JP6049584B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP6049584B2
JP6049584B2 JP2013223129A JP2013223129A JP6049584B2 JP 6049584 B2 JP6049584 B2 JP 6049584B2 JP 2013223129 A JP2013223129 A JP 2013223129A JP 2013223129 A JP2013223129 A JP 2013223129A JP 6049584 B2 JP6049584 B2 JP 6049584B2
Authority
JP
Japan
Prior art keywords
housing
power element
electric motor
substrate
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013223129A
Other languages
Japanese (ja)
Other versions
JP2015089151A (en
Inventor
後藤 隆
隆 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013223129A priority Critical patent/JP6049584B2/en
Publication of JP2015089151A publication Critical patent/JP2015089151A/en
Application granted granted Critical
Publication of JP6049584B2 publication Critical patent/JP6049584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Motor Or Generator Frames (AREA)

Description

この発明は、大電流が通電されるパワー基板を搭載した電動機に関するものである。   The present invention relates to an electric motor equipped with a power board through which a large current is passed.

従来、大電流が通電されるパワー素子を搭載したパワー基板の放熱対策として、パワー基板に設けた貫通孔を介して、パワー基板表面に実装されたパワー素子をパワー基板裏面側のヒートシンクに露出させていた(例えば、特許文献1参照)。また、パワー基板のパワー素子直下またはパワー素子周辺に小径(φ0.2mm〜φ0.8mm程度)のスルーホールを多数設けて、スルーホールを経由してヒートシンクに放熱する方法もあった。これらの方法では、放熱効率を高めるために、貫通孔を大径化したり、スルーホールの数を増やしたりする必要があった。すると、基板面積の拡大を招き、製品価値を下げることになる。   Conventionally, as a heat dissipation measure for a power board equipped with a power element that is energized with a large current, the power element mounted on the power board surface is exposed to a heat sink on the back side of the power board through a through hole provided in the power board. (For example, refer to Patent Document 1). In addition, there is a method in which a large number of through holes having a small diameter (about φ0.2 mm to φ0.8 mm) are provided directly below or around the power element of the power substrate, and heat is radiated to the heat sink via the through hole. In these methods, it is necessary to increase the diameter of the through holes or increase the number of through holes in order to increase the heat dissipation efficiency. As a result, the substrate area is increased, and the product value is lowered.

また、上記特許文献1では、パワー基板の放熱対策として、基板素材の高放熱化を実施していた。普及率が高く、汎用性も高く、かつ安価な基板は、樹脂基板(ガラスエポキシ基板)であるが、上記特許文献1では、パワー基板の素材をセラミックまたはアルミニウムに変更することにより、パワー素子の熱を効率的に放熱可能であった。しかしながら、基板素材の高放熱化は、基板コストの増加(同体積比で約5倍程度)を招く。   Moreover, in the said patent document 1, the high heat dissipation of the board | substrate material was implemented as a heat dissipation countermeasure of a power board. A substrate having a high diffusion rate, high versatility, and low cost is a resin substrate (glass epoxy substrate). However, in Patent Document 1, the power substrate material is changed to ceramic or aluminum, so that It was possible to dissipate heat efficiently. However, increasing the heat dissipation of the substrate material causes an increase in substrate cost (about 5 times in the same volume ratio).

特開平5−167005号公報JP-A-5-167005

上述したように、従来の放熱対策は、放熱の効率化と引き換えに製品価値が低下したり、コストが増加したりするという課題があるため、更なる改良が望まれていた。   As described above, the conventional heat radiation countermeasure has problems that the product value decreases and the cost increases in exchange for the efficiency of heat radiation, and thus further improvement has been desired.

この発明は、上記のような課題を解決するためになされたもので、パワー素子の熱を効率的に放熱することが可能な電動機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an electric motor capable of efficiently dissipating heat of a power element.

この発明に係る電動機は、パワー素子が実装された基板と、基板のパワー素子実装面とは反対の面が固定されたハウジングとを備えた電動機であって、基板は、パワー素子直下に開口したスルーホールを有し、ハウジングは、スルーホール内に差し込まれて、放熱材を介してパワー素子の背面に接合される凸部を有し、放熱材は、パワー素子の背面と凸部との間、スルーホールと凸部との間、および基板のパワー素子の実装面とは反対の面とハウジングとの間に、途切れることなく充填されているAn electric motor according to the present invention is an electric motor including a board on which a power element is mounted and a housing to which a surface opposite to the power element mounting surface of the board is fixed, and the board is opened immediately below the power element. has a through hole, the housing, is inserted into the through-hole, via the radiation material have a convex portion which is joined to the back of the power device, the heat radiating member, between the back surface and the convex portion of the power element The space between the through hole and the convex portion and between the surface of the substrate opposite to the mounting surface of the power element and the housing is filled without interruption .

この発明によれば、ハウジングの凸部を、基板のスルーホール内に差し込んで放熱材を介してパワー素子の背面に接合するようにし、放熱材を、パワー素子の背面と凸部との間、スルーホールと凸部との間、および基板のパワー素子の実装面とは反対の面とハウジングとの間に、途切れることなく充填するようにしたので、パワー素子が発する熱を、放熱材およびハウジングの凸部を経由してハウジング外へ効率的に放熱することができる。 According to this invention, the convex portion of the housing is inserted into the through hole of the substrate and joined to the back surface of the power element through the heat dissipation material , and the heat dissipation material is interposed between the back surface and the convex portion of the power element, Since the space between the through hole and the convex part and between the surface of the substrate opposite to the mounting surface of the power element and the housing is filled without interruption , the heat generated by the power element is radiated from the heat dissipation material and the housing. The heat can be efficiently radiated to the outside of the housing via the convex portion.

この発明の実施の形態1に係る電動機の構成を示す断面図である。It is sectional drawing which shows the structure of the electric motor which concerns on Embodiment 1 of this invention. 図1に示すパワー素子の周辺構造を拡大した図である。It is the figure which expanded the peripheral structure of the power element shown in FIG. 実施の形態1に係る電動機の変形例を示す断面図であり、放熱フィンを設けた例である。It is sectional drawing which shows the modification of the electric motor which concerns on Embodiment 1, and is the example which provided the radiation fin. 実施の形態1に係る電動機の変形例を示す断面図であり、水冷通路を設けた例である。It is sectional drawing which shows the modification of the electric motor which concerns on Embodiment 1, and is the example which provided the water cooling channel | path. 実施の形態1に係る電動機の変形例を示す断面図であり、熱伝達経路をカバー側に構成した例である。It is sectional drawing which shows the modification of the electric motor which concerns on Embodiment 1, and is the example which comprised the heat transfer path | route in the cover side.

実施の形態1.
図1に示す電動機1は、電動機本体10と、電動機本体10の駆動を制御する制御部20と、これら電動機本体10と制御部20とを収容するハウジング30と、制御部20を被覆するカバー40とを備える。
Embodiment 1 FIG.
An electric motor 1 shown in FIG. 1 includes an electric motor main body 10, a control unit 20 that controls driving of the electric motor main body 10, a housing 30 that houses the electric motor main body 10 and the control unit 20, and a cover 40 that covers the control unit 20. With.

ハウジング30は金属製とし、特に、熱伝導率の高いアルミニウムを採用して構成することが望ましい。円筒状のハウジング30の内部には、仕切り壁31が形成されており、仕切り壁31で仕切られた一方側に電動機本体10が収容され、もう一方側に制御部20が収容される。また、仕切り壁31の制御部20を収容する側の面には、パワー基板21のスルーホール21aに差し込まれる凸部32が形成されている。
他方のカバー40は、例えば高放熱樹脂を採用して構成すればよい。
The housing 30 is made of metal, and it is particularly desirable to use aluminum having high thermal conductivity. A partition wall 31 is formed inside the cylindrical housing 30. The electric motor main body 10 is accommodated on one side partitioned by the partition wall 31, and the control unit 20 is accommodated on the other side. Further, a convex portion 32 to be inserted into the through hole 21 a of the power substrate 21 is formed on the surface of the partition wall 31 on the side where the control unit 20 is accommodated.
The other cover 40 may be configured using, for example, a high heat dissipation resin.

制御部20は、パワー素子22(例えば、MOSFET)などが実装されたパワー基板21と、回転センサ24などが実装された制御基板23とを備えている。パワー基板21および制御基板23は、ガラスエポキシ基板などの安価な樹脂基板を採用して構成され、ハウジング30の仕切り壁31に設置されている。
なお、図1の例では、パワー基板21と制御基板23を別々の基板にして、結線26により電気的に接続したが、パワー基板21と制御基板23を1枚の基板にしてもよい。
The control unit 20 includes a power board 21 on which a power element 22 (for example, MOSFET) is mounted, and a control board 23 on which a rotation sensor 24 is mounted. The power board 21 and the control board 23 are configured by adopting an inexpensive resin board such as a glass epoxy board, and are installed on the partition wall 31 of the housing 30.
In the example of FIG. 1, the power board 21 and the control board 23 are separate boards and are electrically connected by the connection 26, but the power board 21 and the control board 23 may be a single board.

図2は、パワー素子22の周辺構造を拡大した図である。
パワー基板21は、発熱素子であるパワー素子22の直下に開口したスルーホール21aを有し、仕切り壁31の凸部32がスルーホール21a内に差し込まれて、放熱材33を介してパワー素子22の背面に接合している。放熱材33としては、熱伝導率の高い素材から成るシート状の部材またはグリスを用いる。パワー素子22が発する熱は、放熱材33、ハウジング30の凸部32および仕切り壁31を経由して、ハウジング30の円筒部から外部へ放熱される(図1に示す熱伝達経路H)。
FIG. 2 is an enlarged view of the peripheral structure of the power element 22.
The power board 21 has a through hole 21a that opens directly below the power element 22 that is a heat generating element, and the convex portion 32 of the partition wall 31 is inserted into the through hole 21a. Bonded to the back of the. As the heat dissipation material 33, a sheet-like member or grease made of a material having high thermal conductivity is used. The heat generated by the power element 22 is radiated from the cylindrical portion of the housing 30 to the outside via the heat radiating member 33, the convex portion 32 of the housing 30, and the partition wall 31 (heat transfer path H shown in FIG. 1).

ここで、パワー素子22の周辺構造の寸法関係を説明する。
図2では、仕切り壁31とパワー基板21との間に充填された放熱材33の厚みA1、凸部32とパワー素子22背面との間に充填された放熱材33の厚みA2、パワー基板21の厚みB、仕切り壁31から突出した凸部32の高さC、仕切り壁31からパワー素子22背面までの高さDとする。
仕切り壁31から突出した凸部32の高さCは、パワー基板21のスルーホール21aから飛び出す程度の高さ、即ち、下式(1)の寸法関係とする。
A1+B<C (1)
また、放熱材33がパワー素子22の背面に確実に接触し、かつ、凸部32はパワー素子22背面に接触しない寸法関係、即ち、下式(2)の寸法関係とする。
D<C+A2、かつ、C<D (2)
Here, the dimensional relationship of the peripheral structure of the power element 22 will be described.
In FIG. 2, the thickness A1 of the heat dissipation material 33 filled between the partition wall 31 and the power substrate 21, the thickness A2 of the heat dissipation material 33 filled between the convex portion 32 and the back of the power element 22, the power substrate 21. Thickness B, height C of the protrusion 32 protruding from the partition wall 31, and height D from the partition wall 31 to the back of the power element 22.
The height C of the convex portion 32 protruding from the partition wall 31 is set to such a height as to protrude from the through hole 21a of the power substrate 21, that is, the dimensional relationship of the following expression (1).
A1 + B <C (1)
Further, the radiating material 33 is surely in contact with the back surface of the power element 22 and the convex portion 32 is in a dimensional relationship that does not contact the back surface of the power element 22, that is, a dimensional relationship of the following expression (2).
D <C + A2 and C <D (2)

パワー素子22の周辺構造を式(1)および式(2)の寸法関係に設定することにより、パワー素子22と放熱材33を確実に接触させて熱伝達経路H(図1)を確保する。また、ハウジング30の凸部32が熱伝達経路Hを構成するので、放熱効率が向上する。   By setting the peripheral structure of the power element 22 to the dimensional relationship of the formulas (1) and (2), the power element 22 and the heat radiating material 33 are surely brought into contact with each other to ensure the heat transfer path H (FIG. 1). Moreover, since the convex part 32 of the housing 30 comprises the heat transfer path | route H, heat dissipation efficiency improves.

さらに放熱効率を向上させるために、放熱材33が、凸部32とパワー素子22の隙間、凸部32とスルーホール21aの隙間、および、仕切り壁31とパワー基板21の隙間それぞれに、途切れることなく連続的に充填されていることが望ましい。   In order to further improve the heat dissipation efficiency, the heat dissipation material 33 is interrupted in the gap between the convex portion 32 and the power element 22, the gap between the convex portion 32 and the through hole 21 a, and the gap between the partition wall 31 and the power substrate 21. It is desirable that it is continuously filled.

さらに放熱効率を向上させるために、パワー基板21の仕切り壁31側の面に、銅パターン21bを剥き出しに形成して、この銅パターン21bを直接放熱材33と接触させることが望ましい。ただし、銅パターン21bと放熱材33が直接接触することにより、ハウジング30に通電される可能性があるので、放熱材33として電気絶縁性を有する素材を使用する必要がある。   In order to further improve the heat dissipation efficiency, it is desirable that the copper pattern 21b is exposed on the surface of the power substrate 21 on the partition wall 31 side, and the copper pattern 21b is directly in contact with the heat dissipation material 33. However, since the housing 30 may be energized by the direct contact between the copper pattern 21 b and the heat dissipation material 33, it is necessary to use a material having electrical insulation as the heat dissipation material 33.

制御部20において、制御基板23には、例えば、シャフト11の回転位置を検出する回転センサ24が実装されている。シャフト11の先端にはセンサターゲット25が固定されており、シャフト11とセンサターゲット25とが一体に回転する。
回転センサ24は、例えば、磁性体のセンサターゲット25を通る磁界を発生させるセンサマグネット(不図示)と、センサターゲット25の回転位置に応じて変化するセンサマグネットの磁束を検出するホール素子または磁気抵抗素子などのセンサ素子(不図示)とを備えている。あるいは、センサターゲット25をマグネットで構成し、回転センサ24は、センサターゲット25の回転位置に応じて変化する磁束を検出するセンサ素子(不図示)を備える構成にしてもよい。
In the control unit 20, for example, a rotation sensor 24 that detects the rotation position of the shaft 11 is mounted on the control board 23. A sensor target 25 is fixed to the tip of the shaft 11, and the shaft 11 and the sensor target 25 rotate together.
The rotation sensor 24 includes, for example, a sensor magnet (not shown) that generates a magnetic field that passes through a magnetic sensor target 25 and a Hall element or magnetoresistor that detects the magnetic flux of the sensor magnet that changes according to the rotational position of the sensor target 25. And a sensor element (not shown) such as an element. Alternatively, the sensor target 25 may be configured by a magnet, and the rotation sensor 24 may include a sensor element (not shown) that detects a magnetic flux that changes according to the rotational position of the sensor target 25.

次に、電動機本体10を説明する。以下の電動機本体10は一例であって、この構成に限定されるものではない。
電動機本体10は、ハウジング30の内部に収容されたシャフト11と、シャフト11を回転自在に支持する軸受12と、シャフト11と一体に回転する回転子13と、コイル(不図示)が巻回され通電によって回転磁界を発生する固定子14,15と、固定子14,15の間に設置されて回転子13を磁化する界磁マグネット16と、固定子14,15に巻回されたコイルに通電するバスバー17とを備えている。
Next, the electric motor main body 10 will be described. The following electric motor main body 10 is an example, and is not limited to this configuration.
The electric motor body 10 is wound with a shaft 11 housed in a housing 30, a bearing 12 that rotatably supports the shaft 11, a rotor 13 that rotates integrally with the shaft 11, and a coil (not shown). Energize the stators 14 and 15 that generate a rotating magnetic field by energization, the field magnet 16 that is installed between the stators 14 and 15 to magnetize the rotor 13, and the coils wound around the stators 14 and 15. And a bus bar 17.

磁性体の固定子14,15は、周方向内側に突出する複数のティースが形成され、回転軸方向Xに不図示のコイルが巻回されている。また、固定子14,15の間には、界磁マグネット16が設置されている。磁性体の回転子13は、径方向外側に突出する突部を180度間隔に2箇所形成し、回転軸方向Xの途中で突部を90度ずらした状態にする(突部13a,13b)。これら突部13a,13bは、界磁マグネット16の界磁磁気力の作用により着磁される。   The magnetic stators 14 and 15 are formed with a plurality of teeth protruding inward in the circumferential direction, and a coil (not shown) is wound in the rotation axis direction X. A field magnet 16 is installed between the stators 14 and 15. The magnetic rotor 13 is formed with two protrusions protruding radially outward at intervals of 180 degrees, and the protrusions are shifted 90 degrees in the middle of the rotation axis direction X (protrusions 13a and 13b). . These protrusions 13 a and 13 b are magnetized by the action of the field magnetic force of the field magnet 16.

外部電源(不図示)から制御部20へ電源が供給されると、制御基板23が、回転センサ24によって検出するシャフト11の回転位置に基づいてパワー素子22のスイッチング動作を制御する制御信号を出力する。この制御信号が結線26を通じてパワー基板21へ入力され、パワー素子22が制御信号に従ってスイッチング動作して、外部電源を例えばU相、V相、W相の三相交流電流に変換し、バスバー17にモールドされた三相のコイル17aへ供給する。そして、コイル17aに流れた電流の向きに応じて固定子14,15のティースが着磁され、界磁マグネット16の界磁磁気力が作用している回転子13の周囲に回転磁界が生じて、回転子13が回転駆動される。   When power is supplied from an external power source (not shown) to the control unit 20, the control board 23 outputs a control signal for controlling the switching operation of the power element 22 based on the rotational position of the shaft 11 detected by the rotation sensor 24. To do. This control signal is input to the power board 21 through the connection 26, and the power element 22 performs a switching operation according to the control signal to convert the external power source into, for example, a U-phase, V-phase, and W-phase three-phase alternating current. The molded three-phase coil 17a is supplied. Then, teeth of the stators 14 and 15 are magnetized according to the direction of the current flowing through the coil 17a, and a rotating magnetic field is generated around the rotor 13 where the field magnetic force of the field magnet 16 acts. The rotor 13 is driven to rotate.

この回転子13にシャフト11を固着して、回転子13と一体にシャフト11を回転させることにより、回転子13に発生した回転力を外部出力する。電動機1を自動車用ターボチャージャおよび電動コンプレッサ等に適用する場合、シャフト11をタービン(いわゆるインペラ)の回転軸に連結して、電動機1によりタービンを回転駆動する。   By fixing the shaft 11 to the rotor 13 and rotating the shaft 11 integrally with the rotor 13, the rotational force generated in the rotor 13 is externally output. When the electric motor 1 is applied to an automobile turbocharger, an electric compressor, and the like, the shaft 11 is connected to a rotating shaft of a turbine (so-called impeller), and the electric motor 1 rotates the turbine.

以上より、実施の形態1によれば、パワー素子22が実装されたパワー基板21と、パワー基板21のパワー素子22実装面とは反対の面が固定されたハウジング30とを備えた電動機1において、パワー基板21は、パワー素子22直下に開口したスルーホール21aを有し、ハウジング30は、スルーホール21a内に差し込まれて、放熱材33を介してパワー素子22の背面に接合される凸部32を有する構成にしたので、パワー素子22の熱を、放熱材33および凸部32を介してハウジング30の外へ効率的に放熱することができる。これにより、従来のように基板の貫通孔を大径化したり、スルーホールの数を増やしたりする必要がなくなり、基板面積の拡大、ひいては製品価値の低下を防止できる。また、パワー基板の素材として高放熱性のセラミックまたはアルミニウムなどを使用する必要がなく、安価な樹脂基板を使用できる。   As described above, according to the first embodiment, in the electric motor 1 including the power board 21 on which the power element 22 is mounted and the housing 30 on which the surface opposite to the power element 22 mounting surface of the power board 21 is fixed. The power board 21 has a through hole 21a opened immediately below the power element 22, and the housing 30 is inserted into the through hole 21a and joined to the back surface of the power element 22 via the heat dissipation material 33. Therefore, the heat of the power element 22 can be efficiently radiated to the outside of the housing 30 via the heat radiating member 33 and the convex portion 32. As a result, it is not necessary to increase the diameter of the through-hole of the substrate or increase the number of through-holes as in the prior art, and it is possible to prevent the substrate area from being expanded and the product value from being lowered. Moreover, it is not necessary to use a high heat dissipation ceramic or aluminum as a material for the power substrate, and an inexpensive resin substrate can be used.

また、実施の形態1によれば、放熱材33を、パワー素子22の背面と凸部32との間、スルーホール21aと凸部32との間、およびパワー基板21のパワー素子22実装面とは反対の面とハウジング30(仕切り壁31)との間に、途切れることなく充填した。このため、効率的に放熱することができる。   Further, according to the first embodiment, the heat radiating material 33 is disposed between the back surface of the power element 22 and the convex portion 32, between the through hole 21 a and the convex portion 32, and the power element 22 mounting surface of the power substrate 21. Was filled between the opposite surface and the housing 30 (partition wall 31) without interruption. For this reason, it can thermally radiate efficiently.

また、実施の形態1によれば、ハウジング30(仕切り壁31)から突出した凸部32の高さCは、放熱材33の厚みA1またはA2とパワー基板21の厚みBとを合わせた高さより高く、かつ、ハウジング30(仕切り壁31)からパワー素子22背面までの高さDより低くした。このため、パワー素子22の背面が放熱材33に確実に接触し、効率的に放熱することができる。   Further, according to the first embodiment, the height C of the convex portion 32 protruding from the housing 30 (partition wall 31) is higher than the total thickness A1 or A2 of the heat dissipation material 33 and the thickness B of the power board 21. The height is higher than the height D from the housing 30 (partition wall 31) to the back of the power element 22. For this reason, the back surface of the power element 22 can be surely brought into contact with the heat radiating material 33 and efficiently radiated.

また、実施の形態1によれば、パワー基板21として、パワー素子22実装面とは反対の面に銅パターン21bが設けられた樹脂基板を使用し、当該銅パターン21bが、放熱材33に直接接触するようにした。このため、効率的に放熱することができる。   Further, according to the first embodiment, as the power substrate 21, a resin substrate having a copper pattern 21 b provided on the surface opposite to the mounting surface of the power element 22 is used, and the copper pattern 21 b is directly attached to the heat dissipation material 33. I made contact. For this reason, it can thermally radiate efficiently.

また、実施の形態1によれば、ハウジング30を、熱伝導率の高いアルミニウムで構成するようにしたので、効率的に放熱することができる。   Moreover, according to Embodiment 1, since the housing 30 was comprised with aluminum with high heat conductivity, it can thermally radiate efficiently.

さらに、ハウジング30に放熱構造を設けて、放熱効率を向上させることも可能である。
例えば、図3の例では、ハウジング30の外周部に放熱フィン50を設けて、パワー素子22の熱を、ハウジング30から放熱フィン50を介して外部へ、効率的に放熱させる。
また例えば、図4の例では、ハウジング30と仕切り壁31とに水冷通路51を設けて、ニップル52を介して水冷通路51に冷却水を流す。パワー素子22の熱を、放熱材33および凸部32を介して水冷通路51へ効率的に伝熱し、冷却水に吸熱させる。
Furthermore, it is possible to improve the heat dissipation efficiency by providing the housing 30 with a heat dissipation structure.
For example, in the example of FIG. 3, the radiation fins 50 are provided on the outer peripheral portion of the housing 30, and the heat of the power element 22 is efficiently radiated from the housing 30 to the outside via the radiation fins 50.
Further, for example, in the example of FIG. 4, the water cooling passage 51 is provided in the housing 30 and the partition wall 31, and the cooling water is caused to flow through the water cooling passage 51 through the nipple 52. The heat of the power element 22 is efficiently transferred to the water cooling passage 51 through the heat radiating member 33 and the convex portion 32, and absorbed by the cooling water.

なお、図1〜図4の例では、ハウジング30の仕切り壁31にパワー基板21を固定したが、例えば図5に示すように、カバー40にパワー基板21を固定してもよい。この場合、熱伝導率の高いアルミニウムを用いてカバー40を構成し、このカバー40に、パワー基板21のスルーホール21a内に差し込むための凸部41を突設する。これにより、パワー素子22が発する熱は、放熱材33および凸部41を経由して、カバー40から外部へ効率的に放熱される(図5に示す熱伝達経路H)。   1 to 4, the power board 21 is fixed to the partition wall 31 of the housing 30, but the power board 21 may be fixed to the cover 40 as shown in FIG. 5, for example. In this case, the cover 40 is made of aluminum having a high thermal conductivity, and a protrusion 41 for projecting into the through hole 21 a of the power substrate 21 is provided on the cover 40. Thereby, the heat generated by the power element 22 is efficiently radiated from the cover 40 to the outside via the heat radiation member 33 and the convex portion 41 (heat transfer path H shown in FIG. 5).

上記以外にも、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   In addition to the above, within the scope of the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted.

1 電動機、10 電動機本体、11 シャフト、12 軸受、13 回転子、14,15 固定子、16 界磁マグネット、17 バスバー、17a コイル、20 制御部、21 パワー基板、21a スルーホール、21b 銅パターン、22 パワー素子、23 制御基板、24 回転センサ、25 センサターゲット、26 結線、30 ハウジング、31 仕切り壁、32,41 凸部、33 放熱材、40 カバー、50 放熱フィン、51 水冷通路、52 ニップル。   DESCRIPTION OF SYMBOLS 1 Electric motor, 10 Electric motor main body, 11 Shaft, 12 Bearing, 13 Rotor, 14, 15 Stator, 16 Field magnet, 17 Bus bar, 17a Coil, 20 Control part, 21 Power board, 21a Through hole, 21b Copper pattern, 22 power element, 23 control board, 24 rotation sensor, 25 sensor target, 26 connection, 30 housing, 31 partition wall, 32, 41 convex part, 33 heat radiation material, 40 cover, 50 heat radiation fin, 51 water cooling passage, 52 nipple.

Claims (7)

パワー素子が実装された基板と、前記基板の前記パワー素子の実装面とは反対の面が固定されたハウジングとを備えた電動機において、
前記基板は、前記パワー素子直下に開口したスルーホールを有し、
前記ハウジングは、前記スルーホール内に差し込まれて、放熱材を介して前記パワー素子の背面に接合される凸部を有し、
前記放熱材は、前記パワー素子の背面と前記凸部との間、前記スルーホールと前記凸部との間、および前記基板の前記パワー素子の実装面とは反対の面と前記ハウジングとの間に、途切れることなく充填されていることを特徴とする電動機。
In an electric motor comprising a substrate on which a power element is mounted and a housing on which a surface opposite to the mounting surface of the power element of the substrate is fixed.
The substrate has a through hole opened directly under the power element,
Said housing, said plugged into the through-hole, via the radiation material have a convex portion joined to the back of the power element,
The heat dissipating material is between the back surface of the power element and the convex part, between the through hole and the convex part, and between the surface of the substrate opposite to the mounting surface of the power element and the housing. In addition, the electric motor is filled without interruption .
前記ハウジングから突出した前記凸部の高さは、前記放熱材の厚みと前記基板の厚みとを合わせた高さより高く、かつ、前記ハウジングから前記パワー素子の背面までの高さより低いことを特徴とする請求項1記載の電動機。 The height of the convex portion protruding from the housing is higher than the total of the thickness of the heat dissipation material and the thickness of the substrate, and lower than the height from the housing to the back surface of the power element. The electric motor according to claim 1 . 前記基板は、前記パワー素子の実装面とは反対の面に銅パターンが設けられた樹脂基板であり、当該銅パターンは、前記放熱材に直接接触していることを特徴とする請求項1または請求項2記載の電動機。 The said board | substrate is a resin substrate by which the copper pattern was provided in the surface opposite to the mounting surface of the said power element, The said copper pattern is directly contacting the said heat radiating material, or characterized by the above-mentioned. The electric motor according to claim 2 . 前記放熱材は、電気絶縁性を有することを特徴とする請求項3記載の電動機。 The electric motor according to claim 3 , wherein the heat dissipating material has electrical insulation. 前記ハウジングは、アルミニウムで構成されていることを特徴とする請求項1から請求項4のうちのいずれか1項記載の電動機。 The electric motor according to any one of claims 1 to 4 , wherein the housing is made of aluminum. 前記ハウジングは、放熱構造を有することを特徴とする請求項1から請求項5のうちのいずれか1項記載の電動機。 The electric motor according to claim 1, wherein the housing has a heat dissipation structure. 前記放熱構造は、前記ハウジングの外周部に設けられた放熱フィンであることを特徴とする請求項6記載の電動機。 The electric motor according to claim 6 , wherein the heat dissipation structure is a heat dissipation fin provided on an outer peripheral portion of the housing.
JP2013223129A 2013-10-28 2013-10-28 Electric motor Active JP6049584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013223129A JP6049584B2 (en) 2013-10-28 2013-10-28 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223129A JP6049584B2 (en) 2013-10-28 2013-10-28 Electric motor

Publications (2)

Publication Number Publication Date
JP2015089151A JP2015089151A (en) 2015-05-07
JP6049584B2 true JP6049584B2 (en) 2016-12-21

Family

ID=53051427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223129A Active JP6049584B2 (en) 2013-10-28 2013-10-28 Electric motor

Country Status (1)

Country Link
JP (1) JP6049584B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172538B2 (en) * 2015-05-20 2017-08-02 カシオ計算機株式会社 Electronic device, projection device, and method of manufacturing electronic device
JP6484135B2 (en) * 2015-07-17 2019-03-13 Kyb株式会社 Electric motor
JP6327646B2 (en) 2015-10-26 2018-05-23 ミネベアミツミ株式会社 motor
CN110140284B (en) * 2016-12-28 2022-06-28 日本电产株式会社 Motor and electric power steering apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665825B2 (en) * 2006-05-09 2011-04-06 株式会社デンソー Motor drive device for vehicle
JP5388598B2 (en) * 2008-11-14 2014-01-15 カルソニックカンセイ株式会社 Element heat dissipation structure
JP5523491B2 (en) * 2012-02-24 2014-06-18 三菱電機株式会社 Mechanical and electric integrated drive

Also Published As

Publication number Publication date
JP2015089151A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5657117B2 (en) Electric motor
JP5126277B2 (en) Electric device
JP5039171B2 (en) Electric drive device and electric power steering device equipped with the electric drive device
TWI643433B (en) Rotary electric machine
JP5942967B2 (en) Drive device
JP2009278751A (en) Starter generator
JP6621491B2 (en) Rotating electric machine
US7452251B2 (en) Integrated outboard motor
JP2009033786A (en) Inner rotor brushless motor incorporating bus bar
JP5609289B2 (en) Inverter integrated motor
JP2014143841A (en) Inverter integrated motor
JP2015122856A (en) Rotary electric machine integrated control device
JP6049584B2 (en) Electric motor
JP2015198168A (en) Electronic device, power converter and dynamo-electric machine
JP4402712B2 (en) Controller-integrated rotating electrical machine
JP2006333587A (en) Motor system
JP2016062953A (en) Electronic control unit and dynamo-electric machine using the same
JP2015177723A (en) Rotary electric machine
JP2017195663A (en) Motor device
JP6047023B2 (en) Electric pump
JP6648569B2 (en) Motor drive control device for vehicle
JP2019522456A (en) Electric motor
JP2015144532A (en) Electric motor
JP2017189052A (en) Rotary electric machine with built-in inverter
JP2006060889A (en) Circuit board and electric blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161122

R150 Certificate of patent or registration of utility model

Ref document number: 6049584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250