WO2024047966A1 - セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法 - Google Patents

セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2024047966A1
WO2024047966A1 PCT/JP2023/018896 JP2023018896W WO2024047966A1 WO 2024047966 A1 WO2024047966 A1 WO 2024047966A1 JP 2023018896 W JP2023018896 W JP 2023018896W WO 2024047966 A1 WO2024047966 A1 WO 2024047966A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
electronic component
ceramic electronic
layer
margin
Prior art date
Application number
PCT/JP2023/018896
Other languages
English (en)
French (fr)
Inventor
優治 滝田
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2024047966A1 publication Critical patent/WO2024047966A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to ceramic electronic components, circuit boards, electronic devices, and methods of manufacturing ceramic electronic components.
  • Patent Documents 1 and 2 In order to reduce the mounting area and height of ceramic electronic components, there are methods of providing external electrodes only on one surface, which is the mounting surface of ceramic electronic components, or providing external electrodes that extend to the second surface adjacent to that one surface.
  • Patent No. 6816817 Japanese Patent Application Publication No. 2015-201612
  • an object of the present invention is to suppress damage to the element body due to stress acting through the external electrode.
  • a ceramic electronic component includes: a ceramic having an outer shape having a first surface; an internal conductor provided within the ceramic with a part of the ceramic sandwiched therebetween; An external electrode provided on the first surface and connected to the internal conductor, and a first element that improves the sintering properties of the ceramic, have a concentration higher than that at a portion of the ceramic sandwiched between the internal conductors. a first surface portion of the ceramic that is contained at a high concentration and is located on the first surface side.
  • the first element may include Ni, Mn, Sn, Mg, Ba, Zn, Si, B, Al, Cu, Li, Ca, Zr, In, and One or more elements selected from Ti.
  • the first element is a component different from the main component of the ceramic material.
  • the first surface portion contains the first element at 0.4 at. Contained at a concentration of % or more.
  • the first element is located at a portion of the outer shape other than the first surface, and the concentration of the first element is 0% of the concentration in the first surface portion.
  • the apparatus further includes an outer surface portion that is greater than or equal to .87 times and less than or equal to 1.21 times.
  • the outer surface portion contains the first element at 0.5 at. Contained at concentrations of less than %.
  • the internal conductor is made of a material containing the first element, and the first surface portion is configured to contain the first element that promotes diffusion of the first element. Contains a second element different from the element. Further, according to the ceramic electronic component according to one aspect of the present invention, the second element is at least one of Sn and Fe.
  • the external electrode is composed of multiple layers including a conductive resin layer.
  • a circuit board according to one aspect of the present invention includes any of the above ceramic electronic components and a substrate on which the above ceramic electronic components are mounted via solder.
  • An electronic device includes the above circuit board.
  • a method for manufacturing a ceramic electronic component includes the steps of forming an external ceramic having a first surface, and forming an internal conductor provided in the ceramic with a part of the ceramic sandwiched therebetween. a step of forming an external electrode provided on the first surface and connected to the internal conductor; and a step of forming an external electrode provided on the first surface and connected to the internal conductor; forming a first surface portion of the ceramic, which is located on the first surface side and is contained at a higher concentration than the concentration in the portion where the ceramic has been removed.
  • the step of forming the first surface portion includes the step of forming the first element at a concentration higher than the concentration at the portion sandwiched between the internal conductors. The added material forms the first surface portion.
  • the step of forming the internal conductor includes forming the internal conductor with a material containing the first element, and forming the first surface portion of the internal conductor with a material containing the first element. In the forming step, the first surface portion is formed with a material containing a second element that promotes diffusion of the first element, and the first element is transferred from the internal conductor to the first surface portion by firing the ceramic. Spread it.
  • FIG. 1 is a perspective view showing a configuration example of a capacitor according to an embodiment of the present invention.
  • 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 2 is a sectional view taken along line BB in FIG. 1.
  • FIG. 3 is a flowchart illustrating an example of a method for manufacturing a capacitor according to the first embodiment. It is a figure showing the coating process of the manufacturing method of a capacitor. It is a figure showing the printing process of the manufacturing method of a capacitor.
  • FIG. 3 is a diagram showing a pattern of an electrode layer.
  • FIG. 1 is a first diagram showing a molding process of a capacitor manufacturing method.
  • FIG. 2 is a second diagram showing a molding process in a capacitor manufacturing method.
  • FIG. 3 is a diagram showing a crimping process in a capacitor manufacturing method.
  • FIG. 3 is a diagram showing a cutting process in a capacitor manufacturing method.
  • FIG. 3 is a first diagram showing a margin pasting process of a capacitor manufacturing method.
  • FIG. 7 is a second diagram showing a margin pasting process of the capacitor manufacturing method.
  • FIG. 3 is a diagram showing an element body obtained in a binder removal step.
  • FIG. 1 is a cross-sectional view showing the configuration of a circuit board on which a capacitor according to a first embodiment is mounted. It is a table showing test results in Examples.
  • FIG. 2 is a perspective view showing the configuration of a ceramic electronic component according to a second embodiment.
  • FIG. 1 to 3 are diagrams showing configuration examples of a capacitor according to an embodiment of the present invention.
  • FIG. 1 shows a partially cutaway perspective view
  • FIG. 2 shows a cross section taken along line AA in FIG. 1
  • FIG. 3 shows a cross section taken along line BB in FIG. A cross section along is shown.
  • a capacitor 1 is employed as an example of an electronic component.
  • the capacitor 1 is a so-called multilayer ceramic capacitor.
  • the capacitor 1 is mounted on a mounting board and is used to remove noise applied to a semiconductor chip mounted on the mounting board.
  • the capacitor 1 includes an element body 2 and external electrodes 6A, 6B, and the element body 2, which includes an internal conductor and ceramic, includes a laminate 2A, cover layers 5A, 5B, and margin layers 5C, 5D, 5E as part of the ceramic. , 5F.
  • the shapes of the element body 2 and the laminate 2A are preferably substantially rectangular parallelepipeds for the purpose of ease of manufacture and improvement of packaging density.
  • the corner portions of the element body 2 may be chamfered along the ridgeline of the element body 2.
  • the element body 2 includes a first surface M1 and a second surface M2 facing away from each other, and the first surface M1 is a mounting surface that faces the substrate when the capacitor 1 is mounted on the substrate.
  • the first surface M1 may be referred to as the lower surface of the element body 2
  • the second surface M2 may be referred to as the upper surface of the element body 2.
  • the laminate 2A includes internal electrode layers 3A and 3B, which are examples of internal conductors, and a dielectric layer 4, which is a part of ceramic. This layer extends in the horizontal direction DH.
  • the laminate 2A has a structure in which internal electrode layers 3A, 3B and dielectric layers 4 are alternately stacked in the length direction DL. Moreover, when paying attention to the internal electrode layers 3A and 3B, two types of internal electrode layers 3A and 3B are stacked alternately. Note that although FIGS. 1 to 3 show an example in which a total of ten internal electrode layers 3A, 3B are stacked, the number of stacked internal electrode layers 3A, 3B is not particularly limited.
  • the cover layers 5A and 5B are provided at both ends of the stacked body 2A in the stacking direction (length direction DL).
  • the margin layers 5C, 5D, 5E, and 5F are provided on each of the four sides perpendicular to the stacking direction (length direction DL) of the stacked body 2A. That is, the laminate 2A is sandwiched between cover layers 5A and 5B, and surrounded by margin layers 5C, 5D, 5E, and 5F.
  • the margin layer 5E located on the first surface M1 side of the element body 2 is provided at a location corresponding to a part of the first surface M1.
  • Internal electrode layers 3A and 3B are drawn out to first surface M1 at locations where 5E is not provided. That is, each internal electrode layer 3A, 3B is provided with lead-out portions RA, RB located on the first surface M1 side of the element body 2.
  • the external electrodes 6A and 6B are located in parallel on the first surface M1 while being separated from each other in the width direction DW.
  • the distance between the external electrodes 6A and 6B in the width direction DW is, for example, 110 ⁇ m or more.
  • the internal electrode layers 3A, 3B are connected to the external electrodes 6A, 6B on the first surface M1. Specifically, one internal electrode layer 3A of the two types of internal electrode layers 3A and 3B is connected to one external electrode 6A of the two external electrodes 6A and 6B via a lead-out portion RA.
  • the other internal electrode layer 3B is connected to the other external electrode 6B via a lead-out portion RB.
  • the external electrodes 6A, 6B By disposing the external electrodes 6A, 6B on the first surface M1 of the element body 2, the external electrodes 6A, 6B protrude in the height direction DH, and the external electrodes 6A, 6B protrude in the width direction DW and length direction DL. This prevents it from sticking out. Therefore, the height of the capacitor 1 can be reduced, and the mounting area of the capacitor 1 can be reduced. Further, the capacitor 1 can be mounted as an LSC (Land-Side Capacitor), and the mounting density is improved. Note that the external electrodes 6A and 6B may be arranged on two surfaces of the element body 2 including the first surface M1 and the adjacent second surface. When the external electrodes 6A and 6B are placed on two sides of the element body 2, the mounting strength of the capacitor 1 is improved compared to when they are placed on only one side.
  • LSC Low-Side Capacitor
  • Each external electrode 6A, 6B includes a base layer 7 formed on the first surface M1 of the element body 2, and a plating layer 9 laminated on the base layer 7.
  • the base layers 7 are formed on the first surface M1 of the element body 2 in parallel along the length direction DL while being separated from each other in the width direction DW.
  • the conductive material of the base layer 7 has, for example, as a main component a metal or an alloy containing at least one selected from Cu, Fe, Zn, Al, Ni, Pt, Pd, Ag, Au, and Sn.
  • the base layer 7 may include a common material mixed with metal. By being mixed in the base layer 7 in the form of islands, the common material can reduce the difference in thermal expansion coefficient between the element body 2 and the base layer 7, and can alleviate the stress applied to the base layer 7.
  • the common material is, for example, a ceramic component that is the main component of the dielectric layer 4.
  • Base layer 7 may contain a glass component. By being mixed in the base layer 7, the glass component can make the base layer 7 dense. This glass component is, for example, an oxide such as Ba, Sr, Ca, Zn, Al, Si or B (boron).
  • the base layer 7 may be composed of a sintered body of a coating film containing a dielectric material. As a result, the adhesion between the element body 2 and the base layer 7 is ensured, while the base layer 7 is made thicker, and the strength of each external electrode 6A, 6B is ensured, while the internal electrode layer 3A, Conductivity with 3B is ensured.
  • Base layer 7 may be a conductive resin layer. When the base layer 7 is a conductive resin layer, stress applied to the external electrodes 6A and 6B via the solder is dispersed, and damage to the element body 2 due to stress is suppressed.
  • the plating layer 9 is continuously formed for each of the external electrodes 6A and 6B so as to cover the base layer 7. At this time, the plating layer 9 is electrically connected to the internal electrode layers 3A and 3B via the base layer 7. Furthermore, the plating layer 9 is electrically connected to the terminals of the mounting board via solder.
  • the material of the plating layer 9 is, for example, a metal or an alloy containing at least one selected from Cu, Fe, Zn, Al, Ni, Pt, Pd, Ag, Au, and Sn.
  • the plating layer 9 may be a plating layer of a single metal component, or may be a plurality of plating layers of mutually different metal components.
  • the plating layer 9 has, for example, a three-layer structure of a Cu plating layer formed on the base layer 7, a Ni plating layer formed on the Cu plating layer, and a Sn plating layer formed on the Ni plating layer. .
  • the Cu plating layer can improve the adhesion of the plating layer 9 to the base layer 7.
  • the Ni plating layer can improve the heat resistance of each external electrode 6A, 6B during soldering.
  • the Sn plating layer can improve the wettability of solder to the plating layer 9.
  • the thicknesses of the internal electrode layers 3A, 3B and the dielectric layer 4 in the stacking direction are each in the range of, for example, 0.05 ⁇ m to 5 ⁇ m, and are, for example, 0.3 ⁇ m.
  • a highly conductive metal is used as a main component, for example, at least one selected from Cu, Fe, Zn, Al, Ni, Pt, Pd, Ag, Au, and Sn. It may be a metal or an alloy containing.
  • the material of the dielectric layer 4 can be mainly composed of, for example, a ceramic material having a perovskite structure. Note that the main component may be contained in a proportion of 50 at% or more.
  • the ceramic material of the dielectric layer 4 is, for example, barium titanate, strontium titanate, calcium titanate, magnesium titanate, barium strontium titanate, barium calcium titanate, calcium zirconate, barium zirconate, and calcium zirconate titanate. Selected from etc.
  • the main component of the material of the cover layers 5A, 5B and the margin layers 5C to 5F is, for example, a ceramic material.
  • the main component of the ceramic material of the cover layers 5A, 5B and the margin layers 5C to 5F may be the same as the main component of the ceramic material of the dielectric layer 4.
  • the margin layer 5E located on the first surface M1 side contains an element (first element) that improves the sinterability of the ceramic.
  • the first element is, for example, one or more elements selected from Ni, Mn, Sn, Mg, Ba, Zn, Si, B, Al, Cu, Li, Ca, Zr, In, and Ti.
  • the concentration of the first element is higher in the margin layer 5E than in the dielectric layer 4.
  • the margin layer 5E located on the first surface M1 side contains the first element at a higher concentration than the concentration in the dielectric layer 4, denseness is promoted and damage to the element body 2 is suppressed.
  • the first element is Ni, 0.4 at. % or more in the margin layer 5E on the first surface M1 side.
  • the first element may be added in advance to the material forming the margin layer 5E, or may be included in the material of the internal electrode layers 3A, 3B and diffused into the margin layer 5E.
  • the margin layer 5E contains an element (second element) that promotes the diffusion of the first element.
  • the second element is, for example, at least one of Sn and Fe.
  • the first element is also included in the margin layer 5F located on the second surface M2 side. It is desirable that the concentration of the first element in the margin layer 5E on the first surface M1 side is 0.87 times or more and 1.21 times or less as compared to the concentration of the first element in the margin layer 5F on the second surface M2 side. .
  • the first element in the proportion of the first element in the margin layer 5F on the second surface M2 side, the difference in color between the margin layer 5E on the first surface M1 side and the margin layer 5F on the second surface M2 side is suppressed. The number of defective judgments during appearance inspection is reduced. In particular, when the first element is Ni, 0.5 at.
  • the margin layer 5F becomes highly hard, which may make chips more likely to crack or chip during plating.
  • the exposed area of the element body 2 that is not covered by the external electrodes 6A and 6B is large compared to conventional capacitors, so cracks and the like due to stress applied to the external electrodes 6A and 6B occur. It becomes easy to chip. Therefore, by adjusting the concentration of the first element in the margin layer 5F as described above, the margin layer 5F is densified to the extent that damage due to stress applied to the external electrodes 6A and 6B can be suppressed, for example. This is particularly desirable in the structure of the capacitor 1 according to the first embodiment.
  • FIG. 4 is a flowchart illustrating an example of the capacitor manufacturing method according to the first embodiment.
  • 5 to 14 are diagrams showing an example of the method for manufacturing the capacitor according to the first embodiment. 5, FIG. 6, FIG. 10, FIG. 11, and FIG. 14 show cross-sectional views, FIG. 7 shows a plan view, and FIGS. 8 and 9 show perspective views. 12(A) and 13(A) show plan views, and FIG. 12(B) and FIG. 13(B) show perspective views. Note that for convenience of illustration, the number of stacked internal electrodes is not accurate.
  • an organic solvent and an organic binder as a dispersant and molding aid are added to the dielectric material powder, and are crushed and mixed to produce a muddy slurry.
  • the dielectric material powder includes, for example, ceramic powder.
  • the dielectric material powder may contain additives. Additives include, for example, oxides of Mg, Mn, V, Cr, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Co, Ni, Li, B, Na, K, or Si. Or glass.
  • the organic binder is, for example, polyvinyl butyral resin or polyvinyl acetal resin.
  • Organic solvents are, for example, ethanol or toluene.
  • a slurry containing ceramic powder is coated onto the carrier film in the form of a sheet and dried to produce a green sheet 24.
  • the carrier film is, for example, a PET (polyethylene terephthalate) film.
  • a doctor blade method, a die coater method, a gravure coater method, or the like is used to apply the slurry.
  • the precursor of the electrode-containing layer 23 includes a precursor of the electrode portion 23a of the predetermined pattern and a pattern opposite to the predetermined pattern (i.e., a pattern that is complementary to the predetermined pattern).
  • a precursor of the margin portion 23b of the pattern forming the continuous electrode-containing layer 23 is formed.
  • a precursor of the electrode portion 23a and a precursor of the margin portion 23b are formed in a continuous pattern corresponding to a plurality of element bodies 2 to be cut along the cut line CL in a later step. .
  • the conductive paste for internal electrodes of the electrode portion 23a contains metal powder used as a material for the internal electrode layers 3A and 3B.
  • the internal electrode conductive paste contains Ni powder.
  • the conductive paste for internal electrodes includes a binder, a solvent, and an auxiliary agent as necessary.
  • the internal electrode conductive paste may contain a ceramic material, which is the main component of the dielectric layer 4, as a co-material. A screen printing method, an inkjet printing method, a gravure printing method, or the like is used to apply the conductive paste for internal electrodes.
  • the margin portion 23b is a portion where a slurry similar to the slurry for the green sheet 24 is applied and dried.
  • the slurry for the margin portion 23b contains at least one of the first element and the second element.
  • the concentration of the first element in the slurry for the margin portion 23b is higher than the concentration of the first element in the green sheet 24.
  • the second element is contained in the slurry for the margin portion 23b
  • the first element is contained in the internal electrode conductive paste of the electrode portion 23a.
  • the slurry for the margin portion 23b contains a second element in an amount sufficient to promote diffusion of the first element so that the concentration of the first element in the margin portion 23b is higher than the concentration in the green sheet 24. is included.
  • FIG. 9 show a portion corresponding to one element body 2, it is actually a continuous pattern corresponding to a plurality of element bodies 2.
  • the laminated block is pressed, and the electrode layer 23 and the green sheets 24 and 25 are crimped together as shown in FIG.
  • a method for pressing the laminated block for example, a method of sandwiching the laminated block between resin films and hydrostatic pressing is used.
  • the pressed laminated block is cut along the cut line CL to separate into rectangular parallelepiped block pieces 2B.
  • Each individualized block piece 2B corresponds to a combination of the laminate 2A, the cover layers 5A and 5B, and the margin layer 5E on the first surface M1 side.
  • the cut line CL shown in FIG. 11 is at the same position as the cut line CL shown in FIG.
  • a method such as blade dicing is used to cut the laminated block.
  • a margin green sheet 26 is pasted onto the individualized block pieces 2B.
  • a plan view is shown in FIGS. 12(A) and 13(A), and a perspective view is shown in FIG. 12(B) and FIG. 13(B).
  • the margin green sheet 26 is pasted on three sides of the block piece 2B by, for example, pasting on three sides as shown in FIG. 12 or roll pasting as shown in FIG. 13.
  • margin green sheet 26 cut to the size of each side is pasted on the block piece 2B.
  • the margin green sheet 26 is pasted so as to wrap around the block piece 2B from one corner 27A of the block piece 2B through three sides to the other corner 27B. Then, the margin green sheet 26 is cut at the other corner 27B.
  • the same material as the green sheet 24 for the dielectric layer 4 or the margin portion 23b is used.
  • the binder contained in the block piece 2B to which the margin green sheet 26 is attached is removed by heating.
  • the element body is heated in a N2 atmosphere at about 350° C., for example.
  • an element body 2 having margin layers 5C to 5F as shown in FIG. 14 is obtained.
  • a base layer conductive paste is applied to the first surface M1 of the element body 2 and dried.
  • a dipping method is used to apply the conductive paste for the base layer.
  • the conductive paste for the base layer contains metal powder or filler used as the conductive material of the base layer 7.
  • the conductive paste for the base layer may contain a glass component as a co-material, for example.
  • the conductive paste for base layer contains a binder and a solvent.
  • the element body coated with the conductive paste for the base layer is fired, and the internal electrode layers 3A and 3B and the dielectric layer 4 are integrated, and the element body 2 is The base layer 7 is integrated.
  • the conductive paste for the element body and base layer is fired, for example, in a firing furnace at 1000 to 1400° C. for 10 minutes to 2 hours.
  • a base metal such as Ni or Cu
  • the internal electrode layers 3A and 3B are fired in a reducing atmosphere in a firing furnace to prevent oxidation.
  • a Cu layer, a Ni layer, and a Sn layer are sequentially formed by plating on the base layer 7 to form a plating layer 9, thereby obtaining the capacitor 1.
  • the element body 2 on which the base layer 7 is formed is housed in a barrel together with a plating solution, and the barrel is rotated and energized to form the plating layer 9.
  • FIG. 15 is a cross-sectional view showing the configuration of a circuit board on which the capacitor according to the first embodiment is mounted.
  • the circuit board 10 includes a first board 41 and a second board 45.
  • the circuit board 10 is included in various electronic devices. Examples of electronic devices equipped with the circuit board 10 include automobile electrical components, servers, board computers, and various other electronic devices.
  • land electrodes 42A, 42B, 44A, and 44B are formed on the back side of the first substrate 41.
  • the capacitor 1 is connected to capacitor mounting land electrodes 42A, 42B via solder layers 43A, 43B attached to the plating layer 9 of each external electrode 6A, 6B, respectively.
  • solder balls 47A, 47B are formed on the other land electrodes 44A, 44B on the back side of the first substrate 41.
  • a semiconductor chip (not shown) is mounted on the front side of the first substrate 41.
  • This semiconductor chip may be a microprocessor, a semiconductor memory, an FPGA (Field-Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). good.
  • the capacitor 1 By mounting the capacitor 1 on the back side of the first substrate 41, the capacitor 1 is placed on the back side of the semiconductor chip mounted on the front side of the first substrate 41. Therefore, the capacitor 1 can be mounted in the vicinity of the semiconductor chip mounted on the front surface side of the first substrate 41, and noise added to the semiconductor chip can be effectively removed.
  • land electrodes 46A and 46B are formed on the back side of the second substrate 45.
  • the first and second substrates 41, 45 are connected to each other via solder balls 47A, 47B.
  • the second board 45 is used, for example, as a motherboard on which the first board 41 is mounted. A constant distance is maintained between the first and second substrates 41, 45 via solder balls 47A, 47B.
  • a resin 48 for sealing the capacitor 1 is filled between the first and second substrates 41 and 45.
  • This resin 48 is, for example, an epoxy resin.
  • This resin 48 may be injected between the substrates 41, 45 and cured after the first and second substrates 41, 45 are connected to each other via the solder balls 47A, 47B.
  • the resin 48 covers the capacitor 1, the solder layers 43A, 43B, and the solder balls 47A, 47B, and is in close contact with the upper surface of the element body 2.
  • the external electrodes 6A, 6B By arranging the external electrodes 6A, 6B on the first surface M1 of the element body 2, the external electrodes 6A, 6B do not protrude in the height direction DH, and the solder layers 43A, 43B do not get wet on the capacitor 1. is prevented, and the height of the capacitor 1 after mounting is suppressed. Therefore, the capacitor 1 can be accommodated in the gap between the substrates 41 and 45 that are connected to each other via the solder balls 47A and 47B, and LSC mounting is realized.
  • the external electrodes 6A, 6B may be arranged on two surfaces including the first surface M1 and the adjacent second surface of the element body 2, which improves the mounting strength of the capacitor 1 compared to the arrangement on only one surface.
  • FIG. 16 is a table showing test results in Examples.
  • FIG. 16 shows test results for three comparative examples and six examples.
  • Ni is used as an example of the first element, and the internal electrode layers 3A and 3B contain Ni.
  • the amount of Ni added in the margin layer 5E on the first surface side of the element body 2 is described as “addition amount A”
  • the amount of Ni added in the margin layer 5F on the second surface side of the element body 2 is described as “addition amount A”. It is described as “addition amount B”.
  • the amount of Ni diffused in the margin layer 5E on the first surface side is described as "diffusion amount A”
  • the amount of Ni diffused in the margin layer 5F on the second surface side is described as “diffusion amount B”
  • the dielectric The amount of Ni diffused in layer 4 is described as "diffusion amount C.”
  • the ratio of the diffusion amount A to the diffusion amount B is described as the "A/B ratio.”
  • the amount of diffusion means the total amount of Ni including Ni diffused from the internal electrode layers 3A and 3B and added Ni.
  • the amount of addition and the amount of diffusion are such that the concentration of Ni atoms relative to all atoms is at. Expressed in %.
  • Figure 16 shows the evaluation of crack occurrence in a strength test assuming distortion after mounting (post-mount crack evaluation), the evaluation of crack occurrence in plating using bulk (crack evaluation during plating), and the appearance inspection. Evaluation of occurrence of defects (defect appearance evaluation) is also shown. These evaluations are indicated by the symbols " ⁇ ”, " ⁇ ”, and " ⁇ ”. If the incidence rate is 0%, the rating is " ⁇ ”, if the incidence rate is less than 5%, the rating is " ⁇ ”, and if the incidence rate is If it is 5% or more, it is evaluated as "x”.
  • the addition amount A is "0"
  • the diffusion amount A is the concentration of only Ni diffused from the internal electrode layers 3A and 3B. This value is almost the same as the diffusion amount C. Therefore, in all three comparative examples, the density of the margin layer 5E on the first surface side is low, and the post-mount crack evaluation is "x".
  • Example 1 the addition amount A is “0.2” and the addition amount B is “0”, and the diffusion amount A is 0.1 at. % or more, and the diffusion amount B is not much different from the diffusion amount C.
  • the crack evaluation after mounting was “ ⁇ ” and the crack evaluation during plating was also “ ⁇ ”.
  • the "A/B ratio" is "1.41"
  • the evaluation is "x”.
  • Example 2 the addition amount A is “0.6” and the addition amount B is “0.4”, and the diffusion amount A is nearly twice the diffusion amount C, and the diffusion amount B is also 0. .1 at. % or more larger.
  • the crack evaluation after mounting was “ ⁇ ” and the crack evaluation during plating was “ ⁇ ”. Since the "A/B ratio" of Example 2 is "1.38", which is close to that of Example 1, the appearance defect evaluation is "x" as in Example 1.
  • Example 3 the addition amount A is “0.2” and the addition amount B is also “0.2”, and the diffusion amount A is 0.1 at. % or more, and the diffusion amount B is 0.07 at.% larger than the diffusion amount C. % or more larger.
  • the "A/B ratio” of Example 3 is "1.07", and the difference in color between the margin layer 5E on the first surface side and the margin layer 5F on the second surface side is small, and the appearance defect evaluation is It is marked “ ⁇ ”.
  • Example 4 the addition amount A is “0.2” and the addition amount B is “0.4”, and the diffusion amount A is 0.1 at. %, and the diffusion amount B is 0.15 at.% larger than the diffusion amount C. Almost % larger.
  • the "A/B ratio” of Example 4 is "0.90", and the difference in color between the margin layer 5E on the first surface side and the margin layer 5F on the second surface side is suppressed, and the appearance defect evaluation is is marked as “ ⁇ ”.
  • Example 5 the addition amount A is “0.4” and the addition amount B is “0.2”, and the diffusion amount A is 0.15 at. % or more, and the diffusion amount B is 0.07 at.% larger than the diffusion amount C. Almost % larger.
  • the "A/B ratio” of Example 5 is "1.21", and the difference in color between the margin layer 5E on the first surface side and the margin layer 5F on the second surface side is suppressed, and the appearance defect evaluation is is marked as “ ⁇ ”.
  • Example 6 the addition amount A is “0.4” and the addition amount B is “0.4", and the diffusion amount A is 0.15 at. % or more, and the diffusion amount B is 0.15 at.% larger than the diffusion amount C. Almost % larger.
  • the "A/B ratio” of Example 6 is "1.06", and the difference in color between the margin layer 5E on the first surface side and the margin layer 5F on the second surface side is small, and the appearance defect evaluation is It is marked “ ⁇ ”.
  • the post-mount crack evaluation was greatly improved when the diffusion amount A was larger than the diffusion amount C.
  • the diffusion amount A is 0.4 at. It was confirmed that a large effect can be obtained at a concentration of % or more.
  • the "A/B ratio” it was confirmed that the difference in color tone was suppressed when the ratio was "0.87" or more and "1.21" or less.
  • FIG. 17 is a perspective view showing the configuration of a ceramic electronic component according to the second embodiment.
  • the chip inductor 31 includes an element body 32 and external electrodes 36A and 36B.
  • the element body 32 includes a coil pattern 33, which is an example of an internal conductor, and a magnetic material 34, which is an example of ceramic.
  • the shape of the element body 32 is, for example, a substantially rectangular parallelepiped shape. Note that the corner portions of the element body 32 may be chamfered along the ridgeline of the element body 32.
  • the element body 32 has a first surface M11 and a second surface M12 facing away from each other.
  • the coil pattern 33 is covered with a magnetic material 34, and the spaces between the spirally wound coil patterns 33 are insulated by the magnetic material 34. Both ends of the coil pattern 33 are drawn out from the magnetic body 34 on the first surface M11 side of the element body 32 and connected to external electrodes 36A and 36B.
  • the material of the coil pattern 33 is, for example, selected from metals such as Cu, Fe, Zn, Al, Sn, Ni, Ti, Ag, Au, Pt, Pd, Ta, and W, or an alloy containing these metals. It's okay.
  • the material of the magnetic body 34 is, for example, ferrite.
  • the external electrodes 36A and 36B are located on the first surface M11 side of the element body 32 while being separated from each other.
  • the external electrodes 36A and 36B are arranged on the first surface M11 along the length direction DL while being spaced apart in the width direction DW.
  • a location on the first surface M11 of the magnetic body 34 contains the first element, and the concentration of the first element at the location on the first surface M11 is equal to the concentration of the first element in the magnetic body 34 located between the coil patterns 33. higher than As a result, the sinterability of the magnetic body 34 is improved at the first surface M11, and the density is increased, so that damage to the element body 32 due to stress applied to the chip inductor 31 via the external electrodes 36A and 36B after mounting is prevented. suppressed.
  • a multilayer ceramic capacitor and a chip inductor are exemplified as ceramic electronic components, but the ceramic electronic component of the present invention may also be a chip resistor, a sensor chip, or the like. Further, in the above-described embodiments, a ceramic electronic component having two external electrodes is exemplified, but the ceramic electronic component of the present invention may have external electrodes having three or more terminals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

外部電極を介してかかる応力による素体の破損を抑制するため、一態様に係るセラミック電子部品は、第1面を有した外形のセラミックと、上記セラミックの一部を挟んで当該セラミック内に設けられた内部導体と、上記第1面上に設けられ、上記内部導体と接続された外部電極と、上記セラミックの焼結性を向上させる第1元素が、当該セラミックのうち上記内部導体に挟まれた箇所における濃度よりも高い濃度で含まれ、上記第1面側に位置する当該セラミックの第1面部分と、を備える。

Description

セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法
 本発明は、セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法に関する。
 セラミック電子部品の実装面積や高さを低減させるため、セラミック電子部品の実装面となる1面のみに外部電極を設け、あるいは当該1面に隣り合う第2面まで亘る外部電極を設ける方法がある(特許文献1、2)。
特許第6816817号公報 特開2015-201612号公報
 しかしながら、セラミック電子部品の実装面となる1面のみ、あるいは実装面と隣り合う第2面を含む2面に外部電極が設けられた場合、セラミック電子部品の実装後に外部電極を介して作用する応力によって素体が破損しやすくなる。
 そこで、本発明は、外部電極を介して作用する応力による素体の破損を抑制することを目的とする。
 上記課題を解決するために、本発明の一態様に係るセラミック電子部品は、第1面を有した外形のセラミックと、上記セラミックの一部を挟んで当該セラミック内に設けられた内部導体と、上記第1面上に設けられ、上記内部導体と接続された外部電極と、上記セラミックの焼結性を向上させる第1元素が、当該セラミックのうち上記内部導体に挟まれた箇所における濃度よりも高い濃度で含まれ、上記第1面側に位置する当該セラミックの第1面部分と、を備える。
 また、本発明の一態様に係るセラミック電子部品によれば、上記第1元素は、Ni、Mn、Sn、Mg、Ba、Zn、Si、B、Al、Cu、Li、Ca、Zr、InおよびTiの内から選択された1つ以上の元素である。第1元素は上記セラミック材料の主成分とは異なる成分である。
 また、本発明の一態様に係るセラミック電子部品によれば、上記第1面部分は、上記第1元素が0.4at.%以上の濃度で含まれる。
 また、本発明の一態様に係るセラミック電子部品によれば、上記外形における上記第1面を除く他の面の箇所に位置し、上記第1元素の濃度が上記第1面部分における濃度の0.87倍以上かつ1.21倍以下である外面部分を更に備える。
 また、本発明の一態様に係るセラミック電子部品によれば、上記外面部分は、上記第1元素が0.5at.%未満の濃度で含まれる。
 また、本発明の一態様に係るセラミック電子部品によれば、上記内部導体は、上記第1元素を含む材料からなり、上記第1面部分は、上記第1元素の拡散を促進する上記第1元素とは異なる第2元素を含む。
 また、本発明の一態様に係るセラミック電子部品によれば、上記第2元素は、SnおよびFeの少なくとも一方である。
 また、本発明の一態様に係るセラミック電子部品によれば、上記外部電極は、導電性樹脂層を含む複数層からなる。
 本発明の一態様に係る回路基板は、上記いずれかのセラミック電子部品と、上記セラミック電子部品がはんだを介して実装された基板と、を備える。
 本発明の一態様に係る電子機器は、上記回路基板を備える。
 本発明の一態様に係るセラミック電子部品の製造方法は、第1面を有した外形のセラミックを形成する工程と、上記セラミックの一部を挟んで当該セラミック内に設けられた内部導体を形成する工程と、上記第1面上に設けられ、上記内部導体と接続された外部電極を形成する工程と、上記セラミックの焼結性を向上させる第1元素が、当該セラミックのうち上記内部導体に挟まれた箇所における濃度よりも高い濃度で含まれ、上記第1面側に位置する当該セラミックの第1面部分を形成する工程と、を有する。
 また、本発明の一態様に係るセラミック電子部品の製造方法によれば、上記第1面部分を形成する工程は、上記内部導体に挟まれた箇所における濃度よりも高い濃度で上記第1元素が添加された材料で当該第1面部分を形成する。
 また、本発明の一態様に係るセラミック電子部品の製造方法によれば、上記内部導体を形成する工程は、上記第1元素を含んだ材料で当該内部導体を形成し、上記第1面部分を形成する工程は、上記第1元素の拡散を促進する第2元素を含む材料で当該第1面部分を形成し、上記セラミックの焼成により当該第1面部分に上記内部導体から上記第1元素を拡散させる。
 本発明によれば、外部電極を介してかかる応力による素体の破損を抑制することができる。
本発明の一実施形態に係るコンデンサの構成例を示す斜視図である。 図1のA-A線に沿った断面図である。 図1のB-B線に沿った断面図である。 第1実施形態に係るコンデンサの製造方法の一例を示すフローチャートである。 コンデンサの製造方法の塗工工程を示す図である。 コンデンサの製造方法の印刷工程を示す図である。 電極層のパターンを示す図である。 コンデンサの製造方法の成型工程を示す第1の図である。 コンデンサの製造方法の成型工程を示す第2の図である。 コンデンサの製造方法の圧着工程を示す図である。 コンデンサの製造方法のカット工程を示す図である。 コンデンサの製造方法のマージン貼付工程を示す第1の図である。 コンデンサの製造方法のマージン貼付工程を示す第2の図である。 脱バインダ工程で得られる素体を示す図である。 第1実施形態に係るコンデンサが実装された回路基板の構成を示す断面図である。 実施例における試験結果を示す表である。 第2実施形態に係るセラミック電子部品の構成を示す斜視図である。
 以下、添付の図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下の実施形態は本発明を限定するものではなく、実施形態で説明されている特徴の組み合わせの全てが本発明の構成に必須のものとは限らない。実施形態の構成は、本発明が適用される装置の仕様や各種条件(使用条件、使用環境等)によって適宜修正または変更され得る。
 本発明の技術的範囲は、特許請求の範囲によって画定され、以下の個別の実施形態によって限定されない。以下の説明に用いる図面は、各構成を分かり易くするため、実際の構造と縮尺および形状などを異ならせることがある。先に説明した図面に示された構成要素については、後の図面の説明で適宜に参照する場合がある。
(第1実施形態)
 図1~図3は、本発明の一実施形態に係るコンデンサの構成例を示す図である。図1には、一部が断面となった斜視図が示され、図2には、図1のA-A線に沿った断面が示され、図3には、図1のB-B線に沿った断面が示されている。本実施形態では、電子部品の一例としてコンデンサ1が採用されている。
 コンデンサ1は、いわゆる積層セラミックコンデンサである。コンデンサ1は実装基板上に実装され、その実装基板上に実装される半導体チップに加わるノイズの除去などに使用される。コンデンサ1は、素体2および外部電極6A、6Bを備え、内部導体とセラミックを備えた素体2は、セラミックの一部として積層体2Aとカバー層5A、5Bとマージン層5C、5D、5E、5Fを備える。
 本明細書においては、文脈上別に解される場合を除き、方向の説明は、図1の「DL軸」方向、「DW軸」方向および「DH軸」方向を基準に用い、それぞれ、「長さ」方向、「幅」方向および「高さ」方向と称する。
 素体2および積層体2Aの形状は、製造の容易性や実装密度向上などの目的で、略直方体形状とされるのが好ましい。素体2は、素体2の稜線に沿って角部が面取りされてもよい。素体2は、互いに背を向けた第1面M1と第2面M2を備え、第1面M1は、コンデンサ1が基板上に実装される際に基板と対向する実装面である。第1面M1を素体2の下面と称し、第2面M2を素体2の上面と称する場合がある。
 積層体2Aは、内部導体の一例である内部電極層3A、3Bと、セラミックの一部である誘電体層4を備え、内部電極層3A、3Bおよび誘電体層4は、幅方向DWと高さ方向DHとに広がる層である。積層体2Aは、内部電極層3A、3Bと誘電体層4が長さ方向DLに交互に積み重ねられた構造を有する。また、内部電極層3A、3Bに着目すると、2種類の内部電極層3A、3Bが交互に積まれている。なお、図1~図3では、合計で10層の内部電極層3A、3Bが積層された例が示されているが、内部電極層3A、3Bの積層数は特に限定されない。
 カバー層5A、5Bは、積層体2Aの積層方向(長さ方向DL)における両端に設けられている。マージン層5C、5D、5E、5Fは、積層体2Aの積層方向(長さ方向DL)に垂直な4方それぞれに設けられている。つまり、積層体2Aはカバー層5A、5Bに挟まれ、マージン層5C、5D、5E、5Fに囲まれている。
 但し、マージン層5C、5D、5E、5Fのうち、素体2の第1面M1側に位置するマージン層5Eは、第1面M1の一部に対応する箇所に設けられており、マージン層5Eが設けられていない箇所で内部電極層3A、3Bが第1面M1に引き出されている。即ち、各内部電極層3A、3Bには、素体2の第1面M1側に位置する引き出し部RA、RBが設けられている。
 外部電極6A、6Bは、幅方向DWに互いに分離された状態で第1面M1上に並列して位置する。幅方向DWにおける外部電極6A、6Bの間隔は、例えば110μm以上である。内部電極層3A、3Bは、第1面M1で外部電極6A、6Bと接続されている。詳細には、2種類の内部電極層3A、3Bのうち一方の内部電極層3Aは、2つの外部電極6A、6Bのうち一方の外部電極6Aに引き出し部RAを介して接続されている。そして、他方の内部電極層3Bは、他方の外部電極6Bに引き出し部RBを介して接続されている。
 外部電極6A、6Bが素体2の第1面M1上に配置されることにより、外部電極6A、6Bが高さ方向DHに突出したり、外部電極6A、6Bが幅方向DWおよび長さ方向DLにはみ出したりすることが防止される。このため、コンデンサ1の低背化が図られつつ、コンデンサ1の実装面積が低減される。また、コンデンサ1のLSC(Land-Side Capacitor)実装が可能となり、実装密度が向上する。
 なお、外部電極6A、6Bは、素体2の第1面M1と隣り合う第2面を含む2面に配置されてもよい。外部電極6A、6Bが素体2の2面に配置された場合、1面のみの配置に較べてコンデンサ1の実装強度が向上する。
 各外部電極6A、6Bは、素体2の第1面M1上に形成された下地層7と、下地層7上に積層されためっき層9を備える。下地層7は、幅方向DWに互いに分離された状態で長さ方向DLに沿って並列して素体2の第1面M1上に形成される。
 下地層7の導電性材料は、例えば、Cu、Fe、Zn、Al、Ni、Pt、Pd、Ag、AuおよびSnから選択される少なくとも1つを含む金属または合金を主成分とする。
 下地層7は、金属が混在された共材を含んでもよい。共材は、下地層7中に島状に混在することで素体2と下地層7との間の熱膨張率の差を低減し、下地層7にかかる応力を緩和することができる。共材は、例えば、誘電体層4の主成分であるセラミック成分である。下地層7は、ガラス成分を含んでいてもよい。ガラス成分は、下地層7に混在することで下地層7を緻密化することができる。このガラス成分は、例えば、Ba、Sr、Ca、Zn、Al、SiまたはB(ホウ素)などの酸化物である。
 下地層7は、誘電体材料を含む塗布膜の焼結体で構成されてもよい。これにより、素体2と下地層7との密着性が確保されつつ、下地層7の厚膜化が図られることとなり、各外部電極6A、6Bの強度が確保されつつ、内部電極層3A、3Bとの導通性が確保される。下地層7は、導電性樹脂層であってもよい。下地層7が導電性樹脂層であると、はんだを介して外部電極6A、6Bに掛かる応力が分散され、応力による素体2の破損が抑制される。
 めっき層9は、下地層7を覆うように外部電極6A、6Bごとに連続的に形成される。このとき、めっき層9は、下地層7を介して内部電極層3A、3Bと導通する。また、めっき層9は、はんだを介して実装基板の端子と導通する。
 めっき層9の材料は、例えば、Cu、Fe、Zn、Al、Ni、Pt、Pd、Ag、AuおよびSnから選択される少なくとも1つを含む金属または合金である。めっき層9は、単一金属成分のめっき層でもよく、互いに異なる金属成分の複数のめっき層でもよい。
 めっき層9は、例えば、下地層7上に形成されたCuめっき層と、Cuめっき層上に形成されたNiめっき層と、Niめっき層上に形成されたSnめっき層の3層構造を有する。Cuめっき層は、下地層7へのめっき層9の密着性を向上させることができる。Niめっき層は、はんだ付け時の各外部電極6A、6Bの耐熱性を向上させることができる。Snめっき層は、めっき層9に対するはんだの濡れ性を向上させることができる。
 内部電極層3A、3Bおよび誘電体層4の積層方向の厚みはそれぞれ、例えば0.05μm~5μmの範囲内とされ、例えば、0.3μmである。内部電極層3A、3Bの材料としては導電性の高い金属が主成分として用いられ、例えば、Cu、Fe、Zn、Al、Ni、Pt、Pd、Ag、AuおよびSnから選択される少なくとも1つを含む金属または合金であってよい。
 誘電体層4の材料は、例えば、ペロブスカイト構造を有するセラミック材料を主成分とすることができる。なお、主成分は、50at%以上の割合で含まれていればよい。誘電体層4のセラミック材料は、例えば、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウムストロンチウム、チタン酸バリウムカルシウム、ジルコン酸カルシウム、ジルコン酸バリウムおよびチタン酸ジルコン酸カルシウムなどから選択される。
 カバー層5A、5Bおよびマージン層5C~5Fの材料は、例えば、セラミック材料が主成分となる。このとき、カバー層5A、5Bおよびマージン層5C~5Fのセラミック材料の主成分は、誘電体層4のセラミック材料の主成分と同一であってもよい。
 マージン層5C~5Fのうち、第1面M1側に位置するマージン層5Eには、セラミックの焼結性を向上させる元素(第1元素)が含まれる。第1元素は、例えば、Ni、Mn、Sn、Mg、Ba、Zn、Si、B、Al、Cu、Li、Ca、Zr、InおよびTiから選択された1つ以上の元素である。第1元素の濃度は、誘電体層4における濃度よりもマージン層5Eにおける濃度の方が高い。
 実装後のコンデンサ1において外部電極を介してかかる応力による素体2の破損は第1面M1側で生じやすい。第1面M1側に位置するマージン層5Eが誘電体層4における濃度よりも高い濃度で第1元素を含むことにより、緻密性が促進されて素体2の破損が抑制される。特に、第1元素がNiである場合には、0.4at.%以上の濃度で第1面M1側のマージン層5Eに含まれることが望ましい。
 第1元素は、マージン層5Eの形成材料に予め添加されたものでもよいし、あるいは、内部電極層3A、3Bの材料に含まれてマージン層5Eに拡散されたものでもよい。第1元素が内部電極層3A、3Bからマージン層5Eに拡散される場合、マージン層5Eには、第1元素の拡散を促進する元素(第2元素)が含まれることが好ましい。第2元素は、例えば、SnおよびFeの少なくとも一方である。
 マージン層5C~5Fのうち、第2面M2側に位置するマージン層5Fにも第1元素が含まれることが望ましい。第2面M2側のマージン層5Fにおける第1元素の濃度に対し、第1面M1側のマージン層5Eにおける第1元素の濃度が0.87倍以上かつ1.21倍以下であることが望ましい。第2面M2側のマージン層5Fが当該割合で第1元素を含むことにより、第1面M1側のマージン層5Eと第2面M2側のマージン層5Fとの色味の差が抑制され、外観検査時の不良判定が減る。特に、第1元素がNiである場合には、0.5at.%以下の濃度で第2面M2側のマージン層5Fに含まれることが望ましい。
 第1元素の添加量が多いとマージン層5Fが高硬度化してしまい、メッキの際にチップのクラックや欠けが発生しやすくなってしまうことがある。例えば第1実施形態に係るコンデンサ1の場合、従来のコンデンサと比べ、外部電極6A、6Bに覆われていない素体2の露出面積が大きいため、外部電極6A、6Bにかかる応力等によるクラックや欠けが入りやすくなってしまう。このため、マージン層5Fにおける第1元素の濃度が上記のように調整されることで、外部電極6A、6Bにかかる応力による破損を抑制できる程度にマージン層5Fが緻密化されることが、例えば第1実施形態に係るコンデンサ1の構造では特に望ましい。
 図4は、第1実施形態に係るコンデンサの製造方法の一例を示すフローチャートである。図5~図14は、第1実施形態に係るコンデンサの製造方法の一例を示す図である。
 図5、図6、図10、図11、図14には断面図が示され、図7には平面図が示され、図8、図9には斜視図が示されている。図12(A)、図13(A)には、平面図が示され、図12(B)、図13(B)には、斜視図が示されている。なお、図示の便宜上、内部電極の積層数は正確ではない。
 図4の配合工程(S1)では、有機溶剤と、分散剤および成形助剤としての有機バインダとが誘電体材料粉末に加えられ、粉砕・混合されて泥状のスラリが生成される。誘電体材料粉末は、例えば、セラミック粉末を含む。誘電体材料粉末は、添加物を含んでいてもよい。添加物は、例えば、Mg、Mn、V、Cr、Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Co、Ni、Li、B、Na、KまたはSiの酸化物もしくはガラスである。有機バインダは、例えば、ポリビニルブチラール樹脂またはポリビニルアセタール樹脂である。有機溶剤は、例えば、エタノールまたはトルエンである。
 次に、図4の塗工工程(S2)では、図5に示すように、セラミック粉末を含むスラリがキャリアフィルム上にシート状に塗布されて乾燥され、グリーンシート24が作製される。キャリアフィルムは、例えば、PET(ポリエチレンテレフタレート)フィルムである。スラリの塗布には、ドクターブレード法、ダイコータ法またはグラビアコータ法などが用いられる。
 次に、図4の印刷工程(S3)では、図6に示すように、グリーンシート24上に内部電極用導電ペーストが所定のパターンとなるように塗布されて電極含有層23の前駆体が形成される。このとき、図7に示すように、電極含有層23の前駆体には、上記所定パターンの電極部分23aの前駆体と、当該所定パターンとは逆パターン(即ち当該所定パターンと補い合うことで、合わせて連続した電極含有層23を形成するパターン)のマージン部分23bの前駆体とが形成される。電極含有層23の前駆体には、後の工程においてカットラインCLでカットされる複数個の素体2に相当する連続パターンで電極部分23aの前駆体とマージン部分23bの前駆体が形成される。
 電極部分23aの内部電極用導電ペーストは、内部電極層3A、3Bの材料として用いられる金属の粉末を含む。例えば、内部電極層3A、3Bの材料として用いられる金属がNiの場合、内部電極用導電ペーストは、Niの粉末を含む。また、内部電極用導電ペーストは、バインダと、溶剤と、必要に応じて助剤とを含む。内部電極用導電ペーストは、共材として、誘電体層4の主成分であるセラミック材料を含んでいてもよい。内部電極用導電ペーストの塗布には、スクリーン印刷法、インクジェット印刷法またはグラビア印刷法などが用いられる。
 マージン部分23bは、グリーンシート24用のスラリと同様のスラリが塗布されて乾燥された部分である。但し、マージン部分23b用のスラリには、第1元素および第2元素の少なくとも一方が含まれている。
 マージン部分23b用のスラリに第1元素が含まれて第2元素は含まれない場合、マージン部分23b用のスラリにおける第1元素の濃度は、グリーンシート24における第1元素の濃度よりも高い。マージン部分23b用のスラリに第2元素が含まれる場合、電極部分23aの内部電極用導電ペーストには第1元素が含まれる。また、マージン部分23b用のスラリには、マージン部分23bでの第1元素の濃度がグリーンシート24における濃度よりも高い濃度となるように第1元素の拡散を十分に促進する量の第2元素が含まれる。
 次に、図4の成型工程(S4)では、図8に示すように複数のグリーンシート24が、電極部分23aおよびマージン部分23bの位置が交互にずれた状態で積層される。更に、成型工程では図9に示すように、電極含有層23が形成されたグリーンシート24と、電極含有層23が形成されていない外層用のグリーンシート25が積み重ねられて積層ブロックが成型される。なお、図8および図9には、1つ分の素体2に相当する部分が示されているが、実際には素体2の複数個に相当する連続パターンとなっている。
 次に、図4の圧着工程(S5)では、積層ブロックがプレスされて、図10に示すように電極層23とグリーンシート24、25が圧着される。積層ブロックのプレス方法として、例えば、積層ブロックを樹脂フィルムで挟んで静水圧プレスする方法などが用いられる。
 次に、図4のカット工程(S6)では、図11に示すように、プレスされた積層ブロックがカットラインCLで切断され、直方体形状のブロック片2Bに個片化される。個片化された各ブロック片2Bは、積層体2Aとカバー層5A、5Bと第1面M1側のマージン層5Eとを併せたものに相当する。図11に示すカットラインCLは、図7に示すカットラインCLと同じ位置である。積層ブロックの切断には、例えば、ブレードダイシングなどの方法が用いられる。
 次に、図4のマージン貼付工程(S7)では、図12あるいは図13に示すように、個片化されたブロック片2Bに対し、マージン用グリーンシート26が貼り付けられる。図12(A)および図13(A)には平面図が示され、図12(B)および図13(B)には斜視図が示されている。マージン用グリーンシート26は、例えば図12に示す3面貼付けや、図13に示すロール貼付けによってブロック片2Bの3方に貼り付けられる。
 図12に示す3面貼付けでは、各面のサイズにカットされたマージン用グリーンシート26がブロック片2Bに貼り付けられる。図13に示すロール貼付けでは、ブロック片2Bの一角27Aから3方を経て他の角27Bまで、マージン用グリーンシート26がブロック片2Bに巻き付くように貼り付けられる。そして、マージン用グリーンシート26は他の角27Bの箇所でカットされる。
 マージン用グリーンシート26の材料としては、例えば、誘電体層4用のグリーンシート24あるいはマージン部分23bと同様の材料が用いられる。
 次に、図4の脱バインダ工程(S8)では、マージン用グリーンシート26が貼り付けられたブロック片2Bに含まれるバインダが加熱によって除去される。脱バインダ工程では、例えば、約350℃のN雰囲気中で素体が加熱される。脱バインダ工程により、図14に示すようにマージン層5C~5Fを有した素体2が得られる。
 次に、図4の下地塗布工程(S9)では、素体2の第1面M1に下地層用導電ペーストが塗布されて乾燥される。下地層用導電ペーストの塗布には、例えば、ディッピング法が用いられる。下地層用導電ペーストは、下地層7の導電性材料として用いられる金属の粉末またはフィラーを含む。例えば、下地層7の導電性材料として用いられる金属がCuの場合、下地層用導電ペーストは、Cuの粉末またはフィラーを含む。また、下地層用導電ペーストは、例えば共材としてガラス成分を含んでよい。また、下地層用導電ペーストは、バインダと、溶剤とを含む。
 次に、図4の焼成工程(S10)では、下地層用導電ペーストが塗布された素体が焼成され、内部電極層3A、3Bと誘電体層4が一体化されるとともに、素体2に下地層7が一体化される。素体および下地層用導電ペーストの焼成は、例えば、焼成炉にて1000~1400℃で10分~2時間行う。内部電極層3A、3BにNiまたはCuなどの卑金属が使用される場合は、内部電極層3A、3Bの酸化防止のため、焼成炉内が還元雰囲気にされて焼成される。
 次に、図4のめっき工程(S11)では下地層7上に、一例としてCu層とNi層とSn層がめっきで順次形成されてめっき層9が形成されて、コンデンサ1が得られる。めっき工程では、例えば、下地層7が形成された素体2が、めっき液とともにバレルに収容され、バレルが回転されて通電されることによりめっき層9が形成される。
 図15は、第1実施形態に係るコンデンサが実装された回路基板の構成を示す断面図である。
 回路基板10は、第1の基板41と第2の基板45とを備えている。回路基板10は、様々な電子機器に備えられる。回路基板10を備えた電子機器としては、自動車の電装品、サーバ、ボードコンピュータおよびこれら以外の様々な電子機器が想定される。
 第1の基板41の裏面側には、ランド電極42A、42B、44A、44Bが形成されている。コンデンサ1は、各外部電極6A、6Bのめっき層9にそれぞれ付着されたはんだ層43A、43Bを介して、コンデンサ実装用のランド電極42A、42Bに接続される。第1の基板41の裏面側の他のランド電極44A、44B上には、例えばはんだボール47A、47Bが形成される。
 第1の基板41の表面側には、例えば不図示の半導体チップが実装される。この半導体チップは、マイクロプロセッサであってもよいし、半導体メモリであってもよいし、FPGA(Field-Programmable Gate Array)であってもよいし、ASIC(Application Specific Integrated Circuit))であってもよい。
 第1の基板41の裏面側にコンデンサ1が実装されることにより、第1の基板41の表面側に実装される半導体チップの裏面側にコンデンサ1が配置されることになる。このため、第1の基板41の表面側に実装される半導体チップの近接箇所にコンデンサ1が実装可能となり、半導体チップに加わるノイズが効果的に除去される。
 第2の基板45の裏面側には、ランド電極46A、46Bが形成されている。第1および第2の基板41、45は、はんだボール47A、47Bを介して互いに接続される。第2の基板45は、例えば、第1の基板41が実装されるマザーボードとして用いられる。
 第1および第2の基板41、45の間は、はんだボール47A、47Bを介して一定の間隔に維持される。また、第1および第2の基板41、45の間には、コンデンサ1を封止する樹脂48が充填される。この樹脂48は、例えば、エポキシ樹脂である。この樹脂48は、はんだボール47A、47Bを介して第1および第2の基板41、45が互いに接続された後、基板41、45間に注入され、硬化されてもよい。樹脂48は、コンデンサ1、はんだ層43A、43Bおよびはんだボール47A、47Bを覆い、素体2の上面に密着する。
 外部電極6A、6Bが素体2の第1面M1上に配置されることにより、外部電極6A、6Bが高さ方向DHに突出したり、はんだ層43A、43Bがコンデンサ1上に濡れ上がったりすることが防止され、コンデンサ1の実装後の高さが抑制される。このため、はんだボール47A、47Bを介して互いに接続された基板41、45間の隙間にコンデンサ1が収容可能となり、LSC実装が実現される。外部電極6A、6Bは、素体2の第1面M1と隣り合う第2面を含む2面に配置されてもよく、1面のみの配置に較べてコンデンサ1の実装強度が向上する。
 また、コンデンサ1の実装後に外部電極6A、6Bを介して素体2に応力が集中する場合においても、素体2の第1面M1側でマージン層5Eの緻密性が促進されていることで素体2の破損が抑制される。
(実施例)
 上述した実施形態のコンデンサ1について、具体的な数値を適用した実施例について以下説明する。
 図16は、実施例における試験結果を示す表である。
 図16には、3つの比較例と6つの実施例における試験結果が示されている。図16に示す比較例および実施例では、第1元素の一例としてNiが用いられ、内部電極層3A、3BにはNiが含まれている。
 図16には、素体2の第1面側のマージン層5EにおけるNiの添加量が「添加量A」として記載され、素体2の第2面側のマージン層5FにおけるNiの添加量が「添加量B」として記載されている。また、第1面側のマージン層5EにおけるNiの拡散量が「拡散量A」として記載され、第2面側のマージン層5FにおけるNiの拡散量が「拡散量B」として記載され、誘電体層4におけるNiの拡散量が「拡散量C」として記載されている。拡散量Bに対する拡散量Aの比率は「A/B比」として記載されている。
 ここで、拡散量とは、内部電極層3A、3Bから拡散されたNiと、添加されたNiとを含んだNiの総量を意味する。添加量および拡散量としては、全原子に対するNi原子の存在濃度がat.%で表されている。
 図16には、マウント後の歪などが想定された強度試験におけるクラック発生の評価(マウント後クラック評価)と、バルクが用いられためっきにおけるクラック発生の評価(めっき時クラック評価)と、外観検査における不良発生の評価(外観不良評価)も示されている。これらの評価は、「×」、「〇」、「◎」の記号で示されており、発生率が0%では「◎」評価、発生率が5%未満では「〇」評価、発生率が5%以上では「×」評価となっている。
 3つの比較例では、いずれも添加量Aが「0」であり、拡散量Aは内部電極層3A、3Bから拡散されたNiのみの濃度となっていて、3つの比較例における拡散量Aは拡散量Cとほぼ同じ値となっている。このため、3つの比較例では、いずれも第1面側のマージン層5Eにおける緻密性が低く、マウント後クラック評価は「×」となっている。
 比較例1では添加量Bも「0」であり、拡散量Bも拡散量Cとほぼ同じ値であるので「A/B比」は、「1.09」となっている。このため、第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は小さく、外観不良評価は「◎」となっている。また、めっき時クラック評価も「◎」となっている。
 比較例2では、添加量Bが「0.2」となっていて「A/B比」は「0.87」となっている。このため、第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は抑制され、外観不良評価は「〇」となっている。
 比較例3では、添加量Bが「0.4」となっていて「A/B比」は「0.67」となっている。このため、第1面側のマージン層5Eと第2面側のマージン層5Fとで色味の差が大きく、外観不良評価は「×」となっている。
 一方、実施例1では、添加量Aが「0.2」で添加量Bが「0」となっており、拡散量Aは拡散量Cよりも0.1at.%以上大きく、拡散量Bは拡散量Cと大差ない。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価も「◎」となっている。実施例1では「A/B比」が「1.41」となっているため、第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差が大きく、外観不良評価は「×」となっている。
 実施例2では、添加量Aが「0.6」で添加量Bが「0.4」となっており、拡散量Aは拡散量Cの倍に近く、拡散量Bも拡散量Cより0.1at.%以上大きい。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価は「〇」となっている。実施例2の「A/B比」は実施例1に近い「1.38」となっているため、実施例1と同様に外観不良評価は「×」となっている。
 実施例3では、添加量Aが「0.2」で添加量Bも「0.2」となっており、拡散量Aは拡散量Cよりも0.1at.%以上大きく、拡散量Bは拡散量Cより0.07at.%以上大きい。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価は「〇」となっている。実施例3の「A/B比」は「1.07」となっていて第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は小さく、外観不良評価は「◎」となっている。
 実施例4では、添加量Aが「0.2」で添加量Bが「0.4」となっており、拡散量Aは拡散量Cよりも0.1at.%近く大きく、拡散量Bは拡散量Cよりも0.15at.%近く大きい。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価は「〇」となっている。実施例4の「A/B比」は「0.90」となっていて第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は抑制され、外観不良評価は「〇」となっている。
 実施例5では、添加量Aが「0.4」で添加量Bが「0.2」となっており、拡散量Aは拡散量Cよりも0.15at.%以上大きく、拡散量Bは拡散量Cよりも0.07at.%近く大きい。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価は「〇」となっている。実施例5の「A/B比」は「1.21」となっていて第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は抑制され、外観不良評価は「〇」となっている。
 実施例6では、添加量Aが「0.4」で添加量Bが「0.4」となっており、拡散量Aは拡散量Cよりも0.15at.%以上大きく、拡散量Bは拡散量Cよりも0.15at.%近く大きい。この結果、マウント後クラック評価は「◎」となり、めっき時クラック評価は「〇」となっている。実施例6の「A/B比」は「1.06」となっていて第1面側のマージン層5Eと第2面側のマージン層5Fとの色味の差は小さく、外観不良評価は「◎」となっている。
 図16に示す結果によると、拡散量Aが拡散量Cよりも大きいことでマウント後クラック評価が大きく改善されることが確認された。特に第1元素がNiの場合、拡散量Aが0.4at.%以上で大きな効果が得られることが確認された。さらに「A/B比」については、「0.87」以上かつ「1.21」以下で色味の差が抑制されることが確認された。
(第2実施形態)
 図17は、第2実施形態に係るセラミック電子部品の構成を示す斜視図である。なお、図17では、セラミック電子部品の一例としてチップインダクタが示されている。
 チップインダクタ31は、素体32および外部電極36A、36Bを備える。素体32は、内部導体の一例であるコイルパターン33と、セラミックの一例である磁性体34を備える。素体32の形状は、例えば略直方体形状である。なお、素体32は、素体32の稜線に沿って角部が面取りされてもよい。素体32は、互いに背を向けた第1面M11と第2面M12と有する。
 コイルパターン33は、磁性体34によって覆われているとともに、螺旋状に巻いたコイルパターン33の間が磁性体34によって絶縁されている。コイルパターン33の両端は、素体32の第1面M11側で磁性体34から引き出され、外部電極36A、36Bに接続されている。
 コイルパターン33の材料は、例えば、Cu、Fe、Zn、Al、Sn、Ni、Ti、Ag、Au、Pt、Pd、TaおよびWなどの金属から選択され、あるいはこれらの金属を含む合金であってもよい。磁性体34の材料は、例えば、フェライトである。
 外部電極36A、36Bは、互いに分離された状態で素体32の第1面M11側に位置する。外部電極36A、36Bは幅方向DWに離間した状態で長さ方向DLに沿って第1面M11上に配置される。
 磁性体34の第1面M11の箇所は第1元素を含んでおり、第1面M11の箇所における第1元素の濃度は、コイルパターン33の間に位置する磁性体34における第1元素の濃度よりも高い。この結果、第1面M11の箇所で磁性体34の焼結性が向上し、緻密性が増すため、実装後にチップインダクタ31に外部電極36A、36Bを介して掛かる応力による素体32の破損が抑制される。
 なお、上述した実施形態では、セラミック電子部品として積層セラミックコンデンサおよびチップインダクタが例示されているが、本発明のセラミック電子部品は、チップ抵抗やセンサチップなどであってもよい。また、上述した実施形態では、2端子の外部電極を持つセラミック電子部品が例示されているが、本発明のセラミック電子部品は3端子以上の外部電極を持つものであってもよい。
 1 コンデンサ, 2 素体, 2A 積層体, 3A、3B 内部電極層, 4 誘電体層, 5A、5B カバー層, 5C、5D、5E、5F マージン層, 6A、6B 外部電極, 7 下地層, 9 めっき層, 31 チップインダクタ, 32 素体, 33 コイルパターン, 34 磁性体, 36A、36B 外部電極

Claims (13)

  1.  第1面を有した外形のセラミックと、
     前記セラミックの一部を挟んで当該セラミック内に設けられた内部導体と、
     前記第1面上に設けられ、前記内部導体と接続された外部電極と、
     前記セラミックの焼結性を向上させる第1元素が、当該セラミックのうち前記内部導体に挟まれた箇所における濃度よりも高い濃度で含まれ、前記第1面側に位置する当該セラミックの第1面部分と、
    を備えることを特徴とするセラミック電子部品。
  2.  前記第1元素は、Ni、Mn、Sn、Mg、Ba、Zn、Si、B、Al、Cu、Li、Ca、Zr、InおよびTiの内から選択された1つ以上の元素であることを特徴とする請求項1に記載のセラミック電子部品。
  3.  前記第1面部分は、前記第1元素が0.4at.%以上の濃度で含まれることを特徴とする請求項1に記載のセラミック電子部品。
  4.  前記外形における前記第1面を除く他の面の箇所に位置する外面部分における前記第1元素の濃度に対し、前記第1面部分における前記第1元素の濃度が0.87倍以上かつ1.21倍以下であることを特徴とする請求項1に記載のセラミック電子部品。
  5.  前記外面部分は、前記第1元素が0.5at.%未満の濃度で含まれることを特徴とする請求項4に記載のセラミック電子部品。
  6.  前記内部導体は、前記第1元素を含む材料からなり、
     前記第1面部分は、前記第1元素の拡散を促進する第2元素を含むことを特徴とする請求項1に記載のセラミック電子部品。
  7.  前記第2元素は、SnおよびFeの少なくとも一方であることを特徴とする請求項6に記載のセラミック電子部品。
  8.  前記外部電極は、導電性樹脂層を含む複数層からなることを特徴とする請求項1に記載のセラミック電子部品。
  9.  請求項1から8のいずれか1項に記載のセラミック電子部品と、
     前記セラミック電子部品がはんだを介して実装された基板と、
    を備えることを特徴とする回路基板。
  10.  請求項9に記載の回路基板を備えることを特徴とする電子機器。
  11.  第1面を有した外形のセラミックを形成する工程と、
     前記セラミックの一部を挟んで当該セラミック内に設けられた内部導体を形成する工程と、
     前記第1面上に設けられ、前記内部導体と接続された外部電極を形成する工程と、
     前記セラミックの焼結性を向上させる第1元素が、当該セラミックのうち前記内部導体に挟まれた箇所における濃度よりも高い濃度で含まれ、前記第1面側に位置する当該セラミックの第1面部分を形成する工程と、
    を有することを特徴とするセラミック電子部品の製造方法。
  12.  前記第1面部分を形成する工程は、前記内部導体に挟まれた箇所における濃度よりも高い濃度で前記第1元素が添加された材料で当該第1面部分を形成することを特徴とする請求項11に記載のセラミック電子部品の製造方法。
  13.  前記内部導体を形成する工程は、前記第1元素を含んだ材料で当該内部導体を形成し、
     前記第1面部分を形成する工程は、前記第1元素の拡散を促進する第2元素を含む材料で当該第1面部分を形成し、前記セラミックの焼成により当該第1面部分に前記内部導体から前記第1元素を拡散させることを特徴とする請求項11に記載のセラミック電子部品の製造方法。
     
PCT/JP2023/018896 2022-08-31 2023-05-22 セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法 WO2024047966A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022137750 2022-08-31
JP2022-137750 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024047966A1 true WO2024047966A1 (ja) 2024-03-07

Family

ID=90099317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018896 WO2024047966A1 (ja) 2022-08-31 2023-05-22 セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法

Country Status (1)

Country Link
WO (1) WO2024047966A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220476A (ja) * 2013-04-30 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板
JP2020167198A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 積層セラミックコンデンサ
JP2022100208A (ja) * 2020-12-23 2022-07-05 サムソン エレクトロ-メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220476A (ja) * 2013-04-30 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板
JP2020167198A (ja) * 2019-03-28 2020-10-08 株式会社村田製作所 積層セラミックコンデンサ
JP2022100208A (ja) * 2020-12-23 2022-07-05 サムソン エレクトロ-メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板

Similar Documents

Publication Publication Date Title
US7495883B2 (en) Multilayer ceramic capacitor and method for manufacturing the same
US11915879B2 (en) Electronic component, circuit board arrangement and method of manufacturing electronic component
US11875946B2 (en) Ceramic electronic component, substrate arrangement, and method of manufacturing ceramic electronic component
US20130201600A1 (en) Ceramic electronic component
US20220301778A1 (en) Ceramic electronic component, substrate arrangement, and method of manufacturing ceramic electronic component
US11626247B2 (en) Electronic component, circuit board arrangement, and method of manufacturing electronic component
US20220301772A1 (en) Multilayer ceramic capacitor, a method of manufacturing the same and a substrate arrangement
US11631542B2 (en) Electronic component, circuit board arrangement and method of manufacturing electronic component
JP2022142214A (ja) セラミック電子部品、実装基板およびセラミック電子部品の製造方法
CN111755247B (zh) 层叠陶瓷电容器以及层叠陶瓷电容器的制造方法
JP2022085195A (ja) セラミック電子部品、実装基板およびセラミック電子部品の製造方法
WO2024047966A1 (ja) セラミック電子部品、回路基板、電子機器およびセラミック電子部品の製造方法
US20220238278A1 (en) Ceramic electronic component, circuit board arrangement, and method of manufacturing ceramic electronic component
US20220172900A1 (en) Ceramic electronic component, substrate arrangement and method of manufacturing ceramic electronic component
US11776756B2 (en) Ceramic electronic component, substrate arrangement and method of manufacturing ceramic electronic component
US11996243B2 (en) Ceramic electronic component and substrate arrangement
US20220399164A1 (en) Ceramic electronic component, mounting substrate arrangement, and methods of manufacturing ceramic electronic component
WO2024062684A1 (ja) 積層セラミックコンデンサ
US20220328251A1 (en) Ceramic electronic component, circuit substrate arrangement, and method of manufacturing ceramic electronic component
WO2024034187A1 (ja) 電子部品、回路基板、電子機器および電子部品の製造方法
WO2024095583A1 (ja) 積層セラミックコンデンサ
JP2022129463A (ja) セラミック電子部品、回路基板およびセラミック電子部品の製造方法
JP2023058775A (ja) セラミック電子部品、実装基板およびセラミック電子部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859736

Country of ref document: EP

Kind code of ref document: A1