WO2024048747A1 - 平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール - Google Patents

平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール Download PDF

Info

Publication number
WO2024048747A1
WO2024048747A1 PCT/JP2023/031915 JP2023031915W WO2024048747A1 WO 2024048747 A1 WO2024048747 A1 WO 2024048747A1 JP 2023031915 W JP2023031915 W JP 2023031915W WO 2024048747 A1 WO2024048747 A1 WO 2024048747A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
input
coupler
lattice filter
Prior art date
Application number
PCT/JP2023/031915
Other languages
English (en)
French (fr)
Inventor
藍 柳原
賢哉 鈴木
慈 金澤
泰彦 中西
学 小熊
Original Assignee
日本電信電話株式会社
Nttイノベーティブデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, Nttイノベーティブデバイス株式会社 filed Critical 日本電信電話株式会社
Publication of WO2024048747A1 publication Critical patent/WO2024048747A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • the present disclosure relates to a planar light wave circuit type filter and an optical transmission module using the same.
  • Optical communication devices do not use conventional single-function elements such as laser diodes (LDs), photodiodes (PDs), and optical waveguide filters, but instead combine multiple elements. By housing them in one package (that is, by integrating multiple elements into one module), multi-channel, multi-functional, and highly functional devices are realized.
  • LDs laser diodes
  • PDs photodiodes
  • optical waveguide filters but instead combine multiple elements.
  • Non-Patent Document 1 and Non-Patent Document 2 have been used for communication with a transmission distance of about 10 km, but there is increasing demand for its use in communication with a transmission distance of about 40 km.
  • modules are required to have higher signal output, and therefore components and optical coupling parts mounted inside the module are required to have lower losses.
  • the multiplexing filter integrated in the module is required to have transmission spectrum characteristics with a more rectangular shape.
  • the multi-channel optical transmission module is equipped with a MUX filter for multiplexing signal lights output from each LD.
  • a multiplexing filter a structure using a multilayer crystal type thin film filter (TFF) (see Non-Patent Document 1) and a structure using a planar light wave circuit AWG (see Non-Patent Document 2) have been reported. There is. Considering that the number of channels to be installed in multi-channel optical transmission modules will increase in the future, a planar light wave circuit type is advantageous because it has small variations in loss for each signal channel.
  • FIG. 1 is a diagram showing a schematic configuration of a 4-channel optical transmitter module using a conventional planar lightwave circuit filter, with (a) being a top view and (b) being a cross-sectional view.
  • the optical transmission module 100 in the optical transmission module 100, four LDs 102 and a planar lightwave circuit (PLC) 110 are arranged on the upper surface side of the main surface (XY plane) of a pedestal 101, and a package 107 (for example, , housed in an airtight ceramic butterfly package).
  • a temperature controller (Thermoelectric Controller: TEC) 109 is arranged between the lower surface of the pedestal 101 and the package 107.
  • a sleeve 121 having an optical fiber 120 and a lens 122 is connected to the package 107 .
  • TEC Thermoelectric Controller
  • the LD 102 is placed on an electric circuit 108 placed on the top surface of the pedestal 101.
  • the electric circuit 108 is a circuit that drives the LD 102.
  • the center wavelengths ⁇ 0 to ⁇ 3 of the four LDs 102-0 to 102-3 have different wavelengths, and for example, an S-band wavelength band is used in an optical transmission module for an access system.
  • the LD 102 and the PLC 110 are optically coupled using a parallel beam system.
  • a beam splitter 104 is arranged between the lens 103a and the lens 103b.
  • a monitor PD (MPD) 105 for monitoring light from the LD 102 is arranged on the top surface of the beam splitter 104. A part of the light from the LD 102 is split by a beam splitter 104 placed between a lens 103a and a lens 103b, and is received by a monitor PD 105.
  • MPD monitor PD
  • the PLC 110 includes an input waveguide 111, an arrayed waveguide grating (AWG) 113, and an output waveguide 112, and functions as an AWG-type plane light wave circuit multiplexer (MUX) filter.
  • AWG arrayed waveguide grating
  • MUX plane light wave circuit multiplexer
  • a lens 103c is provided on the output side end face of the PLC 110, and an isolator 106 is arranged at the tip of the lens 103c.
  • the multiplexed light is guided through the output waveguide 112 and optically coupled to the optical fiber 120 through the lens 103c, the isolator 106, and the lens 122 provided on the end face of the PLC 110.
  • the lens 103c and the lens 122 also optically couple the PLC 110 and the optical fiber 120 in a parallel beam system.
  • the optical transmission module using the planar lightwave circuit filter described above with reference to FIG. 1 has the following three main problems. Issue 1: In order to extend the transmission distance, it is required to reduce the loss of the AWG type planar light wave circuit type filter mounted inside the optical transmission module. Furthermore, since the wavelength distribution of each signal has become narrower, there is a demand for a transmission spectrum that indicates the characteristics of a filter (hereinafter referred to as a filter shape) to have a highly rectangular shape. A planar lightwave circuit type filter having a single AWG has problems in that it has high loss and low rectangularity.
  • the chip (PLC) mounted inside is also required to be miniaturized.
  • an AWG including a plurality of waveguides having different lengths between two slab waveguides occupies a large area in a PLC, there is a problem in that there is a limit to miniaturization of the chip.
  • MZI Mach-Zehnder interferometer
  • a beam splitter 104 is arranged to monitor the intensity of light from the LD 103.
  • the number of components mounted inside the optical transmission module increases, the cost increases, and the difficulty of the mounting process increases.
  • the optical length between the LD 102 and the PLC 110 needs to be long, which is disadvantageous for downsizing the optical transmission module.
  • the present disclosure has been made in view of such problems, and its purpose is to provide a planar light wave circuit type with low loss and high rectangularity of filter shape. Another object of the present disclosure is to provide a compact planar lightwave circuit type. Furthermore, an object of the present disclosure is to provide a planar light wave circuit type that can reduce the number of parts.
  • An embodiment of the present disclosure is a planar light wave circuit type lattice filter for multiplexing a plurality of signal lights having different wavelengths, the filter including a plurality of input waveguides for inputting a plurality of signal lights, and a plurality of input waveguides for inputting a plurality of signal lights.
  • the multiplexing circuit includes a multiplexing circuit that performs multiplexing, and at least one output waveguide that outputs the multiplexed signal, and the multiplexing circuit has an asymmetric MZI type circuit connected in cascade in multiple stages, and an asymmetric MZI type circuit.
  • the output coupler includes an input coupler, an output coupler, and two waveguides with different optical path lengths that connect the output of the input coupler and the input of the output coupler, and the plurality of input waveguides are Two of them are connected to the input of the input side coupler of the asymmetric MZI type circuit placed in the first stage, and a plurality of It is configured such that the signal light obtained by combining the signal lights is coupled to the output waveguide.
  • planar light wave circuit type lattice filter that has lower loss and higher rectangular filter performance than an AWG type planar light wave circuit type filter. Further, according to an embodiment of the present disclosure, it is possible to provide a planar light wave circuit type lattice filter that allows miniaturization of the chip (PLC). Furthermore, according to an embodiment of the present disclosure, it is possible to provide a planar lightwave circuit type lattice filter that can reduce the number of items.
  • FIG. 1 is a diagram showing a schematic configuration of a 4-channel optical transmission module using a planar lightwave circuit type lattice filter according to an embodiment of the present disclosure, in which (a) is a top view and (b) is a cross-sectional view.
  • FIG. 1 is a diagram showing a schematic configuration of a planar lightwave circuit type lattice filter according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a planar lightwave circuit type lattice filter according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a planar lightwave circuit type lattice filter according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a schematic configuration of a planar lightwave circuit type lattice filter according to an embodiment of the present disclosure.
  • Planar light wave circuit type lattice filters of various embodiments described below are planar light wave circuit type lattice filters for multiplexing N signal lights having different wavelengths, where N is an integer of 2 or more, It may include N input waveguides that input N signal lights, a multiplexing circuit that multiplexes N signal lights, and at least one output waveguide that outputs the multiplexed signal.
  • the multiplexing circuit may include at least N-1 asymmetric MZI type circuits cascaded in multiple stages.
  • An asymmetric MZI type circuit consists of an input coupler with one or two inputs and two outputs, an output coupler with two inputs and one or two outputs, and an input coupler with two inputs and one or two outputs.
  • It may include two waveguides with different optical path lengths that connect the two outputs and the two inputs of the output coupler.
  • Two of the N input waveguides can be connected to two inputs of the input coupler of the asymmetric MZI type circuit arranged in the first stage.
  • the configuration may be such that a signal light obtained by combining N signal lights output from an output coupler of one asymmetrical MZI type circuit arranged at the final stage is coupled to the output waveguide.
  • FIGS. 2-4 A planar lightwave circuit type lattice filter and optical transmission module according to the first embodiment of the present disclosure will be described with reference to FIGS. 2-4.
  • a 4ch TOSA (Transmitter optical sub-assembly) module using a quartz PLC lattice filter will be described as an example of an optical transmission module using a planar light wave circuit type lattice filter.
  • an optical transmission module with a four-channel (ch) configuration that is, an optical transmission module that multiplexes and transmits four signal lights with different wavelengths, is illustrated, but the number of signal lights or the number of channels is limited to four. It can be any number.
  • FIG. 2 shows a schematic configuration of an optical transmission module according to an embodiment of the present disclosure.
  • FIG. 2(a) is a top view
  • FIG. 2(b) is a sectional view.
  • the optical transmission module 200 has four LDs 102 and a PLC 210 arranged on the upper main surface (XY plane) of a pedestal 101, and is housed in a package 107 (for example, an airtight ceramic butterfly package). and hermetically sealed.
  • a temperature controller (TEC) 109 is arranged between the lower surface of the pedestal 101 and the package 107.
  • a sleeve 121 having an optical fiber 120 and a lens 122 is connected to the package 107 .
  • the LD 102 is placed on an electric circuit 108 placed on the top surface of the pedestal 101.
  • the electric circuit 108 is a circuit that drives the LD 102.
  • the four LDs 102-0 to 102-3 are configured to have different emission wavelengths, and are LDs that output light of different wavelengths ⁇ 0 to ⁇ 3 corresponding to Lanes 0 to Lane 3, as described above.
  • the LD 102 and the PLC 110 are arranged.
  • the light from the LD 102 is converted into collimated light by the lens 103a, and then condensed by the lens 103b and coupled to the input waveguide 111.
  • the LD 102 and the PLC 110 are optically coupled using a parallel beam system.
  • the beam splitter 104 is not disposed between the lens 103a and the lens 103b. Therefore, it becomes possible to shorten the optical length between the LD 102 and the PLC 210.
  • a spot size converter may be arranged in the PLC 210.
  • the optical coupling between each LD 102 and the input waveguide 111 of the PLC 110 may be performed by a parallel beam system using two lenses as described above, or by a single lens. good.
  • the optical transmission module 200 In the optical transmission module 200, four monitor PDs 205-0 to 205-3 are arranged on the side end surface of the PLC 210. In this point, it differs from the optical transmission module 100 of FIG. 1 in which the monitor PD 105 is arranged on the top surface of the beam splitter 104.
  • the PLC 210 is a quartz planar lightwave circuit, and includes an input waveguide 111, a lattice filter 213 formed of a waveguide, and an output waveguide 112. The configuration of the lattice filter 213 will be described later.
  • Light with wavelength ⁇ 0 from LD102-0 is coupled to input waveguide 111-0
  • light with wavelength ⁇ 2 from LD102-2 is coupled to input waveguide 111-1
  • light with wavelength ⁇ 1 from LD102-1 is coupled to input waveguide 111-0. It is configured such that it is coupled to the input waveguide 111-2
  • the light of wavelength ⁇ 3 from the LD 102-3 is coupled to the input waveguide 111-3.
  • the lights of wavelengths ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3 input to the lattice filter 213 are multiplexed, coupled to the output waveguide 112, and exit from the output side end face of the PLC 210.
  • the arrangement order of the four LDs 102-0 to 102-3 shown in FIG. 1 is changed to the arrangement order shown in FIG. 2.
  • the arrangement order of the four LDs 102-0 to 102-3 shown in FIG. is changed to the arrangement order shown in FIG. 2.
  • a lens 103c is provided on the output side end face of the PLC 210, and an isolator 106 is arranged at the tip of the lens 103c.
  • the multiplexed light is guided through the output waveguide 112 and optically coupled to the optical fiber 120 through the lens 103c, the isolator 106, and the lens 122 provided on the end face of the PLC 110.
  • the lens 103c and the lens 122 also optically couple the PLC 110 and the optical fiber 120 in a parallel beam system. Note that the configuration may be such that the isolator 106 is omitted.
  • a spot size converter may be arranged in place of the lens 103c and the lens 122.
  • a PLC 210 whose end face is cut diagonally may be used instead of or in addition to the isolator 106 (for example, the end face of the PLC 210 may be cut at an angle of 10 degrees). It is also possible to use a PLC 210 whose end face is coated with an AR coating for anti-reflection.
  • FIG. 3 is a diagram showing a schematic configuration of a lattice filter 213 configured by a waveguide formed on the PLC 210.
  • the lattice filter 213 includes a multiplexing circuit 303 connected to four waveguides 321.
  • Waveguides 321-0 to 321-3 are connected to input waveguides 111-0 to 111-3, respectively.
  • the multiplexing circuit 303 includes four Mach-Zehnder interferometer (MZI) type circuits 331a, 332a, 341a, and 351a connected in cascade in multiple stages.
  • MZI type circuit comprises two two-input and two-output couplers and two waveguides coupling the two couplers.
  • the MZI type circuit 331a and the MZI type circuit 332a are arranged in parallel.
  • the MZI type circuit 331a and the MZI type circuit 332a are connected in a subordinate manner to the MZI type circuit 341a.
  • the MZI type circuit 341a is cascaded with the MZI type circuit 351a.
  • the MZI type circuits 331a and 332a arranged in parallel are the first stage, the MZI type circuit 341a is the second stage, and the MZI type circuit 351a is the third stage. It is arranged to make the filter shape more rectangular by passing through the MZI type circuit 351a.
  • An optical path length difference ⁇ L is given to the two waveguides that couple the two couplers in each MZI type circuit.
  • An MZI type circuit having a difference in optical path length is also referred to as an asymmetric MZI type circuit.
  • the signal light ⁇ 0 incident on the waveguide 321-0 from the LD 102-0 corresponding to Lane 0 is split into two by the coupler on the input side of the first stage MZI type circuit 331a, and output through the two waveguides.
  • the signals are combined by a coupler on the side and output from the lower of the two outputs.
  • the signal light ⁇ 2 incident on the waveguide 321-1 from the LD 102-2 corresponding to Lane 2 is split into two by the coupler on the input side of the first stage MZI 331a, passes through the two waveguides, and is split into two by the coupler on the output side.
  • the signals are combined and output from the lower of the two outputs.
  • the signal light ⁇ 0 and the signal light ⁇ 2 are each input to the second stage MZI type circuit 341a.
  • the signal light ⁇ 0 is split into two by a coupler on the input side of the MZI type circuit 341a, passes through two waveguides, is multiplexed and branched by a coupler on the output side, and is outputted from two outputs.
  • the signal light ⁇ 2 also passes through two waveguides of the second stage MZI type circuit 341a, is multiplexed and branched by a coupler on the output side, and is outputted from two outputs.
  • the signal light ⁇ 0 and the signal light ⁇ 2 are each input to the third stage MZI type circuit 351a.
  • the signal light ⁇ 0 is split into two by a coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, is combined by a coupler on the output side, and is output from the upper side of the two outputs.
  • the signal light ⁇ 2 is also split into two by the coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, and is combined by the coupler on the output side to output two. is output from the top.
  • the signal light ⁇ 1 incident on the waveguide 321-2 from the LD 102-1 corresponding to Lane 1 is split into two by the coupler on the input side of the first-stage MZI type circuit 332a, and passes through the two waveguides to the output side.
  • the signals are combined by a coupler and output from the upper of the two outputs.
  • the signal light ⁇ 3 incident on the waveguide 321-3 from the LD 102-3 corresponding to Lane 3 is split into two by the coupler on the input side of the first stage MZI 332a, passes through the two waveguides, and is split into two by the coupler on the output side.
  • the signals are combined and output from the upper of the two outputs.
  • the signal light ⁇ 1 and the signal light ⁇ 3 are each input to the second stage MZI type circuit 341a.
  • the signal light ⁇ 1 is split into two by a coupler on the input side of the MZI type circuit 341a, passes through two waveguides, is multiplexed and branched by a coupler on the output side, and is outputted from two outputs.
  • the signal light ⁇ 3 also passes through two waveguides of the second-stage MZI type circuit 341a, is multiplexed and branched by a coupler on the output side, and is outputted from two outputs.
  • the signal light ⁇ 1 and the signal light ⁇ 3 are each input to the third stage MZI type circuit 351a.
  • the signal light ⁇ 1 is split into two by a coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, is combined by a coupler on the output side, and is output from the upper side of the two outputs.
  • the signal light ⁇ 3 is split into two by the coupler on the input side of the third-stage MZI type circuit 351a, passes through two waveguides, and is combined by the coupler on the output side to output two outputs. is output from the top.
  • the signal lights ⁇ 0 to ⁇ 3 incident on the multiplexing circuit 303 are multiplexed and output from the upper two outputs of the coupler on the output side of the third stage MZI type circuit 351a.
  • a part of the signal light multiplexed by the multiplexing circuit 303 is branched for power monitoring, and the rest passes through the waveguide 361 and is coupled to the output waveguide 112. It consists of
  • the lattice filter 213 shown in FIG. 3 includes a multiplexer circuit 303 and a demultiplexer circuit 370 connected via a coupler 371.
  • the demultiplexer circuit 370 is provided to separate a portion of the light multiplexed by the multiplexer circuit 303 into four wavelengths again so that the power can be measured by the monitor PD.
  • the configuration of the demultiplexer circuit 370 is the same as the configuration of the multiplexer circuit 303.
  • the branching circuit 370 is arranged symmetrically with the multiplexing circuit 303 with the coupler 371 in the center.
  • the demultiplexing circuit 370 By arranging the demultiplexing circuit 370 in this way, the once multiplexed light can be separated into signals of ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3 again, and the coupler on the output side of the MZI type circuit 331b and the MZI type circuit 332b PLC (chip) via output waveguides 381-0 to 381-3 connected to couplers on the output side of It can be taken out from the end face.
  • a crossed waveguide may be used to couple between the waveguide 381 of the lattice filter 213 and the monitor PD 205.
  • the branching ratio of the coupler 371 is, for example, a small fraction of the power of the signal light transmitted to the MPD 295 combined with the power of the signal light. (For example, 2%, etc.) may be set so that it can be branched.
  • FIG. 4 is a diagram showing a schematic configuration of a plane light wave circuit type lattice filter according to an embodiment of the present disclosure.
  • FIG. 4 shows an example of the arrangement of the lattice filter 213, which includes the multiplexing circuit 303 described with reference to FIG. 3 and the demultiplexing circuit 370 connected via the coupler 371. If a plurality of cascade-connected MZI type circuits constituting the lattice filter 213 are arranged in a straight line, the overall circuit length becomes long. As shown in FIG. 4, by arranging it in a coiled manner, it can be accommodated in a small space, and the chip (PLC) can be made smaller.
  • PLC chip
  • the overall circuit length can be shortened compared to the case where it is arranged in a straight line, and the chip can be made smaller. becomes possible.
  • the multiplexing circuit 303 that multiplexes 4 channels of signal light having different wavelengths ( ⁇ 0 to ⁇ 3) needs to have at least three MZI type circuits connected in series in at least two stages. be.
  • the multiplexing circuit 303 has at least N channels as proposed in Patent Document 3.
  • -1 MZI type circuits may be connected in series in multiple stages to form a lattice filter. Further, by further cascading MZI type circuits of the lattice filter, the rectangularity of the filter shape can be increased.
  • FIG. 5 is a diagram showing a schematic configuration of the lattice filter 513.
  • the optical transmission module 200 shown in FIG. 2 can be configured using the lattice filter 513 instead of the lattice filter 213 shown in FIGS. 3 and 4.
  • the lattice filter 513 shown in FIG. 5 includes a multiplexing circuit 503 and a branching circuit 570 connected via a coupler 371.
  • the multiplexing circuit 503 differs from the multiplexing circuit 303 shown in FIG. 3 in that it does not include the MZI type circuit 351a.
  • the branching circuit 570 differs from the branching circuit 370 shown in FIG. 3 in that it does not include the MZI type circuit 351b.
  • the configuration of the MZI type circuit constituting the lattice filter 513 is the same as that of the branching circuit 370 shown in FIG. 3, so a detailed explanation will be omitted.
  • the lattice filter 513 shown in FIG. 5 can also be housed in a small space by arranging it in a coiled manner as shown in FIG. 4, and the chip (PLC) can be miniaturized.
  • the rectangularity of the filter shape is inferior to that of the lattice filter 213, but the loss is reduced due to the small number of cascade connected MZI type circuits. It is possible to reduce the circuit length and shorten the circuit length.
  • FIG. 6 is a diagram showing a schematic configuration of the lattice filter 613.
  • the optical transmitter module 200 shown in FIG. 2 can be configured using a lattice filter 613 instead of the lattice filter 213 shown in FIGS. 3 and 4.
  • the lattice filter 613 shown in FIG. 6 includes a multiplexing circuit 603 and a branching circuit 670 connected via a coupler 371.
  • the multiplexing circuit 603 differs from the multiplexing circuit 303 shown in FIG. 3 in that it includes a fourth stage MZI type circuit 661a connected in a subordinate manner to the MZI type circuit 351a.
  • the branching circuit 670 differs from the branching circuit 370 shown in FIG. 3 in that it includes an MZI type circuit 661b that is cascade-connected to the MZI type circuit 351b.
  • the signal light ⁇ 0 is branched into two at the coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, and is multiplexed and branched at the coupler on the output side. and output from two outputs.
  • the signal light ⁇ 2 is split into two by the coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, and is combined and branched by the coupler on the output side. One is output.
  • the signal light ⁇ 0 and the signal light ⁇ 2 are each input to the fourth stage MZI type circuit 661a.
  • the signal light ⁇ 0 is split into two by a coupler on the input side of the fourth stage MZI type circuit 661a, passes through two waveguides, is combined by a coupler on the output side, and is output from the upper side of the two outputs.
  • the signal light ⁇ 2 is also split into two by the coupler on the input side of the fourth stage MZI type circuit 661a, passes through two waveguides, and is combined by the coupler on the output side to output two. is output from the top.
  • the signal light ⁇ 1 is branched into two at the coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, and is multiplexed and branched at the coupler on the output side. and output from two outputs.
  • the signal light ⁇ 3 is split into two by the coupler on the input side of the third stage MZI type circuit 351a, passes through two waveguides, and is combined and branched by the coupler on the output side. One is output.
  • the signal light ⁇ 1 and the signal light ⁇ 3 are each input to the fourth stage MZI type circuit 661a.
  • the signal light ⁇ 1 is split into two by a coupler on the input side of the fourth stage MZI type circuit 661a, passes through two waveguides, is combined by a coupler on the output side, and is output from the upper side of the two outputs.
  • the signal light ⁇ 3 is branched into two by the coupler on the input side of the fourth stage MZI type circuit 661a, passes through two waveguides, and is combined by the coupler on the output side to be output as two outputs. is output from the top.
  • the signal lights ⁇ 0 to ⁇ 3 incident on the multiplexing circuit 603 are multiplexed and output from the upper two outputs of the coupler on the output side of the fourth stage MZI type circuit 661a.
  • the coupler 371 a part of the signal light multiplexed by the multiplexing circuit 603 is branched for power monitoring, and the rest passes through the waveguide 361 and is coupled to the output waveguide 112. It consists of
  • the lattice filter 613 shown in FIG. 6 includes a multiplexer circuit 603 and a demultiplexer circuit 670 connected via a coupler 371.
  • the demultiplexer circuit 670 is provided to separate a portion of the light multiplexed by the multiplexer circuit 303 into four wavelengths again so that the power can be measured by the monitor PD.
  • the configuration of the demultiplexer circuit 670 is the same as the configuration of the multiplexer circuit 603.
  • the branching circuit 370 is arranged symmetrically with the multiplexing circuit 303 with the coupler 371 at the center. Since this point has been described above with reference to FIG. 3, the explanation will be omitted.
  • the lattice filter 613 shown in FIG. 6 can also be housed in a small space by arranging it in a coiled manner as shown in FIG. 4, and the chip (PLC) can be miniaturized.
  • the lattice filter 613 shown in FIG. 6 has a wider spectral transmission width than the lattice filter 213 shown in FIG. 3 and the lattice filter 413 shown in FIG. It is something.
  • planar light wave circuit type with low loss and high rectangularity of filter shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本開示の一実施形態は、損失が小さく、フィルタ形状の矩形度が高い平面光波回路型フィルタ(213)を提供する。波長の異なる複数の信号光を合波するための平面光波回路型フィルタ(213)は、複数の入力導波路(111)と、合波回路(303)と、少なくとも1つの出力導波路(112)とを備える。合波回路(303)は、複数段に従属接続された非対称MZI型回路(331)を有し、非対称MZI型回路(331)は、入力側カプラーと、出力側カプラーと、入力側カプラーの出力と出力側カプラーの入力とを接続する、光路長差を有する2個の導波路とを含む。複数の入力導波路は2個ずつ、1段目に配置されたMZI型回路(331)の入力側カプラーの入力(321)と接続されている。最終段に配置されたMZI型回路(331)の出力側カプラーから出力される複数の信号光を合波した信号光が、出力導波路(112)に結合するように構成されている。

Description

平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール
 本開示は、平面光波回路型フィルタとそれを用いた光送信モジュールに関する。
 データ通信の高速化、及び大容量化に伴い、光通信デバイスや光インターコネクション技術が高度化している。光通信デバイスは、従来のレーザダイオード(LD: laser diode)、フォトダイオード(PD: photo-diode)、光導波路フィルタといった単一機能の素子をそのまま使用するのではなく、これら複数の素子を組み合わせて1つのパッケージに収容して(すなわち複数の素子を集積して1つのモジュールにして)、多チャネル、多機能、高機能なデバイスを実現している。
 これらモジュールには、小型化、低コスト化の要求とともに、伝送距離の長延化が求められている。例えば非特許文献1、非特許文献2に記載の4ch光送信モジュールは伝送距離が10km程度の通信で用いられていたが、伝送距離が40km程度の通信でも使用する需要が高まっている。
 伝送距離の長延化に向けては、モジュールに信号の高出力化が求められ、そのためモジュール内部に搭載する部品や光結合部の低損失化が求められている。
 また伝送距離を長延化すると波長分散の影響を受けやすくなるため、より分散波長の影響を受けにくい波長帯域の伝搬光を使用することになる。その場合4つの信号光の波長間隔を狭める必要があるため、モジュールに集積する合波フィルタにはより高矩形な透過スペクトル特性が求められる。
 多チャンネル光送信モジュールにおいては、各LDから出力された信号光の合波するためのMUXフィルタが備えられている。この合波フィルタとしては多層膜結晶型の薄膜フィルタ(thin film filter:TFF)を用いるもの(非特許文献1参照)、また平面光波回路AWGを用いる構造(非特許文献2参照)が報告されている。今後多チャンネル光送信モジュールに実装するチャネル数が増えることを考慮すると、各信号チャンネルで損失のばらつきが小さな平面光波回路型が有利である。
 図1は従来の平面光波回路フィルタを用いた4ch光送信モジュールの概略構成を示す図であり、(a)は上面図、(b)断面図である。図1に示すように、光送信モジュール100は、台座101の主面(XY面)の上面側に4個のLD102および平面光波回路(Planar Lightwave Circuit:PLC)110が配置され、パッケージ107(たとえば、気密用のセラミックバタフライパッケージ)に収容されている。台座101の下面とパッケージ107との間には温度コントローラ(Thermoelectric Controller:TEC)109が配置されている。パッケージ107には、光ファイバ120およびレンズ122を有するスリーブ121が接続されている。
 LD102は、台座101の上面に配置された電気回路108の上に配置されている。電気回路108はLD102を駆動する回路である。4個のLD102-0から102-3の中心波長λ0~λ3は、それぞれ波長が異なり、例えばアクセス系用の光送信モジュールではS帯の波長帯を使用する。
 LD102とPLC110との間には、4個のLD102に対応する4組のレンズ103aおよびレンズ103bが配置されている。LD102からの光は、レンズ103aによりコリメート光に変換された後、レンズ103bにより集光されて入力導波路111に結合する。つまり、LD102とPLC110との間は平行光束系で光結合する。
 レンズ103aとレンズ103bとの間には、ビームスプリッタ104が配置されている。ビームスプリッタ104の上面にはLD102からの光をモニターするためのモニターPD(MPD)105が配置されている。LD102からの光の一部は、レンズ103aとレンズ103bとの間に配置されたビームスプリッタ104により分岐されてモニターPD105によって受光される。
 PLC110は、入力導波路111と、アレイ導波路回折格子(Arrayed Waveguide Grating:AWG)113と、出力導波路112とを備え、AWG型の平面光波回路型多重(multiplexer:MUX)フィルタとし機能する。たとえば、入力導波路111-0、111-1、111-2、111-3から平面光波回路に入射したLD102-0、102-1、102-2、および102-3からの波長λ0、λ1、λ2、およびλ3の光は、AWG113を通ることで合波され、PLC110の出力側端面付近にある1本の出力導波路112から出射される。
 PLC110の出力側の端面には、レンズ103cが設けられ、レンズ103cの先にはアイソレーター106が配置されている。多重された光は、出力導波路112を導波してPLC110の端面に設けられたレンズ103c、アイソレーター106およびレンズ122を通じて、光ファイバ120へ光結合する。レンズ103cおよびレンズ122により、PLC110と光ファイバ120との間もまた平行光束系で光結合する。
特開2014-59542号公報
S. Kanazawa et al., "High Output Power and Compact LAN-WDM EADFB Laser TOSA for 4 × 100-Gbit/s/λ 40-km Fiber-Amplifier-Less Transmission," 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, pp. 1-3 J. Liu, Q. Huang and J. Xia, "High Assembly Tolerance and Cost-Effective 100-Gb/s TOSA With Silica-PLC AWG Multiplexer," in IEEE Photonics Journal, vol. 11, no. 4, pp. 1-9, Aug. 2019, Art no. 7904909, doi: 10.1109/JPHOT.2019.2924035
 図1を参照して上述した平面光波回路フィルタを用いた光送信モジュールには主に次の3つの課題がある。
 課題1:伝送距離の長延化のために、光送信モジュールの内部に搭載するAWG型の平面光波回路型フィルタの低損失化が求められている。また各信号の波長配置が狭くなっているため、フィルタの特性を示す透過スペクトルの形状(以下、フィルタ形状という)の高矩形化が求められている。単一のAWGを備えた平面光波回路型フィルタは、損失が高く、また矩形度が低いという課題がある。
 課題2:光送信モジュールの小型化のために、内部に搭載するチップ(PLC)も小型化が求められている。しかし、二つのスラブ導波路間に互いに長さの異なる複数の導波路を備えたAWGはPLCにおける専有面積が大きいため、チップの小型化に限界があるという課題がある。また、フィルタ形状の高矩形化のために、PLC上にAWGと接続したマッハツェンダ干渉計(MZI)型回路などを配置すると、チップ(PLC)のサイズがさらに大きくなってしまう。
 課題3:低コスト化および実装工程の簡易化のために、光送信モジュールの内部に搭載する部品の削減が求められている。たとえば図1を参照して上述したように、LD103からの光の強度をモニターするためのビームスプリッタ104を配置している。ビームスプリッタ104を搭載することにより光送信モジュールの内部に搭載する部品の数が増え、コストが増加し、実装工程の難易度が高くなる。さらに、LD102とPLC110と間の光学長も長くする必要があって光送信モジュールの小型化に不利であるという問題がある。
 本開示は、このような問題に鑑みてなされたもので、その目的とするところは、損失が小さく、フィルタ形状の矩形度が高い平面光波回路型を提供することにある。また、本開示は、小型の平面光波回路型を提供することにある。さらに、本開示は、部品点数を削減できる平面光波回路型を提供することにある。
 本開示の一実施形態は、波長の異なる複数の信号光を合波するための平面光波回路型ラティスフィルタであって、複数の信号光を入力する複数の入力導波路と、複数の信号光を合波する合波回路と、合波した信号を出力する少なくとも1個の出力導波路とを備え、合波回路は、複数段に従属接続された非対称MZI型回路を有し、非対称MZI型回路は、入力側カプラーと、出力側カプラーと、入力側カプラーの出力と出力側カプラーの入力とを接続する、光路長差が付与された2個の導波路とを含み、複数の入力導波路は2個ずつ、1段目に配置された非対称MZI型回路の入力側カプラーの入力と接続されており、最終段に配置された1個の非対称MZI型回路の出力側カプラーから出力される複数の信号光を合波した信号光が、出力導波路に結合するように構成されている。
 本開示の一実施形態によれば、AWG型の平面光波回路型フィルタに比べ、低損失かつ高矩形なフィルタ性能を有する平面光波回路型ラティスフィルタを提供することが可能となる。また、本開示の一実施形態によれば、チップ(PLC)の小型化が可能な平面光波回路型ラティスフィルタを提供することが可能となる。さらに、本開示の一実施形態によれば、品点数の削減が可能な平面光波回路型ラティスフィルタを提供することが可能となる。
従来のアレイ導波路回折格子型の平面光波回路型フィルタを用いた4ch光送信モジュールの概略構成を示す図であり、(a)は上面図、(b)は断面図である。 本開示の一実施形態に係る平面光波回路型ラティスフィルタを用いた4ch光送信モジュールの概略構成を示す図であり、(a)は上面図、(b)は断面図である。 本開示の一実施形態に係る平面光波回路型ラティスフィルタの概略構成を示す図である。 本開示の一実施形態に係る平面光波回路型ラティスフィルタの概略構成を示す図である。 本開示の一実施形態に係る平面光波回路型ラティスフィルタの概略構成を示す図である。 本開示の一実施形態に係る平面光波回路型ラティスフィルタの概略構成を示す図である。
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。同一または類似の符号は同一または類似の要素を示し、繰り返しの説明を省略することがある。以下の説明における数値は例示であり、本開示の要旨を逸脱しない限り他の数値を用いて本開示を実施してもよい。
 以下に説明する種々の実施形態の平面光波回路型ラティスフィルタは、波長の異なるN個の信号光を合波するための平面光波回路型ラティスフィルタであって、Nは2以上の整数であり、N個の信号光を入力するN個の入力導波路と、N個の信号光を合波する合波回路と、合波した信号を出力する少なくとも1個の出力導波路とを含み得る。合波回路は、複数段に従属接続された少なくともN-1個の非対称MZI型回路を含み得る。非対称MZI型回路は、1個または2個の入力と2個の出力とを有する入力側カプラーと、2個の入力と1個または2個の出力とを有する出力側カプラーと、入力側カプラーの2個の出力と出力側カプラーの2個の入力とを接続する、光路長差が付与された2個の導波路とを含み得る。N個の入力導波路は2個ずつ、1段目に配置された非対称MZI型回路の入力側カプラーの2個の入力と接続され得る。最終段に配置された1個の非対称MZI型回路の出力側カプラーから出力されるN個の信号光を合波した信号光が、出力導波路に結合するように構成され得る。
 (第1の実施形態)
 図2-4を参照して、本開示の第1の実施形態に係る平面光波回路型ラティスフィルタおよび光送信モジュールを説明する。ここでは、平面光波回路型ラティスフィルタを用いた光送信モジュールの一例として、石英PLCラティスフィルタを用いた4chTOSA(Transmitter optical sub-assembly)モジュールを説明する。ここでは4チャネル(ch)構成の光送信モジュール、すなわち、波長が互いに異なる4つの信号光を多重して送信する光送信モジュールを例示するが、信号光の数またはchの数は4に限定されるものではなく、任意の数とすることができる。
 (光送信モジュールの構成)
 図2に本開示の一実施形態に係る光送信モジュールの概略構成を示す。図2(a)は上面図であり、図2(b)は断面図である。図2に示すように、光送信モジュール200は、台座101の主面(XY面)の上面側に4個のLD102およびPLC210が配置され、パッケージ107(たとえば、気密用のセラミックバタフライパッケージ)に収容されて気密封止されている。台座101の下面とパッケージ107との間には温度コントローラ(TEC)109が配置されている。パッケージ107には、光ファイバ120およびレンズ122を有するスリーブ121が接続されている。
 LD102は、台座101の上面に配置された電気回路108の上に配置されている。電気回路108はLD102を駆動する回路である。4個のLD102-0から102-3は、発信波長が互いに異なるように構成されおり、上述したようにLane0からLane3に対応する異なる波長λ0からλ3の光を出力するLDである。
 LD102とPLC110との間には、4個のLD102に対応する4組のレンズ103aおよびレンズ103bが配置されている。LD102からの光は、レンズ103aによりコリメート光に変換された後、レンズ103bにより集光されて入力導波路111に結合する。つまり、LD102とPLC110との間は平行光束系で光結合する。図1の光送信モジュール100と異なり、レンズ103aとレンズ103bとの間に、ビームスプリッタ104を配置していない。したがって、LD102とPLC210と間の光学長を短くすることが可能となる。なお、レンズ103bにより集光された光の径を入力導波路111に合わせるために、PLC210にスポットサイズコンバータを配置してもよい。また各LD102とPLC110の入力導波路111との間の光結合は上記に記載のようにレンズを2枚使用した平行光束系で光結合しても良いし、1枚レンズで光結合しても良い。
 光送信モジュール200においては、4個のモニターPD205-0から205-3が、PLC210の側方の端面に配列さている。この点においてビームスプリッタ104の上面にモニターPD105を配置した図1の光送信モジュール100と異なる。
 PLC210は、石英平面光波回路であり、入力導波路111と、導波路により構成されたラティスフィルタ213と、出力導波路112とを備える。ラティスフィルタ213の構成については後述する。LD102-0からの波長λ0の光が入力導波路111-0へ結合し、LD102-2からの波長λ2の光が入力導波路111-1へ結合し、LD102-1からの波長λ1の光が入力導波路111-2へ結合し、およびLD102-3からの波長λ3の光が入力導波路111-3へ結合するように構成されている。本実施形態では、ラティスフィルタ213へ入力された波長λ0、λ1、λ2およびλ3の光は、多重されて出力導波路112へ結合し、PLC210の出力側の端面から出射する。本実施形態では、図1に示した4個のLD102-0から102-3の配列順序を図2に示した配列順序に変更している。図1に示した4個のLD102-0から102-3の配列順序を維持する場合には、PLC210内において、入力導波路111とラティスフィルタ213と間を結合する交差導波路を用いてもよい。
 PLC210の出力側の端面には、レンズ103cが設けられ、レンズ103cの先にはアイソレーター106が配置されている。多重された光は、出力導波路112を導波してPLC110の端面に設けられたレンズ103c、アイソレーター106およびレンズ122を通じて、光ファイバ120へ光結合する。レンズ103cおよびレンズ122により、PLC110と光ファイバ120との間もまた平行光束系で光結合する。なお、アイソレーター106を省略した構成にしてもよい。PLC210から出射する光の径を光ファイバ120の径に合わせるために、レンズ103cおよびレンズ122に替えて、スポットサイズコンバータを配置してもよい。PLC210の端面で生じる反射戻り光を低減するために、アイソレーター106に替えて又はアイソレーター106に追加して、端面を斜めにカットした状態のPLC210を用いても良いし(たとえばPLC210の端面を10度程度斜めにカットした形状としても良いし)、または端面に反射防止用のARコーティングをしたPLC210を用いても良い。
 (ラティスフィルタの構成)
 次に図3を参照して平面光波回路型ラティスフィルタについて説明する。図3は、PLC210上に形成された導波路により構成されたラティスフィルタ213の概略構成を示す図である。図3に示すように、ラティスフィルタ213は、4本の導波路321と接続された合波回路303を含む。導波路321-0から321-3は入力導波路111-0から111-3とそれぞれ接続されている。
 合波回路303は、多段に従属接続された4つのマッハツェンダ干渉計(MZI)型回路331a、332a、341aおよび351aを含む。MZI型回路はそれぞれ、2つの2入力および2出力のカプラーと、2つのカプラーを結合する2本の導波路とを備える。
 MZI型回路331aとMZI型回路332aとは並列に配置されている。MZI型回路331aおよびMZI型回路332aは、MZI型回路341aと従属接続されている。MZI型回路341aはMZI型回路351aと従属接続されている。並列に配置されたMZI型回路331aおよび332aを1段目とし、MZI型回路341aを2段目とし、MZI型回路351aを3段目とする。MZI型回路351aを通過することでよりフィルタ形状を高矩形化するために配置されている。
 各MZI型回路において2つのカプラーを結合する2本の導波路には、光路長差ΔLが付与されている。光路長差を有するMZI型回路を非対称MZI型回路とも称する。
 Lane0に対応するLD102-0から導波路321-0に入射された信号光λ0は、1段目のMZI型回路331aの入力側のカプラーで2分岐されて、2本の導波路を通って出力側のカプラーで合波されて2つ出力のうちの下側から出力される。Lane2に対応するLD102-2から導波路321-1に入射された信号光λ2は、1段目のMZI331aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力のうちの下側から出力される。信号光λ0および信号光λ2はそれぞれ、2段目のMZI型回路341aへ入力される。信号光λ0は、MZI型回路341aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。信号光λ2も、信号光λ0と同様に、2段目のMZI型回路341aの2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。さらに、信号光λ0および信号光λ2はそれぞれ、3段目のMZI型回路351aへ入力される。信号光λ0は、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。信号光λ2も、信号光λ0と同様に、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。
 Lane1に対応するLD102-1から導波路321-2に入射された信号光λ1は、1段目のMZI型回路332aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力のうちの上側から出力される。Lane3に対応するLD102-3から導波路321-3に入射された信号光λ3は、1段目のMZI332aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力のうちの上側から出力される。信号光λ1および信号光λ3はそれぞれ、2段目のMZI型回路341aへ入力される。信号光λ1は、MZI型回路341aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。信号光λ3も、信号光λ1と同様に、2段目のMZI型回路341aの2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。さらに、信号光λ1および信号光λ3はそれぞれ、3段目のMZI型回路351aへ入力される。信号光λ1は、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。信号光λ3も、信号光λ1と同様に、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。
 このようにして、合波回路303へ入射した信号光λ0からλ3は合波されて、3段目のMZI型回路351aの出力側のカプラーの2つ出力の上側から出力される。なお、本実施形態においては、カプラー371において合波回路303で合波された信号光の一部がパワーモニター用に分岐され、残りが導波路361を通って出力導波路112へ結合するように構成している。
 図3に示すラティスフィルタ213は、合波回路303とカプラー371を介して接続された分波回路370を含む。分波回路370は、合波回路303で合波した光の一部を再び4つの波長ごとに分離してモニターPDでパワーを測定できるようにするために設けられている。分波回路370の構成は、合波回路303の構成と同じである。分波回路370は、カプラー371を中心にして、合波回路303と点対称に配置されている。このように分波回路370を配置することで、一度合波した光を再度λ0、λ1、λ2、λ3の信号に分離することができ、MZI型回路331bの出力側のカプラーおよびMZI型回路332bの出力側のカプラー(それぞれMZI型回路331aの入力側のカプラーおよびMZI型回路332aの入力側のカプラーに対応する)に接続した出力導波路381-0から381-3を介してPLC(チップ)の端面から取り出すことができる。モニターPD205-0から205-3の配置順序を変更する場合は。ラティスフィルタ213の導波路381とモニターPD205との間を結合する交差導波路を用いてもよい。
 モニターPD205は、LD102が出射する信号光のパワー変動を読み取るためのものであるので、カプラー371の分岐比は、例えばMPD295へ伝わる信号光のパワーが合波された信号光のパワーのごく一部(たとえば2%等)を分岐できるように設定すればよい。
 図4は、本開示の一実施形態に係る平面光波回路型ラティスフィルタの概略構成を示す図である。図4は、図3を参照して説明した合波回路303とカプラー371を介して接続された分波回路370を含むラティスフィルタ213の配置例を示している。ラティスフィルタ213を構成する多段に縦続接続された複数のMZI型回路を直線状に配置すると全体の回路長が長くなってしまう。図4に示すように、とぐろを巻くように配置することで省スペースに収容することができ、チップ(PLC)の小型化が可能である。なお、合波回路303および分波回路370のうちの少なくとも一方がとぐろを巻くように配置した場合、直線状に配置する場合に比べて全体の回路長を短くすることができ、チップの小型化が可能となる。
 上述した4ch構成の光送信モジュールにおいて、波長が異なる4chの信号光(λ0からλ3)を合波する合波回路303は、少なくとも3個のMZI型回路を少なくとも2段に縦列に接続する必要がある。波長が異なるN(2以上)chの信号光(λ0、・・・λ(N-1))を合波する場合は、合波回路303は、特許文献3に提案されているように少なくともN-1個のMZI型回路を多段に縦列接続してラティスフィルタを構成すればよい。またラティスフィルタのMZI型回路をさらに縦続接続することによってフィルタ形状の矩形度を高めることができる。
 (第2の実施形態)
 図5を参照して、本開示の第2の実施形態に係る平面光波回路型ラティスフィルタおよび光送信モジュールを説明する。図5は、ラティスフィルタ513の概略構成を示す図である。図3および図4に示すラティスフィルタ213の代替としてラティスフィルタ513を用いて、図2に示す光送信モジュール200を構成することができる。
 図5に示すラティスフィルタ513は、合波回路503とカプラー371を介して接続された分波回路570とを備える。合波回路503は、MZI型回路351aを有していない点で、図3に示す合波回路303と異なる。また、分波回路570は、MZI型回路351bを有していない点で、図3に示す分波回路370と異なる。ラティスフィルタ513を構成するMZI型回路の構成は、図3に示す分波回路370と同様であるので、詳細な説明は省略する。図5に示すラティスフィルタ513もまた、図4に示すようにとぐろを巻くように配置することで省スペースに収容することができ、チップ(PLC)の小型化が可能である。
 ラティスフィルタ513は、MZI型回路351aおよびMZI型回路351bが従属接続されていないため、ラティスフィルタ213と比べてフィルタ形状の矩形度は劣るが、従属接続するMZI型回路の数が少ない分だけ損失の低減化と回路長の短尺化が可能である。
 (第3の実施形態)
 図6を参照して、本開示の第3の実施形態に係る平面光波回路型ラティスフィルタおよび光送信モジュールを説明する。図6は、ラティスフィルタ613の概略構成を示す図である。図3および図4に示すラティスフィルタ213の代替としてラティスフィルタ613を用いて、図2に示す光送信モジュール200を構成することができる。
 図6に示すラティスフィルタ613は、合波回路603とカプラー371を介して接続された分波回路670とを備える。合波回路603は、MZI型回路351aに従属接続された4段目のMZI型回路661aを有している点で、図3に示す合波回路303と異なる。また、分波回路670は、MZI型回路351bと従属接続されたMZI型回路661bを有している点で、図3に示す分波回路370と異なる。
 ラティスフィルタ613の合波回路603において、信号光λ0は、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。信号光λ2も、信号光λ0と同様に、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力される。さらに、信号光λ0および信号光λ2はそれぞれ、4段目のMZI型回路661aへ入力される。信号光λ0は、4段目のMZI型回路661aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。信号光λ2も、信号光λ0と同様に、4段目のMZI型回路661aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。
 ラティスフィルタ613の合波回路603において、信号光λ1は、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力から出力される。信号光λ3も、信号光λ1と同様に、3段目のMZI型回路351aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波および分岐されて2つ出力される。さらに、信号光λ1および信号光λ3はそれぞれ、4段目のMZI型回路661aへ入力される。信号光λ1は、4段目のMZI型回路661aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。信号光λ3も、信号光λ1と同様に、4段目のMZI型回路661aの入力側のカプラーで2分岐されて、2本の導波路通って出力側のカプラーで合波されて2つ出力の上側から出力される。
 このようにして、合波回路603へ入射した信号光λ0からλ3は合波されて、4段目のMZI型回路661aの出力側のカプラーの2つ出力の上側から出力される。なお、本実施形態においては、カプラー371において合波回路603で合波された信号光の一部がパワーモニター用に分岐され、残りが導波路361を通って出力導波路112へ結合するように構成している。
 図6に示すラティスフィルタ613は、合波回路603とカプラー371を介して接続された分波回路670を含む。分波回路670は、合波回路303で合波した光の一部を再び4つの波長ごとに分離してモニターPDでパワーを測定できるようにするために設けられている。分波回路670の構成は、合波回路603の構成と同じである。分波回路370は、カプラー371を中心にして、合波回路303と点対称に配置されている。この点は、図3を上述したので説明を省略する。
 図6に示すラティスフィルタ613もまた、図4に示すようにとぐろを巻くように配置することで省スペースに収容することができ、チップ(PLC)の小型化が可能である。
 図6に示すラティスフィルタ613は、図3に示すラティスフィルタ213および図4に示すラティスフィルタ413に比べ、スペクトルの透過幅を広げ、波長精度のマージンなどの光送信モジュールの製造マージンを緩和し得るものである。
 ラティスフィルタ613の合波回路603においてMZI型回路を従属接続する段数を増やすことによってフィルタの矩形度を高めることが可能である。
 本開示よれば、損失が小さく、フィルタ形状の矩形度が高い平面光波回路型を提供することが可能になる。または、本開示によれば、小型の平面光波回路型を提供することが可能になる。または、本開示によれば、部品点数を削減できる平面光波回路型を提供することが可能となる。
 100、200 光送信モジュール
 101 台座
 102 レーザダイオード
 103、122 レンズ
 104 ビームスプリッタ
 105、205 モニターPD
 106 アイソレーター
 107 パッケージ
 108 電気回路
 109 TEC
 110、210 PLC
 111 入力導波路
 112 出力導波路
 113 アレイ導波路回折格子
 120 光ファイバ
 121 スリーブ
 213、513、613 ラティスフィルタ
 303、503、603 合波回路
 370、570、670 分波回路
 321、361、381 導波路
 331、332、341、351 MZI型回路
 371 カプラー

Claims (7)

  1.  波長の異なる複数の信号光を合波するための平面光波回路型ラティスフィルタであって、
     前記複数の信号光を入力する複数の入力導波路と、
     前記複数の信号光を合波する合波回路と、
     合波した信号を出力する少なくとも1個の出力導波路と
    を備え、
     前記合波回路は、複数段に従属接続された非対称MZI型回路を有し、
     前記非対称MZI型回路は、
      入力側カプラーと、
      出力側カプラーと、
      前記入力側カプラーの出力と前記出力側カプラーの入力とを接続する、光路長差が付与された2個の導波路と
    を含み、
     前記複数の入力導波路は2個ずつ、1段目に配置された非対称MZI型回路の入力側カプラーの入力と接続されており、
     最終段に配置された1個の非対称MZI型回路の出力側カプラーから出力される前記複数の信号光を合波した信号光が、前記出力導波路に結合するように構成されている、平面光波回路型ラティスフィルタ。
  2.  前記最終段に配置された1個の非対称MZI型回路の入力側カプラーの入力と最終段の1つ前の段に配置された1個の非対称MZI型回路の出力側カプラーの出力とが接続されている、請求項1に記載の平面光波回路型ラティスフィルタ。
  3.  1個の入力と2個の出力とを有するカプラーと、
     分波回路と
    をさらに備え、
     前記カプラーの1個の入力は、前記合波回路における前記最終段に配置された1個の非対称MZI型回路の出力側カプラーの2個の出力のいずれかと接続されており、
     前記カプラーの2個の出力のうちの一方の出力が前記出力導波路と接続されており、他方の出力が前記分波回路に接続されており、
     前記分波回路は、前記カプラーを中心に前記合波回路と点対称に構成されており、
     前記分波回路は、前記合波回路が合波した信号を前記波長の異なる複数の信号光に分波して出力する、請求項1または2に記載の平面光波回路型ラティスフィルタ。
  4.  前記合波回路が有する複数段に従属接続された非対称MZI型回路および前記分波回路が有する複数段に従属接続された非対称MZI型回路の少なくとも一方がとぐろを巻くように配置されている、請求項3に記載の平面光波回路型ラティスフィルタ。
  5.  石英平面光波回路である、請求項4に記載の平面光波回路型ラティスフィルタ。
  6.  光通信用に用いられる光送信モジュールであって、
     請求項3に記載の平面光波回路型ラティスフィルタと、
     前記波長の異なる複数の信号光を出力する複数の光源と、
     光ファイバと
    を備え、
     前記出力導波路を導波した前記複数の信号光を合波した信号光が、前記光ファイバに結合されるように構成された、光送信モジュール。
  7.  前記分波回路によって前記合波回路が合波した信号から分波された前記波長の異なる複数の信号光が結合する複数の導波路と、
     前記波長の異なる複数の信号光を受光する複数の受光素子と
    をさらに備え、
     前記複数の受光素子は、前記合波回路が形成された基板の端面に配置され、前記複数の導波路を介して、前記波長の異なる複数の信号光を受光する、請求項6に記載の光送信モジュール。
PCT/JP2023/031915 2022-08-31 2023-08-31 平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール WO2024048747A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137717 2022-08-31
JP2022137717 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048747A1 true WO2024048747A1 (ja) 2024-03-07

Family

ID=90097976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031915 WO2024048747A1 (ja) 2022-08-31 2023-08-31 平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール

Country Status (1)

Country Link
WO (1) WO2024048747A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031735A (ja) * 2000-05-12 2002-01-31 Furukawa Electric Co Ltd:The 波長合波モジュール
JP2005352202A (ja) * 2004-06-10 2005-12-22 Sumitomo Electric Ind Ltd 光回路、光合波器及び光分波器
JP2008224740A (ja) * 2007-03-08 2008-09-25 Anritsu Corp 光変調デバイス
JP2013506167A (ja) * 2009-09-29 2013-02-21 ユニヴェルシテ パリ−スュッド オンズ 絶縁体上半導体の高速でコンパクトな光変調器
JP2014134561A (ja) * 2013-01-08 2014-07-24 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダー合波・分波フィルター
JP2017098505A (ja) * 2015-11-27 2017-06-01 富士通オプティカルコンポーネンツ株式会社 光モジュール
US20180364121A1 (en) * 2017-06-14 2018-12-20 Imec Vzw Force sensing device and a force sensing system
JP2020531910A (ja) * 2017-08-22 2020-11-05 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ 集積型のファラデー回転子
JP2020194092A (ja) * 2019-05-28 2020-12-03 富士通株式会社 波長合分波素子、光送信装置及び光受信装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031735A (ja) * 2000-05-12 2002-01-31 Furukawa Electric Co Ltd:The 波長合波モジュール
JP2005352202A (ja) * 2004-06-10 2005-12-22 Sumitomo Electric Ind Ltd 光回路、光合波器及び光分波器
JP2008224740A (ja) * 2007-03-08 2008-09-25 Anritsu Corp 光変調デバイス
JP2013506167A (ja) * 2009-09-29 2013-02-21 ユニヴェルシテ パリ−スュッド オンズ 絶縁体上半導体の高速でコンパクトな光変調器
JP2014134561A (ja) * 2013-01-08 2014-07-24 Nippon Telegr & Teleph Corp <Ntt> マッハツェンダー合波・分波フィルター
JP2017098505A (ja) * 2015-11-27 2017-06-01 富士通オプティカルコンポーネンツ株式会社 光モジュール
US20180364121A1 (en) * 2017-06-14 2018-12-20 Imec Vzw Force sensing device and a force sensing system
JP2020531910A (ja) * 2017-08-22 2020-11-05 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ 集積型のファラデー回転子
JP2020194092A (ja) * 2019-05-28 2020-12-03 富士通株式会社 波長合分波素子、光送信装置及び光受信装置

Similar Documents

Publication Publication Date Title
US10338308B2 (en) Method and system for partial integration of wavelength division multiplexing and bi-directional solutions
US5946331A (en) Integrated multi-wavelength transmitter
US10917190B2 (en) Method and system for CWDM MUX/DEMUX designs for silicon photonics interposers
US7194166B1 (en) Use of waveguide grating couplers in an optical mux/demux system
CN113169807B (zh) 多信道双向光通信模块
US6256433B1 (en) Expandable interleaving optical add/drop filter module
US20080031625A1 (en) WDM hybrid splitter module
US11177900B2 (en) Integrated WDM optical transceiver
US20210349264A1 (en) Integrated optical device based on coupling between optical chips
US10795170B2 (en) Multi-channel optical multiplexer or demultiplexer
Shi et al. Silicon-based on-chip diplexing/triplexing technologies and devices
JP2002221628A (ja) 波長多重光通信モジュール
CN111263906A (zh) 用于接近法向入射mux/demux设计的方法和系统
US7031355B2 (en) High efficiency single and multiple wavelength stabilized systems
WO2024048747A1 (ja) 平面光波回路型ラティスフィルタおよびそれを用いた光送信モジュール
WO2023061024A1 (zh) 光接收组件及光模块
JPH0918423A (ja) 光接続素子及び光接続装置
WO2002011339A2 (en) Multiplexer, demultiplexer and add/drop multiplexer for single mode optical fiber communication links
US7006727B2 (en) Combined multiplexer and demultiplexer for optical communication systems
KR20210023511A (ko) 배열도파로 격자 형태의 파장역다중화 소자 및 그 제조방법
JP2005241730A (ja) 光合分波器および光モジュール
CN114815086B (zh) 集成化的光收发装置和光线路终端
US20230291493A1 (en) Wavelength-Multiplexed Optical Source with Reduced Temperature Sensitivity
JP2004072690A (ja) 光通信システム
US20230081747A1 (en) High density fiber interfaces for silicon photonics based integrated-optics products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860509

Country of ref document: EP

Kind code of ref document: A1