WO2024047863A1 - Electric motor, air conditioner, and control board - Google Patents

Electric motor, air conditioner, and control board Download PDF

Info

Publication number
WO2024047863A1
WO2024047863A1 PCT/JP2022/033111 JP2022033111W WO2024047863A1 WO 2024047863 A1 WO2024047863 A1 WO 2024047863A1 JP 2022033111 W JP2022033111 W JP 2022033111W WO 2024047863 A1 WO2024047863 A1 WO 2024047863A1
Authority
WO
WIPO (PCT)
Prior art keywords
built
power transistors
board
control board
electric motor
Prior art date
Application number
PCT/JP2022/033111
Other languages
French (fr)
Japanese (ja)
Inventor
隼一郎 尾屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/033111 priority Critical patent/WO2024047863A1/en
Publication of WO2024047863A1 publication Critical patent/WO2024047863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports

Definitions

  • the present disclosure relates to an electric motor equipped with an inverter, an air conditioner, and a control board.
  • the electric motor described in Patent Document 1 is configured integrally with a control board on which an inverter is mounted. In this motor, in order to improve heat dissipation, some of the power relays and switching elements and the remaining parts are mounted on different surfaces of the control board.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor that can greatly suppress the temperature rise of a control board.
  • the electric motor of the present disclosure includes a stator, a rotor, and a control board having an inverter circuit that supplies current to the stator.
  • the inverter circuit includes a plurality of power transistors in an upper arm and a plurality of power transistors in a lower arm.
  • the power transistors of the upper arm and the lower arm that undergo more switching are disposed in a distributed manner on a first surface of the control board and a second surface opposite to the first surface.
  • the electric motor according to the present disclosure has the effect of greatly suppressing the temperature rise of the control board.
  • a diagram for explaining an example of switching performed by the electric motor according to the first embodiment A diagram showing the arrangement positions of power transistors arranged on the built-in board of the electric motor according to Embodiment 1.
  • 1 is a sectional view schematically showing a first internal configuration example of the electric motor according to the first embodiment;
  • FIG. A sectional view schematically showing a second internal configuration example of the electric motor according to the first embodiment.
  • a diagram schematically showing a second arrangement example of power transistors on the built-in substrate according to the first embodiment A diagram showing a comparative example electric motor Schematic diagram of an air conditioner according to Embodiment 2
  • FIG. 1 is a diagram showing a configuration example of an electric motor according to a first embodiment.
  • the electric motor 1 is a three-phase electric motor, but the electric motor 1 of the first embodiment is not limited to a three-phase electric motor.
  • the electric motor 1 is a brushless DC (Direct Current) motor.
  • a brushless DC (Direct Current) motor In FIG. 1, in order to explain the configuration of the electric motor 1, a part of the structure is shown in cross section.
  • FIG. 1 shows a radial gap type brushless DC motor, the electric motor 1 of the first embodiment is not limited to the radial gap type brushless DC motor.
  • the electric motor 1 includes a rotor 30, a stator 20, a built-in board 11 that is a control board, and a molded resin 12.
  • a rotating shaft 31 is inserted into the rotor 30 .
  • the stator 20 is provided on the outer periphery of the rotor 30.
  • the built-in board 11 has a board circuit that is a circuit that controls the drive of the rotor 30.
  • the stator 20, the built-in substrate 11, and the molded resin 12 are fixed by the molded stator 10.
  • the molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11 (insert molding so that they are integrated). That is, the stator 20 and the built-in board 11 are fixed by the molded stator 10 so as to be integrated. Moreover, a recessed portion formed to accommodate the rotor 30 is provided inside the molded stator 10. Note that the stator 20 and the built-in substrate 11 may be integrally molded separately. In this case, the integrally molded stator 20 and the integrally molded built-in substrate 11 are joined.
  • the stator 20 includes a plurality of stator cores 21 , an insulator 23 integrally molded with the stator core 21 , and a winding group 22 .
  • the stator core 21 is configured by laminating electromagnetic steel sheets.
  • Insulator 23 insulates stator core 21 and winding group 22 .
  • the stator 20 is configured by winding the windings of the winding group 22 around each slot of the stator core 21, which is integrally molded with the insulator 23.
  • Each winding in the winding group 22 is made of copper, aluminum, or the like.
  • An output side bearing 33 that rotatably supports the rotating shaft 31 is provided at one end of the rotating shaft 31.
  • the other end of the rotating shaft 31 is provided with a non-output side bearing 34 that rotatably supports the rotating shaft 31.
  • the non-output side bearing 34 is covered with a conductive bracket 60.
  • a press-fitting portion 61 of the bracket 60 is fitted into the inner peripheral portion of the molded stator 10 so as to close an opening of a recess provided in the molded stator 10 .
  • the outer ring of the non-output side bearing 34 is fitted inside the bracket 60.
  • the built-in board 11 includes a circuit including a control section 70 described later and a magnetic sensor 50 that detects the position of the rotor 30.
  • the built-in board 11 is arranged perpendicularly to the axial direction of the rotating shaft 31 between the output side bearing 33 and the stator 20 and is fixed to the insulator 23.
  • the built-in board 11 is provided with a lead outlet 14 from which a lead wire 13 connected to a higher-level system (for example, a board on the side of an air conditioner unit) is drawn out.
  • the upper system is a system in which the electric motor 1 is mounted.
  • the lead wire 13 is connected to, for example, a board on the unit side of the air conditioner (such as an indoor unit board 211 to be described later).
  • passive components such as an operational amplifier, a comparator, a regulator, a diode, a resistor, a capacitor, an inductor, and a fuse are arranged on the built-in board 11.
  • the shape of the built-in board 11 is, for example, a disk shape with a through hole formed in the center. Note that the built-in board 11 may have a shape other than a disk shape, such as a semicircular shape.
  • the rotating shaft 31 is passed through the through hole provided in the built-in board 11 .
  • Built-in board 11 is arranged inside electric motor 1 so that its top and bottom surfaces are perpendicular to the axial direction of rotating shaft 31 .
  • a rotor insulator 32 which is an annular member, is arranged on the outer periphery of the rotating shaft 31.
  • the rotor 30 has a magnet 40 placed inside the molded stator 10.
  • the magnet 40 is disposed on the outer peripheral side of the rotating shaft 31 at a position facing the stator core 21.
  • the magnet 40 is composed of a cylindrical permanent magnet. The magnet 40 is fixed to the rotating shaft 31.
  • the magnet 40 is manufactured by injection molding a bonded magnet composed of a ferrite magnet or a rare earth magnet (samarium iron nitrogen, neodymium, etc.) mixed with a thermoplastic resin material.
  • a magnet is incorporated in a mold for injection molding the magnet 40, and the magnet 40 is molded while being oriented.
  • the magnet 40 may be a sintered magnet.
  • the magnet 40 has, in the axial direction of the rotating shaft 31, a sensor magnet portion that is a portion close to the magnetic sensor 50, and a main magnet portion that is a portion other than the sensor magnet portion.
  • the sensor magnet section allows the magnetic sensor 50 to detect the position of the rotor 30.
  • the main magnet section generates a rotational force in the rotor 30 according to the magnetic flux generated by the winding group 22.
  • the outer diameter of the built-in board 11 on the magnetic sensor 50 side is smaller than the other outer diameter portions. That is, in the magnet 40, the outer diameter of the sensor magnet portion is smaller than the outer diameter of the main magnet portion.
  • the shape of the magnet 40 allows magnetic flux to easily flow into the magnetic sensor 50 mounted on the built-in board 11.
  • the magnetic sensor 50 is arranged at a position far from the winding group 22, that is, at a position close to the rotating shaft 31, in order to minimize the influence of the magnetic flux generated from the winding group 22 of the stator 20.
  • FIG. 1 shows a case where the main magnet section and the sensor magnet section are composed of one magnet 40, the main magnet section and the sensor magnet section may be composed of separate magnets. .
  • the magnetic sensor 50 may be configured using a Hall IC whose output signal is a digital signal, or may be configured using a Hall element whose output signal is an analog signal. That is, the magnetic sensor 50 may be of a type that detects the position of the rotor 30 using a Hall IC, or may be of a type that detects the position of the rotor 30 using a Hall element.
  • the Hall IC may be a Hall IC (first method Hall IC) that detects the position of the rotor 30 using a first method described later, or a Hall IC that detects the position of the rotor 30 using a second method described later. It may be a Hall IC (second type Hall IC) that detects.
  • the sensor section and the amplification section are constructed from separate semiconductor chips.
  • the sensor section is made of a semiconductor other than silicon, and the amplification section is made of silicon.
  • the first type Hall IC will be referred to as a non-silicon type Hall IC.
  • the sensor section and the amplification section are constructed from one silicon semiconductor chip.
  • a non-silicon Hall IC Since a non-silicon Hall IC has two built-in chips, the sensor section is arranged so that the center position of the sensor section is different from the center of the IC body.
  • a non-silicon semiconductor such as indium antimonide (InSb) is used for the sensor portion of a non-silicon Hall IC.
  • This non-silicon semiconductor has advantages over silicon semiconductors, such as higher sensitivity and smaller offset due to stress strain.
  • FIG. 2 is a diagram showing a circuit configuration of a built-in board included in the electric motor according to the first embodiment.
  • FIG. 2 shows the built-in board 11, the winding group 22, and the magnetic sensor 50.
  • the built-in board 11 includes an overcurrent detection resistor 75 and a control section 70.
  • the control unit 70 is connected to the host system, the gate drive circuit 82, the ground 79A, and the magnetic sensor 50. Further, the control unit 70 is connected to a low voltage power source 78 via a connection point 48. Further, the control unit 70 is connected to a ground 79C via a connection point 41, a connection point 42, and an overcurrent detection resistor 75.
  • the gate drive circuit 82 is connected to the low voltage power supply 78 via the connection point 48 and to the high voltage power supply 77 via the connection point 47.
  • Low voltage power supply 78 outputs a lower voltage than high voltage power supply 77.
  • High voltage power supply 77 is a bus power supply.
  • the gate drive circuit 82 is connected to the inverter 81. Further, the gate drive circuit 82 is connected to the protection circuit 83 and the ground 79B via the connection point 43.
  • the protection circuit 83 is connected to the connection point 41 and the connection point 43. That is, the protection circuit 83 is connected to the ground 79C via the connection point 41, the connection point 42, and the overcurrent detection resistor 75. Further, the protection circuit 83 is connected to the ground 79B via the connection point 43.
  • the inverter 81 is connected to the winding group 22 of the stator 20 and supplies current to the winding group 22 of the stator 20. Inverter 81 is also connected to ground 79C via connection point 42 and overcurrent detection resistor 75. Grounds 79A to 79C are common grounds having the same potential.
  • the inverter 81 includes six power transistors 81A to 81F.
  • six power transistors 81A to 81F are separately configured. That is, the six power transistors 81A to 81F are each configured as separate components (chips).
  • the gate drive circuit 82 may be composed of one IC, or may be composed of three separate three-phase ICs. Further, the gate drive circuit 82 and the control section 70 may be configured by one IC. Further, the control unit 70 may be configured with one dedicated IC (control IC), or may be configured with a microcomputer (hereinafter referred to as a microcomputer).
  • the power transistors 81A to 81F are configured using superjunction MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), planar MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), etc. Ru. Since a large current flows through the power transistors 81A to 81F, a large amount of heat is generated, and heat dissipation is desired.
  • superjunction MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • the magnetic sensor 50 detects the magnetic pole position of the rotor 30 corresponding to the magnetic flux position
  • the built-in board 11 controls the electric motor 1 based on the magnetic pole position.
  • the built-in board 11 may perform sensorless control of the electric motor 1 while estimating the magnetic pole position from the current flowing through the winding group 22 and the voltage applied to and generated by the winding group 22.
  • the built-in board 11 may amplify a current signal obtained by using a shunt resistor and a current sensor with an operational amplifier or the like for current detection. Further, the built-in board 11 may use a comparator to generate a signal from this current signal to the control unit 70 for overcurrent protection.
  • the voltage (for example, 15V) that drives the gates of the power transistors 81A to 81F may be different from the microcomputer power supply voltage (for example, 5V) that is the voltage that drives the control unit 70 such as a microcomputer.
  • the electric motor 1 uses a regulator to generate another power source from one power source supplied from the outside.
  • a 15V power is supplied to the built-in board 11 from the outside, and the regulator generates a 5V power and supplies it to the built-in board 11.
  • This regulator may be built into the gate drive circuit 82.
  • the inverter 81 converts the input DC voltage into a three-phase AC voltage consisting of U-phase, V-phase, and W-phase, and supplies it to the winding group 22 of the stator 20.
  • Power transistor 81A is a U-phase upper arm power transistor
  • power transistor 81B is a V-phase upper arm power transistor
  • power transistor 81C is a W-phase upper arm power transistor.
  • Power transistor 81D is a U-phase lower arm power transistor
  • power transistor 81E is a V-phase lower arm power transistor
  • power transistor 81F is a W-phase lower arm power transistor.
  • the power transistor 81A is a U-phase upper arm power transistor
  • the power transistor 81B is a V-phase upper arm power transistor
  • the power transistor 81C is a W-phase upper arm power transistor.
  • the power transistor 81D is a lower arm power transistor of the U phase
  • the power transistor 81E is a lower arm power transistor of the V phase
  • the power transistor 81F is a lower arm power transistor of the W phase.
  • the inverter 81 has a plurality of power transistors in the upper arm and a plurality of power transistors in the lower arm.
  • the power transistor in the upper arm and the lower arm that switches more frequently is connected to the upper surface (first surface) of the built-in substrate 11 and the bottom surface (second surface) opposite to the first surface. are distributed and located. Further, in the first embodiment, the power transistor of the upper arm and the lower arm, which has a smaller switching frequency, is arranged on the upper surface of the built-in substrate 11.
  • the electric motor 1 includes a U-phase winding 22U, a V-phase winding 22V, and a W-phase winding 22W as windings included in the winding group 22.
  • U-phase winding 22U is connected to power transistors 81A and 81D.
  • the V-phase winding 22V is connected to power transistors 81B and 81E.
  • W-phase winding 22W is connected to power transistors 81C and 81F.
  • the gate drive circuit 82 controls on and off of the power transistors 81A to 81F according to the switching signal received from the control unit 70.
  • Three magnetic sensors 50 are arranged around the winding group 22.
  • the three magnetic sensors 50 each output a magnetic pole position signal corresponding to the position of the rotor 30 to the control unit 70.
  • the electric motor 1 which is a brushless DC motor, obtains rotational power by switching six (in the case of three phases) power transistors 81A to 81F at appropriate timings according to the magnetic pole position of the rotor 30.
  • the switching signal in this case is generated by the control unit 70.
  • the protection circuit 83 turns off all power transistors 81A to 81F of the inverter 81 to prevent element destruction due to the high temperature.
  • the overcurrent detection resistor 75 is connected to the lower arm switches included in the power transistors 81D to 81F.
  • the protection circuit 83 monitors the voltage of the overcurrent detection resistor 75 and turns off the power transistors 81A to 81F when the voltage of the overcurrent detection resistor 75 exceeds a specific value, thereby preventing overcurrent from flowing to the winding group 22. Prevents current from flowing and provides overcurrent protection.
  • the overcurrent detection section may be built into the control section 70 or the gate drive circuit 82.
  • a temperature sensing element (not shown) may be provided on the built-in substrate 11 or the like.
  • the control unit 70 receives a signal indicating an abnormal temperature from the temperature sensing element, it forcibly turns off the power transistors 81A to 81F, thereby realizing overheat protection.
  • the control unit 70 generates a switching signal that controls turning on and off of the power transistors 81A to 81F at a specific frequency (carrier frequency) in accordance with the speed command signal received from the host system.
  • the control unit 70 performs pulse width modulation (PWM) control on the power transistors 81A to 81F by outputting a switching signal to the gate drive circuit 82.
  • PWM pulse width modulation
  • the control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal input from the magnetic sensor 50, and calculates the rotation speed of the rotor 30 from the estimated magnetic pole position.
  • the control unit 70 outputs a rotation speed signal indicating the calculated rotation speed to the host system.
  • the electric motor 1 which is a brushless DC motor, obtains rotational power by switching six power transistors 81A to 81F at appropriate timing in the case of a three-phase motor, depending on the magnetic pole position of the magnet 40 of the rotor 30. A switching signal used for this switching is generated by the control section 70. The operating principle of this electric motor 1 will be explained.
  • control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal from the magnetic sensor 50 or the current value of the current flowing through the winding group 22.
  • Control unit 70 generates switching signals for switching power transistors 81A to 81F according to the magnetic pole position of rotor 30 and a speed command signal output from a host system.
  • Gate drive circuit 82 switches power transistors 81A to 81F on and off according to a switching signal generated by control section 70.
  • the energization methods used by the electric motor 1 include 120° energization control, 150° energization control, and sine wave energization control.
  • the control section 70 can be configured with a combinational circuit that does not require a clock.
  • control unit 70 is configured with a complicated digital circuit including a clock.
  • the timing between each rise and fall of the detection signal from the three Hall ICs is precisely estimated.
  • Sensorless control is control that does not use the magnetic sensor 50.
  • control is performed by estimating the magnetic pole position from the current value detected by a current detection resistor, current detection transformer, etc.
  • a signal detected by a current detection resistor, a current detection transformer, or the like may be amplified using an operational amplifier or the like, if necessary.
  • control unit 70 adjusts the voltage applied to the winding group 22 by PWM control of the power transistors 81A to 81F.
  • the electric motor 1 may switch only one side of the upper and lower arms.
  • FIG. 3 is a diagram for explaining an example of switching performed by the electric motor according to the first embodiment.
  • FIG. 3 shows gate signals (switching signals) to power transistors 81A to 81F.
  • the inverter 81 of the first embodiment executes control in which the number of times of switching is different between the upper arm and the lower arm.
  • the gate signal to the power transistor 81A which is the U-phase upper arm power transistor, is the U-phase upper gate signal 93A.
  • the gate signal to the power transistor 81B which is the V-phase upper arm power transistor, is the V-phase upper gate signal 93B.
  • the gate signal to the power transistor 81C which is the W-phase upper arm power transistor, is the W-phase upper gate signal 93C.
  • the gate signal to the power transistor 81D which is the U-phase lower arm power transistor
  • the gate signal to the power transistor 81E which is the V-phase lower arm power transistor
  • the gate signal to the power transistor 81E which is the V-phase lower arm power transistor
  • the W-phase lower gate signal 93F is the W-phase lower gate signal 93F.
  • FIG. 3 shows a timing chart of the gate signals of the power transistors 81A to 81F when the upper arm switches more times in the specific period T1 than the lower arm (in the case of upper arm switching).
  • the control unit 70 controls the motor 1 by changing the voltage applied to the winding group 22 by changing the switching duty of the upper arm.
  • the configuration of the electric motor 1 will be described using as an example a case where the upper arm switches more times in the specific period T1 than the lower arm (in the case of upper arm switching). Note that the electric motor 1 of the first embodiment can be applied to the case of lower arm switching as well as to the case of upper arm switching.
  • FIG. 4 is a diagram showing the arrangement positions of power transistors arranged on the built-in board of the electric motor according to the first embodiment.
  • FIG. 4 schematically shows the surface of the built-in board 11 on the opposite side to the stator (the upper surface that is the surface not facing the stator 20). Note that in FIG. 4, illustration of a through hole (a hole through which the rotating shaft 31 passes) formed in the built-in board 11 is omitted.
  • one of the six power transistors 81A to 81F is arranged on the stator side surface (bottom surface) of the built-in board 11, and the remaining five are arranged on the anti-stator side surface (top surface). be done.
  • FIG. 4 shows a case in which the upper arm power transistor 81B is arranged on the stator side surface of the built-in substrate 11, and the remaining power transistors 81A, 81C to 81F are arranged on the anti-stator side surface.
  • the power transistors of the arm that undergoes more switching are distributed and arranged on the stator side surface and the anti-stator side surface of the built-in substrate 11.
  • the built-in substrate 11 can avoid heat concentration on the built-in substrate 11, and it becomes possible to suppress the temperature rise of the power transistors 81A to 81F. Therefore, the built-in board 11 can greatly suppress the temperature rise of the built-in board 11.
  • the power transistor arranged in the center among the three upper arm power transistors is arranged on the stator side surface, so that the built-in board The effect of suppressing heat concentration in step 11 becomes greater.
  • pairs of upper and lower arms of each phase are arranged in the radial direction (direction from the center toward the outer periphery) when the built-in board 11 is viewed from the top. That is, when the built-in board 11 is viewed from above, a pair of U-phase upper and lower arms are arranged along the radial direction (first radial direction), and a pair of U-phase upper and lower arms are arranged along the radial direction (second radial direction). A pair of V-phase upper and lower arms is arranged along the radial direction (radial direction), and a W-phase upper and lower arm pair is arranged along the radial direction (third radial direction).
  • the built-in board 11 when the built-in board 11 is viewed from above, three-phase upper arms are arranged side by side in the circumferential direction (first circumferential direction) with respect to the axial direction of the rotating shaft 31, and Three-phase lower arms are arranged side by side (in the second circumferential direction).
  • the upper arm power transistors and the lower arm power transistors are arranged in two rows along the circumferential direction.
  • the circumferential direction (first circumferential direction and second circumferential direction) of the built-in substrate 11 is a direction along the outer periphery of the built-in substrate 11 .
  • FIG. 4 shows a case where power transistors 81A to 81C are arranged along the circumferential direction when the built-in board 11 is viewed from the top. Further, FIG. 4 shows a case where power transistors 81D to 81F are arranged along the circumferential direction when the built-in board 11 is viewed from the top.
  • the power transistors 81A and 81C are arranged on the top surface of the built-in substrate 11, and the power transistor 81B is arranged on the bottom surface of the built-in substrate 11. Further, power transistors 81D to 81F are arranged on the upper surface of the built-in substrate 11.
  • This arrangement of power transistors 81A to 81F facilitates pattern wiring for power transistors 81A to 81F.
  • the power transistor of the upper arm that switches more frequently is arranged on the outer circumferential side
  • the power transistor of the lower arm that switches more frequently is arranged on the inner circumferential side.
  • the power transistor of the arm that switches more often is arranged closer to the outer periphery than the power transistor of the arm that switches more often. Then, at least one of the power transistors that undergoes more switching is arranged on the bottom surface of the built-in substrate 11.
  • the power transistor here, the upper arm power transistor
  • the power transistor 81B the power transistor 81B that has a larger switching frequency is arranged on the outer circumferential side, and one of the upper arm power transistors (here, the power transistor 81B) is placed on the built-in board 11. It is placed on the stator side surface.
  • the temperature of the power transistor 81B placed on the stator side surface tends to rise due to the influence of the winding group 22, but since the power transistor 81B is placed closer to the outer periphery than the lower arm power transistor, Heat is also easily radiated from the sides of the electric motor 1. In this way, the heat from the power transistor 81B disposed on the stator side surface is also easily radiated from the side surface of the motor 1, so that the heat dissipation of the built-in board 11 is improved. In other words, by arranging the power transistor that switches more frequently on the outer circumferential side, the heat generated by the power transistor that switches more often can be easily dissipated from the side of the motor 1, and the effect of suppressing temperature rise is greater. Become.
  • the power transistor of the lower arm is arranged along the circumferential direction on the outer circumferential side than the power transistor of the upper arm. At least one of the power transistors 81D to 81F (for example, the power transistor 81E) is arranged on the bottom surface of the built-in substrate 11.
  • FIG. 5 is a cross-sectional view schematically showing a first internal configuration example of the electric motor according to the first embodiment. Note that in FIG. 5, illustration of power transistors 81D to 81F, which are lower arm power transistors, is omitted. Although FIG. 5 shows a case where the power transistor 81A and the power transistor 81B are arranged at opposing positions with the built-in board 11 in between, as shown in FIG. It may be arranged at a position that does not face 81A and 81C.
  • the power transistors 81A and 81C of the power transistors 81A to 81C are arranged on the opposite surface of the built-in substrate 11 with respect to the winding group 22. That is, the power transistors 81A and 81C are arranged on the side opposite to the stator of the built-in substrate 11. In other words, when the stator core 21 and the winding group 22 are arranged at positions facing the bottom surface of the built-in board 11, the power transistors 81A and 81C are placed on the top surface of the built-in board 11, which is the surface opposite to the bottom surface. It is located in This makes the power transistors 81A and 81C less susceptible to the effects of heat generated from the winding group 22. Therefore, the built-in substrate 11 can suppress the temperature rise of the power transistors 81A and 81C.
  • the power transistor 81B is arranged on the stator side of the built-in substrate 11. In other words, the power transistor 81B is arranged on the bottom surface of the built-in substrate 11. This makes power transistor 81B less susceptible to the effects of heat emitted from power transistors 81A and 81C. Therefore, the built-in substrate 11 can suppress the temperature rise of the power transistor 81B.
  • the power transistor 81A may be arranged on the stator side of the built-in substrate 11, and the power transistors 81B and 81C may be arranged on the side opposite to the stator of the built-in substrate 11. Further, the power transistor 81C may be arranged on the stator side of the built-in substrate 11, and the power transistors 81A and 81B may be arranged on the side opposite to the stator of the built-in substrate 11.
  • two power transistors among the power transistors 81A to 81C may be arranged on the stator side of the built-in substrate 11.
  • the power transistors 81D to 81F are arranged on the side opposite to the stator of the built-in substrate 11. In this way, the number of power transistors arranged on the side opposite to the stator is greater than the number of power transistors arranged on the stator side.
  • the anti-stator side has better heat dissipation than the stator side, so the heat dissipation improves when more power transistors are arranged on the anti-stator side.
  • FIG. 6 is a cross-sectional view schematically showing a second internal configuration example of the electric motor according to the first embodiment. Note that in FIG. 6, illustration of power transistors 81D to 81F, which are lower arm power transistors, is omitted. Although FIG. 6 shows a case where the power transistor 81A and the power transistor 81B are arranged at opposite positions with the built-in substrate 11 in between, as shown in FIG. It may be arranged at a position that does not face 81A and 81C.
  • FIG. 6 shows a case where the electric motor 1 is equipped with a heat sink 5.
  • the heat sink 5 dissipates heat generated by the electric motor 1.
  • the other configuration of the electric motor 1 including the heat sink 5 is the same as the configuration of the electric motor 1 shown in FIG.
  • the heat sink 5 may be provided on the side opposite to the stator with respect to the built-in board 11.
  • the heat sink 5 is placed on the side opposite to the stator of the built-in board 11 with the molded resin 12 interposed therebetween.
  • the heat sink 5 is integrally molded with the built-in substrate 11 using a mold resin 12, or is attached after the mold resin 12 and the built-in substrate 11 are integrally molded.
  • a heat radiating member is disposed between the heat sink 5 and the mold resin 12 in order to reduce the contact thermal resistance between the heat sink 5 and the mold resin 12.
  • the heat dissipation member are a heat conductive sheet, heat conductive grease, or a heat dissipation pad.
  • a heat radiation pad is arranged between the heat sink 5 and the power transistors 81A, 81C or the heat radiation pattern.
  • the heights of the bodies of the power transistors 81A, 81C and the heights of the heat radiation patterns are not the same, it becomes difficult to fill the space between the heat sink 5 and the built-in substrate 11 with heat radiation pads without any gaps.
  • the mold resin 12 since the mold resin 12 is integrally molded on the built-in substrate 11, it becomes possible to fill the space between the heat sink 5 and the built-in substrate 11 with the mold resin 12 without any gap.
  • heat radiation tab 85T heat radiation tab 85T described later
  • a heat radiation pattern heat radiation substrate pattern 2B described later
  • At least one power transistor of the upper arm and one of the lower arm power transistors, which is switched more often, is arranged on both sides of the built-in substrate 11. That is, in the electric motor 1, the power transistors of the arm that undergoes more switching are distributed and arranged on the top and bottom surfaces of the built-in substrate 11.
  • the arm that has been switched more often has a larger temperature rise than the arm that has been switched less often. Therefore, the power transistors of the arm that undergoes more switching are arranged in a distributed manner on the top and bottom surfaces of the built-in substrate 11, thereby increasing the effect of suppressing temperature rise.
  • through holes may be formed in the built-in substrate 11 in order to improve heat dissipation of the power transistors arranged on the stator side.
  • the configuration of the built-in board 11 when through holes are formed will be described.
  • FIG. 7 is a diagram schematically showing a first example of arrangement of power transistors on the built-in substrate according to the first embodiment.
  • FIG. 7 shows a cross-sectional view of the built-in substrate 11 when the through hole 4 is formed.
  • a heat dissipation substrate pattern 2A is arranged on the top surface of the built-in substrate 11 (surface opposite to the stator), and a heat dissipation substrate pattern 2B is disposed on the bottom surface of the built-in substrate 11 (surface on the stator side).
  • the heat dissipation substrate patterns 2A and 2B are patterns that diffuse heat generated in the built-in substrate 11.
  • the heat dissipation substrate pattern 2A is the first heat dissipation substrate pattern
  • the heat dissipation substrate pattern 2B is the second heat dissipation substrate pattern.
  • the power transistor 81B arranged on the bottom side of the built-in substrate 11 has a heat dissipation tab 85T for improving heat dissipation.
  • the heat dissipation tab 85T dissipates heat generated by the power transistor 81B.
  • the heat radiation substrate pattern 2B is connected to the heat radiation tab 85T.
  • the heat radiation substrate pattern 2B connected to the heat radiation tab 85T is connected to the heat radiation substrate pattern 2A on the anti-stator side via the through hole 4.
  • the through hole 4 is a hole that penetrates the built-in board 11.
  • a member having a thermal conductivity higher than a specific value may be embedded in the through hole 4.
  • a member having higher thermal conductivity than that of the built-in substrate 11 may be embedded in the through hole 4 .
  • the power transistor 81B releases heat via the heat radiation tab 85T, the heat radiation board pattern 2B, the through hole 4, and the heat radiation board pattern 2A.
  • the power transistors 81A, 81C, 81D to 81F arranged on the upper surface side of the built-in substrate 11 may have a heat radiation tab 85T. Further, the built-in board 11 does not need to be provided with the heat dissipation tab 85T. In this case, power transistor 81B is not connected to heat radiation tab 85T.
  • FIG. 8 is a diagram schematically showing a second arrangement example of power transistors on the built-in substrate according to the first embodiment.
  • FIG. 8 shows a cross-sectional view of the built-in substrate 11 when the through hole 4 is formed.
  • the heat dissipation board pattern 2A is arranged on the top surface (the surface opposite to the stator) of the built-in board 11, and A heat dissipation substrate pattern 2B is arranged.
  • the lower part of the package of the power transistor 81B which becomes hot, is connected to the heat dissipation substrate pattern 2B. Then, the heat dissipation substrate pattern 2B connected to the lower part of the package of the power transistor 81B is connected to the heat dissipation substrate pattern 2A on the side opposite to the stator via the through hole 4. With this configuration, the power transistor 81B releases heat via the heat dissipation substrate pattern 2B, the through hole 4, and the heat dissipation substrate pattern 2A.
  • FIG. 9 is a cross-sectional view schematically showing the internal configuration of a motor according to a comparative example.
  • power transistors 81A to 81F are all arranged on the same surface (upper surface) on the built-in substrate 11X. That is, in the electric motor 1X of the comparative example, the power transistors 81A to 81C are arranged on the opposite surface of the built-in board 11X with respect to the winding group 22. Note that in FIG. 9, illustration of the power transistors 81D to 81F is omitted.
  • the power transistors 81A and 81C of the power transistors 81A to 81C are arranged on the opposite surface of the built-in board 11 with respect to the winding group 22. Therefore, the built-in board 11 included in the electric motor 1 of the first embodiment can suppress the temperature rise more than the built-in board 11X included in the electric motor 1X of the comparative example. That is, in the built-in board 11 included in the electric motor 1 of the first embodiment, components with a large temperature rise are not arranged only on one surface of the built-in board 11, so that the amount of suppression of the temperature rise of the built-in board 11 is suppressed. growing.
  • the power transistors of the upper arm and the lower arm which have a higher number of switching operations, are distributed and arranged on the upper surface and the lower surface of the built-in substrate 11.
  • the electric motor 1 can greatly suppress the temperature rise of the built-in board 11, which is a control board.
  • Embodiment 2 Next, Embodiment 2 will be described using FIG. 10.
  • the electric motor 1 described in the first embodiment is applied to an air conditioner.
  • FIG. 10 is a schematic diagram of an air conditioner according to the second embodiment.
  • An air conditioner 200 that is an air conditioner includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210.
  • the indoor unit 210 is equipped with the electric motor 1, an indoor unit board 211, and an indoor unit blower (not shown).
  • the outdoor unit 220 is equipped with an outdoor unit blower 223.
  • the outdoor unit blower 223 and the indoor unit blower each incorporate the electric motor 1 described in Embodiment 1 as a drive source.
  • the air conditioner 200 when the air conditioner 200 is for commercial use, high output and high heat dissipation performance are required, so the heat dissipation effect is increased by applying the electric motor 1 described in Embodiment 1.
  • the electric motor 1 can be used by being installed in, for example, a ventilation fan, a home appliance, a machine tool, etc.
  • the electric motor 1 described in the first embodiment is applied to the air conditioner 200, so that the temperature rise of the built-in board 11 can be greatly suppressed.

Abstract

This electric motor (1) comprises a stator, a rotor, and a built-in board (11) having an inverter (81) that supplies current to the stator, where the inverter (81) has upper arm power transistors (81A to 81C) and lower arm power transistors (81D to 81F), and between the upper arm and the lower arm, the power transistors of the arm with the higher number of switchings are distributed and arranged on a first surface of the built-in board (11) and a second surface facing the first surface.

Description

電動機、空気調和機、および制御基板Electric motor, air conditioner, and control board
 本開示は、インバータを備えた電動機、空気調和機、および制御基板に関する。 The present disclosure relates to an electric motor equipped with an inverter, an air conditioner, and a control board.
 近年、空気調和機の省エネルギー化または暖房能力向上のため、空気調和機のファンモータ(ファン用電動機)の高出力化が求められている。また、風路の確保のためファンモータの小型化も求められている。ファンモータを高出力化するとともに小型化すると、インバータを内蔵する制御基板の温度が上昇しやすくなる。このため、インバータを内蔵する制御基板の温度上昇を抑制することが望まれている。 In recent years, in order to save energy or improve the heating capacity of air conditioners, there has been a demand for higher output fan motors (fan electric motors) for air conditioners. Additionally, there is a demand for downsizing of fan motors in order to secure air passages. If the fan motor is made to have a high output and is made smaller, the temperature of the control board containing the inverter tends to rise. For this reason, it is desired to suppress the temperature rise of the control board containing the inverter.
 特許文献1に記載の電動機は、インバータを搭載した制御基板と一体に構成されている。この電動機では、放熱性を向上させるため、複数の電源リレーおよび複数のスイッチング素子のうちの一部と、残りの一部とが、制御基板上の互いに異なる面に実装されている。 The electric motor described in Patent Document 1 is configured integrally with a control board on which an inverter is mounted. In this motor, in order to improve heat dissipation, some of the power relays and switching elements and the remaining parts are mounted on different surfaces of the control board.
特開2020-195236号公報JP2020-195236A
 しかしながら、上記特許文献1の技術では、部品の動作を考慮することなく部品を制御基板上に配置しているので、温度の上昇量が大きい部品が制御基板上の一方の面に集中して配置された場合、制御基板の温度上昇の抑制量が小さくなるという問題があった。 However, in the technique disclosed in Patent Document 1, components are arranged on the control board without considering the operation of the components, so components with a large temperature increase are concentrated on one side of the control board. In this case, there is a problem that the amount of suppression of the temperature rise of the control board becomes small.
 本開示は、上記に鑑みてなされたものであって、制御基板の温度上昇を大きく抑制することができる電動機を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor that can greatly suppress the temperature rise of a control board.
 上述した課題を解決し、目的を達成するために、本開示の電動機は、固定子と、回転子と、固定子に電流を供給するインバータ回路を有した制御基板とを備える。インバータ回路は、上アームの複数のパワートランジスタと、下アームの複数のパワートランジスタとを有する。上アームと下アームとでスイッチング回数が多い方のアームのパワートランジスタが、制御基板の第1の面と第1の面に対向する第2の面とに分散して配置されている。 In order to solve the above-mentioned problems and achieve the objects, the electric motor of the present disclosure includes a stator, a rotor, and a control board having an inverter circuit that supplies current to the stator. The inverter circuit includes a plurality of power transistors in an upper arm and a plurality of power transistors in a lower arm. The power transistors of the upper arm and the lower arm that undergo more switching are disposed in a distributed manner on a first surface of the control board and a second surface opposite to the first surface.
 本開示にかかる電動機は、制御基板の温度上昇を大きく抑制することができるという効果を奏する。 The electric motor according to the present disclosure has the effect of greatly suppressing the temperature rise of the control board.
実施の形態1にかかる電動機の構成例を示す図A diagram showing a configuration example of an electric motor according to Embodiment 1. 実施の形態1にかかる電動機が備える内蔵基板の回路構成を示す図A diagram showing a circuit configuration of a built-in board included in the electric motor according to Embodiment 1. 実施の形態1にかかる電動機が実行するスイッチングの例を説明するための図A diagram for explaining an example of switching performed by the electric motor according to the first embodiment 実施の形態1にかかる電動機の内蔵基板に配置されるパワートランジスタの配置位置を示す図A diagram showing the arrangement positions of power transistors arranged on the built-in board of the electric motor according to Embodiment 1. 実施の形態1にかかる電動機の第1の内部構成例を模式的に示す断面図1 is a sectional view schematically showing a first internal configuration example of the electric motor according to the first embodiment; FIG. 実施の形態1にかかる電動機の第2の内部構成例を模式的に示す断面図A sectional view schematically showing a second internal configuration example of the electric motor according to the first embodiment. 実施の形態1にかかる内蔵基板上でのパワートランジスタの第1の配置例を模式的に示す図A diagram schematically showing a first arrangement example of power transistors on the built-in substrate according to the first embodiment. 実施の形態1にかかる内蔵基板上でのパワートランジスタの第2の配置例を模式的に示す図A diagram schematically showing a second arrangement example of power transistors on the built-in substrate according to the first embodiment. 比較例の電動機の内部構成を模式的に示す断面図Cross-sectional diagram schematically showing the internal configuration of a comparative example electric motor 実施の形態2にかかる空気調和機の模式図Schematic diagram of an air conditioner according to Embodiment 2
 以下に、本開示の実施の形態にかかる電動機、空気調和機、および制御基板を図面に基づいて詳細に説明する。 Below, an electric motor, an air conditioner, and a control board according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電動機の構成例を示す図である。なお、実施の形態1では、電動機1が三相の電動機である場合について説明するが、実施の形態1の電動機1は三相の電動機に限られるものではない。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of an electric motor according to a first embodiment. In the first embodiment, a case will be described in which the electric motor 1 is a three-phase electric motor, but the electric motor 1 of the first embodiment is not limited to a three-phase electric motor.
 電動機1は、ブラシレスDC(Direct Current、直流)モータである。図1では、電動機1の構成の説明のために、一部を断面構造で示している。なお、図1は、ラジアルギャップ形のブラシレスDCモータを示しているが、実施の形態1の電動機1はラジアルギャップ形のブラシレスDCモータに限らない。 The electric motor 1 is a brushless DC (Direct Current) motor. In FIG. 1, in order to explain the configuration of the electric motor 1, a part of the structure is shown in cross section. Although FIG. 1 shows a radial gap type brushless DC motor, the electric motor 1 of the first embodiment is not limited to the radial gap type brushless DC motor.
 電動機1は、回転子30と、固定子20と、制御基板である内蔵基板11と、モールド樹脂12とを備えている。回転子30には、回転軸31が挿入されている。固定子20は、回転子30の外周に設けられている。内蔵基板11は、回転子30の駆動を制御する回路である基板回路を有している。 The electric motor 1 includes a rotor 30, a stator 20, a built-in board 11 that is a control board, and a molded resin 12. A rotating shaft 31 is inserted into the rotor 30 . The stator 20 is provided on the outer periphery of the rotor 30. The built-in board 11 has a board circuit that is a circuit that controls the drive of the rotor 30.
 固定子20、内蔵基板11、およびモールド樹脂12は、モールド固定子10で固定されている。モールド固定子10は、固定子20と内蔵基板11とを一体成型(一体となるようにインサート成形)する。すなわち、固定子20と内蔵基板11とは、一体化するようにモールド固定子10によって固定されている。また、モールド固定子10の内部には、回転子30を収容可能に形成された凹部が設けられている。なお、固定子20と内蔵基板11とは、別々に一体成型されてもよい。この場合、一体成型された固定子20と一体成型された内蔵基板11とが接合される。 The stator 20, the built-in substrate 11, and the molded resin 12 are fixed by the molded stator 10. The molded stator 10 is formed by integrally molding the stator 20 and the built-in substrate 11 (insert molding so that they are integrated). That is, the stator 20 and the built-in board 11 are fixed by the molded stator 10 so as to be integrated. Moreover, a recessed portion formed to accommodate the rotor 30 is provided inside the molded stator 10. Note that the stator 20 and the built-in substrate 11 may be integrally molded separately. In this case, the integrally molded stator 20 and the integrally molded built-in substrate 11 are joined.
 固定子20は、複数の固定子鉄心21と、固定子鉄心21と一体成型されたインシュレータ23と、巻線群22とを有している。固定子鉄心21は、電磁鋼板が積層されて構成されている。インシュレータ23は、固定子鉄心21と巻線群22とを絶縁する。 The stator 20 includes a plurality of stator cores 21 , an insulator 23 integrally molded with the stator core 21 , and a winding group 22 . The stator core 21 is configured by laminating electromagnetic steel sheets. Insulator 23 insulates stator core 21 and winding group 22 .
 電動機1では、インシュレータ23と一体成型された固定子鉄心21の各スロットに巻線群22の巻線が巻きつけられることで、固定子20が構成されている。巻線群22の各巻線は、銅またはアルミなどで構成されている。 In the electric motor 1, the stator 20 is configured by winding the windings of the winding group 22 around each slot of the stator core 21, which is integrally molded with the insulator 23. Each winding in the winding group 22 is made of copper, aluminum, or the like.
 回転軸31の一端には、回転軸31を回転自在に支持する出力側軸受33が設けられている。回転軸31の他端には、回転軸31を回転自在に支持する反出力側軸受34が設けられている。 An output side bearing 33 that rotatably supports the rotating shaft 31 is provided at one end of the rotating shaft 31. The other end of the rotating shaft 31 is provided with a non-output side bearing 34 that rotatably supports the rotating shaft 31.
 反出力側軸受34は、導電性のブラケット60で覆われている。ブラケット60は、モールド固定子10に設けられた凹部の開口部を塞ぐようにして、ブラケット60の圧入部61がモールド固定子10の内周部に嵌め込まれている。また、反出力側軸受34の外輪がブラケット60の内側に嵌め込まれている。 The non-output side bearing 34 is covered with a conductive bracket 60. In the bracket 60 , a press-fitting portion 61 of the bracket 60 is fitted into the inner peripheral portion of the molded stator 10 so as to close an opening of a recess provided in the molded stator 10 . Further, the outer ring of the non-output side bearing 34 is fitted inside the bracket 60.
 内蔵基板11は、後述する制御部70と、回転子30の位置を検知する磁気センサ50とを含む回路を備えている。 The built-in board 11 includes a circuit including a control section 70 described later and a magnetic sensor 50 that detects the position of the rotor 30.
 内蔵基板11は、出力側軸受33と固定子20との間で、回転軸31の軸線方向に対して垂直に配置され、インシュレータ23に固定されている。内蔵基板11には、上位システム(例えば、エアコンディショナのユニット側の基板)と接続するリード線13が引き出されたリード口出し部14が配置されている。上位システムは、電動機1を搭載するシステムである。リード線13は、例えば、エアコンディショナのユニット側の基板(後述する室内機基板211など)に接続されている。また、内蔵基板11には、オペアンプ、コンパレータ、レギュレータ、ダイオード、抵抗、コンデンサ、インダクタ、ヒューズなどの受動部品が配置されている。 The built-in board 11 is arranged perpendicularly to the axial direction of the rotating shaft 31 between the output side bearing 33 and the stator 20 and is fixed to the insulator 23. The built-in board 11 is provided with a lead outlet 14 from which a lead wire 13 connected to a higher-level system (for example, a board on the side of an air conditioner unit) is drawn out. The upper system is a system in which the electric motor 1 is mounted. The lead wire 13 is connected to, for example, a board on the unit side of the air conditioner (such as an indoor unit board 211 to be described later). Furthermore, passive components such as an operational amplifier, a comparator, a regulator, a diode, a resistor, a capacitor, an inductor, and a fuse are arranged on the built-in board 11.
 内蔵基板11の形状は、例えば、中心に貫通穴が形成された円板状である。なお、内蔵基板11の形状は、半円状などの円板状以外の形状であってもよい。内蔵基板11に設けられた貫通穴には、回転軸31が通される。内蔵基板11は、上面および底面が回転軸31の軸線方向に対して垂直になるように電動機1の内部に配置されている。 The shape of the built-in board 11 is, for example, a disk shape with a through hole formed in the center. Note that the built-in board 11 may have a shape other than a disk shape, such as a semicircular shape. The rotating shaft 31 is passed through the through hole provided in the built-in board 11 . Built-in board 11 is arranged inside electric motor 1 so that its top and bottom surfaces are perpendicular to the axial direction of rotating shaft 31 .
 回転軸31の外周部には、円環状の部材である回転子絶縁部32が配置されている。回転子30は、モールド固定子10の内側に配置されたマグネット40を有している。マグネット40は、回転軸31の外周側で、固定子鉄心21に対向する位置に配置されている。マグネット40は、円柱状の永久磁石で構成されている。マグネット40は、回転軸31に固定されている。 A rotor insulator 32, which is an annular member, is arranged on the outer periphery of the rotating shaft 31. The rotor 30 has a magnet 40 placed inside the molded stator 10. The magnet 40 is disposed on the outer peripheral side of the rotating shaft 31 at a position facing the stator core 21. The magnet 40 is composed of a cylindrical permanent magnet. The magnet 40 is fixed to the rotating shaft 31.
 マグネット40は、フェライト磁石、または希土類磁石(サマリウム鉄窒素、ネオジウムなど)が熱可塑性の樹脂材料と混合されて構成されたボンド磁石が射出成形されることで作製される。マグネット40の射出成形用の金型には磁石が組み込まれており、マグネット40は、配向をかけながら成形される。なお、マグネット40は、焼結磁石でもよい。 The magnet 40 is manufactured by injection molding a bonded magnet composed of a ferrite magnet or a rare earth magnet (samarium iron nitrogen, neodymium, etc.) mixed with a thermoplastic resin material. A magnet is incorporated in a mold for injection molding the magnet 40, and the magnet 40 is molded while being oriented. Note that the magnet 40 may be a sintered magnet.
 マグネット40は、回転軸31の軸線方向に、磁気センサ50に近い部分であるセンサマグネット部と、センサマグネット部以外の部分であるメインマグネット部とを有している。センサマグネット部は、磁気センサ50に回転子30の位置を検知させる。メインマグネット部は、巻線群22が発生する磁束に従って回転子30に回転力を生じさせる。 The magnet 40 has, in the axial direction of the rotating shaft 31, a sensor magnet portion that is a portion close to the magnetic sensor 50, and a main magnet portion that is a portion other than the sensor magnet portion. The sensor magnet section allows the magnetic sensor 50 to detect the position of the rotor 30. The main magnet section generates a rotational force in the rotor 30 according to the magnetic flux generated by the winding group 22.
 マグネット40では、内蔵基板11の磁気センサ50側の外径は、他の外径部分よりも小さくなっている。すなわち、マグネット40では、センサマグネット部の外径が、メインマグネット部の外形よりも小さくなっている。このマグネット40の形状により、内蔵基板11に実装される磁気センサ50に磁束が流入しやすくなっている。磁気センサ50は、固定子20の巻線群22から発生する磁束の影響を極力小さくするため、巻線群22から遠い位置、つまり、回転軸31に近い位置に配置されている。 In the magnet 40, the outer diameter of the built-in board 11 on the magnetic sensor 50 side is smaller than the other outer diameter portions. That is, in the magnet 40, the outer diameter of the sensor magnet portion is smaller than the outer diameter of the main magnet portion. The shape of the magnet 40 allows magnetic flux to easily flow into the magnetic sensor 50 mounted on the built-in board 11. The magnetic sensor 50 is arranged at a position far from the winding group 22, that is, at a position close to the rotating shaft 31, in order to minimize the influence of the magnetic flux generated from the winding group 22 of the stator 20.
 なお、図1では、メインマグネット部とセンサマグネット部とが1つのマグネット40で構成されている場合を示しているが、メインマグネット部とセンサマグネット部とは、別々のマグネットで構成されてもよい。 Although FIG. 1 shows a case where the main magnet section and the sensor magnet section are composed of one magnet 40, the main magnet section and the sensor magnet section may be composed of separate magnets. .
 磁気センサ50は、出力信号がデジタル信号であるホールICを用いて構成されてもよいし、出力信号がアナログ信号であるホール素子を用いて構成されてもよい。すなわち、磁気センサ50は、ホールICを用いて回転子30の位置を検出する方式であってもよいし、ホール素子を用いて回転子30の位置を検出する方式であってもよい。 The magnetic sensor 50 may be configured using a Hall IC whose output signal is a digital signal, or may be configured using a Hall element whose output signal is an analog signal. That is, the magnetic sensor 50 may be of a type that detects the position of the rotor 30 using a Hall IC, or may be of a type that detects the position of the rotor 30 using a Hall element.
 また、ホールICは、後述する第1の方式で回転子30の位置を検出するホールIC(第1方式のホールIC)であってもよいし、後述する第2の方式で回転子30の位置を検出するホールIC(第2方式のホールIC)であってもよい。 Further, the Hall IC may be a Hall IC (first method Hall IC) that detects the position of the rotor 30 using a first method described later, or a Hall IC that detects the position of the rotor 30 using a second method described later. It may be a Hall IC (second type Hall IC) that detects.
 第1方式のホールICは、センサ部と増幅部とが別々の半導体チップで構成されている。この第1方式のホールICでは、センサ部は、シリコン以外の半導体で構成され、増幅部はシリコンで構成されている。以下、第1方式のホールICを非シリコン型ホールICという。第2方式のホールICは、センサ部と増幅部とが1つのシリコン半導体チップで構成されている。 In the first type Hall IC, the sensor section and the amplification section are constructed from separate semiconductor chips. In this first type Hall IC, the sensor section is made of a semiconductor other than silicon, and the amplification section is made of silicon. Hereinafter, the first type Hall IC will be referred to as a non-silicon type Hall IC. In the second type Hall IC, the sensor section and the amplification section are constructed from one silicon semiconductor chip.
 非シリコン型ホールICは、2つのチップが内蔵されるので、センサ部の中心位置がICボディの中心と異なった位置となるようにセンサ部が配置される。非シリコン型ホールICのセンサ部には、アンチモン化インジウム(InSb)などの非シリコン半導体が用いられる。この非シリコン半導体は、シリコン半導体と比べて、感度が良く、応力歪みによるオフセットが小さいなどの長所がある。 Since a non-silicon Hall IC has two built-in chips, the sensor section is arranged so that the center position of the sensor section is different from the center of the IC body. A non-silicon semiconductor such as indium antimonide (InSb) is used for the sensor portion of a non-silicon Hall IC. This non-silicon semiconductor has advantages over silicon semiconductors, such as higher sensitivity and smaller offset due to stress strain.
 つぎに、図1に示した内蔵基板11の回路構成を説明する。図2は、実施の形態1にかかる電動機が備える内蔵基板の回路構成を示す図である。図2では、内蔵基板11と、巻線群22と、磁気センサ50とを示している。 Next, the circuit configuration of the built-in board 11 shown in FIG. 1 will be explained. FIG. 2 is a diagram showing a circuit configuration of a built-in board included in the electric motor according to the first embodiment. FIG. 2 shows the built-in board 11, the winding group 22, and the magnetic sensor 50.
 内蔵基板11は、過電流検出抵抗75と、制御部70とを備えている。 The built-in board 11 includes an overcurrent detection resistor 75 and a control section 70.
 制御部70は、上位システム、ゲートドライブ回路82、グランド79A、および磁気センサ50に接続されている。また、制御部70は、接続点48を介して低圧電源78に接続されている。また、制御部70は、接続点41、接続点42、および過電流検出抵抗75を介してグランド79Cに接続されている。 The control unit 70 is connected to the host system, the gate drive circuit 82, the ground 79A, and the magnetic sensor 50. Further, the control unit 70 is connected to a low voltage power source 78 via a connection point 48. Further, the control unit 70 is connected to a ground 79C via a connection point 41, a connection point 42, and an overcurrent detection resistor 75.
 ゲートドライブ回路82は、接続点48を介して低圧電源78に接続され、接続点47を介して高圧電源77に接続されている。低圧電源78は、高圧電源77よりも低い電圧を出力する。高圧電源77は、母線電源である。 The gate drive circuit 82 is connected to the low voltage power supply 78 via the connection point 48 and to the high voltage power supply 77 via the connection point 47. Low voltage power supply 78 outputs a lower voltage than high voltage power supply 77. High voltage power supply 77 is a bus power supply.
 また、ゲートドライブ回路82は、インバータ81に接続されている。また、ゲートドライブ回路82は、接続点43を介して、保護回路83およびグランド79Bに接続されている。 Further, the gate drive circuit 82 is connected to the inverter 81. Further, the gate drive circuit 82 is connected to the protection circuit 83 and the ground 79B via the connection point 43.
 保護回路83は、接続点41および接続点43に接続されている。すなわち、保護回路83は、接続点41、接続点42、および過電流検出抵抗75を介してグランド79Cに接続されている。また、保護回路83は、接続点43を介して、グランド79Bに接続されている。 The protection circuit 83 is connected to the connection point 41 and the connection point 43. That is, the protection circuit 83 is connected to the ground 79C via the connection point 41, the connection point 42, and the overcurrent detection resistor 75. Further, the protection circuit 83 is connected to the ground 79B via the connection point 43.
 インバータ81は、固定子20の巻線群22に接続されており、固定子20の巻線群22に電流を供給する。また、インバータ81は、接続点42、および過電流検出抵抗75を介してグランド79Cに接続されている。グランド79A~79Cは、同電位の共通グランドである。 The inverter 81 is connected to the winding group 22 of the stator 20 and supplies current to the winding group 22 of the stator 20. Inverter 81 is also connected to ground 79C via connection point 42 and overcurrent detection resistor 75. Grounds 79A to 79C are common grounds having the same potential.
 インバータ81は、6個のパワートランジスタ81A~81Fを具備している。インバータ81では、6個のパワートランジスタ81A~81Fが別々に構成されている。すなわち、6個のパワートランジスタ81A~81Fは、それぞれ別々の部品(チップ)として構成されている。 The inverter 81 includes six power transistors 81A to 81F. In the inverter 81, six power transistors 81A to 81F are separately configured. That is, the six power transistors 81A to 81F are each configured as separate components (chips).
 ゲートドライブ回路82は、1つのICで構成されてもよいし、3個からなる三相別々のICで構成されてもよい。また、ゲートドライブ回路82と制御部70とが1つのICで構成されてもよい。また、制御部70は、1つの専用IC(制御IC)で構成されてもよいし、マイクロコンピュータ(以下、マイコンという)などで構成されてもよい。 The gate drive circuit 82 may be composed of one IC, or may be composed of three separate three-phase ICs. Further, the gate drive circuit 82 and the control section 70 may be configured by one IC. Further, the control unit 70 may be configured with one dedicated IC (control IC), or may be configured with a microcomputer (hereinafter referred to as a microcomputer).
 パワートランジスタ81A~81Fは、スーパージャンクションMOSFET(Metal Oxide Semiconductor Field Effect Transistor、金属酸化膜半導体電界効果トランジスタ)、プレーナMOSFET、IGBT(Insulated Gate Bipolar Transistor、絶縁ゲート型バイポーラートランジスタ)などを用いて構成される。パワートランジスタ81A~81Fには大きな電流が流れるので、発熱が多く放熱が望まれる。 The power transistors 81A to 81F are configured using superjunction MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), planar MOSFETs, IGBTs (Insulated Gate Bipolar Transistors), etc. Ru. Since a large current flows through the power transistors 81A to 81F, a large amount of heat is generated, and heat dissipation is desired.
 実施の形態1では、磁気センサ50が磁束位置に対応する回転子30の磁極位置を検出し、内蔵基板11が磁極位置に基づいて電動機1を制御する場合について説明する。なお、内蔵基板11は、巻線群22に流れる電流と、巻線群22に印加および発生する電圧とから磁極位置を推測しながら、電動機1をセンサレス制御してもよい。また、内蔵基板11は、電流検出のため、シャント抵抗および電流センサを用いることによって得られた電流信号をオペアンプなどで増幅してもよい。また、内蔵基板11は、この電流信号から過電流保護のための制御部70への信号を生成するためにコンパレータを用いてもよい。 In the first embodiment, a case will be described in which the magnetic sensor 50 detects the magnetic pole position of the rotor 30 corresponding to the magnetic flux position, and the built-in board 11 controls the electric motor 1 based on the magnetic pole position. Note that the built-in board 11 may perform sensorless control of the electric motor 1 while estimating the magnetic pole position from the current flowing through the winding group 22 and the voltage applied to and generated by the winding group 22. Further, the built-in board 11 may amplify a current signal obtained by using a shunt resistor and a current sensor with an operational amplifier or the like for current detection. Further, the built-in board 11 may use a comparator to generate a signal from this current signal to the control unit 70 for overcurrent protection.
 内蔵基板11では、パワートランジスタ81A~81Fのゲートを駆動する電圧(例えば、15V)と、マイコンなどの制御部70を駆動する電圧であるマイコン電源電圧(例えば、5V)とが異なる場合がある。この場合、電動機1は、外部から供給される1つの電源からもう1つの電源を生成するために、レギュレータを用いる。例えば、内蔵基板11へは、外部から15Vの電源が供給され、レギュレータは、5Vの電源を生成して内蔵基板11へ供給する。このレギュレータは、ゲートドライブ回路82に内蔵されてもよい。 In the built-in board 11, the voltage (for example, 15V) that drives the gates of the power transistors 81A to 81F may be different from the microcomputer power supply voltage (for example, 5V) that is the voltage that drives the control unit 70 such as a microcomputer. In this case, the electric motor 1 uses a regulator to generate another power source from one power source supplied from the outside. For example, a 15V power is supplied to the built-in board 11 from the outside, and the regulator generates a 5V power and supplies it to the built-in board 11. This regulator may be built into the gate drive circuit 82.
 インバータ81は、入力される直流電圧を、U相、V相、およびW相からなる三相の交流電圧に変換して固定子20の巻線群22に供給する。パワートランジスタ81Aは、U相上アームパワートランジスタであり、パワートランジスタ81Bは、V相上アームパワートランジスタであり、パワートランジスタ81Cは、W相上アームパワートランジスタである。パワートランジスタ81Dは、U相下アームパワートランジスタであり、パワートランジスタ81Eは、V相下アームパワートランジスタであり、パワートランジスタ81Fは、W相下アームパワートランジスタである。 The inverter 81 converts the input DC voltage into a three-phase AC voltage consisting of U-phase, V-phase, and W-phase, and supplies it to the winding group 22 of the stator 20. Power transistor 81A is a U-phase upper arm power transistor, power transistor 81B is a V-phase upper arm power transistor, and power transistor 81C is a W-phase upper arm power transistor. Power transistor 81D is a U-phase lower arm power transistor, power transistor 81E is a V-phase lower arm power transistor, and power transistor 81F is a W-phase lower arm power transistor.
 すなわち、パワートランジスタ81Aは、U相の上アームのパワートランジスタであり、パワートランジスタ81Bは、V相の上アームのパワートランジスタであり、パワートランジスタ81Cは、W相の上アームのパワートランジスタである。また、パワートランジスタ81Dは、U相の下アームのパワートランジスタであり、パワートランジスタ81Eは、V相の下アームのパワートランジスタであり、パワートランジスタ81Fは、W相の下アームのパワートランジスタである。 That is, the power transistor 81A is a U-phase upper arm power transistor, the power transistor 81B is a V-phase upper arm power transistor, and the power transistor 81C is a W-phase upper arm power transistor. Further, the power transistor 81D is a lower arm power transistor of the U phase, the power transistor 81E is a lower arm power transistor of the V phase, and the power transistor 81F is a lower arm power transistor of the W phase.
 このように、インバータ81は、上アームの複数のパワートランジスタと、下アームの複数のパワートランジスタとを有している。実施の形態1では、上アームと下アームとでスイッチング回数が多い方のパワートランジスタが、内蔵基板11の上面(第1の面)と第1の面に対向する底面(第2の面)とに分散して配置されている。また、実施の形態1では、上アームと下アームとでスイッチング回数が少ない方のパワートランジスタが、内蔵基板11の上面に配置されている。 In this way, the inverter 81 has a plurality of power transistors in the upper arm and a plurality of power transistors in the lower arm. In Embodiment 1, the power transistor in the upper arm and the lower arm that switches more frequently is connected to the upper surface (first surface) of the built-in substrate 11 and the bottom surface (second surface) opposite to the first surface. are distributed and located. Further, in the first embodiment, the power transistor of the upper arm and the lower arm, which has a smaller switching frequency, is arranged on the upper surface of the built-in substrate 11.
 電動機1は、巻線群22に含まれる巻線として、U相巻線22Uと、V相巻線22Vと、W相巻線22Wとを有している。U相巻線22Uは、パワートランジスタ81A,81Dに接続されている。V相巻線22Vは、パワートランジスタ81B,81Eに接続されている。W相巻線22Wは、パワートランジスタ81C,81Fに接続されている。 The electric motor 1 includes a U-phase winding 22U, a V-phase winding 22V, and a W-phase winding 22W as windings included in the winding group 22. U-phase winding 22U is connected to power transistors 81A and 81D. The V-phase winding 22V is connected to power transistors 81B and 81E. W-phase winding 22W is connected to power transistors 81C and 81F.
 ゲートドライブ回路82は、制御部70から受信するスイッチング信号に従ってパワートランジスタ81A~81Fのオンおよびオフを制御する。 The gate drive circuit 82 controls on and off of the power transistors 81A to 81F according to the switching signal received from the control unit 70.
 巻線群22の周辺には、3つの磁気センサ50が配置されている。3つの磁気センサ50は、それぞれ回転子30の位置に対応する磁極位置信号を制御部70に出力する。ブラシレスDCモータである電動機1は、回転子30の磁極位置に応じて、6つ(3相の場合)のパワートランジスタ81A~81Fを、適切なタイミングでスイッチングすることによって回転動力を得る。この場合のスイッチング信号は、制御部70が生成する。 Three magnetic sensors 50 are arranged around the winding group 22. The three magnetic sensors 50 each output a magnetic pole position signal corresponding to the position of the rotor 30 to the control unit 70. The electric motor 1, which is a brushless DC motor, obtains rotational power by switching six (in the case of three phases) power transistors 81A to 81F at appropriate timings according to the magnetic pole position of the rotor 30. The switching signal in this case is generated by the control unit 70.
 また、インバータ81およびゲートドライブ回路82の少なくとも一方が高温になったとき、保護回路83は、インバータ81の全てのパワートランジスタ81A~81Fをオフして高温による素子破壊を防止する。 Further, when at least one of the inverter 81 and the gate drive circuit 82 becomes high temperature, the protection circuit 83 turns off all power transistors 81A to 81F of the inverter 81 to prevent element destruction due to the high temperature.
 過電流検出抵抗75は、パワートランジスタ81D~81Fが備える下アームスイッチに接続されている。保護回路83は、過電流検出抵抗75の電圧を監視し、過電流検出抵抗75の電圧が特定値以上の電圧となったらパワートランジスタ81A~81Fをオフすることによって巻線群22に過電流が流れることを防止し、過電流保護を実現する。なお、過電流検出部は、制御部70に内蔵されてもよいし、ゲートドライブ回路82に内蔵されてもよい。 The overcurrent detection resistor 75 is connected to the lower arm switches included in the power transistors 81D to 81F. The protection circuit 83 monitors the voltage of the overcurrent detection resistor 75 and turns off the power transistors 81A to 81F when the voltage of the overcurrent detection resistor 75 exceeds a specific value, thereby preventing overcurrent from flowing to the winding group 22. Prevents current from flowing and provides overcurrent protection. Note that the overcurrent detection section may be built into the control section 70 or the gate drive circuit 82.
 なお、図示しない感温素子が、内蔵基板11などに設けられていてもよい。この場合、制御部70は、異常温度であることを示す信号を感温素子から受信すると、パワートランジスタ81A~81Fを強制的にオフにすることで過熱保護を実現する。 Note that a temperature sensing element (not shown) may be provided on the built-in substrate 11 or the like. In this case, when the control unit 70 receives a signal indicating an abnormal temperature from the temperature sensing element, it forcibly turns off the power transistors 81A to 81F, thereby realizing overheat protection.
 制御部70は、上位システムから受信する速度指令信号に従って、特定の周波数(キャリア周波数)でパワートランジスタ81A~81Fのオンおよびオフを制御するスイッチング信号を生成する。 The control unit 70 generates a switching signal that controls turning on and off of the power transistors 81A to 81F at a specific frequency (carrier frequency) in accordance with the speed command signal received from the host system.
 制御部70は、ゲートドライブ回路82にスイッチング信号を出力することで、パワートランジスタ81A~81Fに対してパルス幅変調(PWM:Pulse Width Modulation)制御を行う。制御部70は、磁気センサ50から入力される磁極位置信号に基づいて、回転子30の磁極位置を推測し、推測した磁極位置から回転子30の回転数を算出する。制御部70は、算出した回転数を示す回転数信号を上位システムに出力する。 The control unit 70 performs pulse width modulation (PWM) control on the power transistors 81A to 81F by outputting a switching signal to the gate drive circuit 82. The control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal input from the magnetic sensor 50, and calculates the rotation speed of the rotor 30 from the estimated magnetic pole position. The control unit 70 outputs a rotation speed signal indicating the calculated rotation speed to the host system.
 ブラシレスDCモータである電動機1は、回転子30のマグネット40の磁極位置に応じて、三相の場合は6個のパワートランジスタ81A~81Fを適切なタイミングでスイッチングすることによって回転動力を得る。このスイッチングに用いられるスイッチング信号は制御部70が生成する。この電動機1の動作原理について説明する。 The electric motor 1, which is a brushless DC motor, obtains rotational power by switching six power transistors 81A to 81F at appropriate timing in the case of a three-phase motor, depending on the magnetic pole position of the magnet 40 of the rotor 30. A switching signal used for this switching is generated by the control section 70. The operating principle of this electric motor 1 will be explained.
 電動機1では、制御部70が、磁気センサ50からの磁極位置信号、または巻線群22に流れる電流の電流値に基づいて、回転子30の磁極位置を推測する。制御部70は、回転子30の磁極位置、および上位システムから出力される速度指令信号に応じてパワートランジスタ81A~81Fをスイッチングするためのスイッチング信号を生成する。ゲートドライブ回路82は、制御部70が生成したスイッチング信号に従ってパワートランジスタ81A~81Fのオンおよびオフをスイッチングする。 In the electric motor 1, the control unit 70 estimates the magnetic pole position of the rotor 30 based on the magnetic pole position signal from the magnetic sensor 50 or the current value of the current flowing through the winding group 22. Control unit 70 generates switching signals for switching power transistors 81A to 81F according to the magnetic pole position of rotor 30 and a speed command signal output from a host system. Gate drive circuit 82 switches power transistors 81A to 81F on and off according to a switching signal generated by control section 70.
 電動機1が用いる通電方式には、120°通電制御、150°通電制御、正弦波通電制御などがある。 The energization methods used by the electric motor 1 include 120° energization control, 150° energization control, and sine wave energization control.
 例えば、120°通電制御では、6個のパワートランジスタ81A~81Fのオンとオフとの切り替えタイミングが、3個のホールICによる検出信号の各立ち上がりおよび立ち下がりと同じである。このため、120°通電制御では、制御部70は、クロックを必要としない組合せ回路で構成可能である。 For example, in the 120° energization control, the switching timing between on and off of the six power transistors 81A to 81F is the same as each rise and fall of the detection signal from the three Hall ICs. Therefore, in the 120° energization control, the control section 70 can be configured with a combinational circuit that does not require a clock.
 一方、150°通電制御、正弦波通電制御、位相制御、センサレス制御など磁極位置の推定が必要な制御の場合、制御部70は、クロックを含む複雑なデジタル回路で構成される。磁極位置の推定では、例えば、3個のホールICによる検出信号の各立ち上がりおよび立ち下がりの間のタイミングが細かく推定される。 On the other hand, in the case of control that requires estimation of the magnetic pole position, such as 150° energization control, sine wave energization control, phase control, and sensorless control, the control unit 70 is configured with a complicated digital circuit including a clock. In estimating the magnetic pole position, for example, the timing between each rise and fall of the detection signal from the three Hall ICs is precisely estimated.
 センサレス制御は、磁気センサ50を用いない制御である。センサレス制御では、電流検出抵抗、電流検出用トランスなどで検出された電流値から磁極位置を推定し制御が行われる。センサレス制御では、必要に応じて電流検出抵抗や電流検出用トランスなどで検出された信号がオペアンプなどを用いて増幅される場合もある。 Sensorless control is control that does not use the magnetic sensor 50. In sensorless control, control is performed by estimating the magnetic pole position from the current value detected by a current detection resistor, current detection transformer, etc. In sensorless control, a signal detected by a current detection resistor, a current detection transformer, or the like may be amplified using an operational amplifier or the like, if necessary.
 上述したように、制御部70は、パワートランジスタ81A~81Fに対するPWM制御にて巻線群22に印加する電圧を調整する。電動機1は、インバータ81のスイッチングによる損失を減らすため、上下アームの片側だけをスイッチングする場合がある。 As described above, the control unit 70 adjusts the voltage applied to the winding group 22 by PWM control of the power transistors 81A to 81F. In order to reduce loss due to switching of the inverter 81, the electric motor 1 may switch only one side of the upper and lower arms.
 ここで、電動機1によるスイッチングについて説明する。図3は、実施の形態1にかかる電動機が実行するスイッチングの例を説明するための図である。図3では、パワートランジスタ81A~81Fへのゲート信号(スイッチング信号)を示している。実施の形態1のインバータ81は、上アームと下アームとでスイッチング回数が異なる制御を実行する。 Here, switching by the electric motor 1 will be explained. FIG. 3 is a diagram for explaining an example of switching performed by the electric motor according to the first embodiment. FIG. 3 shows gate signals (switching signals) to power transistors 81A to 81F. The inverter 81 of the first embodiment executes control in which the number of times of switching is different between the upper arm and the lower arm.
 U相上アームパワートランジスタであるパワートランジスタ81Aへのゲート信号が、U相上ゲート信号93Aである。V相上アームパワートランジスタであるパワートランジスタ81Bへのゲート信号が、V相上ゲート信号93Bである。W相上アームパワートランジスタであるパワートランジスタ81Cへのゲート信号が、W相上ゲート信号93Cである。 The gate signal to the power transistor 81A, which is the U-phase upper arm power transistor, is the U-phase upper gate signal 93A. The gate signal to the power transistor 81B, which is the V-phase upper arm power transistor, is the V-phase upper gate signal 93B. The gate signal to the power transistor 81C, which is the W-phase upper arm power transistor, is the W-phase upper gate signal 93C.
 また、U相下アームパワートランジスタであるパワートランジスタ81Dへのゲート信号が、U相下ゲート信号93Dである。V相下アームパワートランジスタであるパワートランジスタ81Eへのゲート信号が、V相下ゲート信号93Eである。W相下アームパワートランジスタであるパワートランジスタ81Fへのゲート信号が、W相下ゲート信号93Fである。 Further, the gate signal to the power transistor 81D, which is the U-phase lower arm power transistor, is the U-phase lower gate signal 93D. The gate signal to the power transistor 81E, which is the V-phase lower arm power transistor, is the V-phase lower gate signal 93E. The gate signal to the power transistor 81F, which is the W-phase lower arm power transistor, is the W-phase lower gate signal 93F.
 図3では、上アームの方が下アームよりも特定期間T1におけるスイッチング回数が多い場合(上アームスイッチングの場合)の各パワートランジスタ81A~81Fのゲート信号のタイミングチャートを示している。 FIG. 3 shows a timing chart of the gate signals of the power transistors 81A to 81F when the upper arm switches more times in the specific period T1 than the lower arm (in the case of upper arm switching).
 ゲート信号がHighの時、パワートランジスタはオンになり、ゲート信号がLowの時、パワートランジスタはオフになる。図3に示すタイミングチャートの場合、上アームは、下アームよりも短い周期でスイッチングする。制御部70は、この上アームのスイッチングのDutyを変えることによって巻線群22に印加する電圧を変化させ、電動機1を制御する。 When the gate signal is High, the power transistor is turned on, and when the gate signal is Low, the power transistor is turned off. In the case of the timing chart shown in FIG. 3, the upper arm switches at a shorter cycle than the lower arm. The control unit 70 controls the motor 1 by changing the voltage applied to the winding group 22 by changing the switching duty of the upper arm.
 以下、上アームの方が下アームよりも特定期間T1におけるスイッチング回数が多い場合(上アームスイッチングの場合)を例に電動機1の構成を説明する。なお、実施の形態1の電動機1は、下アームスイッチングの場合に対しても、上アームスイッチングの場合と同様に適用可能である。 Hereinafter, the configuration of the electric motor 1 will be described using as an example a case where the upper arm switches more times in the specific period T1 than the lower arm (in the case of upper arm switching). Note that the electric motor 1 of the first embodiment can be applied to the case of lower arm switching as well as to the case of upper arm switching.
 図4は、実施の形態1にかかる電動機の内蔵基板に配置されるパワートランジスタの配置位置を示す図である。図4では、内蔵基板11の反ステータ側の面(固定子20に対向しない側の面である上面)を模式的に示している。なお、図4では、内蔵基板11に形成される貫通穴(回転軸31が通される穴)の図示を省略している。 FIG. 4 is a diagram showing the arrangement positions of power transistors arranged on the built-in board of the electric motor according to the first embodiment. FIG. 4 schematically shows the surface of the built-in board 11 on the opposite side to the stator (the upper surface that is the surface not facing the stator 20). Note that in FIG. 4, illustration of a through hole (a hole through which the rotating shaft 31 passes) formed in the built-in board 11 is omitted.
 内蔵基板11に対しては、6個のパワートランジスタ81A~81Fのうちの1つが内蔵基板11のステータ側の面(底面)に配置され、残りの5つが反ステータ側の面(上面)に配置される。図4では、上アームのパワートランジスタ81Bが内蔵基板11のステータ側の面に配置され、残りのパワートランジスタ81A,81C~81Fが反ステータ側の面に配置された場合を示している。 Regarding the built-in board 11, one of the six power transistors 81A to 81F is arranged on the stator side surface (bottom surface) of the built-in board 11, and the remaining five are arranged on the anti-stator side surface (top surface). be done. FIG. 4 shows a case in which the upper arm power transistor 81B is arranged on the stator side surface of the built-in substrate 11, and the remaining power transistors 81A, 81C to 81F are arranged on the anti-stator side surface.
 このように、スイッチング回数が多い方のアームのパワートランジスタ(温度上昇しやすいパワートランジスタ)が、内蔵基板11のステータ側の面と反ステータ側の面とに分散して配置されている。これにより、内蔵基板11は、内蔵基板11での熱集中を回避することができ、パワートランジスタ81A~81Fの温度上昇を抑制することが可能となる。したがって、内蔵基板11は、内蔵基板11の温度上昇を大きく抑制することが可能となる。 In this way, the power transistors of the arm that undergoes more switching (power transistors whose temperature is more likely to rise) are distributed and arranged on the stator side surface and the anti-stator side surface of the built-in substrate 11. Thereby, the built-in substrate 11 can avoid heat concentration on the built-in substrate 11, and it becomes possible to suppress the temperature rise of the power transistors 81A to 81F. Therefore, the built-in board 11 can greatly suppress the temperature rise of the built-in board 11.
 3つの上アームパワートランジスタが内蔵基板11上で特定方向に並べて配置される場合、3つの上アームパワートランジスタのうち中央に配置されるパワートランジスタがステータ側の面に配置されることで、内蔵基板11での熱集中の抑制効果が大きくなる。 When three upper arm power transistors are arranged side by side in a specific direction on the built-in board 11, the power transistor arranged in the center among the three upper arm power transistors is arranged on the stator side surface, so that the built-in board The effect of suppressing heat concentration in step 11 becomes greater.
 内蔵基板11に対しては、内蔵基板11を上面から見た場合に、径方向(中心から外周に向かう方向)に各相の上下アームの対が配置されている。すなわち、内蔵基板11に対しては、内蔵基板11を上面から見た場合に、径方向(第1の径方向)に沿ってU相の上下アームの対が配置され、径方向(第2の径方向)に沿ってV相の上下アームの対が配置され、径方向(第3の径方向)に沿ってW相の上下アームの対が配置されている。 For the built-in board 11, pairs of upper and lower arms of each phase are arranged in the radial direction (direction from the center toward the outer periphery) when the built-in board 11 is viewed from the top. That is, when the built-in board 11 is viewed from above, a pair of U-phase upper and lower arms are arranged along the radial direction (first radial direction), and a pair of U-phase upper and lower arms are arranged along the radial direction (second radial direction). A pair of V-phase upper and lower arms is arranged along the radial direction (radial direction), and a W-phase upper and lower arm pair is arranged along the radial direction (third radial direction).
 また、内蔵基板11に対しては、内蔵基板11を上面から見た場合に、回転軸31の軸方向に対する周方向(第1の周方向)に三相の上アームが並べて配置され、周方向(第2の周方向)に三相の下アームが並べて配置されている。これにより、内蔵基板11の上面には、上アームのパワートランジスタと下アームのパワートランジスタとが周方向に沿って2列に配置されている。内蔵基板11の周方向(第1の周方向および第2の周方向)は、内蔵基板11の外周に沿った方向である。 Further, for the built-in board 11, when the built-in board 11 is viewed from above, three-phase upper arms are arranged side by side in the circumferential direction (first circumferential direction) with respect to the axial direction of the rotating shaft 31, and Three-phase lower arms are arranged side by side (in the second circumferential direction). Thereby, on the upper surface of the built-in substrate 11, the upper arm power transistors and the lower arm power transistors are arranged in two rows along the circumferential direction. The circumferential direction (first circumferential direction and second circumferential direction) of the built-in substrate 11 is a direction along the outer periphery of the built-in substrate 11 .
 図4では、内蔵基板11を上面から見た場合に、周方向に沿ってパワートランジスタ81A~81Cが配置されている場合を示している。また、図4では、内蔵基板11を上面から見た場合に、周方向に沿ってパワートランジスタ81D~81Fが配置されている場合を示している。 FIG. 4 shows a case where power transistors 81A to 81C are arranged along the circumferential direction when the built-in board 11 is viewed from the top. Further, FIG. 4 shows a case where power transistors 81D to 81F are arranged along the circumferential direction when the built-in board 11 is viewed from the top.
 実施の形態1では、例えば、パワートランジスタ81A,81Cが内蔵基板11の上面に配置され、パワートランジスタ81Bが内蔵基板11の底面に配置される。また、パワートランジスタ81D~81Fが内蔵基板11の上面に配置される。 In the first embodiment, for example, the power transistors 81A and 81C are arranged on the top surface of the built-in substrate 11, and the power transistor 81B is arranged on the bottom surface of the built-in substrate 11. Further, power transistors 81D to 81F are arranged on the upper surface of the built-in substrate 11.
 このようなパワートランジスタ81A~81Fの配置により、パワートランジスタ81A~81Fに対するパターン配線が容易になる。この場合において、外周側にスイッチング回数が多い方の上アームのパワートランジスタが配置され、内周側にスイッチング回数が少ない方の下アームのパワートランジスタが配置される。 This arrangement of power transistors 81A to 81F facilitates pattern wiring for power transistors 81A to 81F. In this case, the power transistor of the upper arm that switches more frequently is arranged on the outer circumferential side, and the power transistor of the lower arm that switches more frequently is arranged on the inner circumferential side.
 すなわち、内蔵基板11には、スイッチング回数が多い方のアームのパワートランジスタが、スイッチング回数が少ない方のアームのパワートランジスタよりも外周側に配置される。そして、スイッチング回数が多い方のパワートランジスタの少なくとも1つが内蔵基板11の底面に配置される。 That is, in the built-in substrate 11, the power transistor of the arm that switches more often is arranged closer to the outer periphery than the power transistor of the arm that switches more often. Then, at least one of the power transistors that undergoes more switching is arranged on the bottom surface of the built-in substrate 11.
 このように、外周側にスイッチング回数が多い方のパワートランジスタ(ここでは、上アームパワートランジスタ)が配置され、上アームパワートランジスタのうちの1つ(ここでは、パワートランジスタ81B)が内蔵基板11のステータ側の面に配置される。 In this way, the power transistor (here, the upper arm power transistor) that has a larger switching frequency is arranged on the outer circumferential side, and one of the upper arm power transistors (here, the power transistor 81B) is placed on the built-in board 11. It is placed on the stator side surface.
 ステータ側の面に配置されたパワートランジスタ81Bは、巻線群22の影響を受けて温度が上昇しやすくなるが、パワートランジスタ81Bは、下アームパワートランジスタよりも外周側に配置されているので、熱が電動機1の側面からも放熱されやすくなる。このように、ステータ側の面に配置されたパワートランジスタ81Bからの熱が電動機1の側面からも放熱されやすくなるので、内蔵基板11の放熱性が向上する。すなわち、スイッチング回数が多い方のパワートランジスタが外周側に配置されることで、スイッチング回数が多い方のパワートランジスタで発生した熱を電動機1の側面から放熱しやすくなり、温度上昇の抑制効果が大きくなる。 The temperature of the power transistor 81B placed on the stator side surface tends to rise due to the influence of the winding group 22, but since the power transistor 81B is placed closer to the outer periphery than the lower arm power transistor, Heat is also easily radiated from the sides of the electric motor 1. In this way, the heat from the power transistor 81B disposed on the stator side surface is also easily radiated from the side surface of the motor 1, so that the heat dissipation of the built-in board 11 is improved. In other words, by arranging the power transistor that switches more frequently on the outer circumferential side, the heat generated by the power transistor that switches more often can be easily dissipated from the side of the motor 1, and the effect of suppressing temperature rise is greater. Become.
 なお、スイッチング回数が多い方のアームが下アームである場合、下アームのパワートランジスタが、上アームのパワートランジスタよりも外周側で周方向に沿って配置される。そして、パワートランジスタ81D~81Fの少なくとも1つ(例えば、パワートランジスタ81E)が内蔵基板11の底面に配置される。 Note that when the arm with the greater number of switching is the lower arm, the power transistor of the lower arm is arranged along the circumferential direction on the outer circumferential side than the power transistor of the upper arm. At least one of the power transistors 81D to 81F (for example, the power transistor 81E) is arranged on the bottom surface of the built-in substrate 11.
 図5は、実施の形態1にかかる電動機の第1の内部構成例を模式的に示す断面図である。なお、図5では、下アームパワートランジスタであるパワートランジスタ81D~81Fの図示を省略している。図5では、パワートランジスタ81Aとパワートランジスタ81Bとが、内蔵基板11を挟んで対向する位置に配置されている場合を示しているが、図4に示したように、パワートランジスタ81Bは、パワートランジスタ81A,81Cに対向しない位置に配置されてもよい。 FIG. 5 is a cross-sectional view schematically showing a first internal configuration example of the electric motor according to the first embodiment. Note that in FIG. 5, illustration of power transistors 81D to 81F, which are lower arm power transistors, is omitted. Although FIG. 5 shows a case where the power transistor 81A and the power transistor 81B are arranged at opposing positions with the built-in board 11 in between, as shown in FIG. It may be arranged at a position that does not face 81A and 81C.
 例えば、上アームパワートランジスタであるパワートランジスタ81A~81Cのうちのパワートランジスタ81A,81Cは、巻線群22に対して内蔵基板11の反対側の面に配置されている。すなわち、パワートランジスタ81A,81Cは、内蔵基板11の反ステータ側に配置されている。換言すると、内蔵基板11の底面に対向する位置に固定子鉄心21および巻線群22が配置されている場合、パワートランジスタ81A,81Cは、内蔵基板11の底面とは反対側の面である上面に配置されている。これにより、パワートランジスタ81A,81Cは、巻線群22から発せられる熱の影響を受けにくくなる。したがって、内蔵基板11は、パワートランジスタ81A,81Cの温度上昇を抑制することができる。 For example, the power transistors 81A and 81C of the power transistors 81A to 81C, which are upper arm power transistors, are arranged on the opposite surface of the built-in substrate 11 with respect to the winding group 22. That is, the power transistors 81A and 81C are arranged on the side opposite to the stator of the built-in substrate 11. In other words, when the stator core 21 and the winding group 22 are arranged at positions facing the bottom surface of the built-in board 11, the power transistors 81A and 81C are placed on the top surface of the built-in board 11, which is the surface opposite to the bottom surface. It is located in This makes the power transistors 81A and 81C less susceptible to the effects of heat generated from the winding group 22. Therefore, the built-in substrate 11 can suppress the temperature rise of the power transistors 81A and 81C.
 また、上アームパワートランジスタであるパワートランジスタ81A~81Cのうちのパワートランジスタ81Bは、内蔵基板11のステータ側に配置されている。換言すると、パワートランジスタ81Bは、内蔵基板11の底面に配置されている。これにより、パワートランジスタ81Bは、パワートランジスタ81A,81Cから発せられる熱の影響を受けにくくなる。したがって、内蔵基板11は、パワートランジスタ81Bの温度上昇を抑制することができる。 Further, of the power transistors 81A to 81C, which are upper arm power transistors, the power transistor 81B is arranged on the stator side of the built-in substrate 11. In other words, the power transistor 81B is arranged on the bottom surface of the built-in substrate 11. This makes power transistor 81B less susceptible to the effects of heat emitted from power transistors 81A and 81C. Therefore, the built-in substrate 11 can suppress the temperature rise of the power transistor 81B.
 なお、パワートランジスタ81Aが、内蔵基板11のステータ側に配置され、パワートランジスタ81B,81Cが、内蔵基板11の反ステータ側に配置されてもよい。また、パワートランジスタ81Cが、内蔵基板11のステータ側に配置され、パワートランジスタ81A,81Bが、内蔵基板11の反ステータ側に配置されてもよい。 Note that the power transistor 81A may be arranged on the stator side of the built-in substrate 11, and the power transistors 81B and 81C may be arranged on the side opposite to the stator of the built-in substrate 11. Further, the power transistor 81C may be arranged on the stator side of the built-in substrate 11, and the power transistors 81A and 81B may be arranged on the side opposite to the stator of the built-in substrate 11.
 また、パワートランジスタ81A~81Cのうち、2つのパワートランジスタが、内蔵基板11のステータ側に配置されてもよい。 Furthermore, two power transistors among the power transistors 81A to 81C may be arranged on the stator side of the built-in substrate 11.
 パワートランジスタ81D~81Fは、内蔵基板11の反ステータ側に配置される。このように、ステータ側に配置されるパワートランジスタの数よりも、反ステータ側に配置されるパワートランジスタの数の方が多い。内蔵基板11では、反ステータ側の方が、ステータ側よりも放熱性が良いので、反ステータ側に多くのパワートランジスタが配置された方が、放熱性が向上する。 The power transistors 81D to 81F are arranged on the side opposite to the stator of the built-in substrate 11. In this way, the number of power transistors arranged on the side opposite to the stator is greater than the number of power transistors arranged on the stator side. In the built-in board 11, the anti-stator side has better heat dissipation than the stator side, so the heat dissipation improves when more power transistors are arranged on the anti-stator side.
 図6は、実施の形態1にかかる電動機の第2の内部構成例を模式的に示す断面図である。なお、図6では、下アームパワートランジスタであるパワートランジスタ81D~81Fの図示を省略している。図6では、パワートランジスタ81Aとパワートランジスタ81Bとが、内蔵基板11を挟んで対向する位置に配置されている場合を示しているが、図4に示したように、パワートランジスタ81Bは、パワートランジスタ81A,81Cに対向しない位置に配置されてもよい。 FIG. 6 is a cross-sectional view schematically showing a second internal configuration example of the electric motor according to the first embodiment. Note that in FIG. 6, illustration of power transistors 81D to 81F, which are lower arm power transistors, is omitted. Although FIG. 6 shows a case where the power transistor 81A and the power transistor 81B are arranged at opposite positions with the built-in substrate 11 in between, as shown in FIG. It may be arranged at a position that does not face 81A and 81C.
 図6では、電動機1がヒートシンク5を備えている場合を示している。ヒートシンク5は、電動機1で発生する熱を放散させる。ヒートシンク5を備えた電動機1のその他の構成は、図5に示した電動機1の構成と同じである。例えば、電動機1では、ヒートシンク5が内蔵基板11に対し反ステータ側に設けられる場合がある。この場合、ヒートシンク5は、モールド樹脂12を介して内蔵基板11の反ステータ側に配置される。ヒートシンク5は、モールド樹脂12にて内蔵基板11と一体成型されるか、またはモールド樹脂12と内蔵基板11とが一体成型後に取り付けられる。この場合、ヒートシンク5とモールド樹脂12との間の接触熱抵抗を下げるため、ヒートシンク5とモールド樹脂12との間に、放熱部材が配置される。放熱部材の例は、熱伝導シート、熱伝導グリス、または放熱パッドである。 FIG. 6 shows a case where the electric motor 1 is equipped with a heat sink 5. The heat sink 5 dissipates heat generated by the electric motor 1. The other configuration of the electric motor 1 including the heat sink 5 is the same as the configuration of the electric motor 1 shown in FIG. For example, in the electric motor 1, the heat sink 5 may be provided on the side opposite to the stator with respect to the built-in board 11. In this case, the heat sink 5 is placed on the side opposite to the stator of the built-in board 11 with the molded resin 12 interposed therebetween. The heat sink 5 is integrally molded with the built-in substrate 11 using a mold resin 12, or is attached after the mold resin 12 and the built-in substrate 11 are integrally molded. In this case, a heat radiating member is disposed between the heat sink 5 and the mold resin 12 in order to reduce the contact thermal resistance between the heat sink 5 and the mold resin 12. Examples of the heat dissipation member are a heat conductive sheet, heat conductive grease, or a heat dissipation pad.
 反ステータ側に配置されたパワートランジスタ81A,81Cの放熱パターン(後述する放熱用基板パターン2A)と、反ステータ側に配置されたパワートランジスタ81A,81Cのボディまたは放熱タブの軸方向の高さとは、均一ではないが、内蔵基板11の反ステータ側は、モールド樹脂12にて隙間なく充填されている。このため、反ステータ側のパワートランジスタ81A,81Cと、ヒートシンク5とを、隙間なく充填されたモールド樹脂12によって接合することができる。したがって、ヒートシンク5での熱伝導が、隙間などによって極端に下がることを抑制できる。 What are the heat dissipation patterns of the power transistors 81A and 81C arranged on the anti-stator side (heat dissipation substrate pattern 2A described later) and the axial height of the bodies or heat dissipation tabs of the power transistors 81A and 81C disposed on the anti-stator side? Although not uniformly, the side of the built-in substrate 11 opposite to the stator is filled with the molding resin 12 without any gaps. Therefore, the power transistors 81A, 81C on the anti-stator side and the heat sink 5 can be joined with the mold resin 12 filled without any gaps. Therefore, it is possible to suppress the heat conduction in the heat sink 5 from being extremely reduced due to gaps or the like.
 内蔵基板11にモールド樹脂12が一体成型されない場合、ヒートシンク5と、パワートランジスタ81A,81Cまたは放熱パターンとの間に、放熱パッドが配置される。この場合において、パワートランジスタ81A,81Cのボディの高さと放熱パターンとの高さとが揃っていないと、ヒートシンク5と内蔵基板11との間に放熱パッドを隙間なく充填することが難しくなる。一方、実施の形態1では、内蔵基板11にモールド樹脂12が一体成型されているので、ヒートシンク5と内蔵基板11との間にモールド樹脂12を隙間なく充填することが可能となる。 If the mold resin 12 is not integrally molded on the built-in substrate 11, a heat radiation pad is arranged between the heat sink 5 and the power transistors 81A, 81C or the heat radiation pattern. In this case, if the heights of the bodies of the power transistors 81A, 81C and the heights of the heat radiation patterns are not the same, it becomes difficult to fill the space between the heat sink 5 and the built-in substrate 11 with heat radiation pads without any gaps. On the other hand, in the first embodiment, since the mold resin 12 is integrally molded on the built-in substrate 11, it becomes possible to fill the space between the heat sink 5 and the built-in substrate 11 with the mold resin 12 without any gap.
 なお、ステータ側に配置されたパワートランジスタの放熱パターン(後述する放熱用基板パターン2B)に対しても、パワートランジスタが有する放熱タブ(後述する放熱タブ85T)が接続されている。そして、放熱タブ85Tを有したパワートランジスタを覆うようにモールド樹脂12が配置されている。 Note that a heat radiation tab (heat radiation tab 85T described later) of the power transistor is also connected to a heat radiation pattern (heat radiation substrate pattern 2B described later) of the power transistor arranged on the stator side. Then, the mold resin 12 is placed so as to cover the power transistor having the heat dissipation tab 85T.
 このように、電動機1では、上アームおよび下アームのパワートランジスタのうちスイッチング回数が多い方のアームのパワートランジスタが、内蔵基板11の両面に少なくとも1つずつ配置されている。すなわち、電動機1では、スイッチング回数が多い方のアームのパワートランジスタは、内蔵基板11の上面と底面とに分散して配置されている。 In this way, in the electric motor 1, at least one power transistor of the upper arm and one of the lower arm power transistors, which is switched more often, is arranged on both sides of the built-in substrate 11. That is, in the electric motor 1, the power transistors of the arm that undergoes more switching are distributed and arranged on the top and bottom surfaces of the built-in substrate 11.
 電動機1では、スイッチング回数が多い方のアームは、スイッチング回数が少ない方のアームよりも温度上昇が大きい。このため、スイッチング回数が多い方のアームのパワートランジスタが、内蔵基板11の上面と底面とに分散して配置されることで、温度上昇の抑制効果が大きくなる。 In the electric motor 1, the arm that has been switched more often has a larger temperature rise than the arm that has been switched less often. Therefore, the power transistors of the arm that undergoes more switching are arranged in a distributed manner on the top and bottom surfaces of the built-in substrate 11, thereby increasing the effect of suppressing temperature rise.
 なお、内蔵基板11に対しては、ステータ側に配置されたパワートランジスタの放熱性を向上させるため、スルーホールが形成されてもよい。ここで、スルーホールが形成された場合の内蔵基板11の構成について説明する。 Note that through holes may be formed in the built-in substrate 11 in order to improve heat dissipation of the power transistors arranged on the stator side. Here, the configuration of the built-in board 11 when through holes are formed will be described.
 図7は、実施の形態1にかかる内蔵基板上でのパワートランジスタの第1の配置例を模式的に示す図である。図7では、スルーホール4が形成された場合の内蔵基板11の断面図を示している。 FIG. 7 is a diagram schematically showing a first example of arrangement of power transistors on the built-in substrate according to the first embodiment. FIG. 7 shows a cross-sectional view of the built-in substrate 11 when the through hole 4 is formed.
 内蔵基板11の上面(反ステータ側の面)には、放熱用基板パターン2Aが配置され、内蔵基板11の底面(ステータ側の面)には、放熱用基板パターン2Bが配置されている。放熱用基板パターン2A,2Bは、内蔵基板11で発生する熱を拡散させるパターンである。放熱用基板パターン2Aが、第1の放熱用基板パターンであり、放熱用基板パターン2Bが、第2の放熱用基板パターンである。 A heat dissipation substrate pattern 2A is arranged on the top surface of the built-in substrate 11 (surface opposite to the stator), and a heat dissipation substrate pattern 2B is disposed on the bottom surface of the built-in substrate 11 (surface on the stator side). The heat dissipation substrate patterns 2A and 2B are patterns that diffuse heat generated in the built-in substrate 11. The heat dissipation substrate pattern 2A is the first heat dissipation substrate pattern, and the heat dissipation substrate pattern 2B is the second heat dissipation substrate pattern.
 また、内蔵基板11の底面側に配置されたパワートランジスタ81Bは、放熱性を向上させるための放熱タブ85Tを有している。放熱タブ85Tは、パワートランジスタ81Bで発生する熱を放散させる。 Furthermore, the power transistor 81B arranged on the bottom side of the built-in substrate 11 has a heat dissipation tab 85T for improving heat dissipation. The heat dissipation tab 85T dissipates heat generated by the power transistor 81B.
 放熱用基板パターン2Bは、放熱タブ85Tに接続されている。放熱タブ85Tに接続されている放熱用基板パターン2Bは、スルーホール4を介して反ステータ側の放熱用基板パターン2Aに接続されている。スルーホール4は、内蔵基板11を貫通する穴である。スルーホール4には、熱伝導率が特定値よりも高い部材が埋め込まれていてもよい。スルーホール4には、例えば、内蔵基板11の熱伝導率よりも熱伝導率が高い部材が埋め込まれていてもよい。 The heat radiation substrate pattern 2B is connected to the heat radiation tab 85T. The heat radiation substrate pattern 2B connected to the heat radiation tab 85T is connected to the heat radiation substrate pattern 2A on the anti-stator side via the through hole 4. The through hole 4 is a hole that penetrates the built-in board 11. A member having a thermal conductivity higher than a specific value may be embedded in the through hole 4. For example, a member having higher thermal conductivity than that of the built-in substrate 11 may be embedded in the through hole 4 .
 内蔵基板11のこのような構成により、パワートランジスタ81Bは、放熱タブ85T、放熱用基板パターン2B、スルーホール4、および放熱用基板パターン2Aを介して熱を逃がす。 With such a configuration of the built-in board 11, the power transistor 81B releases heat via the heat radiation tab 85T, the heat radiation board pattern 2B, the through hole 4, and the heat radiation board pattern 2A.
 なお、内蔵基板11の上面側に配置されるパワートランジスタ81A,81C,81D~81Fが、放熱タブ85Tを有していてもよい。また、内蔵基板11には、放熱タブ85Tが配置されていなくてもよい。この場合、パワートランジスタ81Bは、放熱タブ85Tに接続されない。 Note that the power transistors 81A, 81C, 81D to 81F arranged on the upper surface side of the built-in substrate 11 may have a heat radiation tab 85T. Further, the built-in board 11 does not need to be provided with the heat dissipation tab 85T. In this case, power transistor 81B is not connected to heat radiation tab 85T.
 図8は、実施の形態1にかかる内蔵基板上でのパワートランジスタの第2の配置例を模式的に示す図である。図8では、スルーホール4が形成された場合の内蔵基板11の断面図を示している。 FIG. 8 is a diagram schematically showing a second arrangement example of power transistors on the built-in substrate according to the first embodiment. FIG. 8 shows a cross-sectional view of the built-in substrate 11 when the through hole 4 is formed.
 内蔵基板11に放熱タブ85Tが配置されていない場合も、内蔵基板11の上面(反ステータ側の面)には、放熱用基板パターン2Aが配置され、内蔵基板11の底面(ステータ側の面)には、放熱用基板パターン2Bが配置されている。 Even when the heat dissipation tab 85T is not arranged on the built-in board 11, the heat dissipation board pattern 2A is arranged on the top surface (the surface opposite to the stator) of the built-in board 11, and A heat dissipation substrate pattern 2B is arranged.
 内蔵基板11に放熱タブ85Tが配置されていない場合、高温となるパワートランジスタ81Bのパッケージ下部が放熱用基板パターン2Bに接続される。そして、パワートランジスタ81Bのパッケージ下部に接続されている放熱用基板パターン2Bが、スルーホール4を介して反ステータ側の放熱用基板パターン2Aに接続される。この構成により、パワートランジスタ81Bは、放熱用基板パターン2B、スルーホール4、および放熱用基板パターン2Aを介して熱を逃がす。 If the heat dissipation tab 85T is not arranged on the built-in substrate 11, the lower part of the package of the power transistor 81B, which becomes hot, is connected to the heat dissipation substrate pattern 2B. Then, the heat dissipation substrate pattern 2B connected to the lower part of the package of the power transistor 81B is connected to the heat dissipation substrate pattern 2A on the side opposite to the stator via the through hole 4. With this configuration, the power transistor 81B releases heat via the heat dissipation substrate pattern 2B, the through hole 4, and the heat dissipation substrate pattern 2A.
 ここで、比較例の電動機の構成について説明する。図9は、比較例の電動機の内部構成を模式的に示す断面図である。比較例の電動機1Xは、パワートランジスタ81A~81Fが、全て内蔵基板11X上の同一面(上面)に配置されている。すなわち、比較例の電動機1Xでは、パワートランジスタ81A~81Cが、巻線群22に対して内蔵基板11Xの反対側の面に配置されている。なお、図9では、パワートランジスタ81D~81Fの図示を省略している。 Here, the configuration of the electric motor of the comparative example will be explained. FIG. 9 is a cross-sectional view schematically showing the internal configuration of a motor according to a comparative example. In the electric motor 1X of the comparative example, power transistors 81A to 81F are all arranged on the same surface (upper surface) on the built-in substrate 11X. That is, in the electric motor 1X of the comparative example, the power transistors 81A to 81C are arranged on the opposite surface of the built-in board 11X with respect to the winding group 22. Note that in FIG. 9, illustration of the power transistors 81D to 81F is omitted.
 実施の形態1の電動機1は、パワートランジスタ81A~81Cのうちのパワートランジスタ81A,81Cは、巻線群22に対して内蔵基板11の反対側の面に配置されている。したがって、実施の形態1の電動機1が備える内蔵基板11は、比較例の電動機1Xが備える内蔵基板11Xよりも、温度上昇を抑制できる。すなわち、実施の形態1の電動機1が備える内蔵基板11は、温度の上昇量が大きい部品が内蔵基板11上の一方の面のみに配置されていないので、内蔵基板11の温度上昇の抑制量が大きくなる。 In the motor 1 of the first embodiment, the power transistors 81A and 81C of the power transistors 81A to 81C are arranged on the opposite surface of the built-in board 11 with respect to the winding group 22. Therefore, the built-in board 11 included in the electric motor 1 of the first embodiment can suppress the temperature rise more than the built-in board 11X included in the electric motor 1X of the comparative example. That is, in the built-in board 11 included in the electric motor 1 of the first embodiment, components with a large temperature rise are not arranged only on one surface of the built-in board 11, so that the amount of suppression of the temperature rise of the built-in board 11 is suppressed. growing.
 このように実施の形態1の電動機1では、上アームと下アームとでスイッチング回数が多い方のアームのパワートランジスタが、内蔵基板11の上面と底面とに分散して配置されている。これにより、電動機1は、制御基板である内蔵基板11の温度上昇を大きく抑制することができる。 As described above, in the electric motor 1 of the first embodiment, the power transistors of the upper arm and the lower arm, which have a higher number of switching operations, are distributed and arranged on the upper surface and the lower surface of the built-in substrate 11. Thereby, the electric motor 1 can greatly suppress the temperature rise of the built-in board 11, which is a control board.
実施の形態2.
 つぎに、図10を用いて実施の形態2について説明する。実施の形態2では、実施の形態1で説明した電動機1を空気調和機に適用する。
Embodiment 2.
Next, Embodiment 2 will be described using FIG. 10. In the second embodiment, the electric motor 1 described in the first embodiment is applied to an air conditioner.
 図10は、実施の形態2にかかる空気調和機の模式図である。エアコンディショナである空気調和機200は、室内機210と、室内機210に接続される室外機220とを備えている。室内機210は、電動機1と、室内機基板211と、室内機用送風機(図示せず)とを搭載している。室外機220は、室外機用送風機223を搭載している。 FIG. 10 is a schematic diagram of an air conditioner according to the second embodiment. An air conditioner 200 that is an air conditioner includes an indoor unit 210 and an outdoor unit 220 connected to the indoor unit 210. The indoor unit 210 is equipped with the electric motor 1, an indoor unit board 211, and an indoor unit blower (not shown). The outdoor unit 220 is equipped with an outdoor unit blower 223.
 室外機用送風機223および室内機用送風機は、それぞれ駆動源として実施の形態1で説明した電動機1を内蔵している。特に、空気調和機200が業務用である場合、高出力が求められ高い放熱性能が求められるので、実施の形態1で説明した電動機1が適用されることで放熱効果が大きくなる。 The outdoor unit blower 223 and the indoor unit blower each incorporate the electric motor 1 described in Embodiment 1 as a drive source. In particular, when the air conditioner 200 is for commercial use, high output and high heat dissipation performance are required, so the heat dissipation effect is increased by applying the electric motor 1 described in Embodiment 1.
 なお、電動機1は、空気調和機200の他にも、例えば換気扇、家電機器、工作機などに搭載して利用することができる。 In addition to the air conditioner 200, the electric motor 1 can be used by being installed in, for example, a ventilation fan, a home appliance, a machine tool, etc.
 このように実施の形態2によれば、実施の形態1で説明した電動機1が空気調和機200に適用されるので、内蔵基板11の温度上昇を大きく抑制することができる。 As described above, according to the second embodiment, the electric motor 1 described in the first embodiment is applied to the air conditioner 200, so that the temperature rise of the built-in board 11 can be greatly suppressed.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 1,1X 電動機、2A,2B 放熱用基板パターン、4 スルーホール、5 ヒートシンク、10 モールド固定子、11,11X 内蔵基板、12 モールド樹脂、13 リード線、14 リード口出し部、20 固定子、21 固定子鉄心、22 巻線群、22U U相巻線、22V V相巻線、22W W相巻線、23 インシュレータ、30 回転子、31 回転軸、32 回転子絶縁部、33 出力側軸受、34 反出力側軸受、40 マグネット、41~43,47,48 接続点、50 磁気センサ、60 ブラケット、61 圧入部、70 制御部、75 過電流検出抵抗、77 高圧電源、78 低圧電源、79A~79C グランド、81 インバータ、81A~81F パワートランジスタ、82 ゲートドライブ回路、83 保護回路、85T 放熱タブ、93A U相上ゲート信号、93B V相上ゲート信号、93C W相上ゲート信号、93D U相下ゲート信号、93E V相下ゲート信号、93F W相下ゲート信号、200 空気調和機、210 室内機、211 室内機基板、220 室外機、223 室外機用送風機。 1, 1X electric motor, 2A, 2B heat dissipation board pattern, 4 through hole, 5 heat sink, 10 molded stator, 11, 11X built-in board, 12 molded resin, 13 lead wire, 14 lead outlet, 20 stator, 21 fixing Child core, 22 Winding group, 22U U phase winding, 22V V phase winding, 22W W phase winding, 23 Insulator, 30 Rotor, 31 Rotating shaft, 32 Rotor insulation section, 33 Output side bearing, 34 Reverse Output side bearing, 40 magnet, 41 to 43, 47, 48 connection point, 50 magnetic sensor, 60 bracket, 61 press-fit part, 70 control part, 75 overcurrent detection resistor, 77 high voltage power supply, 78 low voltage power supply, 79A to 79C ground , 81 inverter, 81A to 81F power transistor, 82 gate drive circuit, 83 protection circuit, 85T heat dissipation tab, 93A U phase upper gate signal, 93B V phase upper gate signal, 93C W phase upper gate signal, 93D U phase lower gate signal , 93E V-phase lower gate signal, 93F W-phase lower gate signal, 200 Air conditioner, 210 Indoor unit, 211 Indoor unit board, 220 Outdoor unit, 223 Outdoor unit blower.

Claims (8)

  1.  固定子と、
     回転子と、
     前記固定子に電流を供給するインバータ回路を有した制御基板と、
     を備え、
     前記インバータ回路は、上アームの複数のパワートランジスタと、下アームの複数のパワートランジスタとを有し、
     前記上アームと前記下アームとでスイッチング回数が多い方のアームのパワートランジスタが、前記制御基板の第1の面と前記第1の面に対向する第2の面とに分散して配置されている、
     電動機。
    a stator;
    rotor and
    a control board having an inverter circuit that supplies current to the stator;
    Equipped with
    The inverter circuit includes a plurality of power transistors in an upper arm and a plurality of power transistors in a lower arm,
    The power transistors of the upper arm and the lower arm, which has a higher switching frequency, are arranged in a distributed manner on a first surface of the control board and a second surface opposite to the first surface. There is,
    Electric motor.
  2.  前記第2の面は、前記固定子が配置される側の面であり、前記第2の面に配置されるパワートランジスタの数よりも、前記第1の面に配置されるパワートランジスタの数の方が多い、
     請求項1に記載の電動機。
    The second surface is a surface on which the stator is arranged, and the number of power transistors arranged on the first surface is greater than the number of power transistors arranged on the second surface. There are many
    The electric motor according to claim 1.
  3.  前記制御基板は、
     前記上アームの複数のパワートランジスタが、前記制御基板の前記第1の面上から見た場合に第1の周方向に沿って配置され、前記下アームの複数のパワートランジスタが、前記制御基板の前記第1の面上から見た場合に第2の周方向に沿って配置されることで、前記上アームの複数のパワートランジスタおよび前記下アームの複数のパワートランジスタは、前記制御基板の前記第1の面上から見た場合に周方向に沿って2列に配置され、
     前記スイッチング回数が多い方のアームのパワートランジスタが、前記制御基板の前記第1の面上で前記スイッチング回数が少ない方のアームのパワートランジスタよりも外周側に配置されている、
     請求項1または2に記載の電動機。
    The control board is
    A plurality of power transistors in the upper arm are arranged along a first circumferential direction when viewed from above the first surface of the control board, and a plurality of power transistors in the lower arm are arranged along a first circumferential direction when viewed from above the first surface of the control board. By being arranged along the second circumferential direction when viewed from above the first surface, the plurality of power transistors of the upper arm and the plurality of power transistors of the lower arm are arranged along the second circumferential direction when viewed from above the first surface. They are arranged in two rows along the circumferential direction when viewed from the surface of
    The power transistor of the arm with the higher switching frequency is arranged on the first surface of the control board closer to the outer circumferential side than the power transistor of the arm with the lower switching frequency.
    The electric motor according to claim 1 or 2.
  4.  前記第2の面に配置されているパワートランジスタは、前記パワートランジスタで発生する熱を放散させる放熱タブを有し、
     前記制御基板の前記第1の面には、前記制御基板で発生する熱を拡散させるパターンである第1の放熱用基板パターンが配置され、
     前記制御基板の前記第2の面には、前記制御基板で発生する熱を拡散させるパターンである第2の放熱用基板パターンが配置され、
     前記放熱タブは、第2の放熱用基板パターンに接続されるとともに、前記第1の放熱用基板パターンと前記第2の放熱用基板パターンとは、前記制御基板を貫通するスルーホールを介して接続されている、
     請求項1から3の何れか1つに記載の電動機。
    The power transistor disposed on the second surface has a heat dissipation tab that dissipates heat generated in the power transistor,
    A first heat dissipation board pattern, which is a pattern for diffusing heat generated in the control board, is disposed on the first surface of the control board,
    A second heat dissipation board pattern, which is a pattern for diffusing heat generated in the control board, is disposed on the second surface of the control board,
    The heat dissipation tab is connected to a second heat dissipation board pattern, and the first heat dissipation board pattern and the second heat dissipation board pattern are connected via a through hole penetrating the control board. has been,
    The electric motor according to any one of claims 1 to 3.
  5.  前記制御基板の前記第1の面には、前記制御基板で発生する熱を拡散させるパターンである第1の放熱用基板パターンが配置され、
     前記制御基板の前記第2の面には、前記制御基板で発生する熱を拡散させるパターンである第2の放熱用基板パターンが配置され、
     前記第1の放熱用基板パターンと前記第2の放熱用基板パターンとは、前記制御基板を貫通するスルーホールを介して接続されている、
     請求項1から3の何れか1つに記載の電動機。
    A first heat dissipation board pattern, which is a pattern for diffusing heat generated in the control board, is disposed on the first surface of the control board,
    A second heat dissipation board pattern, which is a pattern for diffusing heat generated in the control board, is disposed on the second surface of the control board,
    The first heat dissipation board pattern and the second heat dissipation board pattern are connected via a through hole penetrating the control board.
    The electric motor according to any one of claims 1 to 3.
  6.  熱を放散させるヒートシンクをさらに備え、
     前記制御基板は、樹脂を用いて一体成型されており、
     前記ヒートシンクは、前記樹脂を介して前記制御基板の前記第1の面上に配置されている、
     請求項1から5の何れか1つに記載の電動機。
    It also has a heat sink to dissipate heat.
    The control board is integrally molded using resin,
    the heat sink is disposed on the first surface of the control board via the resin;
    The electric motor according to any one of claims 1 to 5.
  7.  請求項1から6の何れか1つに記載の電動機を有した、
     空気調和機。
    comprising the electric motor according to any one of claims 1 to 6,
    Air conditioner.
  8.  固定子および回転子を備えた電動機の前記固定子に電流を供給するインバータ回路を有し、
     前記インバータ回路は、上アームの複数のパワートランジスタと、下アームの複数のパワートランジスタとを有し、
     前記上アームと前記下アームとでスイッチング回数が多い方のアームのパワートランジスタが、基板上の第1の面と前記第1の面に対向する第2の面とに分散して配置されている、
     制御基板。
    an inverter circuit that supplies current to the stator of an electric motor including a stator and a rotor;
    The inverter circuit includes a plurality of power transistors in an upper arm and a plurality of power transistors in a lower arm,
    The power transistors of the upper arm and the lower arm, which has a higher switching frequency, are distributed and arranged on a first surface of the substrate and a second surface opposite to the first surface. ,
    control board.
PCT/JP2022/033111 2022-09-02 2022-09-02 Electric motor, air conditioner, and control board WO2024047863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033111 WO2024047863A1 (en) 2022-09-02 2022-09-02 Electric motor, air conditioner, and control board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033111 WO2024047863A1 (en) 2022-09-02 2022-09-02 Electric motor, air conditioner, and control board

Publications (1)

Publication Number Publication Date
WO2024047863A1 true WO2024047863A1 (en) 2024-03-07

Family

ID=90099073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033111 WO2024047863A1 (en) 2022-09-02 2022-09-02 Electric motor, air conditioner, and control board

Country Status (1)

Country Link
WO (1) WO2024047863A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135155A (en) * 1995-11-07 1997-05-20 Hitachi Ltd Semiconductor device
JP2004201500A (en) * 2004-03-15 2004-07-15 Toshiba Transport Eng Inc Power conversion apparatus
JP2010268541A (en) * 2009-05-12 2010-11-25 Mitsubishi Electric Corp Rotating electrical machine
JP2021093783A (en) * 2019-12-06 2021-06-17 パナソニックIpマネジメント株式会社 On-vehicle power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135155A (en) * 1995-11-07 1997-05-20 Hitachi Ltd Semiconductor device
JP2004201500A (en) * 2004-03-15 2004-07-15 Toshiba Transport Eng Inc Power conversion apparatus
JP2010268541A (en) * 2009-05-12 2010-11-25 Mitsubishi Electric Corp Rotating electrical machine
JP2021093783A (en) * 2019-12-06 2021-06-17 パナソニックIpマネジメント株式会社 On-vehicle power conversion device

Similar Documents

Publication Publication Date Title
EP3014747B1 (en) A control module for an electric motor or generator
US11336154B2 (en) Stator for an electric motor or generator
US9431881B2 (en) Electric machine housing
US9729092B2 (en) Inverter for an electric motor or generator
JP4557955B2 (en) Motor driving circuit, motor driving method, and semiconductor integrated circuit device
JP5274539B2 (en) Electric motor and blower
JP6049584B2 (en) Electric motor
WO2024047863A1 (en) Electric motor, air conditioner, and control board
JP5538506B2 (en) Electric motor drive device, electric motor incorporating the same, and air conditioner equipped with the same
JP6727450B2 (en) Electric motor and air conditioner equipped with the electric motor
WO2022264407A1 (en) Electric motor, air conditioner, and control board
JP7003294B2 (en) Motor and air conditioner equipped with it
JP7337273B2 (en) Power control device, electric motor with power control device, and air conditioner with electric motor
JP2012080653A (en) Dc brushless motor and electrical apparatus using the same
WO2023157175A1 (en) Electric motor and air-conditioning device
WO2023135743A1 (en) Electric motor, air conditioner, and control board
JP2021090328A (en) Inverter controller
WO2021220427A1 (en) Electric motor and air conditioner
US20230012990A1 (en) Electric motor and air-conditioning apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957457

Country of ref document: EP

Kind code of ref document: A1