution treatment.
  • the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
  • it may further include 0.021% by weight to 0.641% by weight of nickel (Ni).
  • it may further include 0.004% by weight to 0.185% by weight of zirconium (Zr).
  • the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
  • the brake disc includes more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
  • Figure 1 is a phase diagram of an aluminum-silicon binary alloy for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
  • Figure 2 is a phase diagram of an aluminum-silicon-magnesium alloy obtained through thermodynamic computational calculations for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
  • Figures 3 and 4 are optical microscope photographs showing the microstructure of an aluminum alloy cast material for alloy design of the aluminum alloy cast material according to an embodiment of the present invention.
  • Figure 5 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T6 heat treatment according to an embodiment of the present invention.
  • Figure 6 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T5 heat treatment according to an embodiment of the present invention.
  • Figure 7 is a graph calculated by thermodynamic calculation of the fraction of the formed phase upon addition of copper in an aluminum alloy casting material according to an embodiment of the present invention.
  • Figure 8 is a graph calculated by thermodynamic calculation of the fraction of phases formed upon adding nickel in an aluminum alloy casting material according to an embodiment of the present invention.
  • Figures 9 and 10 are optical microscope photographs showing the microstructure of an aluminum alloy cast material according to an embodiment of the present invention.
  • Figure 11 is a schematic diagram showing a brake system including a brake disc formed of aluminum alloy casting according to an embodiment of the present invention.
  • the aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may include aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.1% by weight to 15% by weight.
  • the aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; Greater than 0% to 1.0% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities. That is, the aluminum alloy cast material further contains manganese (Mn) in an amount of more than 0% by weight to 1.0% by weight.
  • the aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
  • the aluminum alloy casting material may further include nickel (Ni) in an amount of more than 0% by weight to 1.5% by weight in addition to the above elements, or it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight in addition to the elements. , more than 0% by weight to 1.5% by weight of nickel (Ni) in addition to the above elements; And it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight.
  • the aluminum alloy casting material includes titanium (Ti) in an amount of more than 0% by weight to 0.05% by weight in addition to the above elements; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight.
  • the aluminum alloy casting material may further include iron (Fe) in an amount of more than 0% by weight to 0.2% by weight as an inevitable impurity in addition to the above elements.
  • the aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus.
  • the phosphorus may be included in the form of AlP.
  • the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
  • the aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.3% by weight to 14.6% by weight.
  • the aluminum alloy casting material may further include 0.021% to 0.641% by weight of nickel (Ni) in addition to the above elements, or may further include 0.004% to 0.185% by weight of zirconium (Zr) in addition to the above elements. 0.021% to 0.641% by weight of nickel (Ni) in addition to the element; And it may further include 0.004% by weight to 0.185% by weight of zirconium (Zr).
  • the aluminum alloy casting material includes, in addition to the above elements, 0.034% by weight to 0.040% by weight of titanium (Ti); And it may further include 0.001% by weight to 0.004% by weight of boron (B).
  • the aluminum alloy casting material may further include 0.120% to 0.158% by weight of iron (Fe) as the inevitable impurity in addition to the above elements.
  • the aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus.
  • the phosphorus may be included in the form of AlP.
  • the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
  • the aluminum alloy cast material may have a microstructure consisting of at least one of eutectic Si, eutectic Mg 2 Si, primary Si, and primary Mg 2 Si.
  • the aluminum alloy cast material may be subjected to heat treatment after casting, for example, T6 heat treatment, which is an aging treatment after solution treatment.
  • the aluminum alloy casting material subjected to the T6 heat treatment may have a corrosion rate in the range of 0.2 mm/year or less, and may have a corrosion rate in the range of more than 0 mm/year to less than 0.2 mm/year.
  • the corrosion rate is calculated by measuring the weight loss after immersing the aluminum alloy cast material in a 5.0% NaCl aqueous solution for 480 hours.
  • the aluminum alloy casting material subjected to the T6 heat treatment may have a room temperature tensile strength in the range of 300 MPa to 360 MPa.
  • the aluminum alloy casting may have a high temperature tensile strength of 200°C in the range of 240 MPa to 300 MPa.
  • the aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 190 MPa to 230 MPa.
  • the aluminum alloy casting material may have a high temperature tensile strength of 300°C in the range of 90 MPa to 140 MPa.
  • the aluminum alloy casting material may have a high temperature tensile strength of 350°C in the range of 70 MPa to 80 MPa.
  • the aluminum alloy cast material may be subjected to T5 heat treatment, which is aging treatment without solution treatment.
  • the aluminum alloy casting material subjected to the T5 heat treatment may have a corrosion rate in the range of 0.4 mm/year or less, and may have a corrosion rate in the range of more than 0 mm/year to less than 0.4 mm/year.
  • the corrosion rate is calculated by measuring the weight loss after immersing the aluminum alloy cast material in a 5.0% NaCl aqueous solution for 480 hours.
  • the aluminum alloy casting material subjected to the T5 heat treatment may have a room temperature tensile strength in the range of 200 MPa to 230 MPa.
  • the aluminum alloy casting material may have a high temperature tensile strength of 200°C in the range of 180 MPa to 210 MPa.
  • the aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 130 MPa to 150 MPa.
  • the aluminum alloy cast material may have a high temperature tensile strength of 300°C in the range of 90 MPa to 110 MPa.
  • the aluminum alloy casting may have a high temperature tensile strength of 350°C in the range of 60 MPa to 80 MPa.
  • composition range of the aluminum alloy cast material of the present invention the critical significance of the composition range of the aluminum alloy cast material of the present invention, the formation of intermetallic compounds according to the composition range, and the resulting effects will be explained in detail.
  • a widely used aluminum alloy casting material is an aluminum-silicon alloy. Therefore, the aluminum-silicon binary alloy will be described.
  • Figure 1 is a phase diagram of an aluminum-silicon binary alloy for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
  • a phase diagram of an aluminum-silicon binary alloy is shown.
  • silicon (Si) is 12.6% by weight
  • the composition is a eutectic reaction between aluminum and silicon.
  • a microstructure composed of ⁇ -Al and fine eutectic Si is formed below the eutectic composition (i.e., less than 12.6 wt% silicon).
  • eutectic Si fine eutectic Si
  • the eutectic composition is exceeded, that is, if silicon exceeds 12.6% by weight, a microstructure composed of ⁇ -Al, eutectic Si (eutectic Si), and primary Si (primary Si) is formed.
  • silicon has higher hardness than ⁇ -Al, which is a matrix, and can contribute to high-temperature strength and wear resistance.
  • the primary Si is formed, and as the content of silicon increases, the primary Si exists in a coarse polygonal form, which reduces the contribution to high temperature strength and also reduces wear resistance. You can. Therefore, control of the silicon content is required.
  • the interconnectivity of the generated phases within the microstructure is important, and the higher the interconnectivity, the higher the high-temperature strength.
  • the interconnectivity of the formation phases refers to the degree to which individual formation phases are in contact with each other, and can be easily understood as a truss structure.
  • the produced phase is needle-shaped or fibrous, interconnectivity is high, and if the produced phase is square or spherical, interconnectivity is low.
  • primary Si has low interconnectivity
  • eutectic Si has high interconnectivity.
  • eutectic Si appears two-dimensionally in the form of needles or fine spheres, and three-dimensionally is connected in a fibrous form, so interconnectivity is high. Therefore, the more eutectic Si, the higher the high-temperature strength can be.
  • alloys containing 10% to 13% by weight of silicon, which is near the eutectic composition of aluminum-silicon are used.
  • an alloy having a composition close to the eutectic point in the Al-Si binary phase diagram is referred to as an Al-Si approximate binary eutectic alloy (near eutectic Al-Si alloy).
  • copper (Cu) or nickel (Ni) may be added, for example, copper in an amount of 2 to 4 wt% and nickel in an amount of 2 to 3 wt%. Weight percent can be added.
  • molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), zirconium (Zr), vanadium (V), etc. can be added, for example, 1% by weight of each. The following can be added.
  • Copper (Cu) can react with aluminum (Al), silicon (Si), magnesium (Mg), etc. to form various types of intermetallic compounds (IMCs).
  • the intermetallic compound may include, for example, CuAl 2 , CuMgAl, AlCuMgSi, etc.
  • the intermetallic compound can increase the hardness of the aluminum matrix and improve high-temperature strength by improving interconnectivity together with eutectic Si.
  • Nickel (Ni) can react with aluminum (Al), copper (Cu), etc. to form various types of intermetallic compounds.
  • the intermetallic compound may include, for example, Al 3 Ni, AlCuNi, etc. Most of the intermetallic compounds have a needle-like or polygonal shape, are stable at high temperatures, and have significantly higher hardness than the aluminum matrix.
  • the intermetallic compound can improve high-temperature strength by improving interconnectivity with eutectic Si.
  • the intermetallic compound may include, for example, AlMo, AlCr, AlMn, AlCo, AlZr, AlTi, AlV, AlSiTi, AlSiZr, etc. Most of the intermetallic compounds have a needle-like or polygonal shape, are stable at high temperatures, and have significantly higher hardness than the aluminum matrix.
  • the intermetallic compound can improve high-temperature strength by improving interconnectivity with eutectic Si.
  • magnesium (Mg) can be added to increase the matrix hardness of aluminum.
  • Magnesium (Mg) reacts with silicon (Si) to form a Mg 2 Si intermetallic compound.
  • the Mg 2 Si intermetallic compound has a lower corrosion potential than the aluminum matrix and can act as a sacrificial anode to improve the corrosion resistance of the alloy. there is.
  • the corrosion potential is higher than that of aluminum (Al), but the current density is low and the corrosion resistance of the alloy is not significantly reduced.
  • Magnesium (Mg) can be added, for example, in an amount of 1% by weight or less, but in the present invention, it is added in an amount of 2.7% by weight to 4.1% by weight to increase corrosion resistance.
  • the content of silicon, which relatively does not decrease corrosion resistance, and magnesium, which improves corrosion resistance are controlled, and in particular, Mg 2 Si is produced finely and densely, thereby producing
  • elements such as copper (Cu), nickel (Ni), molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), zirconium (Zr), and vanadium (V).
  • Cu copper
  • Ni nickel
  • Mo molybdenum
  • Cr chromium
  • Mn manganese
  • Co cobalt
  • Ti titanium
  • V vanadium
  • Figure 2 is a phase diagram of an aluminum-silicon-magnesium alloy obtained through thermodynamic computational calculations for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
  • a ternary phase diagram of an aluminum-silicon-magnesium alloy is shown. It can be seen that when a large amount of magnesium is added to an Al-Si alloy, eutectic Si, primary Si, eutectic Mg 2 Si, and primary Mg 2 Si are produced depending on the added amounts of silicon and magnesium. At this time, in order to maximize the fraction of eutectic Si or eutectic Mg 2 Si, it is important to control the added amounts of silicon and magnesium.
  • the ternary eutectic point of Al-Si-Mg 2 Si is calculated to be 14.0% by weight of silicon and 5.1% by weight of magnesium. That is, in the Al-Si binary system, silicon added by more than 12.6% exists as polygonal primary Si as described above, but if a large amount of magnesium is added here, the excess added silicon reacts with magnesium to form eutectic Mg rather than primary Si. 2 Si is formed. Interconnectivity can be improved by forming a eutectic structure composed of fine eutectic Si and eutectic Mg 2 Si.
  • the silicon content exceeds 17% by weight, the size of primary Si increases. In order to satisfy the desired corrosion resistance and strength properties, it is desirable to increase the fraction of eutectic Si and minimize the production of primary Si.
  • primary Si has higher hardness than primary Mg 2 Si, it is more effective in improving high temperature characteristics and wear resistance, and does not significantly reduce corrosion resistance, so the characteristics can be improved even if some primary Si remains. Therefore, if the silicon content is 13.0% by weight or less, eutectic Si cannot be sufficiently secured and it is difficult to obtain a dense eutectic structure, and if the silicon content is more than 15% by weight, a large amount of primary Si may be formed. Accordingly, the content of silicon may range from more than 13.0% by weight to 15% by weight.
  • an alloy to which more than 13.0 wt% to 15.0 wt% of silicon (Si) and 2.7 wt% to 4.1 wt% of magnesium (Mg) are added to aluminum (Al) is subjected to an Al-Si-Mg 2 Si approximate ternary process. It will be referred to as the composition (near ternary eutectic Al-Si-Mg 2 Si).
  • the approximate ternary eutectic composition refers to an alloy having a composition close to the eutectic point of the ternary phase diagram shown in FIG. 2.
  • manganese (Mn) when added to the approximate ternary eutectic composition of Al-Si-Mg 2 Si, manganese reacts with aluminum, silicon, and iron, which is an inevitable impurity, to form Al(Fe, Mn)Si, etc. can be formed. As the manganese content increases, the fraction of the produced phase increases and its size becomes coarse. The addition of manganese does not significantly impair corrosion resistance, and the resulting Al(Fe, Mn)Si phase can provide the advantage of improving high-temperature tensile strength. However, if the Mn content is too excessive, Al(Fe, Mn)Si becomes coarse and may act as sludge in the molten metal. Therefore, the content of manganese may be 1% by weight or less. Additionally, the content of manganese may be 0.8% by weight or less and may range from 0.3% by weight to 0.7% by weight.
  • composition range and mechanical properties of the aluminum alloy cast material will be described in detail through experimental examples of the present invention.
  • Heat treatment (T6) was performed on the aluminum alloy casting material as follows.
  • the solution treatment was carried out in a temperature range of 490°C to 540°C. After solution treatment, it was quenched in water. Subsequently, aging treatment was performed at a temperature range of 160°C to 200°C. Details of the heat treatment were carried out in a conventional manner. The solution treatment temperature and aging treatment temperature were changed depending on the copper (Cu) content.
  • Some of the aluminum alloy castings were heat treated (T5) by only aging treatment at a temperature range of 180°C to 240°C without solution heat treatment.
  • the aging treatment temperature was changed depending on the copper (Cu) content.
  • a tensile test was performed on the aluminum alloy casting at room temperature and high temperature (200°C to 350°C) in accordance with ASTM E8 and ASTM E21 regulations.
  • a salt spray test was conducted on the aluminum alloy casting material according to ISO 9227 regulations. The salt spray test was conducted for 480 hours using a 5.0% NaCl aqueous solution, and after the test, corrosion products were removed according to ASTM G1 regulations, weight loss was measured, and the corrosion rate was calculated using this.
  • the tensile strength and corrosion rate of aluminum alloy castings are shown in Table 2 below.
  • the microstructure of the aluminum alloy cast material was observed using an optical microscope.
  • Table 1 is a table showing the composition and content of the aluminum alloy casting material according to an embodiment of the present invention.
  • the alloy composition in Table 1 refers to weight percent. In all experimental examples, the balance includes aluminum and other unavoidable impurities.
  • iron (Fe) was included as an inevitable impurity without intentional addition
  • titanium (Ti) and boron (B) were included by the addition of AlTiBor, a particle refiner.
  • Experimental Examples 1 to 3 are different in that silicon (Si) and magnesium (Mg) are included within the scope of the present invention, and copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
  • Experimental Example 4 includes silicon (Si) within the scope of the present invention, but includes magnesium (Mg) in excess of the upper limit of the scope of the present invention, and copper (Cu) and manganese (Mn) are added without intentional addition. There is a difference in the inclusion of impurities.
  • Experimental Example 5 includes silicon (Si) and magnesium (Mg) within the scope of the present invention, but is different in that copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
  • Experimental Example 6 includes silicon (Si) within the scope of the present invention, but includes magnesium (Mg) in excess of the upper limit of the scope of the present invention, and copper (Cu) and manganese (Mn) are added without intentional addition. There is a difference in the inclusion of impurities.
  • Experimental Example 7 contains silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) are intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
  • Experimental Example 8 contains silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) exceeding the upper limit of the range of the present invention. There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
  • Experimental Example 9 contains silicon (Si) above the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) within the range of the present invention, There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
  • Experimental Example 10 contained silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) were intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
  • Experimental Example 11 includes silicon (Si) and magnesium (Mg) within the scope of the present invention, but has the difference in that copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
  • Experimental Example 12 includes silicon (Si) below the lower limit of the range, magnesium (Mg) within the scope of the present invention, copper (Cu) within the scope of the present invention, and manganese (Mn) within the scope of the present invention. There are differences that include exceeding the upper limit of the range.
  • Experimental Example 13 contains silicon (Si) above the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) are intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
  • Experimental Example 14 contained silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) exceeding the upper limit of the range of the present invention. There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
  • Experimental Example 15 further includes manganese (Mn) within the scope of the present invention, and includes copper (Cu), nickel (Ni), and zirconium (Zr) as inevitable impurities without intentional addition.
  • Mn manganese
  • Cu copper
  • Ni nickel
  • Zr zirconium
  • Experimental Example 16 further includes copper (Cu) within the scope of the present invention, and includes manganese (Mn), nickel (Ni), and zirconium (Zr) as inevitable impurities without intentional addition.
  • Experimental Example 17 further includes copper (Cu) and manganese (Mn) within the scope of the present invention, and includes nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
  • Experimental Example 18 further includes copper (Cu), manganese (Mn), and zirconium (Zr) within the scope of the present invention, and includes nickel (Ni) as an inevitable impurity without intentional addition.
  • Experimental Example 19 further includes copper (Cu) and nickel (Ni) within the scope of the present invention, and includes manganese (Mn) and zirconium (Zr) as inevitable impurities without intentional addition.
  • Experimental Example 20 further includes copper (Cu), manganese (Mn), and nickel (Ni) within the scope of the present invention, and includes zirconium (Zr) as an inevitable impurity without intentional addition.
  • Experimental Example 21 further includes copper (Cu), manganese (Mn), nickel (Ni), and zirconium (Zr) within the scope of the present invention.
  • Experimental Examples 22 and 23 further include copper (Cu) and manganese (Mn) within the scope of the present invention, and include nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
  • Experimental Example 24 further includes copper (Cu), manganese (Mn), and nickel (Ni) within the scope of the present invention, and includes zirconium (Zr) as an inevitable impurity without intentional addition.
  • Experimental Example 25 further includes copper (Cu) and manganese (Mn) within the scope of the present invention, and includes nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
  • Experimental Examples 7 to 12 and Experimental Examples 15 to 22 are cases in which T6 heat treatment is performed, and Experimental Examples 13, 14, and 23 to 25 are cases in which T5 heat treatment is performed.
  • Experimental Example 7 and Experimental Example 13 had the same alloy composition, but Experimental Example 7 was subjected to T6 heat treatment and Experimental Example 13 was subjected to T5 heat treatment.
  • Experimental Example 8 and Experimental Example 14 correspond.
  • Figures 3 and 4 are optical microscope photographs showing the microstructure of an aluminum alloy cast material for alloy design of the aluminum alloy cast material according to an embodiment of the present invention.
  • the microstructure of Experimental Examples 7 to 10 as an Al-18Si alloy is shown.
  • the microstructure consists of ⁇ -Al, eutectic Si (Eutectic Si), and primary Si. It can be confirmed that a certain amount of ⁇ -Al exists even when a large amount of silicon is added, up to 18% by weight. This means that during solidification, primary Si crystallizes first, and there is a local shortage of silicon in the vicinity of the crystallized primary Si, thereby generating ⁇ -Al. In other words, it can be seen that adding more silicon above the eutectic point of 12.6% by weight silicon in the Al-Si alloy leads to an increase in coarse primary Si rather than an increase in the eutectic structure. In addition, when adding a large amount of magnesium (Mg) to Al-18Si alloy, eutectic Mg 2 Si is generated as in Experimental Example 10, but the problem of primary Si becoming coarse is confirmed.
  • Mg magnesium
  • the ternary eutectic point of Al-Si-Mg 2 Si (Si 14.0 wt%, Mg 5.1 wt%) is an ideal case, so the magnesium content was changed from silicon 14.0 wt% Si to determine the silicon and magnesium contents. .
  • the microstructure of the aluminum alloy cast material of Experimental Examples 1 to 6, which is an Al-14Si-Mg alloy, is shown. It can be seen that the microstructure is densely composed of ⁇ -Al, eutectic Si, and eutectic Mg 2 Si. It can be seen that as the magnesium content increases, the process structure becomes more dense. For example, when the magnesium content is 4.02% by weight or more, primary Mg 2 Si is generated. On the other hand, during melting and casting, magnesium is oxidized and forms an oxide film such as MgO or MgAl 2 O 4 , which may cause casting defects. Although the casting defect did not occur in Experimental Example 3 where the magnesium content was 4.02% by weight, it was confirmed that casting defects occurred in Experimental Example 4 where the magnesium content was 4.50% by weight and Experimental Example 6 where the magnesium content was 5.33% by weight.
  • the magnesium content is less than 2.7% by weight, it is difficult to form a dense process structure, and if the magnesium content exceeds 4.1% by weight, casting defects may occur. Accordingly, the content of magnesium may range from 2.7% to 4.1% by weight.
  • Table 2 is a table showing the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of aluminum alloy castings subjected to T6 heat treatment according to an embodiment of the present invention.
  • Table 2 shows the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of the aluminum alloy cast material that underwent the T6 heat treatment.
  • the corrosion resistance is indicated by the corrosion rate, and the smaller the corrosion rate, the better the corrosion resistance.
  • Room temperature tensile strength was performed at 20°C
  • high temperature tensile strength was performed at 200°C, 250°C, 300°C, and 350°C.
  • Figure 5 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T6 heat treatment according to an embodiment of the present invention.
  • Experimental Example 7 Experimental Example 8, Experimental Example 9, and Experimental Example 10 were alloys based on Al-18Si, and showed low high-temperature tensile strength and elongation, which was attributed to the presence of primary Si due to the high silicon content. is analyzed.
  • Experimental Examples 8 and 9 containing copper the room temperature tensile strength was increased and the high temperature tensile strength was slightly increased, but the corrosion resistance was significantly reduced, compared to Experimental Examples 7 and 10 that did not contain copper. It is analyzed as a result of the copper content.
  • Experimental Example 10 in which 1.88% by weight of magnesium was added along with a high content of silicon, showed significantly low elongation and room temperature tensile strength, which is believed to be due to coarsening of primary Si.
  • the Al-18Si-based aluminum alloy casting material has low elongation and high-temperature tensile strength, and does not satisfy corrosion resistance when it contains copper. Therefore, a method of reducing the silicon content may be considered.
  • Experimental Example 11 is an Al-14Si-based alloy, and has excellent corrosion resistance, room temperature tensile strength, and elongation, but does not satisfy the scope of the present invention because it does not contain copper and manganese, and thus has low high-temperature tensile strength.
  • Experimental Examples 16 to 22 based on Al-14Si have better corrosion resistance than Experimental Example 9 based on Al-18Si, and at 250 ° C. or higher. High temperature tensile strength was increased.
  • the silicon content was less than 13% by weight, so the corrosion resistance was reduced and the high temperature tensile strength above 250°C was reduced.
  • the silicon content range of more than 13.0% by weight to 15% by weight of the present invention can provide excellent corrosion resistance and high high temperature tensile strength.
  • Experimental Example 12 is based on Al-14Si and contains copper and manganese in excess of 1% by weight, and has excellent corrosion resistance, but the elongation is reduced and the high-temperature tensile strength is particularly low. It is analyzed that when manganese exceeds 1% by weight, the Al(Fe, Mn)Si phase becomes coarse in the form of a polygon and does not improve interconnectivity, thereby reducing high temperature tensile strength. In addition, the inclusion of manganese can more effectively suppress the decrease in corrosion resistance due to copper content. Therefore, the content of manganese may be 1% by weight or less. Additionally, the content of manganese may be 0.8% by weight or less and may range from 0.3% by weight to 0.7% by weight.
  • Experimental Example 15 does not contain copper but contains manganese, and the corrosion resistance and room temperature tensile strength are excellent, but the high temperature tensile strength tends to decrease somewhat, but compared to Experimental Example 11, which does not contain manganese, it shows excellent corrosion resistance and room temperature tensile strength up to 250°C. It is analyzed that it improves the high temperature tensile strength of. In addition, compared to Experimental Example 5 or Experimental Example 8, it is analyzed that corrosion resistance, room temperature tensile strength, and high temperature tensile strength are all improved.
  • Experimental Examples 16 to 22 are alloys within the content range of the present invention, and although the corrosion resistance is somewhat reduced compared to the case without copper, they are within the scope of the present invention, and the high room temperature tensile strength and especially high temperature tensile strength are notable. has increased significantly. In particular, compared to Experimental Examples 8 and 9 containing only copper and not manganese, it was found that the high-temperature tensile strength was increased by including copper and manganese, and it was also possible to prevent a decrease in corrosion resistance due to the addition of copper. You can.
  • the copper content that minimizes corrosion resistance degradation may be 2% by weight.
  • Experimental Example 22 is analyzed as an alloy composition showing the best properties in corrosion resistance, elongation, room temperature tensile strength, and high temperature tensile strength.
  • T5 heat treatment In general, the mechanical properties of T5 heat-treated aluminum alloy specimens are significantly lower than those of T6 heat-treated specimens. This creates various crystal phases during casting.
  • solution treatment is performed like T6 heat treatment, part of the crystalline phase is decomposed and dissolved into solid solution in the aluminum matrix, and the matrix composition becomes uniform.
  • elements supersaturated and dissolved in the matrix precipitate out during aging treatment and contribute to strength improvement, and corrosion resistance improves as production phase decomposition and matrix composition uniformity increase.
  • Table 3 is a table showing the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of aluminum alloy castings subjected to T5 heat treatment according to an embodiment of the present invention.
  • Table 3 shows the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of the aluminum alloy cast material that underwent the T5 heat treatment.
  • the corrosion resistance is indicated by the corrosion rate, and the smaller the corrosion rate, the better the corrosion resistance.
  • Room temperature tensile strength was performed at 20°C
  • high temperature tensile strength was performed at 200°C, 250°C, 300°C, and 350°C.
  • Figure 6 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T5 heat treatment according to an embodiment of the present invention.
  • Experimental Example 13 had excellent corrosion resistance, but the room temperature tensile strength and high temperature tensile strength were significantly low.
  • Experimental Example 14 is a case containing only copper, and when compared with Experimental Example 13 not containing copper and manganese, room temperature tensile strength and high temperature tensile strength were increased, but corrosion resistance was significantly reduced.
  • Experimental Examples 23 and 25 contained copper and manganese, and the room temperature tensile strength and high temperature tensile strength were significantly increased compared to Experimental Example 13 and slightly lower than Experimental Example 14. Corrosion resistance was lower than that of Experimental Example 13, but was significantly improved compared to Experimental Example 14. Additionally, the elongation was significantly increased compared to Experimental Examples 13 and 14.
  • Experimental Example 24 is a case in which copper and manganese are included and further nickel is included, and the room temperature tensile strength and high temperature tensile strength are increased, showing a value at the level of Experimental Example 14. Corrosion resistance was lower than that of Experimental Example 13, but was significantly improved compared to Experimental Example 14. Additionally, the elongation was significantly increased compared to Experimental Examples 13 and 14.
  • Figure 7 is a graph calculated by thermodynamic calculation of the fraction of the formed phase upon addition of copper in an aluminum alloy casting material according to an embodiment of the present invention.
  • Experimental Example 15 does not contain copper, the Cu-containing phase does not appear, but the Mg-containing phase appears.
  • the fraction of the Cu-containing phase increases and at the same time, the fraction of the Mg-containing phase decreases. That is, when copper is added, the copper reacts with aluminum, silicon, and magnesium to form a Cu-rich phase such as CuAl 2 and AlCuMgSi. As the copper content increases, the fraction of the Cu-containing phase increases.
  • the fraction of Mg-rich phase such as Mg 2 Si and AlFeMgSi, which are effective for corrosion resistance, decreases. In other words, as the copper content increases, high-temperature tensile strength increases but corrosion resistance decreases.
  • the copper content may be 2.0% by weight or less. Additionally, the copper content may be 1.61% by weight or less.
  • Figure 8 is a graph calculated by thermodynamic calculation of the fraction of phases formed upon adding nickel in an aluminum alloy casting material according to an embodiment of the present invention.
  • Ni When nickel (Ni) is added to the approximate ternary composition of Al-Si-Mg 2 Si, nickel reacts with aluminum, copper, iron, etc. to form Ni-rich phases such as Al 3 Ni, AlCuNi, and AlFeNi. form As the nickel content increases, the fraction of the Ni-containing phase increases, and the high-temperature tensile strength increases but the corrosion resistance decreases. It is analyzed that at a nickel content of 2.0% by weight, high temperature tensile strength is advantageous, but corrosion resistance is likely to decrease. Therefore, in the present invention, considering the combination of high-temperature tensile strength and corrosion resistance, the nickel content may be 1.5% by weight or less. Additionally, the nickel content may be 1.0% by weight or less.
  • zirconium When zirconium (Zr) is added to the approximate ternary eutectic composition of Al-Si-Mg 2 Si, zirconium reacts with aluminum, silicon, etc. to form a product phase such as AlSiZr. As the zirconium content increases, the fraction of the produced phase increases and its size becomes coarse. The addition of zirconium improves high-temperature tensile strength without almost deteriorating corrosion resistance. However, zirconium is a high-melting point element, so as the content increases, the dissolution temperature must increase when dissolving.
  • the liquidus line of 0.25% by weight zirconium is 740°C, and the liquidus line of 0.3% by weight zirconium is 760°C. Therefore, in the present invention, considering the dissolution temperature, the zirconium content may be 0.25% by weight or less.
  • the aluminum alloy casting material according to the technical idea of the present invention may further include at least one of chromium (Cr), molybdenum (Mo), titanium (Ti), and vanadium (V).
  • TiB 2 , TiC, AlB 2 , etc. is added as a grain refiner in aluminum alloy castings.
  • the refiner is added to 0.2%.
  • 50 ppm to 200 ppm of Sr is added to refine eutectic Si
  • P AlP form
  • the aluminum alloy casting material according to the technical idea of the present invention may further include at least one of titanium (Ti), boron (B), and strontium (Sr).
  • 9 and 10 are optical microscope photographs showing the microstructure of an aluminum alloy cast material according to an embodiment of the present invention.
  • Experimental Example 21 is a case where copper (Cu), manganese (Mn), nickel (Ni), and zirconium (Zr) along with silicon (Si) and magnesium (Mg) are included within the scope of the present invention, and eutectic Si (eutectic It can be confirmed that it has a dense microstructure composed of Si) and eutectic Mg 2 Si, and that primary Si (primary Si) and primary Mg 2 Si are also formed in trace amounts.
  • Mg magnesium
  • Zr zirconium
  • Experimental Examples 12 and 22 contain similar amounts of silicon (Si), magnesium (Mg), and copper (Cu), but in Experimental Example 12, the manganese content is 1.34% by weight, which exceeds 1% by weight, and Example 22 is 0.344% by weight, which is 1% by weight or less. As described above, it can be seen that as the content of manganese increases, the fraction of the Al(Fe, Mn)Si formation phase increases and its size also becomes coarse.
  • Figure 11 is a schematic diagram showing a brake system including a brake disc formed of aluminum alloy casting according to an embodiment of the present invention.
  • the brake system 100 includes a brake disc 120 inserted into the rotation shaft 110 of a vehicle, and a brake pad (brake pad) that slows down the rotation of the brake disc 120 by frictional contact with the brake disc 120. 130), and a caliper that secures the brake pads 130 to be disposed on both outer sides of the brake disc 120.
  • the brake disc 120 may be made of an aluminum alloy casting material having the composition described above.
  • the brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
  • the brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; Greater than 0% to 1.0% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
  • the brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
  • the aluminum alloy casting materials may further include nickel (Ni) in an amount of more than 0% by weight to 1.5% by weight in addition to the above elements, or may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight in addition to the elements. or more than 0% by weight to 1.5% by weight of nickel (Ni) in addition to the above elements; And it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight.
  • the aluminum alloy casting materials include titanium (Ti) in an amount of more than 0% by weight to 0.05% by weight in addition to the above elements; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight.
  • the aluminum alloy casting materials may further include iron (Fe) in an amount of more than 0% by weight to 0.2% by weight as an inevitable impurity in addition to the above elements.
  • the aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus.
  • the phosphorus may be included in the form of AlP.
  • the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
  • the brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.3% by weight to 14.6% by weight.
  • the aluminum alloy casting material may further include 0.021% to 0.641% by weight of nickel (Ni) in addition to the above elements, or may further include 0.004% to 0.185% by weight of zirconium (Zr) in addition to the above elements.
  • the aluminum alloy casting material includes, in addition to the above elements, 0.034% by weight to 0.040% by weight of titanium (Ti); And it may further include 0.001% by weight to 0.004% by weight of boron (B).
  • the aluminum alloy casting material may further include 0.120% by weight to 0.158% by weight of iron (Fe) as the inevitable impurity.
  • the aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus. The phosphorus may be included in the form of AlP. Additionally, the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
  • the aluminum alloy casting material can be applied to parts of transportation such as automobiles, ships, or aircraft, and can be applied to various parts manufactured by die casting, for example.
  • this is illustrative and the technical idea of the present invention is not limited to this use.
  • an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance and wear resistance can be provided by controlling the alloy composition and content of copper and manganese. Additionally, a brake disc for an electric vehicle can be manufactured using the alloy.

Abstract

The present invention provides an aluminum alloy casting material with excellent high-temperature tensile strength and corrosion resistance. The aluminum alloy casting material comprises 13.0 wt% (exclusive) to 15 wt% (inclusive) of silicon (Si), 2.7 wt% to 4.1 wt% of magnesium (Mg), 0 wt% (exclusive) to 2 wt% (inclusive) of copper (Cu), and the balance being aluminum (Al) and inevitable impurities.

Description

알루미늄 합금 주조재 및 이를 포함하는 브레이크 디스크Aluminum alloy castings and brake discs containing the same
본 발명은 알루미늄 합금 주조재에 관한 것으로서, 보다 상세하게는 고온 강도 및 내식성이 우수한 알루미늄 합금 주조재 및 이를 포함하는 브레이크 디스크에 관한 것이다.The present invention relates to an aluminum alloy casting material, and more specifically, to an aluminum alloy casting material having excellent high-temperature strength and corrosion resistance and a brake disc containing the same.
전세계적으로 환경 문제 및 에너지 문제로 인해, 자동차 등 수송기기는 내연기관에서 전기자동차로 전환되고 있다. 전기자동차에서도 연비 향상을 위해 차량의 경량화가 필수적이다. 특히, 자동차의 제동부품인 브레이크 디스크는 주로 주철로 제조되고 있다. 일반적으로 내연기관에서는 기계적 제동만으로 제동이 이루어진다. 하지만, 전기자동차에서는 회생제동이 도입되므로 내연기관 자동차에 비하여 전기자동차에 적용되는 브레이크의 기계적 제동시 요구되는 제동 환경이 완화될 수 있다. 이러한 제동 환경으로 인해, 전기자동차에서 알루미늄 합금 주조재를 이용하여 브레이크 디스크에 채용하고자 하는 시도가 계속 이루어지고 있다.Due to environmental and energy issues around the world, transportation devices such as automobiles are being converted from internal combustion engines to electric vehicles. Even in electric vehicles, reducing vehicle weight is essential to improve fuel efficiency. In particular, brake discs, which are braking parts of automobiles, are mainly manufactured from cast iron. In general, in an internal combustion engine, braking is performed only by mechanical braking. However, since regenerative braking is introduced in electric vehicles, the braking environment required for mechanical braking applied to electric vehicles can be alleviated compared to internal combustion engine vehicles. Due to this braking environment, attempts are being made to use aluminum alloy castings as brake discs in electric vehicles.
한편, 지난 수십년간 자동차의 경량화를 위하여 주철을 대체할 수 있는 소재로서 알루미늄에 대한 검토가 이루어졌지만, 대체 가능한 소재는 알루미늄 복합재(aluminum matrix composites, MMCs)에 국한되어 있었다. 특히, 전기 자동차에서는 경량화를 위하여 브레이크 디스크에 주철재를 대체한 알루미늄 합금의 채용이 적극적으로 검토되고 있다. 현재까지는, 상기 알루미늄 소재는 상온 및 고온 특성이 우수하고 내마모성이 우수하지만, 제조 단가가 높고 재활용성이 낮고 기계가공성 등이 열악하여 브레이크 디스크에 사용되지 못했다. 또, 브레이크 디스크에 사용되는 소재에 요구되는 주요 물성은 고온 강도와 내마모성이며, 감성품질의 향상을 위하여 내식성 등이 추가적으로 요구되고 있다.Meanwhile, aluminum has been examined as a material that can replace cast iron in order to reduce the weight of automobiles over the past few decades, but materials that can replace it have been limited to aluminum matrix composites (MMCs). In particular, in electric vehicles, the use of aluminum alloy as a replacement for cast iron in brake discs is being actively considered for weight reduction. Until now, the aluminum material has excellent room and high temperature characteristics and excellent wear resistance, but has not been used in brake discs due to its high manufacturing cost, low recyclability, and poor machinability. In addition, the main properties required for materials used in brake discs are high-temperature strength and wear resistance, and corrosion resistance is additionally required to improve emotional quality.
그러나, 고온 강도 및 내마모성을 향상시키면서 내식성까지 향상시킬 수 있는 알루미늄 합금 주조재는 개발되지 않았다.However, an aluminum alloy casting material that can improve high-temperature strength and wear resistance while also improving corrosion resistance has not been developed.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 높은 고온 강도 및 우수한 내식성을 가지는 알루미늄 합금 주조재 및 이를 포함하는 브레이크 디스크를 제공하는 것이다. The technical problem to be achieved by the technical idea of the present invention is to provide an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance, and a brake disc containing the same.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these tasks are illustrative and do not limit the scope of the present invention.
본 발명의 일 관점에 의하면, 높은 고온 강도 및 우수한 내식성을 가지는 알루미늄 합금 주조재 및 이를 포함하는 브레이크 디스크를 제공한다.According to one aspect of the present invention, an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance and a brake disc including the same are provided.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다.According to one embodiment of the present invention, the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may include aluminum (Al) and inevitable impurities.
본 발명의 일 실시예에 의하면, 0 중량% 초과 내지 1.0 중량%의 망간(Mn)을 더 포함할 수 있다.According to one embodiment of the present invention, it may further include more than 0% by weight to 1.0% by weight of manganese (Mn).
본 발명의 일 실시예에 의하면, 0 중량% 초과 내지 1.5 중량%의 니켈(Ni)을 더 포함할 수 있다.According to one embodiment of the present invention, it may further include more than 0% by weight to 1.5% by weight of nickel (Ni).
본 발명의 일 실시예에 의하면, 0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 더 포함할 수 있다.According to one embodiment of the present invention, it may further include zirconium (Zr) in an amount greater than 0% by weight to 0.25% by weight.
본 발명의 일 실시예에 의하면, 0 중량% 초과 내지 0.05 중량%의 티타늄(Ti); 및 0 중량% 초과 내지 0.005 중량%의 보론(B)을 더 포함할 수 있다.According to one embodiment of the present invention, titanium (Ti) in an amount greater than 0% by weight to 0.05% by weight; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 공정 Si, 공정 Mg2Si, 초정 Si 및 초정 Mg2Si 중 적어도 어느 하나로 구성된 미세조직을 가질 수 있다.According to one embodiment of the present invention, the aluminum alloy cast material may have a microstructure consisting of at least one of eutectic Si, eutectic Mg 2 Si, primary Si, and primary Mg 2 Si.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 0.2 mm/year 이하의 부식속도를 가질 수 있다.According to one embodiment of the present invention, the aluminum alloy casting material may have a corrosion rate of 0.2 mm/year or less.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 190 MPa 내지 230 MPa 범위의 250℃ 고온 인장강도를 가질 수 있다.According to one embodiment of the present invention, the aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 190 MPa to 230 MPa.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는 용체화처리를 한 후에 시효처리된 것일 수 있다.According to one embodiment of the present invention, the aluminum alloy casting material may be subjected to solution treatment and then subjected to aging treatment.
상기 알루미늄 합금 주조재는 용체화처리를 하지 않고 시효처리된 것일 수 있다.The aluminum alloy casting material may be aged without solution treatment.
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.81 중량% 내지 3.5 중량%의 마그네슘(Mg); 0.021 중량% 내지 1.603 중량%의 구리(Cu); 0.002 중량% 내지 0.537 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다.According to one embodiment of the present invention, the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
본 발명의 일 실시예에 의하면, 0.021 중량% 내지 0.641 중량%의 니켈(Ni)을 더 포함할 수 있다.According to one embodiment of the present invention, it may further include 0.021% by weight to 0.641% by weight of nickel (Ni).
본 발명의 일 실시예에 의하면, 0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함할 수 있다.According to one embodiment of the present invention, it may further include 0.004% by weight to 0.185% by weight of zirconium (Zr).
본 발명의 일 실시예에 의하면, 상기 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 1 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다.According to one embodiment of the present invention, the aluminum alloy casting material contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
본 발명의 일 실시예에 의하면, 상기 브레이크 디스크는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성될 수 있다.According to one embodiment of the present invention, the brake disc includes more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
상기한 바와 같이 이루어진 본 발명의 여러 실시예들에 따르면, 구리 및 망간 등의 합금 조성 및 함량을 제어함으로써, 높은 고온 강도 및 우수한 내식성 및 내마모성을 가지는 알루미늄 합금 주조재를 제공할 수 있다. 또, 상기 합금을 이용하여 전기자동차용 브레이크 디스크를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to various embodiments of the present invention as described above, by controlling the alloy composition and content of copper and manganese, it is possible to provide an aluminum alloy casting material with high high-temperature strength and excellent corrosion resistance and wear resistance. Additionally, a brake disc for an electric vehicle can be manufactured using the alloy. Of course, the scope of the present invention is not limited by this effect.
도 1은 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 알루미늄-실리콘 2원계 합금의 상태도이다.Figure 1 is a phase diagram of an aluminum-silicon binary alloy for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 열역학 전산 계산을 통해 얻은 알루미늄-실리콘-마그네슘 합금의 상태도이다.Figure 2 is a phase diagram of an aluminum-silicon-magnesium alloy obtained through thermodynamic computational calculations for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 알루미늄 합금 주조재의 미세조직을 나타내는 광학현미경 사진이다.Figures 3 and 4 are optical microscope photographs showing the microstructure of an aluminum alloy cast material for alloy design of the aluminum alloy cast material according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 T6 열처리를 수행한 알루미늄 합금 주조재의 상온 인장강도와 연신율을 나타내는 그래프이다.Figure 5 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T6 heat treatment according to an embodiment of the present invention.
도 6는 본 발명의 일실시예에 따른 T5 열처리를 수행한 알루미늄 합금 주조재의 상온 인장강도와 연신율을 나타내는 그래프이다.Figure 6 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T5 heat treatment according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 알루미늄 합금 주조재에서 구리 첨가시 생성상 분율을 열역학적 계산으로 산출한 그래프이다.Figure 7 is a graph calculated by thermodynamic calculation of the fraction of the formed phase upon addition of copper in an aluminum alloy casting material according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 알루미늄 합금 주조재에서 니켈 첨가시 생성상 분율을 열역학적 계산으로 산출한 그래프이다.Figure 8 is a graph calculated by thermodynamic calculation of the fraction of phases formed upon adding nickel in an aluminum alloy casting material according to an embodiment of the present invention.
도 9 및 도 10은 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 미세조직을 나타내는 광학현미경 사진이다.Figures 9 and 10 are optical microscope photographs showing the microstructure of an aluminum alloy cast material according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 알루미늄 합금 주조재로 형성된 브레이크 디스크를 포함하는 브레이크 시스템을 도시하는 개략도이다.Figure 11 is a schematic diagram showing a brake system including a brake disc formed of aluminum alloy casting according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.Hereinafter, various preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art, and the following examples may be modified into various other forms, and the scope of the present invention is as follows. It is not limited to examples. Rather, these embodiments are provided to make the present disclosure more faithful and complete and to fully convey the spirit of the present invention to those skilled in the art. Additionally, the thickness and size of each layer in the drawings are exaggerated for convenience and clarity of explanation.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terms used herein are used to describe specific embodiments and are not intended to limit the invention. As used herein, the singular forms include the plural forms unless the context clearly indicates otherwise. Additionally, when used herein, “comprise” and/or “comprising” means specifying the presence of stated features, numbers, steps, operations, members, elements and/or groups thereof. and does not exclude the presence or addition of one or more other shapes, numbers, operations, members, elements and/or groups.
본 발명의 일 실시예에 따른 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다. 또한, 상기 알루미늄 합금 주조재에 포함된 실리콘(Si)의 함량 범위는 13.1% 중량 내지 15 중량%일 수 있다.The aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may include aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.1% by weight to 15% by weight.
본 발명의 일 실시예에 따른 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 0 중량% 초과 내지 1.0 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다. 즉, 상기 알루미늄 합금 주조재가 0 중량% 초과 내지 1.0 중량%의 망간(Mn)을 더 포함하는 경우이다.The aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; Greater than 0% to 1.0% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities. That is, the aluminum alloy cast material further contains manganese (Mn) in an amount of more than 0% by weight to 1.0% by weight.
본 발명의 일 실시예에 따른 알루미늄 합금 주조재는, 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 1 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다.The aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities.
상기 알루미늄 합금 주조재는 상기 원소 외에 0 중량% 초과 내지 1.5 중량%의 니켈(Ni)을 더 포함할 수 있거나, 상기 원소 외에 0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 더 포함할 수 있거나, 상기 원소 외에 0 중량% 초과 내지 1.5 중량%의 니켈(Ni); 및 0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 함께 더 포함할 수 있다.The aluminum alloy casting material may further include nickel (Ni) in an amount of more than 0% by weight to 1.5% by weight in addition to the above elements, or it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight in addition to the elements. , more than 0% by weight to 1.5% by weight of nickel (Ni) in addition to the above elements; And it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight.
상기 알루미늄 합금 주조재는 상기 원소 외에 0 중량% 초과 내지 0.05 중량%의 티타늄(Ti); 및 0 중량% 초과 내지 0.005 중량%의 보론(B)을 더 포함할 수 있다.The aluminum alloy casting material includes titanium (Ti) in an amount of more than 0% by weight to 0.05% by weight in addition to the above elements; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight.
상기 알루미늄 합금 주조재는 상기 원소 외에 상기 불가피한 불순물로서, 0 중량% 초과 내지 0.2 중량%의 철(Fe)을 더 포함할 수 있다.The aluminum alloy casting material may further include iron (Fe) in an amount of more than 0% by weight to 0.2% by weight as an inevitable impurity in addition to the above elements.
상기 알루미늄 합금 주조재는 인을 30 ppm 내지 200 ppm 더 포함할 수 있다. 상기 인은 AlP의 형태로 포함될 수 있다. 또한, 상기 알루미늄 합금 주조재는 스트론튬(Sr)을 50 ppm 내지 200 ppm 더 포함할 수 있다.The aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus. The phosphorus may be included in the form of AlP. Additionally, the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
본 발명의 일 실시예에 따른 알루미늄 합금 주조재는 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.81 중량% 내지 3.5 중량%의 마그네슘(Mg); 0.021 중량% 내지 1.603 중량%의 구리(Cu); 0.002 중량% 내지 0.537 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함할 수 있다. 또한, 상기 알루미늄 합금 주조재에 포함된 실리콘(Si)의 함량 범위는 13.3% 중량 내지 14.6 중량%일 수 있다.The aluminum alloy casting material according to an embodiment of the present invention contains more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may include aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.3% by weight to 14.6% by weight.
상기 알루미늄 합금 주조재는 상기 원소 외에 0.021 중량% 내지 0.641 중량%의 니켈(Ni)을 더 포함할 수 있거나, 상기 원소 외에 0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함할 수 있거나, 상기 원소 외에 0.021 중량% 내지 0.641 중량%의 니켈(Ni); 및 0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함할 수 있다.The aluminum alloy casting material may further include 0.021% to 0.641% by weight of nickel (Ni) in addition to the above elements, or may further include 0.004% to 0.185% by weight of zirconium (Zr) in addition to the above elements. 0.021% to 0.641% by weight of nickel (Ni) in addition to the element; And it may further include 0.004% by weight to 0.185% by weight of zirconium (Zr).
상기 알루미늄 합금 주조재는 상기 원소 외에 0.034 중량% 내지 0.040 중량%의 티타늄(Ti); 및 0.001 중량% 내지 0.004 중량%의 보론(B)을 더 포함할 수 있다.The aluminum alloy casting material includes, in addition to the above elements, 0.034% by weight to 0.040% by weight of titanium (Ti); And it may further include 0.001% by weight to 0.004% by weight of boron (B).
상기 알루미늄 합금 주조재는 상기 원소 외에 상기 불가피한 불순물로서, 0.120 중량% 내지 0.158 중량%의 철(Fe)을 더 포함할 수 있다.The aluminum alloy casting material may further include 0.120% to 0.158% by weight of iron (Fe) as the inevitable impurity in addition to the above elements.
상기 알루미늄 합금 주조재는 인을 30 ppm 내지 200 ppm 더 포함할 수 있다. 상기 인은 AlP의 형태로 포함될 수 있다. 또한, 상기 알루미늄 합금 주조재는 스트론튬(Sr)을 50 ppm 내지 200 ppm 더 포함할 수 있다.The aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus. The phosphorus may be included in the form of AlP. Additionally, the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
상기 알루미늄 합금 주조재는, 공정 Si, 공정 Mg2Si, 초정 Si 및 초정 Mg2Si 중 적어도 어느 하나로 구성된 미세조직을 가질 수 있다.The aluminum alloy cast material may have a microstructure consisting of at least one of eutectic Si, eutectic Mg 2 Si, primary Si, and primary Mg 2 Si.
상기 알루미늄 합금 주조재는, 주조 후 열처리가 수행될 수 있으며, 예를 들어, 용체화 처리를 한 후에 시효처리하는 T6 열처리될 수 있다.The aluminum alloy cast material may be subjected to heat treatment after casting, for example, T6 heat treatment, which is an aging treatment after solution treatment.
상기 T6 열처리된 상기 알루미늄 합금 주조재는, 0.2 mm/year 이하 범위의 부식속도를 가질 수 있고, 0 mm/year 초과 내지 0.2 mm/year 이하 범위의 부식속도를 가질 수 있다. 상기 부식속도는 상기 알루미늄 합금 주조재를 5.0% NaCl 수용액에 480시간 동안 침지한 후 무게 감량을 측정하여 산출한다.The aluminum alloy casting material subjected to the T6 heat treatment may have a corrosion rate in the range of 0.2 mm/year or less, and may have a corrosion rate in the range of more than 0 mm/year to less than 0.2 mm/year. The corrosion rate is calculated by measuring the weight loss after immersing the aluminum alloy cast material in a 5.0% NaCl aqueous solution for 480 hours.
상기 T6 열처리된 상기 알루미늄 합금 주조재는, 300 MPa 내지 360 MPa 범위의 상온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 240 MPa 내지 300 MPa 범위의 200℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 190 MPa 내지 230 MPa 범위의 250℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 90 MPa 내지 140 MPa 범위의 300℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 70 MPa 내지 80 MPa 범위의 350℃ 고온 인장강도를 가질 수 있다.The aluminum alloy casting material subjected to the T6 heat treatment may have a room temperature tensile strength in the range of 300 MPa to 360 MPa. The aluminum alloy casting may have a high temperature tensile strength of 200°C in the range of 240 MPa to 300 MPa. The aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 190 MPa to 230 MPa. The aluminum alloy casting material may have a high temperature tensile strength of 300°C in the range of 90 MPa to 140 MPa. The aluminum alloy casting material may have a high temperature tensile strength of 350°C in the range of 70 MPa to 80 MPa.
또는, 상기 알루미늄 합금 주조재는, 용체화 처리를 하지 않고 시효처리하는 T5 열처리될 수 있다.Alternatively, the aluminum alloy cast material may be subjected to T5 heat treatment, which is aging treatment without solution treatment.
상기 T5 열처리된 상기 알루미늄 합금 주조재는, 0.4 mm/year 이하 범위의 부식속도를 가질 수 있고, 0 mm/year 초과 내지 0.4 mm/year 이하 범위의 부식속도를 가질 수 있다. 상기 부식속도는 상기 알루미늄 합금 주조재를 5.0% NaCl 수용액에 480시간 동안 침지한 후 무게 감량을 측정하여 산출한다.The aluminum alloy casting material subjected to the T5 heat treatment may have a corrosion rate in the range of 0.4 mm/year or less, and may have a corrosion rate in the range of more than 0 mm/year to less than 0.4 mm/year. The corrosion rate is calculated by measuring the weight loss after immersing the aluminum alloy cast material in a 5.0% NaCl aqueous solution for 480 hours.
상기 T5 열처리된 상기 알루미늄 합금 주조재는, 200 MPa 내지 230 MPa 범위의 상온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 180 MPa 내지 210 MPa 범위의 200℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 130 MPa 내지 150 MPa 범위의 250℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 90 MPa 내지 110 MPa 범위의 300℃ 고온 인장강도를 가질 수 있다. 상기 알루미늄 합금 주조재는, 60 MPa 내지 80 MPa 범위의 350℃ 고온 인장강도를 가질 수 있다.The aluminum alloy casting material subjected to the T5 heat treatment may have a room temperature tensile strength in the range of 200 MPa to 230 MPa. The aluminum alloy casting material may have a high temperature tensile strength of 200°C in the range of 180 MPa to 210 MPa. The aluminum alloy cast material may have a high temperature tensile strength of 250°C in the range of 130 MPa to 150 MPa. The aluminum alloy cast material may have a high temperature tensile strength of 300°C in the range of 90 MPa to 110 MPa. The aluminum alloy casting may have a high temperature tensile strength of 350°C in the range of 60 MPa to 80 MPa.
이하에서, 본 발명의 알루미늄 합금 주조재의 조성범위의 임계적 의의와 상기 조성범위에 따른 금속간화합물 생성과 이에 따른 효과 등에 대해 구체적으로 설명하기로 한다.Hereinafter, the critical significance of the composition range of the aluminum alloy cast material of the present invention, the formation of intermetallic compounds according to the composition range, and the resulting effects will be explained in detail.
일반적으로 널리 이용되는 알루미늄 합금 주조재는 알루미늄-실리콘계 합금이다. 따라서, 알루미늄-실리콘 2원계 합금에 대하여 설명하기로 한다.In general, a widely used aluminum alloy casting material is an aluminum-silicon alloy. Therefore, the aluminum-silicon binary alloy will be described.
도 1은 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 알루미늄-실리콘 2원계 합금의 상태도이다.Figure 1 is a phase diagram of an aluminum-silicon binary alloy for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
도 1을 참조하면, 알루미늄-실리콘 2원계 합금의 상태도가 나타나 있다. 실리콘(Si)이 12.6 중량%인 경우가 알루미늄과 실리콘의 공정반응(eutectic reaction) 조성이다. 상기 공정반응 조성 미만에서는(즉, 실리콘이 12.6 중량% 미만임) α-Al과 미세한 공정 Si(eutectic Si)으로 구성된 미세조직이 형성된다. 반면, 상기 공정반응 조성을 초과하면, 즉, 실리콘이 12.6 중량%를 초과하면, α-Al, 공정 Si(eutectic Si) 및 초정 Si(primary Si)으로 구성된 미세조직이 형성된다. 여기에서, 실리콘은 기지(matrix)인 α-Al에 비하여 경도가 높아 고온 강도 및 내마모성에 기여할 수 있다.Referring to Figure 1, a phase diagram of an aluminum-silicon binary alloy is shown. When silicon (Si) is 12.6% by weight, the composition is a eutectic reaction between aluminum and silicon. Below the eutectic composition (i.e., less than 12.6 wt% silicon), a microstructure composed of α-Al and fine eutectic Si (eutectic Si) is formed. On the other hand, if the eutectic composition is exceeded, that is, if silicon exceeds 12.6% by weight, a microstructure composed of α-Al, eutectic Si (eutectic Si), and primary Si (primary Si) is formed. Here, silicon has higher hardness than α-Al, which is a matrix, and can contribute to high-temperature strength and wear resistance.
그러나, 실리콘이 상기 공정반응 조성을 초과하여 첨가되면, 상기 초정 Si이 형성되며, 실리콘의 함량이 증가할수록 상기 초정 Si이 조대한 다각형 형태로 존재하게 되어 고온 강도의 기여가 저하되고 또한 내마모성을 저하시킬 수 있다. 따라서, 실리콘의 함량 제어가 요구된다.However, if silicon is added in excess of the eutectic reaction composition, the primary Si is formed, and as the content of silicon increases, the primary Si exists in a coarse polygonal form, which reduces the contribution to high temperature strength and also reduces wear resistance. You can. Therefore, control of the silicon content is required.
또한, 일반적으로, 알루미늄-실리콘계 합금에서 미세조직 내부에 실리콘이 미세하고 균일한 상태로서 다량으로 존재하면, 내마모성이 향상된다. 그러나, 알루미늄-실리콘계 합금에서 일반적인 주조공법을 이용하여서는 상기 미세조직을 구현할 수 없으며, 응고 속도를 매우 빠르게 하는 경우에 구현할 수 있다. 예를 들어, 분무적층법(spray deposition)과 같은 빠른 응고 속도를 가지는 주조법을 사용하여야 한다.Additionally, in general, if silicon is present in a fine and uniform state in a large amount within the microstructure of an aluminum-silicon alloy, wear resistance is improved. However, the above microstructure cannot be realized using a general casting method in aluminum-silicon alloys, and can only be achieved when the solidification rate is very fast. For example, a casting method with a fast solidification speed, such as spray deposition, must be used.
또한, 고온 강도 관점에서, 미세조직 내부에 존재하는 생성상의 상호 연결성이 중요하며, 상호 연결성이 높을수록 고온 강도를 증가시킨다. 상기 생성상의 상호 연결성이란 개별적인 생성상이 서로 맞닿아 있는 정도를 의미하는 것으로서, 쉽게 트러스(truss) 구조물로 이해될 수 있다. 여기서, 상기 생성상이 침상 혹은 섬유상이면 상호 연결성이 높으며, 각형이거나 혹은 구형이면 상호 연결성이 낮다. 알루미늄-실리콘계 합금에서 초정 Si은 상호 연결성이 낮으며, 공정 Si은 상호 연결성이 높다. 즉, 공정 Si은 2차원적으로 침상 또는 미세한 구상으로 보이며, 3차원적으로는 섬유상 형태로 연결되어 있으므로, 상호 연결성이 높다. 따라서, 공정 Si이 많을수록 고온 강도가 증가될 수 있다.Additionally, from the perspective of high-temperature strength, the interconnectivity of the generated phases within the microstructure is important, and the higher the interconnectivity, the higher the high-temperature strength. The interconnectivity of the formation phases refers to the degree to which individual formation phases are in contact with each other, and can be easily understood as a truss structure. Here, if the produced phase is needle-shaped or fibrous, interconnectivity is high, and if the produced phase is square or spherical, interconnectivity is low. In aluminum-silicon alloys, primary Si has low interconnectivity, and eutectic Si has high interconnectivity. In other words, eutectic Si appears two-dimensionally in the form of needles or fine spheres, and three-dimensionally is connected in a fibrous form, so interconnectivity is high. Therefore, the more eutectic Si, the higher the high-temperature strength can be.
고온 특성을 요구하는 피스톤, 브레이크 디스크 등과 같은 부품에 적용하기 위해, 알루미늄-실리콘의 공정반응 조성 부근인 10 중량% 내지 13 중량%의 실리콘을 포함하는 합금을 사용하고 있다. 이와 같이 Al-Si 2원계 상태도에서 공정점(eutectic point)에 근접한 조성을 갖는 합금을 Al-Si 근사 2원계 공정합금(near eutectic Al-Si alloy)으로 지칭한다.In order to be applied to parts such as pistons and brake discs that require high temperature characteristics, alloys containing 10% to 13% by weight of silicon, which is near the eutectic composition of aluminum-silicon, are used. In this way, an alloy having a composition close to the eutectic point in the Al-Si binary phase diagram is referred to as an Al-Si approximate binary eutectic alloy (near eutectic Al-Si alloy).
상술한 상호 연결성을 향상시켜 고온 특성을 더 향상시키도록, 구리(Cu) 또는 니켈(Ni)을 첨가할 수 있고, 예를 들어 구리를 2 중량% 내지 4 중량%, 니켈을 2 중량% 내지 3 중량% 첨가할 수 있다. 이와 더불어 몰리브덴(Mo), 크롬(Cr), 망간(Mn), 코발트(Co), 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 등을 첨가할 수 있고, 예를 들어 각각 1 중량% 이하로 첨가할 수 있다.In order to further improve the high temperature characteristics by improving the above-mentioned interconnectivity, copper (Cu) or nickel (Ni) may be added, for example, copper in an amount of 2 to 4 wt% and nickel in an amount of 2 to 3 wt%. Weight percent can be added. In addition, molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), zirconium (Zr), vanadium (V), etc. can be added, for example, 1% by weight of each. The following can be added.
구리(Cu)는, 알루미늄(Al), 실리콘(Si), 마그네슘(Mg) 등과 반응하여 다양한 종류의 금속간화합물(IMCs, intermetallic compounds)을 형성할 수 있다. 상기 금속간화합물은 예를 들어, CuAl2, CuMgAl, AlCuMgSi 등을 포함할 수 있다. 상기 금속간화합물은 알루미늄 기지의 경도를 증가시킬 수 있고, 공정 Si과 함께 상호 연결성을 향상시켜 고온 강도를 향상시킬 수 있다.Copper (Cu) can react with aluminum (Al), silicon (Si), magnesium (Mg), etc. to form various types of intermetallic compounds (IMCs). The intermetallic compound may include, for example, CuAl 2 , CuMgAl, AlCuMgSi, etc. The intermetallic compound can increase the hardness of the aluminum matrix and improve high-temperature strength by improving interconnectivity together with eutectic Si.
니켈(Ni)은 알루미늄(Al), 구리(Cu) 등과 반응하여 다양한 종류의 금속간화합물을 형성할 수 있다. 상기 금속간화합물은 예를 들어, Al3Ni, AlCuNi 등을 포함할 수 있다. 상기 금속간화합물은 대다수 침상 또는 다각형의 모양을 하고 있으며, 고온에서 안정한 생성상이고, 알루미늄 기지에 비하여 경도가 현저히 높다. 상기 금속간화합물은 공정 Si과 함께 상호 연결성을 향상시켜 고온 강도를 향상시킬 수 있다.Nickel (Ni) can react with aluminum (Al), copper (Cu), etc. to form various types of intermetallic compounds. The intermetallic compound may include, for example, Al 3 Ni, AlCuNi, etc. Most of the intermetallic compounds have a needle-like or polygonal shape, are stable at high temperatures, and have significantly higher hardness than the aluminum matrix. The intermetallic compound can improve high-temperature strength by improving interconnectivity with eutectic Si.
몰리브덴(Mo), 크롬(Cr), 망간(Mn), 코발트(Co), 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 등은 알루미늄(Al), 실리콘(Si) 등과 반응하여 다양한 종류의 금속간화합물을 형성할 수 있다. 상기 금속간화합물은 예를 들어, AlMo, AlCr, AlMn, AlCo, AlZr, AlTi, AlV, AlSiTi, AlSiZr 등을 포함할 수 있다. 상기 금속간화합물은 대다수 침상 또는 다각형의 모양을 하고 있으며, 고온에서 안정한 생성상이고, 알루미늄 기지에 비하여 현저히 경도가 높다. 상기 금속간화합물이 공정 Si과 함께 상호 연결성을 향상시켜 고온 강도를 향상시킬 수 있다.Molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), zirconium (Zr), vanadium (V), etc. react with aluminum (Al), silicon (Si), etc. to form various types. can form intermetallic compounds. The intermetallic compound may include, for example, AlMo, AlCr, AlMn, AlCo, AlZr, AlTi, AlV, AlSiTi, AlSiZr, etc. Most of the intermetallic compounds have a needle-like or polygonal shape, are stable at high temperatures, and have significantly higher hardness than the aluminum matrix. The intermetallic compound can improve high-temperature strength by improving interconnectivity with eutectic Si.
하지만, 상술한 바와 같이 고온 강도를 향상시키기 위하여 첨가되는 구리(Cu), 니켈(Ni), 몰리브덴(Mo), 크롬(Cr), 망간(Mn), 코발트(Co), 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 등은 알루미늄 합금의 내식성을 저하시키는 문제점이 있다. 이는 이들 원소에 의하여 형성되는 금속간화합물들이 알루미늄 기지에 비하여 부식전위(corrosion potential)가 높아, 결과적으로 알루미늄 합금의 내식성을 저하시키게 된다.However, as mentioned above, copper (Cu), nickel (Ni), molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), and zirconium are added to improve high temperature strength. (Zr), vanadium (V), etc. have the problem of lowering the corrosion resistance of aluminum alloy. This is because the intermetallic compounds formed by these elements have a higher corrosion potential than the aluminum matrix, which ultimately reduces the corrosion resistance of the aluminum alloy.
알루미늄의 기지 경도를 증가시키기 위하여, 마그네슘(Mg)을 첨가할 수 있다. 마그네슘(Mg)은 실리콘(Si)과 반응하여 Mg2Si 금속간화합물을 형성한다, 상기 Mg2Si 금속간화합물은 알루미늄 기지에 비하여 부식전위가 낮아 희생양극으로 작용하여 합금의 내식성을 향상시킬 수 있다. 또한, 실리콘(Si)의 경우에는 부식전위는 알루미늄(Al)에 비하여 높지만 전류밀도가 낮아 합금의 내식성을 크게 저하시키지 않는다. 마그네슘(Mg)은, 예를 들어 1 중량% 이하로 첨가할 수 있으나, 본 발명에서는 내식성 증가를 위하여 2.7 중량% 내지 4.1 중량%으로 첨가한다.To increase the matrix hardness of aluminum, magnesium (Mg) can be added. Magnesium (Mg) reacts with silicon (Si) to form a Mg 2 Si intermetallic compound. The Mg 2 Si intermetallic compound has a lower corrosion potential than the aluminum matrix and can act as a sacrificial anode to improve the corrosion resistance of the alloy. there is. In addition, in the case of silicon (Si), the corrosion potential is higher than that of aluminum (Al), but the current density is low and the corrosion resistance of the alloy is not significantly reduced. Magnesium (Mg) can be added, for example, in an amount of 1% by weight or less, but in the present invention, it is added in an amount of 2.7% by weight to 4.1% by weight to increase corrosion resistance.
본 발명에서는, 내식성의 저하를 최소화하면서 고온 강도를 향상시키기 위하여, 내식성을 상대적으로 저하시키지 않는 실리콘과 내식성을 향상시키는 마그네슘의 함량을 제어하고, 특히 Mg2Si를 미세하고 치밀하게 생성시켜 이에 따라 상호 연결성이 향상된 미세조직을 구현하는 방안을 고안하고자 한다. 또한, 구리(Cu), 니켈(Ni), 몰리브덴(Mo), 크롬(Cr), 망간(Mn), 코발트(Co), 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 등의 원소를 선택적으로 첨가하고 그 함량을 제어하여 내식성 저하를 최소화하면서 고온 강도를 향상시키는 방안을 고안하고자 한다.In the present invention, in order to improve high-temperature strength while minimizing the decrease in corrosion resistance, the content of silicon, which relatively does not decrease corrosion resistance, and magnesium, which improves corrosion resistance, are controlled, and in particular, Mg 2 Si is produced finely and densely, thereby producing We seek to devise a method to implement microstructures with improved interconnectivity. In addition, elements such as copper (Cu), nickel (Ni), molybdenum (Mo), chromium (Cr), manganese (Mn), cobalt (Co), titanium (Ti), zirconium (Zr), and vanadium (V). We would like to devise a method to improve high-temperature strength while minimizing the decline in corrosion resistance by selectively adding it and controlling its content.
도 2는 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 열역학 전산 계산을 통해 얻은 알루미늄-실리콘-마그네슘 합금의 상태도이다.Figure 2 is a phase diagram of an aluminum-silicon-magnesium alloy obtained through thermodynamic computational calculations for alloy design of an aluminum alloy cast material according to an embodiment of the present invention.
도 2를 참조하면, 알루미늄-실리콘-마그네슘 합금의 삼원계 상태도(ternary phase diagram)가 나타나 있다. Al-Si계 합금에 다량의 마그네슘을 첨가하면, 실리콘과 마그네슘의 첨가 함량에 따라 공정 Si, 초정 Si, 공정 Mg2Si, 초정 Mg2Si이 생성됨을 알 수 있다. 이때, 공정 Si 또는 공정 Mg2Si의 분율을 최대화하기 위하여, 실리콘과 마그네슘의 첨가 함량의 제어가 중요하다.Referring to Figure 2, a ternary phase diagram of an aluminum-silicon-magnesium alloy is shown. It can be seen that when a large amount of magnesium is added to an Al-Si alloy, eutectic Si, primary Si, eutectic Mg 2 Si, and primary Mg 2 Si are produced depending on the added amounts of silicon and magnesium. At this time, in order to maximize the fraction of eutectic Si or eutectic Mg 2 Si, it is important to control the added amounts of silicon and magnesium.
상기 상태도로부터 Al-Si-Mg2Si의 3원계 공정점은 실리콘 14.0 중량%, 마그네슘 5.1 중량%로 산출된다. 즉, Al-Si 이원계에서는 12.6% 이상 첨가되는 실리콘은 상술한 바와 같이 다각형의 초정 Si으로 존재하지만, 여기에 다량의 마그네슘이 첨가되면, 초과 첨가된 실리콘이 마그네슘과 반응하여 초정 Si이 아닌 공정 Mg2Si을 형성하게 된다. 미세한 공정 Si과 공정 Mg2Si로 이루어진 공정조직을 형성하여 상호 연결성을 향상시킬 수 있다.From the above phase diagram, the ternary eutectic point of Al-Si-Mg 2 Si is calculated to be 14.0% by weight of silicon and 5.1% by weight of magnesium. That is, in the Al-Si binary system, silicon added by more than 12.6% exists as polygonal primary Si as described above, but if a large amount of magnesium is added here, the excess added silicon reacts with magnesium to form eutectic Mg rather than primary Si. 2 Si is formed. Interconnectivity can be improved by forming a eutectic structure composed of fine eutectic Si and eutectic Mg 2 Si.
Al-Si계 합금에 마그네슘을 첨가하는 경우에, 실리콘의 함량이 17 중량%를 초과하면, 초정 Si의 크기가 증가한다. 원하는 내식성 및 강도 특성을 만족하기 위하여, 공정 Si의 분율은 증가시키며 초정 Si의 생성을 최소화하는 것이 바람직하다. 그러나, 초정 Si은 초정 Mg2Si에 비하여 경도가 높으므로, 고온 특성 향상 및 내마모성에 더 효과적이고, 내식성을 크게 감소시키지는 않으므로, 초정 Si이 일부 잔존하여도 특성이 향상될 수 있다. 따라서, 실리콘 함량이 13.0 중량% 이하이면 공정 Si을 충분하게 확보하지 못하며 치밀한 공정 조직을 얻기 어렵고, 실리콘 함량이 15 중량%를 초과하면, 다량의 초정 Si이 형성될 수 있다. 따라서, 실리콘의 함량은 13.0 중량% 초과 내지 15 중량% 범위일 수 있다.When magnesium is added to an Al-Si alloy, if the silicon content exceeds 17% by weight, the size of primary Si increases. In order to satisfy the desired corrosion resistance and strength properties, it is desirable to increase the fraction of eutectic Si and minimize the production of primary Si. However, since primary Si has higher hardness than primary Mg 2 Si, it is more effective in improving high temperature characteristics and wear resistance, and does not significantly reduce corrosion resistance, so the characteristics can be improved even if some primary Si remains. Therefore, if the silicon content is 13.0% by weight or less, eutectic Si cannot be sufficiently secured and it is difficult to obtain a dense eutectic structure, and if the silicon content is more than 15% by weight, a large amount of primary Si may be formed. Accordingly, the content of silicon may range from more than 13.0% by weight to 15% by weight.
이하에서, 알루미늄(Al)에 13.0 중량% 초과 내지 15.0 중량%의 실리콘(Si), 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg)이 첨가된 합금을 Al-Si-Mg2Si 근사 3원계 공정 조성(near ternary eutectic Al-Si-Mg2Si)이라고 지칭하기로 한다. 여기에서, 상기 근사 3원계 공정 조성이란 도 2에 도시된 3원계 상태도의 공정점(eutectic point)에 근접한 조성을 갖는 합금을 의미한다.Hereinafter, an alloy to which more than 13.0 wt% to 15.0 wt% of silicon (Si) and 2.7 wt% to 4.1 wt% of magnesium (Mg) are added to aluminum (Al) is subjected to an Al-Si-Mg 2 Si approximate ternary process. It will be referred to as the composition (near ternary eutectic Al-Si-Mg 2 Si). Here, the approximate ternary eutectic composition refers to an alloy having a composition close to the eutectic point of the ternary phase diagram shown in FIG. 2.
추가로, Al-Si-Mg2Si의 근사 3원계 공정 조성에 망간(Mn)을 첨가하면, 망간이 알루미늄, 실리콘, 및 불가피한 불순물인 철 등과 반응하여 Al(Fe, Mn)Si 등의 생성상을 형성할 수 있다. 망간의 함량이 증가함에 따라 상기 생성상의 분율이 증가하며 크기도 조대하게 된다. 망간의 첨가는 내식성을 크게 저해하지 않으며, 생성되는 Al(Fe, Mn)Si 상은 고온 인장강도를 향상시키는 장점을 제공할 수 있다. 하지만 Mn의 함량이 너무 과도하면, Al(Fe, Mn)Si이 조대하게 되어, 용탕에서 슬러지(sludge)로 작용할 수 있다. 따라서, 망간의 함량은 1 중량% 이하일 수 있다. 또한, 망간의 함량은 0.8 중량% 이하일 수 있고, 0.3 중량% 내지 0.7 중량% 범위일 수 있다.Additionally, when manganese (Mn) is added to the approximate ternary eutectic composition of Al-Si-Mg 2 Si, manganese reacts with aluminum, silicon, and iron, which is an inevitable impurity, to form Al(Fe, Mn)Si, etc. can be formed. As the manganese content increases, the fraction of the produced phase increases and its size becomes coarse. The addition of manganese does not significantly impair corrosion resistance, and the resulting Al(Fe, Mn)Si phase can provide the advantage of improving high-temperature tensile strength. However, if the Mn content is too excessive, Al(Fe, Mn)Si becomes coarse and may act as sludge in the molten metal. Therefore, the content of manganese may be 1% by weight or less. Additionally, the content of manganese may be 0.8% by weight or less and may range from 0.3% by weight to 0.7% by weight.
이하에서, 본 발명의 실험예를 통해서 알루미늄 합금 주조재의 조성 범위와 기계적 물성 등에 대해 구체적으로 후술한다.Hereinafter, the composition range and mechanical properties of the aluminum alloy cast material will be described in detail through experimental examples of the present invention.
실험예Experiment example
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Below, preferred experimental examples are presented to aid understanding of the present invention. However, the following experimental examples are only intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples. Any information not described here can be technically inferred by anyone skilled in the art, so description thereof will be omitted.
실험 방법Experimental method
하기의 표 1과 같이 조성에 맞추어, 순알루미늄, 금속 실리콘, 순 마그네슘, 순동, 순 니켈 및 Al-10 중량% Mn 모합금, Al-10 중량% Zr 모합금, Al-10 중량% Sr 모합금, Al-5 중량% TiB2 모합금, Al-P 모합금 등을 사용하여 대기중에서 전기저항식 용해로를 이용하여 용해하여 알루미늄 용탕을 형성하였다. 용해시 상기 알루미늄 용탕의 용해 온도는 750℃이었다. 용해 후 탈가스처리를 실시한 후, 200℃로 예열된 금형에 알루미늄 용탕을 주입하여 주조함으로써, 알루미늄 합금 주조재를 형성하였다.According to the composition as shown in Table 1 below, pure aluminum, metal silicon, pure magnesium, pure copper, pure nickel, and Al-10% by weight Mn master alloy, Al-10% by weight Zr master alloy, and Al-10% by weight Sr master alloy. , Al-5% by weight TiB 2 master alloy, Al-P master alloy, etc. were melted using an electric resistance melting furnace in the air to form molten aluminum. At the time of dissolution, the melting temperature of the molten aluminum was 750°C. After melting and degassing, molten aluminum was injected into a mold preheated to 200°C and cast to form an aluminum alloy cast material.
상기 알루미늄 합금 주조재에 대하여 하기와 같이 열처리(T6)를 실시하였다. 용체화 처리는 490℃ 내지 540℃의 온도 범위에서 수행하였다. 용체화 처리 이후에 물에 급랭하였다. 이어서, 160℃ 내지 200℃의 온도 범위에서 시효처리를 실시하였다. 상기 열처리의 상세한 사항은 통상적인 방법으로 실시하였다. 용체화 처리 온도 및 시효처리 온도는 구리(Cu)의 함량에 따라 변화시켰다.Heat treatment (T6) was performed on the aluminum alloy casting material as follows. The solution treatment was carried out in a temperature range of 490°C to 540°C. After solution treatment, it was quenched in water. Subsequently, aging treatment was performed at a temperature range of 160°C to 200°C. Details of the heat treatment were carried out in a conventional manner. The solution treatment temperature and aging treatment temperature were changed depending on the copper (Cu) content.
상기 알루미늄 합금 주조재 중에 일부는 용체화 처리를 수행하지 않고, 180℃ 내지 240℃의 온도 범위에서 시효처리만을 수행한 열처리(T5)를 수행하였다. 시효처리 온도는 구리(Cu)의 함량에 따라 변화시켰다.Some of the aluminum alloy castings were heat treated (T5) by only aging treatment at a temperature range of 180°C to 240°C without solution heat treatment. The aging treatment temperature was changed depending on the copper (Cu) content.
상술한 열처리를 수행한 후, 상기 알루미늄 합금 주조재에 대하여 ASTM E8 및 ASTM E21 규정에 따라 상온 및 고온(200℃ 내지 350℃)에서 인장시험을 실시하였다. 또한, 상기 알루미늄 합금 주조재에 대하여 ISO 9227 규정에 따라 염수분무시험(salt spray)을 실시하였다. 상기 염수분무시험은 5.0% NaCl 수용액을 사용하여 480시간 진행하였고, 시험 후 ASTM G1 규정에 따라 부식생성물을 제거한 후 무게 감량을 측정하고, 이를 이용하여 부식 속도(corrosion rate)를 계산하였다. 알루미늄 합금 주조재의 인장 강도 및 부식 속도는 하기의 표 2에 나타나 있다.After performing the heat treatment described above, a tensile test was performed on the aluminum alloy casting at room temperature and high temperature (200°C to 350°C) in accordance with ASTM E8 and ASTM E21 regulations. In addition, a salt spray test was conducted on the aluminum alloy casting material according to ISO 9227 regulations. The salt spray test was conducted for 480 hours using a 5.0% NaCl aqueous solution, and after the test, corrosion products were removed according to ASTM G1 regulations, weight loss was measured, and the corrosion rate was calculated using this. The tensile strength and corrosion rate of aluminum alloy castings are shown in Table 2 below.
상기 알루미늄 합금 주조재의 미세조직을 광학현미경을 이용하여 관찰하였다.The microstructure of the aluminum alloy cast material was observed using an optical microscope.
실험 결과 및 논의Experimental results and discussion
표 1은 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 조성 및 함량을 나타내는 표이다. 표 1의 합금 조성은 중량%를 의미한다. 모든 실험예에서 잔부는 알루미늄 및 기타 불가피한 불순물을 포함한다.Table 1 is a table showing the composition and content of the aluminum alloy casting material according to an embodiment of the present invention. The alloy composition in Table 1 refers to weight percent. In all experimental examples, the balance includes aluminum and other unavoidable impurities.
분류classification SiSi MgMg CuCu MnMn NiNi ZrZr FeFe TiTi BB
실험예1Experimental Example 1 14.014.0 2.932.93 0.0130.013 0.0050.005 0.0140.014 0.0020.002 0.1620.162 0.0420.042 0.0020.002
실험예2Experimental Example 2 13.913.9 3.323.32 0.0140.014 0.0010.001 0.0110.011 0.0030.003 0.1200.120 0.0480.048 0.0010.001
실험예3Experimental Example 3 14.114.1 4.024.02 0.0200.020 0.0020.002 0.0130.013 0.0020.002 0.1380.138 0.0450.045 0.0020.002
실험예4Experimental Example 4 13.813.8 4.504.50 0.0200.020 0.0010.001 0.0120.012 0.0020.002 0.1220.122 0.0460.046 0.0020.002
실험예5Experimental Example 5 14.314.3 3.313.31 0.0310.031 0.0030.003 0.0130.013 0.0040.004 0.1470.147 0.0430.043 0.0020.002
실험예6Experimental Example 6 14.014.0 5.335.33 0.0200.020 0.0010.001 0.0110.011 0.0010.001 0.1070.107 0.0460.046 0.0010.001
실험예7Experimental Example 7 18.518.5 0.460.46 0.0340.034 0.0130.013 0.0170.017 0.0110.011 0.1880.188 0.0480.048 0.0060.006
실험예8Experimental Example 8 17.517.5 0.470.47 4.8624.862 0.0050.005 0.0070.007 0.0030.003 0.2120.212 0.0150.015 0.0030.003
실험예9Experimental Example 9 19.119.1 0.480.48 1.2461.246 0.0100.010 0.0120.012 0.0080.008 0.1580.158 0.0470.047 0.0040.004
실험예10Experimental Example 10 17.717.7 1.881.88 0.0280.028 0.0130.013 0.0160.016 0.0090.009 0.2020.202 0.0530.053 0.0050.005
실험예11Experimental Example 11 13.913.9 2.922.92 0.0090.009 0.0040.004 0.0310.031 0.0030.003 0.1680.168 0.0340.034 0.0020.002
실험예12Experimental Example 12 12.612.6 2.802.80 0.9810.981 1.3401.340 0.0140.014 0.0050.005 0.1300.130 0.0380.038 0.0030.003
실험예13Experimental Example 13 18.518.5 0.460.46 0.0340.034 0.0130.013 0.0170.017 0.0110.011 0.1880.188 0.0480.048 0.0060.006
실험예14Experimental Example 14 17.517.5 0.470.47 4.8624.862 0.0050.005 0.0070.007 0.0030.003 0.2120.212 0.0150.015 0.0030.003
실험예15Experimental Example 15 14.314.3 2.892.89 0.0210.021 0.5060.506 0.0330.033 0.0060.006 0.1460.146 0.0380.038 0.0040.004
실험예16Experimental Example 16 14.614.6 3.263.26 1.0431.043 0.0020.002 0.0290.029 0.0040.004 0.1320.132 0.0380.038 0.0030.003
실험예17Experimental Example 17 14.014.0 3.183.18 1.0181.018 0.4970.497 0.0280.028 0.0060.006 0.1400.140 0.0390.039 0.0030.003
실험예18Experimental Example 18 14.414.4 3.243.24 1.2221.222 0.5140.514 0.0370.037 0.1760.176 0.1580.158 0.0340.034 0.0030.003
실험예19Experimental Example 19 14.114.1 3.183.18 1.0271.027 0.0040.004 0.5030.503 0.0050.005 0.1440.144 0.0370.037 0.0030.003
실험예20Experimental Example 20 13.813.8 3.423.42 1.2061.206 0.5020.502 0.5940.594 0.0060.006 0.1410.141 0.0400.040 0.0020.002
실험예21Experimental Example 21 13.813.8 3.503.50 1.0981.098 0.5370.537 0.6410.641 0.1850.185 0.1490.149 0.0380.038 0.0010.001
실험예22Experimental Example 22 13.413.4 3.063.06 1.0611.061 0.3440.344 0.0290.029 0.0060.006 0.1240.124 0.0370.037 0.0040.004
실험예23Experimental Example 23 13.613.6 2.812.81 1.0021.002 0.3410.341 0.0210.021 0.0060.006 0.1200.120 0.0380.038 0.0030.003
실험예24Experimental Example 24 13.313.3 3.103.10 1.0071.007 0.3420.342 0.5620.562 0.0040.004 0.1300.130 0.0380.038 0.0030.003
실험예25Experimental Example 25 13.313.3 3.313.31 1.6031.603 0.3810.381 0.0340.034 0.0060.006 0.1200.120 0.0390.039 0.0020.002
표 1을 참조하면, 알루미늄 합금 주조재에 의도적으로 첨가하지 않고 불가피한 불순물로서 포함된 원소의 함량은 밑줄로 구분되어 있다.Referring to Table 1, the content of elements that are not intentionally added to the aluminum alloy casting material but are included as inevitable impurities are underlined.
실험예들 모두는 철(Fe)를 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하고, 티타늄(Ti)과 보론(B)을 입자 미세화제인 AlTiBor의 첨가에 의하여 포함한다. In all of the experimental examples, iron (Fe) was included as an inevitable impurity without intentional addition, and titanium (Ti) and boron (B) were included by the addition of AlTiBor, a particle refiner.
또한, 하기의 실험예1 내지 실험예14는 니켈(Ni) 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. In addition, in Experimental Examples 1 to 14 below, nickel (Ni) and zirconium (Zr) were not intentionally added but included as inevitable impurities.
실험예1 내지 실험예3은 실리콘(Si)과 마그네슘(Mg)을 본 발명의 범위로 포함하고, 구리(Cu) 및 망간(Mn)이 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Examples 1 to 3 are different in that silicon (Si) and magnesium (Mg) are included within the scope of the present invention, and copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
실험예4는 실리콘(Si)을 본 발명의 범위로 포함하지만, 마그네슘(Mg)을 본 발명의 범위의 상한을 초과하여 포함하고, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 4 includes silicon (Si) within the scope of the present invention, but includes magnesium (Mg) in excess of the upper limit of the scope of the present invention, and copper (Cu) and manganese (Mn) are added without intentional addition. There is a difference in the inclusion of impurities.
실험예5는 실리콘(Si)과 마그네슘(Mg)을 본 발명의 범위로 포함하지만, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 5 includes silicon (Si) and magnesium (Mg) within the scope of the present invention, but is different in that copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
실험예6은 실리콘(Si)을 본 발명의 범위로 포함하지만, 마그네슘(Mg)을 본 발명의 범위의 상한을 초과하여 포함하고, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 6 includes silicon (Si) within the scope of the present invention, but includes magnesium (Mg) in excess of the upper limit of the scope of the present invention, and copper (Cu) and manganese (Mn) are added without intentional addition. There is a difference in the inclusion of impurities.
실험예7은 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 7 contains silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) are intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
실험예8은 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu)를 본 발명의 범위의 상한을 초과하여 포함하고, 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 8 contains silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) exceeding the upper limit of the range of the present invention. There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
실험예9는 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu)를 본 발명의 범위로 포함하고, 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 9 contains silicon (Si) above the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) within the range of the present invention, There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
실험예10은 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 10 contained silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) were intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
실험예11은 실리콘(Si)과 마그네슘(Mg)을 본 발명의 범위로 포함하지만, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 11 includes silicon (Si) and magnesium (Mg) within the scope of the present invention, but has the difference in that copper (Cu) and manganese (Mn) are included as inevitable impurities rather than intentionally added.
실험예12는 실리콘(Si)을 범위의 하한 미만으로 포함하고, 마그네슘(Mg)을 본 발명의 범위로 포함하고, 구리(Cu)를 본 발명의 범위로 포함하고, 망간(Mn)을 본 발명의 범위의 상한을 초과하여 포함하는 상이점이 있다.Experimental Example 12 includes silicon (Si) below the lower limit of the range, magnesium (Mg) within the scope of the present invention, copper (Cu) within the scope of the present invention, and manganese (Mn) within the scope of the present invention. There are differences that include exceeding the upper limit of the range.
실험예13은 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu) 및 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 13 contains silicon (Si) above the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) and manganese (Mn) are intentionally added. There is a difference in that it does not contain it as an inevitable impurity.
실험예14는 실리콘(Si)을 본 발명의 범위의 상한을 초과하여 포함하고, 마그네슘(Mg)을 본 발명의 범위의 하한 미만으로 포함하고, 구리(Cu)를 본 발명의 범위의 상한을 초과하여 포함하고, 망간(Mn)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함하는 상이점이 있다.Experimental Example 14 contained silicon (Si) exceeding the upper limit of the range of the present invention, magnesium (Mg) below the lower limit of the range of the present invention, and copper (Cu) exceeding the upper limit of the range of the present invention. There is a difference in that manganese (Mn) is not added intentionally but is included as an inevitable impurity.
하기의 실험예15 내지 실험예25 모두는 실리콘(Si)과 마그네슘(Mg)을 본 발명의 범위로 포함한다.All of the following Experimental Examples 15 to 25 include silicon (Si) and magnesium (Mg) within the scope of the present invention.
실험예15는 망간(Mn)을 본 발명의 범위로 더 포함하고, 구리(Cu), 니켈(Ni), 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 15 further includes manganese (Mn) within the scope of the present invention, and includes copper (Cu), nickel (Ni), and zirconium (Zr) as inevitable impurities without intentional addition.
실험예16은 구리(Cu)를 본 발명의 범위로 더 포함하고, 망간(Mn), 니켈(Ni), 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 16 further includes copper (Cu) within the scope of the present invention, and includes manganese (Mn), nickel (Ni), and zirconium (Zr) as inevitable impurities without intentional addition.
실험예17은 구리(Cu) 및 망간(Mn)을 본 발명의 범위로 더 포함하고, 니켈(Ni), 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다.Experimental Example 17 further includes copper (Cu) and manganese (Mn) within the scope of the present invention, and includes nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
실험예18은 구리(Cu), 망간(Mn), 및 지르코늄(Zr)을 본 발명의 범위로 더 포함하고, 니켈(Ni)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 18 further includes copper (Cu), manganese (Mn), and zirconium (Zr) within the scope of the present invention, and includes nickel (Ni) as an inevitable impurity without intentional addition.
실험예19는 구리(Cu), 및 니켈(Ni)을 본 발명의 범위로 더 포함하고, 망간(Mn) 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 19 further includes copper (Cu) and nickel (Ni) within the scope of the present invention, and includes manganese (Mn) and zirconium (Zr) as inevitable impurities without intentional addition.
실험예20은 구리(Cu), 망간(Mn), 및 니켈(Ni)을 본 발명의 범위로 더 포함하고, 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 20 further includes copper (Cu), manganese (Mn), and nickel (Ni) within the scope of the present invention, and includes zirconium (Zr) as an inevitable impurity without intentional addition.
실험예21은 구리(Cu), 망간(Mn), 니켈(Ni), 및 지르코늄(Zr)을 본 발명의 범위로 더 포함한다. Experimental Example 21 further includes copper (Cu), manganese (Mn), nickel (Ni), and zirconium (Zr) within the scope of the present invention.
실험예22 및 실험예23은 구리(Cu) 및 망간(Mn)을 본 발명의 범위로 더 포함하고, 니켈(Ni), 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다.Experimental Examples 22 and 23 further include copper (Cu) and manganese (Mn) within the scope of the present invention, and include nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
실험예24는 구리(Cu), 망간(Mn), 및 니켈(Ni)을 본 발명의 범위로 더 포함하고, 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 24 further includes copper (Cu), manganese (Mn), and nickel (Ni) within the scope of the present invention, and includes zirconium (Zr) as an inevitable impurity without intentional addition.
실험예25는 구리(Cu) 및 망간(Mn)을 본 발명의 범위로 더 포함하고, 니켈(Ni), 및 지르코늄(Zr)을 의도적으로 첨가하지 않고 불가피한 불순물로서 포함한다. Experimental Example 25 further includes copper (Cu) and manganese (Mn) within the scope of the present invention, and includes nickel (Ni) and zirconium (Zr) as inevitable impurities without intentional addition.
실험예7 내지 실험예12 및 실험예15 내지 실험예22는 T6 열처리를 수행한 경우이고, 실험예13, 실험예14 및 실험예23 내지 실험예25는 T5 열처리를 수행한 경우이다. 구체적으로 실험예7과 실험예13은 동일한 합금 조성을 가지지만, 실험예7은 T6 열처리, 실험예13은 T5 열처리를 수행한 경우이다. 이와 유사하게, 실험예8과 실험예14가 대응된다.Experimental Examples 7 to 12 and Experimental Examples 15 to 22 are cases in which T6 heat treatment is performed, and Experimental Examples 13, 14, and 23 to 25 are cases in which T5 heat treatment is performed. Specifically, Experimental Example 7 and Experimental Example 13 had the same alloy composition, but Experimental Example 7 was subjected to T6 heat treatment and Experimental Example 13 was subjected to T5 heat treatment. Similarly, Experimental Example 8 and Experimental Example 14 correspond.
도 3 및 도 4는 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 합금 설계를 위한 알루미늄 합금 주조재의 미세조직을 나타내는 광학현미경 사진이다.Figures 3 and 4 are optical microscope photographs showing the microstructure of an aluminum alloy cast material for alloy design of the aluminum alloy cast material according to an embodiment of the present invention.
도 3을 참조하면, Al-18Si계 합금으로서 실험예7 내지 실험예10의 미세조직이 나타나 있다. 상기 미세조직은 α-Al, 공정 Si(Eutectic Si) 및 초정 Si(Primary Si)으로 구성되어 있다. 실리콘을 18 중량%까지 다량으로 첨가하여도 일정량의 α-Al은 존재하는 것을 확인할 수 있다. 이는 응고시 초정 Si이 먼저 정출되고, 정출된 초정 Si의 부근에 국부적으로 실리콘이 부족하게 되어 이에 따라 α-Al이 생성된다. 즉, Al-Si계 합금에서 12.6 중량% 실리콘의 공정점 이상에서 실리콘을 더 첨가하여도 공정 조직이 증가하기보다는 조대한 초정 Si의 증가로 이어지게 됨을 알 수 있다. 또한, Al-18Si 합금에 마그네슘(Mg)를 다량 첨가하는 경우에는, 실험예 10과 같이, 공정 Mg2Si이 생성되지만, 초정 Si이 조대하게 되는 문제점이 확인된다.Referring to Figure 3, the microstructure of Experimental Examples 7 to 10 as an Al-18Si alloy is shown. The microstructure consists of α-Al, eutectic Si (Eutectic Si), and primary Si. It can be confirmed that a certain amount of α-Al exists even when a large amount of silicon is added, up to 18% by weight. This means that during solidification, primary Si crystallizes first, and there is a local shortage of silicon in the vicinity of the crystallized primary Si, thereby generating α-Al. In other words, it can be seen that adding more silicon above the eutectic point of 12.6% by weight silicon in the Al-Si alloy leads to an increase in coarse primary Si rather than an increase in the eutectic structure. In addition, when adding a large amount of magnesium (Mg) to Al-18Si alloy, eutectic Mg 2 Si is generated as in Experimental Example 10, but the problem of primary Si becoming coarse is confirmed.
따라서, Al-Si-Mg2Si의 3원계 공정점(Si 14.0 중량%, Mg 5.1 중량%)은 이상적인 경우이므로, 실리콘과 마그네슘의 함량을 결정하기 위하여 실리콘 14.0 중량% Si에서 마그네슘 함량을 변화시켰다.Therefore, the ternary eutectic point of Al-Si-Mg 2 Si (Si 14.0 wt%, Mg 5.1 wt%) is an ideal case, so the magnesium content was changed from silicon 14.0 wt% Si to determine the silicon and magnesium contents. .
도 4를 참조하면, Al-14Si-Mg 계 합금인 실험예1 내지 실험예6의 알루미늄 합금 주조재의 미세조직이 나타나 있다. 상기 미세조직은 α-Al, 공정 Si 및 공정 Mg2Si로 치밀하게 구성됨을 알 수 있다. 마그네슘 함량이 증가될수록 공정 조직이 더 치밀해짐을 알 수 있다. 예를 들어, 마그네슘 함량이 4.02 중량% 이상이 되면, 초정 Mg2Si가 생성된다. 반면, 용해 및 주조 중에 마그네슘은 산화되어 MgO 또는 MgAl2O4 등과 같은 산화피막을 형성하여 주조 결함을 발생시킬 수 있다. 마그네슘 함량이 4.02 중량%인 실험예3에서는 상기 주조 결함이 발생하지 않았지만, 4.50 중량%인 실험예4 및 5.33 중량%인 실험예6에서는 주조 결함이 발생함을 확인하였다. Referring to Figure 4, the microstructure of the aluminum alloy cast material of Experimental Examples 1 to 6, which is an Al-14Si-Mg alloy, is shown. It can be seen that the microstructure is densely composed of α-Al, eutectic Si, and eutectic Mg 2 Si. It can be seen that as the magnesium content increases, the process structure becomes more dense. For example, when the magnesium content is 4.02% by weight or more, primary Mg 2 Si is generated. On the other hand, during melting and casting, magnesium is oxidized and forms an oxide film such as MgO or MgAl 2 O 4 , which may cause casting defects. Although the casting defect did not occur in Experimental Example 3 where the magnesium content was 4.02% by weight, it was confirmed that casting defects occurred in Experimental Example 4 where the magnesium content was 4.50% by weight and Experimental Example 6 where the magnesium content was 5.33% by weight.
따라서, 마그네슘 함량이 2.7 중량% 이하이면 치밀한 공정 조직이 형성되기 어렵고, 마그네슘 함량이 4.1 중량%를 초과하면, 주조 결함이 발생할 수 있다. 따라서, 마그네슘의 함량은 2.7 중량% 내지 4.1 중량% 범위일 수 있다.Therefore, if the magnesium content is less than 2.7% by weight, it is difficult to form a dense process structure, and if the magnesium content exceeds 4.1% by weight, casting defects may occur. Accordingly, the content of magnesium may range from 2.7% to 4.1% by weight.
이하에서는, T6 열처리를 수행한 알루미늄 합금 주조재의 물성에 대하여 설명하기로 한다.Below, the physical properties of aluminum alloy castings that have undergone T6 heat treatment will be described.
표 2는 본 발명의 일실시예에 따른 T6 열처리를 수행한 알루미늄 합금 주조재의 내식성, 상온 인장강도, 및 고온 인장강도를 나타내는 표이다.Table 2 is a table showing the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of aluminum alloy castings subjected to T6 heat treatment according to an embodiment of the present invention.
분류classification 내식성corrosion resistance 인장강도 (MPa)Tensile strength (MPa)
부식속도
(mm/year)
corrosion rate
(mm/year)
상온 room temperature 200℃200℃ 250℃250 300℃300℃ 350℃350℃
실험예7Experimental Example 7 0.02990.0299 299.3299.3 227.0227.0 145.0145.0 72.472.4 49.249.2
실험예8Experimental Example 8 0.95430.9543 360.3360.3 284.0284.0 215.5215.5 126.5126.5 66.066.0
실험예9Experimental Example 9 0.25050.2505 331.7331.7 278.0278.0 181.0181.0 83.983.9 54.054.0
실험예10Experimental Example 10 0.02310.0231 265.7265.7 202.0202.0 146.0146.0 69.469.4 52.652.6
실험예11Experimental Example 11 0.01570.0157 359.5359.5 234.5234.5 178.0178.0 92.592.5 46.546.5
실험예12Experimental Example 12 0.12600.1260 358.0358.0 290.0290.0 208.0208.0 105.0105.0 62.562.5
실험예15Experimental Example 15 0.02190.0219 352.7352.7 271.0271.0 192.0192.0 92.592.5 46.046.0
실험예16Experimental Example 16 0.09210.0921 350.3350.3 269.0269.0 221.5221.5 129.0129.0 71.071.0
실험예17Experimental Example 17 0.08660.0866 333.0333.0 267.0267.0 223.5223.5 128.0128.0 74.574.5
실험예18Experimental Example 18 0.10330.1033 353.5353.5 267.5267.5 219.0219.0 134.5134.5 75.575.5
실험예19Experimental Example 19 0.15270.1527 308.5308.5 243.0243.0 214.5214.5 130.5130.5 72.572.5
실험예20Experimental Example 20 0.17510.1751 319.3319.3 256.5256.5 224.0224.0 136.0136.0 73.573.5
실험예21Experimental Example 21 0.16970.1697 312.7312.7 248.5248.5 223.5223.5 135.0135.0 75.075.0
실험예22Experimental Example 22 0.09740.0974 355.5355.5 276.5276.5 211.5211.5 131.0131.0 75.575.5
표 2에서, 상기 T6 열처리를 수행한 알루미늄 합금 주조재의 내식성, 상온 인장강도, 및 고온 인장강도를 나타나 있다. 상기 내식성은 부식속도로 표시되어 있고, 상기 부식속도가 작을수록 내식성이 우수함을 의미한다. 상온 인장강도는 20℃에서 수행되었고, 고온 인장강도는 200℃, 250℃, 300℃, 및 350℃에서 수행되었다.Table 2 shows the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of the aluminum alloy cast material that underwent the T6 heat treatment. The corrosion resistance is indicated by the corrosion rate, and the smaller the corrosion rate, the better the corrosion resistance. Room temperature tensile strength was performed at 20°C, and high temperature tensile strength was performed at 200°C, 250°C, 300°C, and 350°C.
도 5는 본 발명의 일실시예에 따른 T6 열처리를 수행한 알루미늄 합금 주조재의 상온 인장강도와 연신율을 나타내는 그래프이다.Figure 5 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T6 heat treatment according to an embodiment of the present invention.
실험예7, 실험예8, 실험예9, 및 실험예10은 Al-18Si 기반인 합금으로서, 고온 인장강도와 연신율이 낮게 나타났고, 이는 높은 실리콘의 함량에 의한 초정 Si의 존재에 기인한 것으로 분석된다. 구리를 포함하는 실험예8 및 실험예9는, 구리를 포함하지 않는 실험예7 및 실험예10에 비하여, 상온 인장강도가 증가되었고, 고온 인장강도는 약간 증가되었으나, 내식성이 상당히 감소되었고, 이는 구리의 함유에 따른 결과로 분석된다. 특히, 높은 함량의 실리콘과 더불어 마그네슘이 1.88 중량% 첨가된 실험예10은 연신율 및 상온 인장강도가 현저히 낮게 나타났고, 이는 초정 Si의 조대화에 기인한 것으로 분석된다.Experimental Example 7, Experimental Example 8, Experimental Example 9, and Experimental Example 10 were alloys based on Al-18Si, and showed low high-temperature tensile strength and elongation, which was attributed to the presence of primary Si due to the high silicon content. is analyzed. In Experimental Examples 8 and 9 containing copper, the room temperature tensile strength was increased and the high temperature tensile strength was slightly increased, but the corrosion resistance was significantly reduced, compared to Experimental Examples 7 and 10 that did not contain copper. It is analyzed as a result of the copper content. In particular, Experimental Example 10, in which 1.88% by weight of magnesium was added along with a high content of silicon, showed significantly low elongation and room temperature tensile strength, which is believed to be due to coarsening of primary Si.
결론적으로, Al-18Si 기반의 알루미늄 합금 주조재는 연신율 및 고온 인장강도가 낮으며, 구리를 포함하는 경우에는 내식성을 만족하지 못함을 알 수 있다. 따라서, 실리콘의 함량을 감소시키는 방안을 고려할 수 있다.In conclusion, it can be seen that the Al-18Si-based aluminum alloy casting material has low elongation and high-temperature tensile strength, and does not satisfy corrosion resistance when it contains copper. Therefore, a method of reducing the silicon content may be considered.
실험예11은 Al-14Si 기반인 합금으로서, 내식성, 상온 인장강도, 및 연신율은 우수하지만 구리와 망간을 포함하지 않음에 따라 고온 인장강도가 낮아 본 발명의 범위를 만족하지 못한다.Experimental Example 11 is an Al-14Si-based alloy, and has excellent corrosion resistance, room temperature tensile strength, and elongation, but does not satisfy the scope of the present invention because it does not contain copper and manganese, and thus has low high-temperature tensile strength.
상기 알루미늄 합금 주조재의 물성에 대한 구리의 영향을 설명하기로 한다. 구리를 포함하지 않은 실험예들(실험예7, 실험예10, 실험예11, 및 실험예15)이 구리를 포함한 다른 실험예들에 비하여 내식성은 우수하지만 250℃ 이상에서의 고온 인장강도가 낮음을 알 수 있다. 따라서, 상기 알루미늄 합금 주조재의 고온 인장강도를 증가시키기 위하여 구리를 함유할 필요가 있다.The effect of copper on the physical properties of the aluminum alloy casting material will be described. Experimental examples that did not contain copper (Experimental Example 7, Experimental Example 10, Experimental Example 11, and Experimental Example 15) had superior corrosion resistance compared to other experimental examples containing copper, but had low high-temperature tensile strength above 250°C. can be seen. Therefore, it is necessary to contain copper in order to increase the high temperature tensile strength of the aluminum alloy casting material.
구리 함량을 1 중량% 수준으로 포함하는 경우로 비교하면, Al-18Si 기반인 실험예9에 비하여 Al-14Si 기반인 실험예16 내지 실험예22가 더 우수한 내식성을 가지며, 이와 함께 250℃ 이상에서 고온 인장강도가 증가되었다. 실험예12는 실리콘의 함량이 13 중량% 미만으로서 내식성이 저하되었고, 250℃ 이상의 고온 인장강도가 감소되었다. When compared to the case where the copper content is included at the level of 1% by weight, Experimental Examples 16 to 22 based on Al-14Si have better corrosion resistance than Experimental Example 9 based on Al-18Si, and at 250 ° C. or higher. High temperature tensile strength was increased. In Experimental Example 12, the silicon content was less than 13% by weight, so the corrosion resistance was reduced and the high temperature tensile strength above 250°C was reduced.
이러한 결과로부터, 본 발명의 13.0 중량% 초과 내지 15 중량% 실리콘의 함량 범위는 우수한 내식성 및 높은 고온 인장강도를 제공할 수 있음이 확인되었다.From these results, it was confirmed that the silicon content range of more than 13.0% by weight to 15% by weight of the present invention can provide excellent corrosion resistance and high high temperature tensile strength.
구리를 포함하는 경우에는, 내식성 저하와 함께 연신율의 저하가 발생할 수 있다. 예를 들어, 유사한 실리콘 및 마그네슘 함량을 가지는 경우로서, 구리를 포함하지 않는 실험예11과 비교하면, 실험예16 내지 실험예21은 연신율이 감소되었다. When copper is included, a decrease in elongation may occur along with a decrease in corrosion resistance. For example, in the case of having similar silicon and magnesium contents, compared to Experimental Example 11, which does not contain copper, Experimental Examples 16 to 21 had reduced elongation.
실험예12는 Al-14Si 기반이고, 구리를 포함하면서 망간을 1 중량%를 초과하여 포함하는 경우로서, 우수한 내식성을 가지지만 연신율이 감소되고, 특히 고온 인장강도가 낮게 나타났다. 망간이 1 중량%를 초과하면, Al(Fe, Mn)Si 상이 다각형 형태로 조대하게 되어 상호 연결성을 향상시키지 못하여 고온 인장강도를 감소시키는 것으로 분석된다. 또한, 망간을 포함하면 구리 함유에 따른 내식성 저하를 더 효과적으로 억제할 수 있다. 따라서, 망간의 함량은 1 중량% 이하일 수 있다. 또한, 망간의 함량은 0.8 중량% 이하일 수 있고, 0.3 중량% 내지 0.7 중량% 범위일 수 있다.Experimental Example 12 is based on Al-14Si and contains copper and manganese in excess of 1% by weight, and has excellent corrosion resistance, but the elongation is reduced and the high-temperature tensile strength is particularly low. It is analyzed that when manganese exceeds 1% by weight, the Al(Fe, Mn)Si phase becomes coarse in the form of a polygon and does not improve interconnectivity, thereby reducing high temperature tensile strength. In addition, the inclusion of manganese can more effectively suppress the decrease in corrosion resistance due to copper content. Therefore, the content of manganese may be 1% by weight or less. Additionally, the content of manganese may be 0.8% by weight or less and may range from 0.3% by weight to 0.7% by weight.
실험예15는 구리를 포함하지 않고 망간을 포함하는 경우로서, 내식성 및 상온 인장강도는 우수하고, 고온 인장강도는 다소 저하되는 경향을 나타내지만, 망간을 포함하지 않는 실험예 11에 비하여 250℃ 까지의 고온 인장 강도를 향상시키는 것으로 분석된다. 아울러, 실험예 5 또는 실험예8과 비교하면, 내식성 및 상온 인장강도, 고온 인장강도 모두 우수해지는 것으로 분석된다.Experimental Example 15 does not contain copper but contains manganese, and the corrosion resistance and room temperature tensile strength are excellent, but the high temperature tensile strength tends to decrease somewhat, but compared to Experimental Example 11, which does not contain manganese, it shows excellent corrosion resistance and room temperature tensile strength up to 250°C. It is analyzed that it improves the high temperature tensile strength of. In addition, compared to Experimental Example 5 or Experimental Example 8, it is analyzed that corrosion resistance, room temperature tensile strength, and high temperature tensile strength are all improved.
실험예16 내지 실험예 22는 본 발명의 함량 범위에 따른 합금들이며, 구리를 포함하지 않는 경우에 비하여 내식성이 다소 감소하지만 본 발명의 범위에 포함되고, 높은 상온 인장강도와 특히 고온 인장강도가 두드러지게 증가되었다. 특히 망간을 포함하지 않고 구리만을 포함하는 실험예8 및 실험예9와 비교하면, 구리와 망간을 함께 포함함에 따라 고온 인장강도가 증가되었고, 또한 구리 첨가에 의한 내식성 감소를 방지할 수 있음을 알 수 있다.Experimental Examples 16 to 22 are alloys within the content range of the present invention, and although the corrosion resistance is somewhat reduced compared to the case without copper, they are within the scope of the present invention, and the high room temperature tensile strength and especially high temperature tensile strength are notable. has increased significantly. In particular, compared to Experimental Examples 8 and 9 containing only copper and not manganese, it was found that the high-temperature tensile strength was increased by including copper and manganese, and it was also possible to prevent a decrease in corrosion resistance due to the addition of copper. You can.
따라서, 상기 알루미늄 합금 주조재의 고온 인장강도 향상을 위하여 구리를 포함할 필요가 있다. 내식성 저하를 최소화하는 구리의 함량은 2 중량% 일 수 있다.Therefore, it is necessary to include copper in order to improve the high-temperature tensile strength of the aluminum alloy casting material. The copper content that minimizes corrosion resistance degradation may be 2% by weight.
실험예18의 결과로부터, 지르코늄은 내식성, 연신율, 및 상온 인장강도에 거의 영향을 끼치지 않으며, 300℃ 이상에서 고온 인장강도를 향상시키는 것으로 분석된다.From the results of Experimental Example 18, it is analyzed that zirconium has little effect on corrosion resistance, elongation, and room temperature tensile strength, and improves high temperature tensile strength above 300°C.
실험예19, 실험예20, 및 실험예21의 결과로부터, 니켈은 상온 인장강도에 거의 영향을 끼치지 않으며, 250℃ 이상에서 고온 인장강도를 향상시키는 것으로 분석된다. 다만, 연신율과 내식성이 다소 저하되는 경향을 나타내지만 본 발명의 범위를 만족한다. From the results of Experimental Example 19, Experimental Example 20, and Experimental Example 21, it is analyzed that nickel has little effect on room temperature tensile strength and improves high temperature tensile strength above 250°C. However, although elongation and corrosion resistance tend to decrease somewhat, it satisfies the scope of the present invention.
실험예22는 내식성, 연신율, 상온 인장강도 및 고온 인장강도에서 가장 우수한 특성을 나타내는 합금 조성으로 분석된다. Experimental Example 22 is analyzed as an alloy composition showing the best properties in corrosion resistance, elongation, room temperature tensile strength, and high temperature tensile strength.
이하에서는, T5 열처리를 수행한 알루미늄 합금 주조재의 물성에 대하여 설명하기로 한다.Hereinafter, the physical properties of aluminum alloy castings subjected to T5 heat treatment will be described.
이하에서는, 상기 T5 열처리에 대하여 설명하기로 한다. 일반적으로, 알루미늄 합금에서 T5 열처리한 시편의 기계적 특성은 T6 열처리한 시편에 비하여 상당히 낮게 나타난다. 이는 주조시 다양한 정출상들이 생성된다. T6 열처리와 같이 용체화 처리를 실시하면 정출상의 일부가 분해되어 알루미늄 기지에 고용이 되며 기지 조성도 균일하게 된다. 또한, 이어서, 기지에 과포화 고용된 원소들은 시효처리시 석출되어 나오며 강도 향상에 기여하고, 생성상 분해와 기지 조성 균일도가 높아지면 내식성이 향상된다. 반면, T5 열처리와 같이 용체화 처리를 하지 않는 경우에는, 생성상 분해와 기지 조성 균일도 향상 과정이 없어지므로, 시효처리후의 특성 향상이 제한적이게 되어, 강도가 저하되며 내식성도 저하된다. 그러나, 용체화 처리를 생략하므로 제조원가를 절감할 수 있다는 장점이 있으며, 더 나아가 용체화 처리후 물에 급랭시에 발생할 수 있는 부품의 뒤틀림 발생을 방지할 수 있다. 따라서, 최근, 알루미늄 주조 부품이 대형화, 박육화함에 따라 부품의 뒤틀림 발생은 큰 이슈가 되고 있으며, 이를 보완하기 위하여 T5 열처리에 대한 적용이 증가되고 있다.Below, the T5 heat treatment will be described. In general, the mechanical properties of T5 heat-treated aluminum alloy specimens are significantly lower than those of T6 heat-treated specimens. This creates various crystal phases during casting. When solution treatment is performed like T6 heat treatment, part of the crystalline phase is decomposed and dissolved into solid solution in the aluminum matrix, and the matrix composition becomes uniform. In addition, elements supersaturated and dissolved in the matrix precipitate out during aging treatment and contribute to strength improvement, and corrosion resistance improves as production phase decomposition and matrix composition uniformity increase. On the other hand, if solution treatment is not performed, such as T5 heat treatment, the process of decomposition of the product phase and improvement of matrix composition uniformity is eliminated, so the improvement in properties after aging treatment is limited, resulting in a decrease in strength and corrosion resistance. However, there is an advantage in that manufacturing costs can be reduced by omitting the solution heat treatment, and furthermore, it is possible to prevent distortion of parts that may occur when quenched in water after solution heat treatment. Therefore, recently, as aluminum casting parts have become larger and thinner, distortion of parts has become a major issue, and to compensate for this, the application of T5 heat treatment is increasing.
표 3은 본 발명의 일실시예에 따른 T5 열처리를 수행한 알루미늄 합금 주조재의 내식성, 상온 인장강도, 및 고온 인장강도를 나타내는 표이다.Table 3 is a table showing the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of aluminum alloy castings subjected to T5 heat treatment according to an embodiment of the present invention.
분류classification 내식성corrosion resistance 인장강도 (MPa)Tensile strength (MPa)
부식속도
(mm/year)
corrosion rate
(mm/year)
상온 room temperature 200℃200℃ 250℃250 300℃300℃ 350℃350℃
실험예13Experimental Example 13 0.03440.0344 177.7177.7 150.0150.0 118.0118.0 80.280.2 49.649.6
실험예14Experimental Example 14 1.16691.1669 215.0215.0 200.0200.0 169.0169.0 106.0106.0 68.568.5
실험예23Experimental Example 23 0.18330.1833 213.0213.0 187.0187.0 138.5138.5 97.597.5 65.565.5
실험예24Experimental Example 24 0.38260.3826 216.7216.7 184.5184.5 146.5146.5 104.0104.0 71.571.5
실험예25Experimental Example 25 0.25240.2524 210.0210.0 199.0199.0 143.0143.0 104.5104.5 64.064.0
표 3에서, 상기 T5 열처리를 수행한 알루미늄 합금 주조재의 내식성, 상온 인장강도, 및 고온 인장강도를 나타나 있다. 상기 내식성은 부식속도로 표시되어 있고, 상기 부식속도가 작을수록 내식성이 우수함을 의미한다. 상온 인장강도는 20℃에서 수행되었고, 고온 인장강도는 200℃, 250℃, 300℃, 및 350℃에서 수행되었다.Table 3 shows the corrosion resistance, room temperature tensile strength, and high temperature tensile strength of the aluminum alloy cast material that underwent the T5 heat treatment. The corrosion resistance is indicated by the corrosion rate, and the smaller the corrosion rate, the better the corrosion resistance. Room temperature tensile strength was performed at 20°C, and high temperature tensile strength was performed at 200°C, 250°C, 300°C, and 350°C.
도 6은 본 발명의 일실시예에 따른 T5 열처리를 수행한 알루미늄 합금 주조재의 상온 인장강도와 연신율을 나타내는 그래프이다.Figure 6 is a graph showing the room temperature tensile strength and elongation of an aluminum alloy cast material subjected to T5 heat treatment according to an embodiment of the present invention.
상기 T5 열처리를 수행한 경우에는, 상기 T6 열처리를 수행한 알루미늄 합금 주조재와 비교하면, 전반적으로 내식성, 상온 인장강도, 및 고온 인장강도가 저하됨을 알 수 있다.When the T5 heat treatment is performed, it can be seen that the overall corrosion resistance, room temperature tensile strength, and high temperature tensile strength are reduced compared to the aluminum alloy casting material that has been subjected to the T6 heat treatment.
실험예13은 내식성이 우수하지만, 상온 인장강도와 고온 인장강도가 상당히 낮게 나타났다.Experimental Example 13 had excellent corrosion resistance, but the room temperature tensile strength and high temperature tensile strength were significantly low.
실험예14는 구리만을 포함하는 경우로서, 구리 및 망간을 포함하지 않는 실험예13을 기준으로 비교하면, 상온 인장강도 및 고온 인장강도가 증가되었으나, 내식성이 상당히 감소되었다. Experimental Example 14 is a case containing only copper, and when compared with Experimental Example 13 not containing copper and manganese, room temperature tensile strength and high temperature tensile strength were increased, but corrosion resistance was significantly reduced.
실험예23과 실험예25는 구리 및 망간을 포함하는 경우로서, 상온 인장강도 및 고온 인장강도가 실험예13에 비하여 상당히 증가되었고, 실험예14에 비하여는 약간 낮았다. 내식성은 실험예13에 비하여는 낮으나 실험예14에 비하여는 상당히 향상되었다. 또한, 연신율은 실험예13 및 실험예14에 비하여 상당히 증가되었다.Experimental Examples 23 and 25 contained copper and manganese, and the room temperature tensile strength and high temperature tensile strength were significantly increased compared to Experimental Example 13 and slightly lower than Experimental Example 14. Corrosion resistance was lower than that of Experimental Example 13, but was significantly improved compared to Experimental Example 14. Additionally, the elongation was significantly increased compared to Experimental Examples 13 and 14.
실험예24는 구리 및 망간을 포함하고 더 나아가 니켈을 포함하는 경우로서, 상온 인장강도 및 고온 인장강도가 증가되어, 실험예14 수준의 값을 나타내었다. 내식성은 실험예13에 비하여는 낮으나 실험예14에 비하여는 상당히 향상되었다. 또한, 연신율은 실험예13 및 실험예14에 비하여 상당히 증가되었다.Experimental Example 24 is a case in which copper and manganese are included and further nickel is included, and the room temperature tensile strength and high temperature tensile strength are increased, showing a value at the level of Experimental Example 14. Corrosion resistance was lower than that of Experimental Example 13, but was significantly improved compared to Experimental Example 14. Additionally, the elongation was significantly increased compared to Experimental Examples 13 and 14.
도 7은 본 발명의 일실시예에 따른 알루미늄 합금 주조재에서 구리 첨가시 생성상 분율을 열역학적 계산으로 산출한 그래프이다.Figure 7 is a graph calculated by thermodynamic calculation of the fraction of the formed phase upon addition of copper in an aluminum alloy casting material according to an embodiment of the present invention.
도 7을 참조하면, Al-Si-Mg 3원계 합금에 구리 첨가시 생성상 분율을 열역학적 계산한 결과가 나타나있다. 실험예7과 실험예10은 구리를 포함하지 않으므로, Cu 함유상은 나타나지 않고 Mg 함유상이 나타난다. 실험예8과 실험예9는 구리를 포함하므로, Cu 함유상과 Mg 함유상이 나타나며, 구리를 더 많이 포함하는 실험예8에서 더 많은 Cu 함유상이 나타난다.Referring to FIG. 7, the results of thermodynamic calculation of the phase fraction produced when copper is added to an Al-Si-Mg ternary alloy are shown. Since Experimental Examples 7 and 10 do not contain copper, the Cu-containing phase does not appear, but the Mg-containing phase appears. Since Experimental Examples 8 and 9 contain copper, Cu-containing phases and Mg-containing phases appear, and in Experimental Example 8, which contains more copper, more Cu-containing phases appear.
실험예15는 구리를 포함하지 않으므로, Cu 함유상은 나타나지 않고 Mg 함유상이 나타난다. 실험예15에 구리 함유 함량을 증가시키면서 생성상 분율을 계산하면, Cu 함유상의 분율이 증가함과 동시에 Mg 함유상의 분율이 감소됨을 알 수 있다. 즉, 구리를 첨가하면, 구리가 알루미늄, 실리콘, 및 마그네슘 등과 반응하여 CuAl2, AlCuMgSi 등의 Cu 함유상(Cu-rich phase)을 형성한다. 구리의 함량이 증가함에 따라 상기 Cu 함유상의 분율은 증가한다. 반면, 내식성에 효과적인 Mg2Si, AlFeMgSi 등의 Mg 함유상(Mg-rich phase)의 분율은 감소한다. 즉, 구리의 함량이 증가됨에 따라 고온 인장강도는 증가하지만 내식성은 감소하게 된다. Since Experimental Example 15 does not contain copper, the Cu-containing phase does not appear, but the Mg-containing phase appears. When calculating the fraction of the produced phase while increasing the copper content in Experimental Example 15, it can be seen that the fraction of the Cu-containing phase increases and at the same time, the fraction of the Mg-containing phase decreases. That is, when copper is added, the copper reacts with aluminum, silicon, and magnesium to form a Cu-rich phase such as CuAl 2 and AlCuMgSi. As the copper content increases, the fraction of the Cu-containing phase increases. On the other hand, the fraction of Mg-rich phase such as Mg 2 Si and AlFeMgSi, which are effective for corrosion resistance, decreases. In other words, as the copper content increases, high-temperature tensile strength increases but corrosion resistance decreases.
구리의 함량이 2.5 중량%에서는 고온 인장강도에서는 유리하지만 내식성은 저하될 것으로 분석된다. 따라서, 본 발명에서는 고온 인장강도와 내식성의 조합을 고려하여, 구리의 함량을 2.0 중량% 이하일 수 있다. 또한, 구리의 함량은 1.61 중량% 이하 일 수 있다.It is analyzed that at a copper content of 2.5% by weight, high-temperature tensile strength is advantageous, but corrosion resistance is reduced. Therefore, in the present invention, considering the combination of high-temperature tensile strength and corrosion resistance, the copper content may be 2.0% by weight or less. Additionally, the copper content may be 1.61% by weight or less.
도 8은 본 발명의 일실시예에 따른 알루미늄 합금 주조재에서 니켈 첨가시 생성상 분율을 열역학적 계산으로 산출한 그래프이다.Figure 8 is a graph calculated by thermodynamic calculation of the fraction of phases formed upon adding nickel in an aluminum alloy casting material according to an embodiment of the present invention.
도 8을 참조하면, Al-Si-Mg 3원계 합금 중 실험예15의 조성을 기준으로 구리를 1 중량% 또는 2 중량%로 첨가하고, 니켈을 0 중량% 내지 2.0 중량% 범위로 증가시키면서 첨가함에 따른 Mg 함유상과 Ni 함유상의 변화를 열역학적 계산한 결과이다. 니켈이 첨가된 경우에, 상기 Mg 함유상의 분율은 모든 구리 조성에서 변화하지 않았다. 상기 Ni 함유상의 분율은 선형적으로 증가하였으며, 이는 구리 조성에서 동일하게 나타났다. Ni 함유상의 분율은 Mg 함유상의 분율에 영향을 끼치지 않는 것으로 분석된다.Referring to FIG. 8, based on the composition of Experimental Example 15 in the Al-Si-Mg ternary alloy, copper was added in an amount of 1% or 2% by weight, and nickel was added in an increasing range from 0% by weight to 2.0% by weight. This is the result of thermodynamic calculation of the changes in the Mg-containing phase and Ni-containing phase. When nickel was added, the fraction of the Mg-containing phase did not change for all copper compositions. The fraction of the Ni-containing phase increased linearly, which was the same for the copper composition. It is analyzed that the fraction of the Ni-containing phase does not affect the fraction of the Mg-containing phase.
Al-Si-Mg2Si의 근사 3원계 조성에 니켈(Ni)을 첨가하면, 니켈이 알루미늄, 구리, 철 등과 반응하여 Al3Ni, AlCuNi, AlFeNi 등의 Ni 함유상(Ni-rich phase)을 형성한다. 니켈의 함량이 증가함에 따라 상기 Ni 함유상의 분율이 증가하며, 고온 인장강도는 증가하지만 내식성은 감소된다. 니켈 함량이 2.0 중량%에서는 고온 인장강도에서는 유리하지만 내식성이 저하될 것으로 분석된다. 따라서, 본 발명에서는 고온 인장강도와 내식성의 조합을 고려하여, 니켈의 함량을 1.5 중량% 이하일 수 있다. 또한, 니켈의 함량은 1.0 중량% 이하일 수 있다.When nickel (Ni) is added to the approximate ternary composition of Al-Si-Mg 2 Si, nickel reacts with aluminum, copper, iron, etc. to form Ni-rich phases such as Al 3 Ni, AlCuNi, and AlFeNi. form As the nickel content increases, the fraction of the Ni-containing phase increases, and the high-temperature tensile strength increases but the corrosion resistance decreases. It is analyzed that at a nickel content of 2.0% by weight, high temperature tensile strength is advantageous, but corrosion resistance is likely to decrease. Therefore, in the present invention, considering the combination of high-temperature tensile strength and corrosion resistance, the nickel content may be 1.5% by weight or less. Additionally, the nickel content may be 1.0% by weight or less.
Al-Si-Mg2Si의 근사 3원계 공정 조성에 지르코늄(Zr)을 첨가하면, 지르코늄이 알루미늄, 실리콘 등과 반응하여 AlSiZr 등의 생성상을 형성한다. 지르코늄의 함량이 증가함에 따라 생성상의 분율이 증가하며 크기도 조대하게 된다. 지르코늄의 첨가는 내식성을 거의 저하시키지 않고 고온 인장강도를 향상시킨다, 다만, 지르코늄은 고융점 원소로 함량이 증가하면 용해시 용해온도를 증가시켜야 한다. Al-Si-Mg2Si의 근사 3원계 공정 조성에는 다량의 마그네슘이 첨가되기 때문에 용해 온도가 증가할수록 마그네슘 산화물의 생성이 증가하여 결함의 생성량이 증가될 수 있다. Al-Zr 이원계 상태도에 의하면, 0.25 중량% 지르코늄의 액상선은 740℃이며, 0.3 중량% 지르코늄의 액상선은 760℃이다. 따라서, 본 발명에서는 용해 온도를 고려하여 지르코늄의 함량을 0.25 중량% 이하일 수 있다.When zirconium (Zr) is added to the approximate ternary eutectic composition of Al-Si-Mg 2 Si, zirconium reacts with aluminum, silicon, etc. to form a product phase such as AlSiZr. As the zirconium content increases, the fraction of the produced phase increases and its size becomes coarse. The addition of zirconium improves high-temperature tensile strength without almost deteriorating corrosion resistance. However, zirconium is a high-melting point element, so as the content increases, the dissolution temperature must increase when dissolving. Since a large amount of magnesium is added to the approximate ternary eutectic composition of Al-Si-Mg 2 Si, as the dissolution temperature increases, the production of magnesium oxide increases, which may increase the amount of defects. According to the Al-Zr binary phase diagram, the liquidus line of 0.25% by weight zirconium is 740°C, and the liquidus line of 0.3% by weight zirconium is 760°C. Therefore, in the present invention, considering the dissolution temperature, the zirconium content may be 0.25% by weight or less.
상기 첨가원소 이외에, 크롬(Cr), 몰리브덴(Mo) 등은 망간(Mn)과 유사한 효과를 보일 것으로 분석되며, 티타늄(Ti), 바나듐(V) 등은 지르코늄(Zr)과 유사한 효과를 보일 것으로 분석된다. 따라서, 본 발명의 기술적 사상에 따른 알루미늄 합금 주조재는 크롬(Cr), 몰리브덴(Mo), 티타늄(Ti), 및 바나듐(V) 중 적어도 어느 하나를 더 포함할 수 있다.In addition to the above added elements, chromium (Cr), molybdenum (Mo), etc. are analyzed to have a similar effect to manganese (Mn), and titanium (Ti), vanadium (V), etc. are expected to have a similar effect to zirconium (Zr). is analyzed. Therefore, the aluminum alloy casting material according to the technical idea of the present invention may further include at least one of chromium (Cr), molybdenum (Mo), titanium (Ti), and vanadium (V).
또한, 알루미늄 합금 주조재에서 결정립 미세화제로 TiB2, TiC, AlB2 등이 0.2% 이하 첨가되는데, Al-Si-Mg2Si의 근사 3원계 공정 조성 합금의 결정립 미세화를 위하여 상기 미세화제를 0.2% 이하로 첨가할 수 있다. 일반적으로 아공정 및 공정 Al-Si계 합금에서 공정 Si의 미세화를 위하여 Sr을 50 ppm 내지 200 ppm 첨가하며, 초정 Si이 생성되는 공정 및 과공정계 Al-Si 합금에는 초정 Si의 미세화를 위하여 P(AlP 형태)를 30 ppm 내지 200ppm 첨가한다. Al-Si-Mg2Si의 근사 3원계 공정 조성에도 필요에 따라 초정 Si 생성량이 많은 조성에서는 P(AlP 형태)를 30 ppm 내지 200 ppm 첨가할 수 있으며, 초정 Si 생성량이 적은 조성에서는 Sr을 50 ppm 내지 200 ppm 첨가할 수 있다. 따라서, 본 발명의 기술적 사상에 따른 알루미늄 합금 주조재는 티타늄(Ti), 보론(B), 및 스트론튬(Sr) 중 적어도 어느 하나를 더 포함할 수 있다.In addition, 0.2% or less of TiB 2 , TiC, AlB 2 , etc. is added as a grain refiner in aluminum alloy castings. For grain refinement of an alloy with an approximate ternary eutectic composition of Al-Si-Mg 2 Si, the refiner is added to 0.2%. The following can be added. Generally, in hypoeutectic and eutectic Al-Si alloys, 50 ppm to 200 ppm of Sr is added to refine eutectic Si, and in eutectic and hypereutectic Al-Si alloys where primary Si is produced, P ( AlP form) is added at 30 ppm to 200 ppm. Even in the approximate ternary eutectic composition of Al-Si-Mg 2 Si, 30 to 200 ppm of P (in the form of AlP) can be added as needed in compositions with a large amount of primary Si produced, and 50 ppm of Sr can be added in compositions with a small amount of primary Si produced. It can be added from ppm to 200 ppm. Therefore, the aluminum alloy casting material according to the technical idea of the present invention may further include at least one of titanium (Ti), boron (B), and strontium (Sr).
도 9 및 도 10은 본 발명의 일실시예에 따른 알루미늄 합금 주조재의 미세조직을 나타내는 광학현미경 사진이다.9 and 10 are optical microscope photographs showing the microstructure of an aluminum alloy cast material according to an embodiment of the present invention.
도 9를 참조하면, 실험예21의 미세조직이 저배율과 고배율로 나타나있다. 실험예21은 실리콘(Si)과 마그네슘(Mg)과 함께 구리(Cu), 망간(Mn), 니켈(Ni), 및 지르코늄(Zr)을 본 발명의 범위로 포함하는 경우로서, 공정 Si(eutectic Si)과 공정 Mg2Si으로 이루어진 치밀한 미세조직을 가지며, 이와 함께 초정 Si(primary Si), 초정 Mg2Si도 미량으로 형성됨을 확인할 수 있다. 고배율에서는 마그네슘(Mg), 구리(Cu), 망간(Mn), 니켈(Ni), 및 지르코늄(Zr) 등의 첨가에 의해 다양한 정출상으로 금속간화합물이 형성되어 있음을 확인할 수 있다.Referring to Figure 9, the microstructure of Experimental Example 21 is shown at low and high magnification. Experimental Example 21 is a case where copper (Cu), manganese (Mn), nickel (Ni), and zirconium (Zr) along with silicon (Si) and magnesium (Mg) are included within the scope of the present invention, and eutectic Si (eutectic It can be confirmed that it has a dense microstructure composed of Si) and eutectic Mg 2 Si, and that primary Si (primary Si) and primary Mg 2 Si are also formed in trace amounts. At high magnification, it can be seen that intermetallic compounds are formed in various crystalline phases by the addition of magnesium (Mg), copper (Cu), manganese (Mn), nickel (Ni), and zirconium (Zr).
도 10을 참조하면, 실험예12 및 실험예22의 미세조직이 나타나있다. 실험예12와 실험예22는 실리콘(Si), 마그네슘(Mg), 및 구리(Cu)는 유사한 함량으로 포함하고, 다만 실험예12는 망간 함량이 1.34 중량%로서 1 중량%를 초과하고, 실험예22는 0.344 중량%로서 1 중량% 이하인 경우이다. 상술한 바와 같이, 망간의 함량이 증가되면, Al(Fe, Mn)Si의 생성상의 분율이 증가하였고, 그 크기도 조대하게 되는 것을 확인할 수 있다.Referring to Figure 10, the microstructures of Experimental Examples 12 and 22 are shown. Experimental Examples 12 and 22 contain similar amounts of silicon (Si), magnesium (Mg), and copper (Cu), but in Experimental Example 12, the manganese content is 1.34% by weight, which exceeds 1% by weight, and Example 22 is 0.344% by weight, which is 1% by weight or less. As described above, it can be seen that as the content of manganese increases, the fraction of the Al(Fe, Mn)Si formation phase increases and its size also becomes coarse.
도 11은 본 발명의 일실시예에 따른 알루미늄 합금 주조재로 형성된 브레이크 디스크를 포함하는 브레이크 시스템을 도시하는 개략도이다.Figure 11 is a schematic diagram showing a brake system including a brake disc formed of aluminum alloy casting according to an embodiment of the present invention.
도 11을 참조하면, 브레이크 시스템(100)은 자동차의 회전축(110)에 삽입되는 브레이크 디스크(120), 브레이크 디스크(120)와의 마찰 접촉에 의하여 브레이크 디스크(120)의 회전을 감속시키는 브레이크 패드(130), 및 브레이크 패드(130)를 브레이크 디스크(120)의 바깥쪽 양측에 배치되도록 고정하는 캘리퍼(caliper)를 포함한다.Referring to FIG. 11, the brake system 100 includes a brake disc 120 inserted into the rotation shaft 110 of a vehicle, and a brake pad (brake pad) that slows down the rotation of the brake disc 120 by frictional contact with the brake disc 120. 130), and a caliper that secures the brake pads 130 to be disposed on both outer sides of the brake disc 120.
브레이크 디스크(120)는 상술한 바와 같은 조성을 가지는 알루미늄 합금 주조재로 구성될 수 있다. 브레이크 디스크(120)는, 예를 들어 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성될 수 있다. 브레이크 디스크(120)는, 예를 들어 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 0 중량% 초과 내지 1.0 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성될 수 있다. 브레이크 디스크(120)는, 예를 들어 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 1 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성될 수 있다. The brake disc 120 may be made of an aluminum alloy casting material having the composition described above. The brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities. The brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; Greater than 0% to 1.0% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities. The brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 1% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities.
상기 알루미늄 합금 주조재들은 상기 원소 외에 0 중량% 초과 내지 1.5 중량%의 니켈(Ni)을 더 포함할 수 있거나, 상기 원소 외에 0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 더 포함할 수 있거나, 상기 원소 외에 0 중량% 초과 내지 1.5 중량%의 니켈(Ni); 및 0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 함께 더 포함할 수 있다. 상기 알루미늄 합금 주조재들은 상기 원소 외에 0 중량% 초과 내지 0.05 중량%의 티타늄(Ti); 및 0 중량% 초과 내지 0.005 중량%의 보론(B)을 더 포함할 수 있다. 상기 알루미늄 합금 주조재들은 상기 원소 외에 상기 불가피한 불순물로서, 0 중량% 초과 내지 0.2 중량%의 철(Fe)을 더 포함할 수 있다. 상기 알루미늄 합금 주조재는 인을 30 ppm 내지 200 ppm 더 포함할 수 있다. 상기 인은 AlP의 형태로 포함될 수 있다. 또한, 상기 알루미늄 합금 주조재는 스트론튬(Sr)을 50 ppm 내지 200 ppm 더 포함할 수 있다.The aluminum alloy casting materials may further include nickel (Ni) in an amount of more than 0% by weight to 1.5% by weight in addition to the above elements, or may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight in addition to the elements. or more than 0% by weight to 1.5% by weight of nickel (Ni) in addition to the above elements; And it may further include zirconium (Zr) in an amount of more than 0% by weight to 0.25% by weight. The aluminum alloy casting materials include titanium (Ti) in an amount of more than 0% by weight to 0.05% by weight in addition to the above elements; And it may further include boron (B) in an amount of more than 0% by weight to 0.005% by weight. The aluminum alloy casting materials may further include iron (Fe) in an amount of more than 0% by weight to 0.2% by weight as an inevitable impurity in addition to the above elements. The aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus. The phosphorus may be included in the form of AlP. Additionally, the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
브레이크 디스크(120)는, 예를 들어 13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.81 중량% 내지 3.5 중량%의 마그네슘(Mg); 0.021 중량% 내지 1.603 중량%의 구리(Cu); 0.002 중량% 내지 0.537 중량%의 망간(Mn); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성될 수 있다. 또한, 상기 알루미늄 합금 주조재에 포함된 실리콘(Si)의 함량 범위는 13.3% 중량 내지 14.6 중량%일 수 있다. 상기 알루미늄 합금 주조재는 상기 원소 외에 0.021 중량% 내지 0.641 중량%의 니켈(Ni)을 더 포함할 수 있거나, 상기 원소 외에 0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함할 수 있거나, 상기 원소 외에 0.021 중량% 내지 0.641 중량%의 니켈(Ni); 및 0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함할 수 있다. 상기 알루미늄 합금 주조재는 상기 원소 외에 0.034 중량% 내지 0.040 중량%의 티타늄(Ti); 및 0.001 중량% 내지 0.004 중량%의 보론(B)을 더 포함할 수 있다. 상기 알루미늄 합금 주조재는 상기 원소 외에 상기 불가피한 불순물로서, 0.120 중량% 내지 0.158 중량%의 철(Fe)을 더 포함할 수 있다. 상기 알루미늄 합금 주조재는 인을 30 ppm 내지 200 ppm 더 포함할 수 있다. 상기 인은 AlP의 형태로 포함될 수 있다. 또한, 상기 알루미늄 합금 주조재는 스트론튬(Sr)을 50 ppm 내지 200 ppm 더 포함할 수 있다.The brake disc 120 includes, for example, more than 13.0% by weight to 15% by weight of silicon (Si); 2.81% to 3.5% magnesium (Mg) by weight; 0.021% to 1.603% by weight copper (Cu); 0.002% to 0.537% by weight manganese (Mn); and the remainder may be composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities. Additionally, the content of silicon (Si) contained in the aluminum alloy casting may range from 13.3% by weight to 14.6% by weight. The aluminum alloy casting material may further include 0.021% to 0.641% by weight of nickel (Ni) in addition to the above elements, or may further include 0.004% to 0.185% by weight of zirconium (Zr) in addition to the above elements. 0.021% to 0.641% by weight of nickel (Ni) in addition to the element; And it may further include 0.004% by weight to 0.185% by weight of zirconium (Zr). The aluminum alloy casting material includes, in addition to the above elements, 0.034% by weight to 0.040% by weight of titanium (Ti); And it may further include 0.001% by weight to 0.004% by weight of boron (B). In addition to the above elements, the aluminum alloy casting material may further include 0.120% by weight to 0.158% by weight of iron (Fe) as the inevitable impurity. The aluminum alloy casting material may further contain 30 ppm to 200 ppm of phosphorus. The phosphorus may be included in the form of AlP. Additionally, the aluminum alloy casting material may further include 50 ppm to 200 ppm of strontium (Sr).
상기 알루미늄 합금 주조재는 자동차, 배, 또는 항공기 등과 같은 운송 수단의 부품에 적용될 수 있고, 예를 들어 다이캐스팅으로 제조된 다양한 부품에 적용될 수 있다. 그러나, 이는 예시적이며 본 발명의 기술적 사상은 이러한 용도에 한정되는 것은 아니다.The aluminum alloy casting material can be applied to parts of transportation such as automobiles, ships, or aircraft, and can be applied to various parts manufactured by die casting, for example. However, this is illustrative and the technical idea of the present invention is not limited to this use.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 구리 및 망간 등의 합금 조성 및 함량을 제어함으로써, 높은 고온 강도 및 우수한 내식성 및 내마모성을 가지는 알루미늄 합금 주조재를 제공할 수 있다. 또, 상기 합금을 이용하여 전기자동차용 브레이크 디스크를 구현할 수 있다.According to an embodiment of the present invention made as described above, an aluminum alloy casting material having high high-temperature strength and excellent corrosion resistance and wear resistance can be provided by controlling the alloy composition and content of copper and manganese. Additionally, a brake disc for an electric vehicle can be manufactured using the alloy.

Claims (15)

13.0 중량% 초과 내지 15 중량%의 실리콘(Si);Greater than 13.0% to 15% by weight silicon (Si);
2.7 중량% 내지 4.1 중량%의 마그네슘(Mg);2.7% to 4.1% magnesium (Mg) by weight;
0 중량% 초과 내지 2 중량%의 구리(Cu); 및Greater than 0% to 2% copper (Cu) by weight; and
잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는,The remainder contains aluminum (Al) and inevitable impurities.
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
0 중량% 초과 내지 1.0 중량%의 망간(Mn)을 더 포함하는,Further comprising greater than 0% to 1.0% by weight of manganese (Mn),
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
0 중량% 초과 내지 1.5 중량%의 니켈(Ni)을 더 포함하는,Further comprising greater than 0% to 1.5% by weight of nickel (Ni),
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
0 중량% 초과 내지 0.25 중량%의 지르코늄(Zr)을 더 포함하는,Further comprising greater than 0% to 0.25% by weight of zirconium (Zr),
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
0 중량% 초과 내지 0.05 중량%의 티타늄(Ti); 및Greater than 0% to 0.05% by weight titanium (Ti); and
0 중량% 초과 내지 0.005 중량%의 보론(B);을 더 포함하는,More than 0% by weight to 0.005% by weight of boron (B);
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는, 공정 Si, 공정 Mg2Si, 초정 Si 및 초정 Mg2Si 중 적어도 어느 하나로 구성된 미세조직을 가지는,The aluminum alloy cast material has a microstructure consisting of at least one of eutectic Si, eutectic Mg 2 Si, primary Si, and primary Mg 2 Si,
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는, The aluminum alloy casting material,
0.2 mm/year 이하의 부식속도를 가지는,Having a corrosion rate of less than 0.2 mm/year,
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는, The aluminum alloy casting material,
190 MPa 내지 230 MPa 범위의 250℃ 고온 인장강도를 가지는,Having a high temperature tensile strength at 250°C ranging from 190 MPa to 230 MPa,
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는 용체화처리를 한 후에 시효처리된 것인,The aluminum alloy casting material is solution treated and then aged.
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는 용체화처리를 하지 않고 시효처리된 것인,The aluminum alloy casting material is aged without solution treatment,
알루미늄 합금 주조재.Aluminum alloy casting material.
제 1 항에 있어서,According to claim 1,
상기 알루미늄 합금 주조재는,The aluminum alloy casting material,
13.0 중량% 초과 내지 15 중량%의 실리콘(Si);Greater than 13.0% to 15% by weight silicon (Si);
2.81 중량% 내지 3.5 중량%의 마그네슘(Mg);2.81% to 3.5% magnesium (Mg) by weight;
0.021 중량% 내지 1.603 중량%의 구리(Cu);0.021% to 1.603% by weight copper (Cu);
0.002 중량% 내지 0.537 중량%의 망간(Mn); 및0.002% to 0.537% by weight manganese (Mn); and
잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는,The remainder contains aluminum (Al) and inevitable impurities.
알루미늄 합금 주조재.Aluminum alloy casting material.
제 11 항에 있어서,According to claim 11,
0.021 중량% 내지 0.641 중량%의 니켈(Ni)을 더 포함하는,Further comprising 0.021% to 0.641% by weight of nickel (Ni),
알루미늄 합금 주조재.Aluminum alloy casting material.
제 11 항에 있어서,According to claim 11,
0.004 중량% 내지 0.185 중량%의 지르코늄(Zr)을 더 포함하는,Further comprising 0.004% to 0.185% by weight of zirconium (Zr),
알루미늄 합금 주조재.Aluminum alloy casting material.
13.0 중량% 초과 내지 15 중량%의 실리콘(Si);Greater than 13.0% to 15% by weight silicon (Si);
2.7 중량% 내지 4.1 중량%의 마그네슘(Mg);2.7% to 4.1% magnesium (Mg) by weight;
0 중량% 초과 내지 1 중량%의 망간(Mn); 및Greater than 0% to 1% by weight manganese (Mn); and
잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는,The remainder contains aluminum (Al) and inevitable impurities.
알루미늄 합금 주조재.Aluminum alloy casting material.
13.0 중량% 초과 내지 15 중량%의 실리콘(Si); 2.7 중량% 내지 4.1 중량%의 마그네슘(Mg); 0 중량% 초과 내지 2 중량%의 구리(Cu); 및 잔부는 알루미늄(Al)과 불가피한 불순물을 포함하는 알루미늄 합금 주조재로 구성된,Greater than 13.0% to 15% by weight silicon (Si); 2.7% to 4.1% magnesium (Mg) by weight; Greater than 0% to 2% copper (Cu) by weight; and the remainder is composed of aluminum alloy casting material containing aluminum (Al) and inevitable impurities,
브레이크 디스크.brake disc.
PCT/KR2023/005785 2022-09-01 2023-04-27 Aluminum alloy casting material and brake disc comprising same WO2024048895A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0110427 2022-09-01
KR20220110427 2022-09-01
KR10-2023-0054914 2023-04-26
KR1020230054914A KR20240031866A (en) 2022-09-01 2023-04-26 Aluminum cast alloy and brake disk having the same

Publications (1)

Publication Number Publication Date
WO2024048895A1 true WO2024048895A1 (en) 2024-03-07

Family

ID=90098155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005785 WO2024048895A1 (en) 2022-09-01 2023-04-27 Aluminum alloy casting material and brake disc comprising same

Country Status (1)

Country Link
WO (1) WO2024048895A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535488A (en) * 1999-01-21 2002-10-22 アルミニウム ペシネイ Hypereutectic aluminum-silicon alloy products for forming in the semi-solid state
KR20090046868A (en) * 2006-08-01 2009-05-11 쇼와 덴코 가부시키가이샤 Process for production of aluminum alloy formings, aluminum alloy formings and production system
JP2018184659A (en) * 2017-04-27 2018-11-22 株式会社コイワイ High-strength aluminum alloy laminated molding and method for producing the same
WO2019161137A1 (en) * 2018-02-14 2019-08-22 Arconic Inc. Aluminum alloy products and methods for producing the same
CN111074114A (en) * 2020-01-03 2020-04-28 北京科技大学 Al-Si-Mg-Li series aluminum alloy and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535488A (en) * 1999-01-21 2002-10-22 アルミニウム ペシネイ Hypereutectic aluminum-silicon alloy products for forming in the semi-solid state
KR20090046868A (en) * 2006-08-01 2009-05-11 쇼와 덴코 가부시키가이샤 Process for production of aluminum alloy formings, aluminum alloy formings and production system
JP2018184659A (en) * 2017-04-27 2018-11-22 株式会社コイワイ High-strength aluminum alloy laminated molding and method for producing the same
WO2019161137A1 (en) * 2018-02-14 2019-08-22 Arconic Inc. Aluminum alloy products and methods for producing the same
CN111074114A (en) * 2020-01-03 2020-04-28 北京科技大学 Al-Si-Mg-Li series aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2018117716A1 (en) Aluminized plated steel material having excellent corrosion resistance, aluminum alloy plated steel material using same, and method for manufacturing same aluminized plated steel material and same aluminum alloy plated steel material
WO2017065460A1 (en) Aluminum alloy with improved corrosion resistance, method of manufacturing aluminum tube or pipe using alloy, and heat exchanger system using same
WO2020040602A1 (en) Aluminium alloy for die casting, method for manufacturing same, and die casting method
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2016104880A1 (en) Hpf molding member having excellent delamination resistance and manufacturing method therefor
WO2019132461A1 (en) Plating steel sheet for hot press forming, forming member using same, and manufacturing method therefor
WO2011062447A2 (en) Aluminum alloy and manufacturing method thereof
WO2016137211A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method
WO2017191961A1 (en) Highly corrosion-resistant aluminum alloy for casting
WO2010036028A2 (en) Ultrahigh-strength, hot-dipped galvanized steel sheet having a martensitic structure as a base, and a production method therefor
WO2011122785A2 (en) Magnesium-based alloy for high temperature and manufacturing method thereof
WO2011062448A2 (en) Aluminum alloy and manufacturing method thereof
WO2021215666A1 (en) High-quality magnesium alloy processed material and manufacturing method therefor
WO2012161460A2 (en) Aluminium alloy and manufacturing method for same
WO2012053813A2 (en) Aluminum alloy having improved oxidation resistance, corrosion resistance, or fatigue resistance, and die-cast material and extruded material produced from the aluminum alloy
WO2024048895A1 (en) Aluminum alloy casting material and brake disc comprising same
WO2020067704A1 (en) Magnesium alloy sheet and manufacturing method therefor
WO2019124927A1 (en) Aluminum alloy-plated steel sheet having excellent resistance to welding liquation brittleness and excellent plating adhesion
WO2012128506A2 (en) Method for producing aluminum matrix composites, and aluminum matrix composites produced by the method
WO2022235053A1 (en) High-strength aluminum alloy for 3d printing, and manufacturing method therefor
WO2021025499A1 (en) High-strength and high-formability beta titanium alloy
WO2023224218A1 (en) Copper-nickel-silicon-manganese-tin-based copper alloy material having excellent strength, electrical conductivity, and bending workability, and method for manufacturing same
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
WO2020111879A1 (en) Steel sheet plated with al-fe alloy for hot press forming having excellent corrosion resistance and heat resistance, hot press formed part, and manufacturing method therefor
WO2021125887A2 (en) Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860584

Country of ref document: EP

Kind code of ref document: A1