WO2024047697A1 - センサシステム、マスタ装置、及びスレーブ装置 - Google Patents

センサシステム、マスタ装置、及びスレーブ装置 Download PDF

Info

Publication number
WO2024047697A1
WO2024047697A1 PCT/JP2022/032404 JP2022032404W WO2024047697A1 WO 2024047697 A1 WO2024047697 A1 WO 2024047697A1 JP 2022032404 W JP2022032404 W JP 2022032404W WO 2024047697 A1 WO2024047697 A1 WO 2024047697A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emission
master device
light
slave device
mems mirror
Prior art date
Application number
PCT/JP2022/032404
Other languages
English (en)
French (fr)
Inventor
耕一 手塚
弘一 飯田
克司 境
剛 森河
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2022/032404 priority Critical patent/WO2024047697A1/ja
Publication of WO2024047697A1 publication Critical patent/WO2024047697A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the present disclosure relates to a sensor system, a master device, and a slave device.
  • a system for monitoring the movement of people or objects through a passageway comprising two or more time-of-flight ranging sensors, each transmitting a laser beam and receiving a signal reflected by the person or object.
  • At least two of the sensors are disposed on opposite sides of the passageway and transmit laser light in substantially opposite directions across the passageway, and each sensor transmits laser light in a series of primary the system is configured to measure original distance data points, and the system combines the one-dimensional distance data points in the series of one-dimensional distance data points with a determined speed at which the person or object moves through the passageway.
  • the apparatus further includes means for creating a two-dimensional cross-sectional profile for each sensor of a person or object passing through the passage (for example, see Patent Document 1).
  • a sensor system includes a master device and a slave device that operates in accordance with the master device, wherein the master device includes a first light emitting unit that emits a first laser beam.
  • the master device includes a first light emitting unit that emits a first laser beam.
  • a first MEMS mirror that scans a first laser beam emitted by the first light emitting section in a raster scan method; and a light emission indicating the light emission start timing of the first light emitting section based on the scanning angle of the first MEMS mirror.
  • a timing data acquisition unit that acquires start timing data
  • a data output unit that outputs the light emission start timing data to the slave device
  • a first light emission control unit that controls light emission of the first laser beam by the first light emission unit.
  • the slave device includes a second light emitting section that emits a second laser beam, a second MEMS mirror that scans the second laser light emitted by the second light emitting section in a raster scan method, and a second MEMS mirror that scans the second laser beam emitted by the second light emitting section, and a determination section that determines whether the scanning angle of the 2MEMS mirror is within the angle range of the effective measurement range of the slave device; and when the determination section determines that the scanning angle is within the effective measurement range; and a second light emission control section that controls light emission of the second laser beam by the second light emission section based on the light emission start timing data supplied from a master device.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of a posture recognition system 400 according to an embodiment. It is a figure explaining raster scan of master device 100M. It is a figure explaining the internal structure of MCU110 and FPGA150M of master device 100M.
  • FIG. 2 is an explanatory diagram of the TOF method.
  • FIG. 2 is a diagram illustrating the internal configuration of a slave device 100S.
  • 3 is a diagram showing horizontal sampling areas in a master device and a slave device of Comparative Example 1.
  • FIG. 3 is a diagram showing the position of sampling data on a plane (x, y axes) of the laser beam reflected by the MEMS mirror of the master device of Comparative Example 1.
  • FIG. 7 is a diagram showing sampling in a master device and a slave device in Comparative Example 2.
  • FIG. 7 is a diagram showing the position of sampling data on a certain plane (x, y axes) of a laser beam reflected by a MEMS mirror of a master device of Comparative Example 2;
  • FIG. 7 is a diagram showing the position of sampling data on a certain plane (x, y axes) of the laser beam reflected by the MEMS mirror of the slave device of Comparative Example 2.
  • FIG. 6 is a diagram showing light emission timing when a master device 100M and a slave device 100S perform distance measurement alternately in a time-sharing manner.
  • 5 is a task diagram showing light emission synchronization processing in the posture recognition system 400.
  • FIG. 4 is a diagram illustrating an example of application of the posture recognition system 400.
  • FIG. This is an example of the hardware configuration of the master device 100M.
  • This is an example of the hardware configuration of the slave device 100S.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of a posture recognition system 400 according to an embodiment.
  • the posture recognition system 400 includes a master device 100M, a slave device 100S, and a control device 300.
  • the master device 100M and the slave device 100S are examples of distance measuring devices.
  • the posture recognition system 400 may include a plurality of slave devices 100S, a configuration including one slave device 100S will be described here as an example.
  • the master device 100M and the slave device 100S construct a sensor system 200.
  • posture recognition system 400 includes sensor system 200 and control device 300.
  • Master device 100M, slave device 100S, and control device 300 are connected to enable data communication via a wired or wireless network.
  • the sensor system 200 includes the multiple slave devices 100S.
  • the posture recognition system 400 uses a master device 100M and a slave device 100S as distance measuring devices, and scans a distance measuring object with laser beams emitted by the master device 100M and slave device 100S. This system recognizes the posture of an object by measuring the distance to each part of the object.
  • the object to be measured may be any object, but here, as an example, it is an athlete participating in a gymnastics competition.
  • the master device 100M and the slave device 100S emit laser light at mutually different timings (measurement cycles) and receive reflected waves reflected from the object to be measured by mutual synchronous control. This is because if the device mistakenly receives a laser beam emitted by a device other than its own, correct measurement results will not be obtained. Therefore, the master device 100M and the slave device 100S alternately emit and receive laser beams so that the laser beams emitted and received by themselves do not interfere with each other. Note that when there are a plurality of slave devices 100S, it is sufficient to prevent interference between the laser beams emitted and received by the master device 100M and each of the plurality of slave devices 100S. In this case, distance measurement may be performed alternately between the master device 100M and one of the plurality of slave devices 100S so that the laser beams do not interfere.
  • FIG. 1 shows the hardware configuration of the master device 100M. The differences between the master device 100M and the slave device 100S will be described later.
  • the master device 100M includes a light emitting device 11, a MEMS (Micro Electro Mechanical System) mirror 12, a light emitting lens 12L, a light receiving lens 13, a light receiving element 14, a laser drive unit 20, a time of flight measurement unit 30, and an MCU (Micro Controller Unit) 110. , and FPGA150M.
  • a MEMS Micro Electro Mechanical System
  • the master device 100M includes a light emitting device 11, a MEMS (Micro Electro Mechanical System) mirror 12, a light emitting lens 12L, a light receiving lens 13, a light receiving element 14, a laser drive unit 20, a time of flight measurement unit 30, and an MCU (Micro Controller Unit) 110.
  • MCU Micro Controller Unit
  • the light emitting device 11 is an example of a first light emitting section
  • the laser light emitted by the light emitting device 11 is an example of the first laser light
  • the MEMS mirror 12 is an example of a first MEMS mirror
  • the light receiving element 14 is an example of a first light receiving section.
  • the MCU 110 is an example of a first control device
  • the reference clock generator 120 is an example of a timing data generator.
  • FIG. 2 is a diagram illustrating raster scanning by the master device 100M. Although the master device 100M will be described in FIG. 2, the slave device 100S also performs similar raster scanning. The cooperation between the master device 100M and the slave device 100S is such that the master device 100M alternately emits laser light and performs measurements using the above-described synchronous control.
  • FIG. 2(a) shows a horizontal sampling area (the horizontal axis is time, and the vertical axis is the horizontal scanning angle of the laser beam).
  • the resonance vibration direction of the MEMS mirror 12 is the horizontal direction.
  • FIG. 2(b) shows the vertical sampling area (the horizontal axis is time (horizontal reciprocating period of 200 times of the MEMS mirror 12), and the vertical axis is the vertical scanning angle of the laser beam).
  • FIG. 2C shows the position of sampling data on a certain plane (x, y axis) of the laser beam reflected by the MEMS mirror 12.
  • the vertical axis represents the relative scanning angle in the horizontal direction.
  • "+1" and “-1” on the vertical axis represent the scanning amplitude of the MEMS mirror 12 in the horizontal direction, and represent that the scanning amplitude in the horizontal direction is "1".
  • the relative scan angle can take a value between ⁇ 1, with "-1" on the vertical axis representing the smallest horizontal scan angle and "1" representing the largest horizontal scan angle. .
  • the horizontal drive signal is a sine wave.
  • the vertical axis represents the relative scanning angle in the vertical direction.
  • "+1" and “-1” on the vertical axis represent the scanning amplitude of the MEMS mirror 12 in the vertical direction, and represent that the scanning amplitude in the vertical direction is "1".
  • "-1" on the vertical axis represents the smallest scanning angle in the vertical direction, and "1” on the vertical axis represents the largest scanning angle in the vertical direction.
  • the scanning angle in the vertical direction reciprocates once.
  • Each angle obtained by dividing the relative scanning angle in the vertical direction by 1000 corresponds to each line (horizontal scanning line).
  • the number of sampling points per frame is 64,000 points (raster scan (progressive) of 320 on the x axis x 200 on the y axis, and the horizontal resonant frequency (specific frequency) fh of the MEMS mirror 12 is approximately 28 .3kHz (1 cycle, 1 frame data), and data sampling was 3.2MHz, resulting in 30 frames per second.
  • the MEMS mirror 12 vibrates in the horizontal direction at a resonant frequency fh (for example, about 28.3 kHz) by a drive signal, and vibrates in one section of a pair of forward and backward paths for a fixed period of 320 ns.
  • the MEMS mirror 12 samples 320 points in four horizontal reciprocations (see FIG. 2(c)).
  • the MEMS mirror 12 generates a sampling start trigger for each section based on the sensor signal of the MEMS mirror 12.
  • sampling data of 320 points is acquired in four round trips. 80 points are sampled in one round trip, and the horizontal angle is shifted in each round trip to fill in the gaps. In one round trip, 40 points are sampled on the outward trip from "0.95" to "-0.95", and 40 points are sampled on the next return trip from "-0.95" to "0.95". sampling is performed.
  • the MEMS mirror 12 vibrates in the vertical direction at a frequency fv (for example, about 28.3 Hz) by the drive signal.
  • a frequency fv for example, about 28.3 Hz
  • the MEMS mirror 12 increases the scanning angle during the measurement period Ts, and decreases the operation angle during periods other than the measurement period Ts (corresponding to the flyback period Fb).
  • the predetermined periods at the start and end of the period in which the scanning angle increases (40 horizontal reciprocations) are used as dead zones n1 (40 horizontal reciprocations) and n2 (40 horizontal reciprocations) that are not used for measurement. There is.
  • the sampling period of 800 horizontal reciprocations excluding the dead zones n1 and n2 is defined as the measurement period Ts. Note that the flyback period Fb corresponds to 120 horizontal round trips).
  • the dead zones n1 and n2 are periods during which the MEMS mirror 12 does not emit light in the horizontal resonance direction.
  • the master device 100M and the slave device 100S control the light emission timing in a time-sharing manner so as not to interfere with each other in one frame period. Then, by sampling 64,000 points per frame, three-dimensional point cloud data of 64,000 points is obtained.
  • the master device 100M controls the emission of laser light based on the timing when the horizontal scanning angle of the MEMS mirror 12 becomes zero (hereinafter referred to as zero timing). I do. Furthermore, the slave device 100S performs laser light emission control based on the zero timing supplied from the master device 100M.
  • the MEMS mirror 12 scans using a raster scan method, for example, as the distance to the object changes as the object moves.
  • the angle of view may change in some cases. The angle of view is changed based on the amplitude target value input from the main control unit 110A.
  • FIG. 3 is a diagram illustrating the internal configuration of the MCU 110 and FPGA 150M of the master device 100M.
  • FIG. 3 shows the MEMS mirror 12, laser drive unit 20, and time-of-flight measurement unit 30 of the master device 100M, and also shows the slave device 100S and the control device 300.
  • the light emitting device 11, the light receiving lens 13, and the light receiving element 14 are omitted.
  • the master device 100M, slave device 100S, control device 300, and posture recognition system 400 will be described using FIGS. 1 and 3.
  • the light emitting device 11 is a device that emits laser light according to instructions from the laser driving section 20, and includes a light emitting element such as a semiconductor laser. For example, the light emitting device 11 emits pulsed laser light at a predetermined sampling period.
  • the FPGA 150M controls the laser drive unit 20.
  • the timing at which the laser drive section 20 instructs the light emitting device 11 to emit pulsed laser light is sent from the laser drive section 20 to the flight time measurement section 30 . That is, the flight time measuring section 30 acquires the emission timing of the pulsed laser beam.
  • the MEMS mirror 12 is a mirror that changes the angle of the emitted laser light three-dimensionally.
  • the MEMS mirror 12 is a two-axis rotating mirror, and the angle of the emitted laser light changes three-dimensionally by changing the rotation angle of the horizontal axis and the rotation angle of the vertical axis, for example.
  • the rotation angle of the horizontal axis is referred to as a horizontal angle H
  • the rotation angle of the vertical axis is referred to as a vertical angle V.
  • the FPGA 150M indicates the horizontal angle H and vertical angle V of the MEMS mirror 12.
  • the pulsed laser light emitted from the light emitting device 11 is deflected according to the horizontal angle H and vertical angle V of the MEMS mirror 12.
  • the pulsed laser light reflected by the MEMS mirror 12 is irradiated onto the object to be measured, is scattered (reflected), and returns to the light receiving lens 13. This returned light is collected by the light receiving lens 13 and received by the light receiving element 14.
  • the MEMS mirror 12 normally uses resonance for at least one of the two axes, the horizontal axis and the vertical axis, in order to increase the scanning speed and drive angle.
  • normal resonance is used in the horizontal direction where the number of reciprocations is large.
  • the MEMS mirror 12 has an angle sensor 12A.
  • the angle sensor 12A outputs angle data representing the angle (driving angle) of the MEMS mirror 12 to the FPGA 150M.
  • the angle represented by the angle data changes sinusoidally as time passes, as shown in the scanning angle shown in FIG. 2(a).
  • the light-receiving lens 13 transmits the reflected wave of the laser light (pulsed laser light) reflected by the MEMS mirror 12 and the object to be measured, condenses the light, and guides it to the light-receiving element 14 .
  • the light is collected by the light receiving lens 13 and received by the light receiving element 14 .
  • the light receiving element 14 is, for example, a PD (Photo Diode), and for example, an avalanche photo diode (APD) can be used.
  • the light receiving element 14 outputs light reception timing data representing the timing at which light is received to the flight time measuring section 30.
  • the laser drive unit 20 is a drive circuit that causes the light emitting device 11 to emit light based on a light emission control command input from the FPGA 150M.
  • the laser drive section 20 outputs light emission timing data representing the timing at which the light emitting device 11 emits light to the flight time measurement section 30.
  • the time-of-flight measurement unit 30 uses the TOF (Time OF Flight) method to measure the time from when the light emitting device 11 emits a laser beam to when the reflected light from the object to be measured is received by the light receiving element 14. Measure the round trip time of light.
  • FIG. 4 is an explanatory diagram of the TOF method.
  • the light emission timing data in FIG. 4 represents the timing (START) at which the light emitting device 11 emits pulsed laser light.
  • the light reception timing data represents the timing (STOP) at which the laser light returned from the object to be measured is received.
  • the time-of-flight measurement section 30 performs binarization processing etc. until the light emitting device 11 emits pulsed laser light and the reflected light returns from the object to be measured.
  • ⁇ T round trip time
  • the distance to the object to be measured can be calculated. Note that the value obtained by multiplying half the round trip time ( ⁇ T/2) by the speed of light can be used as the distance to the object when the distance between the MEMS mirror 12 and the light receiving element 14 is sufficiently close. This is a case where it can be ignored.
  • the flight time measurement unit 30 can measure the round trip time ( ⁇ T) every time the light emitting device 11 emits a pulsed laser beam, so it can measure the round trip time ( ⁇ T) at a sampling period. . Each time the flight time measurement unit 30 measures the round trip time ( ⁇ T), it outputs round trip time data representing the round trip time ( ⁇ T) to the MCU 110.
  • the control device 300 transmits the frequency of a reference clock signal that defines the operation timing of the master device 100M and the slave device 100S to the master device 100M and the slave device 100S.
  • the frequency transmitted from the control device 300 is received by the MCU 110.
  • the master device 100M sends the frame pulse (master frame pulse) and line pulse (master line pulse) of the master device 100M to the master device 100M and the slave device 100S.
  • the frame pulse is output every cycle of the frequency fv when the MEMS mirror 12 vibrates in the vertical direction, and the line pulse is a pulse generated at zero timing and is the same as zero timing data.
  • the MCU 110 is realized by a computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), an input/output interface, an internal bus, and the like.
  • the MCU 110 includes a main control section 110A, a distance calculation section 110B, a timing data acquisition section 110C, a data output section 110D, and a memory 110E.
  • the main control unit 110A centrally controls the operation of the master device 100M.
  • the main control section 110A, the distance calculation section 110B, the timing data acquisition section 110C, and the data output section 110D represent the functions of the program executed by the MCU 110 as functional blocks.
  • Memory 110E is a functional representation of the memory of MCU 110.
  • the main control unit 110A receives data representing the frequency of the reference clock signal from the control device 300.
  • the reference clock signal is a clock signal that defines the operation timing of the master device 100M and the slave device 100S.
  • the main controller 110A outputs data representing the frequency of the reference clock signal to the reference clock generator 120.
  • the reference clock generation section 120 generates a reference clock and outputs it to the main control section 110A.
  • the main controller 110A outputs the reference clock input from the reference clock generator 120 to the FPGA 150M. Further, the main control unit 110A outputs a phase target value for causing the light emitting device 11 to emit light, etc. to the FPGA 150M.
  • the distance calculation unit 110B is an example of a calculation unit, and calculates the value obtained by multiplying the speed of light by half the round trip time ( ⁇ T/2) represented by the round trip time data input from the flight time measurement unit 30 to the distance measurement target. Calculated as the distance of The distance calculated by the distance calculation unit 110B is a distance calculated using the ToF method.
  • the timing data acquisition unit 110C reads and acquires the light emission start timing data from the memory 110E.
  • the light emission start timing data is data representing the light emission start timing of the light emitting device 11. The light emission start timing data will be described later using FIG. 10.
  • the data output unit 110D outputs the light emission start timing data acquired by the timing data acquisition unit 110C to the slave device 100S.
  • the timing data acquisition section 110C may output the light emission start timing data to the slave device 100S without providing the data output section 110D.
  • the timing data acquisition section 110C has a function as a data output section.
  • the memory 110E stores programs and data used by the main control unit 110A, distance calculation unit 110B, timing data acquisition unit 110C, and data output unit 110D to execute processing.
  • the memory 110E also stores angle table data including data representing the horizontal angle H and vertical angle V at each sampling point, data representing the frequency fv and resonance frequency fh of the MEMS mirror 12 of the master device 100M, and light emission start timing data. etc. are stored.
  • the angle table data including data representing the horizontal angle H and the vertical angle V is used to drive and control the reflective surface of the MEMS mirror 12 when sampling at 64,000 points within one frame shown in FIG. 2(c). This is data representing angles, and includes 64,000 points of data representing angles in the horizontal direction and angles in the vertical direction.
  • the FPGA 150M operates according to the reference clock input from the main control unit 110A, and controls the drive of the MEMS mirror 12 based on the amplitude target value of the MEMS mirror 12, the phase target value for causing the light emitting device 11 to emit light, etc. Light emission control of the light emitting device 11 is performed.
  • the FPGA 150M includes a reference clock generation section 120, a light projection control section 130M, and a timing output section 140M.
  • the light projection control section 130M is an example of a first light emission control section.
  • the reference clock generation unit 120 acquires data representing the frequency of the reference clock signal from the main control unit 110A, it generates a reference clock and outputs it to the main control unit 110A.
  • the reference clock generation section 120 may be provided outside the FPGA 150M.
  • the light projection control unit 130M performs drive control of the MEMS mirror 12 based on the amplitude target value input from the main control unit 110A and the output of the angle sensor 12A of the MEMS mirror 12.
  • the light projection control unit 130M also uses a phase target value input from the main control unit 110A and a line pulse (zero timing data) representing the timing at which the scanning angle of the MEMS mirror 12 becomes zero, input from the timing output unit 140M. Based on this, a light emission control command for causing the light emitting device 11 to emit light is output to the laser driving section 20.
  • the light projection control section 130M outputting the light emission control command means that the light projection control section 130M performs light emission control, and is realized by the function of the light projection control section 130M as the first light emission control section.
  • the amplitude target value represents the scanning amplitude.
  • the scanning amplitude includes amplitudes in two axes (x-axis, y-axis) directions in FIG. 2(c).
  • the phase target value represents the timing of light emission based on the zero timing in terms of phase. In other words, the phase target value represents the timing of light emission with respect to the start time of the frame as a phase.
  • the timing output unit 140M detects the zero timing of the scanning angle of the MEMS mirror 12 based on the angle data input from the angle sensor 12A of the MEMS mirror 12, and generates a line pulse (zero timing data) representing the zero timing. , is output to the light projection control unit 130M and the slave device 100S.
  • the zero-zero timing is the timing when the horizontal scanning angle of the MEMS mirror 12 becomes zero in FIG. 2(a).
  • FIG. 5 is a diagram illustrating the internal configuration of the slave device 100S.
  • FIG. 5 is a diagram corresponding to FIG. 3 regarding the master device 100M.
  • the slave device 100S includes a light emitting device 11, a light receiving lens 13, and a light receiving element 14, but these are omitted here.
  • the light emitting device 11 is an example of a second light emitting section
  • the laser light emitted by the light emitting device 11 is an example of the second laser light.
  • the MEMS mirror 12 is an example of a second MEMS mirror
  • the light receiving element 14 is an example of a second light receiving section.
  • MCU110 is an example of a second control device.
  • the slave device 100S includes a MEMS mirror 12, a laser drive section 20, a time of flight measurement section 30, an MCU 110, a reference clock generation section 120, and Includes FPGA150S.
  • the slave device 100S does not include the timing output section 140. Components similar to those of the master device 100M are given the same reference numerals, and their explanations will be omitted. The slave device 100S will be described below, focusing on the differences from the master device 100M.
  • the MCU 110 includes a main control section 110A, a distance calculation section 110B, a determination section 110F, and a memory 110E.
  • the main control section 110A and the distance calculation section 110B are the same as the main control section 110A and the distance calculation section 110B of the master device 100M.
  • the memory 110E is different from the memory 110E of the master device 100M in that it does not store data representing the frequency fv and resonance frequency fh of the MEMS mirror 12 of the slave device 100S, and the light emission start timing data, but is otherwise similar.
  • the determination unit 110F determines whether the scanning angle of the MEMS mirror 12 of the slave device 100S is within the angle range of the effective measurement range of the slave device 100S. This process will be described later using FIGS. 13 and 14.
  • the FPGA 150S operates according to the reference clock input from the main control unit 110A, and controls the MEMS mirror 12 based on the frame pulse, line pulse (zero timing data), and light emission start timing data supplied from the master device 100M. Drive control of the MEMS mirror 12 and light emission control of the light emitting device 11 are performed based on the amplitude target value, the phase target value for causing the light emitting device 11 to emit light, and the like.
  • the FPGA 150S includes a reference clock generation section 120, a light projection control section 130S, and a data acquisition section 140S.
  • the light projection control section 130S is an example of a second light emission control section.
  • the reference clock generation section 120 is similar to the reference clock generation section 120 of the master device 100M.
  • the light projection control unit 130S receives the amplitude target value input from the main control unit 110A, the output of the angle sensor 12A of the MEMS mirror 12, frame pulses and line pulses (zero timing data) input from the data acquisition unit 140S, The drive control of the MEMS mirror 12 is performed based on the light emission start timing data.
  • the light projection control unit 130S outputs a light emission control command. Specifically, when the determination unit 110F determines that the angle is within the effective measurement range, the light projection control unit 130S uses the phase target value input from the main control unit 110A and the phase target value input from the data acquisition unit 140S. Based on the input timing data representing the timing at which the scanning angle of the MEMS mirror 12 becomes zero and the light emission start timing data, a light emission control command for causing the light emitting device 11 to emit light is output to the laser driving section 20.
  • the light projection control section 130S outputting the light emission control command means that the light projection control section 130S performs light emission control, and is realized by the function of the light projection control section 130S as a second light emission control section.
  • the amplitude target value represents the scanning amplitude.
  • the scanning amplitude includes amplitudes in two axes (x-axis, y-axis) directions in FIG. 2(c).
  • the phase target value represents the timing of light emission based on the zero timing in terms of phase. In other words, the phase target value represents the timing of light emission with respect to the start time of the frame as a phase.
  • the data acquisition unit 140S acquires timing data output from the timing output unit 140M of the master device 100M, and outputs it to the light projection control unit 130S. Furthermore, the data acquisition unit 140S outputs frame pulses, line pulses, and light emission start timing data output from the MCU 110 of the master device 100M to the light projection control unit 130S.
  • FIG. 6 is a diagram showing horizontal sampling areas in the master device and slave device of Comparative Example 1.
  • the upper side shows the horizontal sampling area of the master device of Comparative Example 1
  • the lower side shows the horizontal sampling area of the slave device of Comparative Example 1.
  • the horizontal axis in FIG. 6 represents the relative scanning angle
  • the vertical axis represents the relative scanning angle.
  • FIG. 6 shows a range (effective measurement range) in which the relative scanning angle shown in FIG. 2(a) is ⁇ 0.95 or more and +0.95 or less.
  • the effective measurement range represents the range of relative scan angles over which sampling occurs.
  • FIG. 6 shows the light emission timing when the master device and the slave device do not perform sampling alternately in a time-sharing manner but perform sampling within the same period.
  • the master device and slave device of Comparative Example 1 each include a MEMS mirror with small variations in resonance frequency. Since MEMS mirrors are manufactured using semiconductor manufacturing technology, there is little variation in resonance frequency, but when measuring distances of athletes in gymnastics competitions, slight variation in resonance frequency leads to measurement errors.
  • the master device and slave device of Comparative Example 1 each include two MEMS mirrors selected from among a large number of manufactured MEMS mirrors, each of which has extremely small variation in resonance frequency. Selection of such a MEMS mirror is costly. Note that if the master device and the slave device include MEMS mirrors that do not have small variations in their resonant frequencies, there will be no cost problem, but in order to match the resonant frequency of either one, a large amount of power is required for the other MEMS mirror. will be supplied and driven.
  • the master device of Comparative Example 1 supplies frame pulses and line pulses to the slave device.
  • Line pulses are supplied from the master device to the slave device as each line is scanned. Therefore, the master device and the slave device of Comparative Example 1 can drive MEMS mirrors with substantially the same resonance frequency using completely synchronized line pulses.
  • the light emission timings of the master device and slave device of Comparative Example 1 completely match in the range where the relative scanning angle is ⁇ 0.95 or more and +0.95 or less (the range in which sampling is performed). ing.
  • FIG. 7A shows the position of the sampling data on a plane (x, y axes) of the laser beam reflected by the MEMS mirror of the master device of Comparative Example 1.
  • FIG. 7B shows the position of the sampling data on a plane (x, y axis) with the laser beam reflected by the MEMS mirror of the slave device of Comparative Example 1.
  • FIG. 7A also shows an x-direction scanning range xr1 corresponding in the x-axis direction to the effective measurement range of the relative scanning angle, and horizontal (x-direction) and vertical (y-direction) scanning by the master device of Comparative Example 1. A range Am in which this is performed is shown.
  • FIG. 7B shows an x-direction scanning range xr2 corresponding in the x-axis direction to the effective measurement range of the relative scanning angle, and horizontal (x-direction) and vertical (y-direction) scanning by the slave device of Comparative Example 1. The range As in which this is performed is shown.
  • the position Sm1 (see FIG. 7A) at which the driving of the MEMS mirror is started in the master device, It is possible to match the position Ss1 (see FIG. 7A) at which the driving of the MEMS mirror is started in the slave device. Furthermore, in one frame period, the position Sm2 (see FIG. 7A) at which driving of the MEMS mirror ends in the master device can be made the same as the position Ss2 (see FIG. 7A) at which driving the MEMS mirror ends in the slave device. .
  • the positions of the first sampling points in the horizontal scan in the +x direction are aligned on the boundary of the area Am. There is. Similarly, the positions of the first sampling points in the horizontal scan in the -x direction are aligned on the boundary of the area Am.
  • Horizontal scanning in the +x direction is a forward path
  • horizontal scanning in the -x direction is a backward path.
  • the master device and slave device of Comparative Example 1 operate with completely synchronized frame pulses and line pulses, as shown in FIG.
  • the positions of the first sampling points in the horizontal scan in the +x direction are aligned on the boundary of the area As.
  • the positions of the first sampling points in the horizontal scan in the -x direction are aligned on the boundary of the area As.
  • the x-direction scanning range xr1 shown in FIG. 7A is equal to the x-direction scanning range xr2 shown in FIG. 7B.
  • the master device and slave device of Comparative Example 1 operate with completely synchronized frame pulses and line pulses, so as shown in FIG. 6, the timing of light emission in the master device and slave device is aligned. As shown in FIGS. 7A and 7B, the positions of the sampling points are also aligned. Therefore, even if the master device and slave device of Comparative Example 1 perform sampling alternately on a time-sharing basis, no interference occurs.
  • the cost increases.
  • the master device and the slave device each include MEMS mirrors with different resonant frequencies, there is no cost problem, but in order to match the resonant frequency of one of them, a large amount of power is required for the other MEMS mirror. As a result, power consumption increases. Furthermore, supplying large amounts of power for driving may lead to damage to the MEMS mirror.
  • FIG. 8 is a diagram showing sampling in the master device and slave device of Comparative Example 2.
  • the light emission timing for sampling in the master device and slave device of Comparative Example 2 is indicated by black circles ( ⁇ ).
  • the emission period of the laser beam is T1, which is the same in the master device and the slave device of Comparative Example 2.
  • the master device and slave device of Comparative Example 2 each include one MEMS mirror randomly selected from among a large number of manufactured MEMS mirrors.
  • the resonant frequencies of the MEMS mirrors of the master device and the slave device of Comparative Example 2 are higher than the resonant frequency of the slave device. Due to variations in the resonant frequency of the MEMS mirror of the master device and the resonant frequency of the MEMS mirror of the slave device, as shown in FIG.
  • the time point at which the relative scanning angle of the mirror reaches its peak is shifted by a time Tpd.
  • FIG. 8 shows the light emission timing when the master device and the slave device do not perform sampling alternately in a time-sharing manner but perform sampling within the same period.
  • the master device of Comparative Example 2 supplies frame pulses to the slave devices, but does not supply line pulses.
  • the slave device of Comparative Example 2 generates and utilizes line pulses at zero timing. Therefore, although the master device and slave device of Comparative Example 2 are synchronized in frame period, the timing of light emission is different due to the difference in the resonance frequency of each MEMS mirror. Since the resonant frequency of the MEMS mirror of the master device is higher than the resonant frequency of the slave device, as shown in FIG. The timing at which light is emitted is delayed by a time Tmd with respect to the master device.
  • FIG. 9A shows the position of the sampling data on a plane (x, y axis) with the laser beam reflected by the MEMS mirror of the master device of Comparative Example 2.
  • FIG. 9B shows the position of the sampling data on a plane (x, y axis) with the laser beam reflected by the MEMS mirror of the slave device of Comparative Example 2.
  • FIG. 9A also shows an x-direction scanning range xr1 corresponding in the x-axis direction to the effective measurement range of the relative scanning angle, and horizontal (x-direction) and vertical (y-direction) scanning by the master device of Comparative Example 2.
  • a range Am in which this is performed is shown.
  • FIG. 9B shows an x-direction scanning range xr2 corresponding in the x-axis direction to the effective measurement range of the relative scanning angle, and a scanning range xr2 in the horizontal direction (x direction) and vertical direction (y direction) by the slave device of Comparative Example 2.
  • the range As in which this is performed is shown.
  • the position Sm1 (see FIG. 9A) at which the driving of the MEMS mirror starts in the master device and the MEMS mirror in the slave device change in one frame period.
  • the mirror drive start position Ss1 can be aligned with the mirror drive start position Ss1.
  • the positions of the first sampling points in the horizontal scan in the +x direction are aligned on the boundary of the area Am. There is. Similarly, the positions of the first sampling points in the horizontal scan in the -x direction are aligned on the boundary of the area Am.
  • Horizontal scanning in the +x direction is a forward path
  • horizontal scanning in the -x direction is a backward path.
  • the master device and slave device of Comparative Example 2 operate with frame pulses synchronized, as shown in FIG.
  • the positions of the first sampling points in the horizontal scan are aligned on the boundary of the area As.
  • the positions of the first sampling points in the horizontal scan in the -x direction are aligned on the boundary of the area As.
  • the x-direction scanning range xr1 shown in FIG. 9A is equal to the x-direction scanning range xr2 shown in FIG. 9B.
  • the resonant frequency of the MEMS mirror of the master device is higher than the resonant frequency of the slave device, and the master device finishes sampling in the frame period earlier than the slave device.
  • the MEMS mirror is driven as shown by the broken line B until the end of the process.
  • the frame pulses of the master device and slave device of Comparative Example 2 are synchronized, and as shown in FIGS. 9A and 9B, the positions of the sampling points are aligned, but the resonance frequencies of each MEMS mirror are different.
  • the timing of light emission differs as shown in FIG. Therefore, when the master device and slave device of Comparative Example 2 perform sampling alternately in a time-sharing manner, interference between laser beams occurs.
  • FIG. 10 is a diagram showing light emission timing for sampling in the master device 100M and slave device 100S of the embodiment.
  • the light emission timing is indicated by a black circle ( ⁇ ).
  • the emission period of the laser beam is T1, which is the same in the master device 100M and the slave device 100S of the embodiment.
  • the master device 100M and slave device 100S of the embodiment each include one MEMS mirror 12 randomly selected from among a large number of manufactured MEMS mirrors.
  • the resonant frequency of the MEMS mirror 12 of the master device 100M and the slave device 100S of the embodiment is different from that of the slave device. It shall be higher than the resonant frequency of. Due to variations in the resonant frequency of the MEMS mirror 12 of the master device 100M and the resonant frequency of the MEMS mirror 12 of the slave device 100S, the relative scanning angle of the MEMS mirror 12 of the master device 100M reaches a peak, as shown in FIG. The time point at which the relative scanning angle of the MEMS mirror 12 of the slave device 100S reaches its peak is shifted by a time Tpd.
  • the horizontal scanning period of the MEMS mirror 12 of the master device 100M is T2a
  • the horizontal scanning period of the MEMS mirror 12 of the slave device 100S is T2b.
  • FIG. Indicate timing.
  • the master device 100M of the embodiment supplies frame pulses, line pulses, and light emission start timing data to the slave device 100S.
  • the light emission start timing data represents the standby time from the line pulse until the start of light emission (hereinafter referred to as light emission start standby time).
  • the timing of the line pulse is the timing at which the MEMS mirror 12 starts scanning in the horizontal direction.
  • the light emission start waiting time is, for example, a predetermined number of light emission timings (seven light emission timings between +0.95 and -0.95 shown in FIG. 10) to be emitted in the forward scan (see FIG. 2(a)).
  • the slave device 100S may be adjusted and set so that it falls within the period for performing forward scanning, and in particular, the last light emission timing among the seven is not included in the period for performing backward scanning.
  • the slave device 100S generates a light emission trigger signal at time t1 when the light emission start standby time has elapsed from the line pulse.
  • the light emission trigger signal is a pulse-like signal that rises at the light emission period T1 of the laser light.
  • the light emission trigger signal is generated by the light projection control section 130S.
  • the time point when the light emission start standby time has elapsed from the line pulse coincides with the start time point of the effective measurement range, but it does not have to coincide with the start time point.
  • the determining unit 110F determines whether the relative scanning angle of the MEMS mirror 12 of the slave device 100S is within the effective measurement range, and if the relative scanning angle is within the effective measurement range, the relative scanning angle is valid.
  • the light projection control unit 130S is notified that it is within the measurement range.
  • FIG. 10 shows the period TIN during which the relative scanning angle is within the effective measurement range.
  • the light projection control unit 130S that has received the notification causes the light emitting device 11 to emit light in accordance with the light emission trigger signal. Therefore, the light projection control unit 130S causes the light emitting device 11 to emit light at time t2.
  • the determination unit 110F continues to determine whether the relative scanning angle of the MEMS mirror 12 of the slave device 100S is within the effective measurement range, and if the relative scanning angle is within the effective measurement range, the relative scanning angle is within the effective measurement range.
  • the light projecting control section 130S is notified of the fact that the light emitting device 11 is located in the center, and the light projecting control section 130S, which has received the notification, causes the light emitting device 11 to emit light in accordance with the light emission trigger signal. Therefore, within the period TIN, the light projection control unit 130S causes the light emitting device 11 to emit light according to the light emission trigger signal.
  • the light emitting device 11 Since the period TIN continues until time t3, the light emitting device 11 emits light intermittently at the laser light emission period T1 until time t3. After time t3, the relative scanning angle of the MEMS mirror 12 of the slave device 100S is out of the effective measurement range, so the light emitting device 11 stops emitting light.
  • FIG. 11A shows the sampling data on a plane (x, y axes) of the laser beam reflected by the MEMS mirror 12 of the master device 100M of the embodiment. It is a figure showing a position.
  • FIG. 11B shows the sampling data on a certain plane (x, y axis) of the laser beam reflected by the MEMS mirror 12 of the slave device 100S of the embodiment. It is a figure showing a position.
  • FIG. 11A also shows an x-direction scanning range xr1 that corresponds in the x-axis direction to the effective measurement range of the relative scanning angle, and horizontal (x-direction) and vertical (y-direction) scanning by the master device of the embodiment.
  • the range Am in which the process is performed is shown.
  • FIG. 11B shows an x-direction scanning range xr2 corresponding in the x-axis direction to the effective measurement range of the relative scanning angle, and a scanning range in the horizontal direction (x direction) and vertical direction (y direction) by the slave device of the embodiment.
  • the range As to be performed is shown.
  • the master device 100M Since the master device 100M and the slave device 100S of the embodiment operate with frame pulses and line pulses synchronized, the master device 100M starts driving the MEMS mirror 12 at the position Sm1 in one frame period (see FIG. 11A). and the position Ss1 at which driving of the MEMS mirror 12 is started in the slave device 100S can be matched. Also, in one frame period, the position Sm2 (see FIG. 11A) where the driving of the MEMS mirror 12 ends in the master device 100M and the position Ss2 (see FIG. 11A) where the driving of the MEMS mirror 12 ends in the slave device 100S are determined. Can be matched.
  • the positions of the first sampling points in the horizontal scan in the +x direction are aligned on the boundary of the area Am. There is. Similarly, the positions of the first sampling points in the horizontal scan in the -x direction are aligned on the boundary of the area Am.
  • Horizontal scanning in the +x direction is a forward path
  • horizontal scanning in the -x direction is a backward path.
  • the master device 100M and slave device 100S of the embodiment operate based on frame pulses, line pulses, and light emission start timing data supplied from the master device 100M.
  • the relative scanning angle of the MEMS mirror 12 of the slave device 100S is effective according to the light emission trigger signal that is generated in accordance with the timing at which the master device 100M emits light for the first time within the effective measurement range.
  • Light is emitted within a period TIN within the measurement range. Therefore, as shown in FIG. 11B, the position of the first sampling point in the horizontal scan in the +x direction is not aligned on the boundary of the area As.
  • a white circle ( ⁇ ) represents a position where a light emission trigger signal is present but is not located within the period TIN, and therefore no light is emitted.
  • the position of the first sampling point in the horizontal scan in the -x direction is not aligned on the boundary of the area As.
  • a white circle ( ⁇ ) although a light emission trigger signal is present, there appears a position where no light is emitted because the light emission trigger signal is not located within the period TIN.
  • the x-direction scanning range xr1 shown in FIG. 11A is equal to the x-direction scanning range xr2 shown in FIG. 11B.
  • the slave device 100S by operating the slave device 100S based on the frame pulse, line pulse, and light emission start timing data supplied from the master device 100M, the light emission timings of the master device 100M and the slave device 100S can be made to match. .
  • the obtained three-dimensional point group data has horizontal edges that are zigzag in the vertical direction.
  • the object to be measured is captured at the center of the area As, so even if the horizontal edge becomes zigzag in the vertical direction, no effect occurs.
  • the slave device 100S can perform a By operating, the light emission timings of the master device 100M and the slave device 100S can be made to match. For this reason, in the master device 100M and slave device 100S of the embodiment, when sampling is performed alternately in time division, interference between laser beams can be suppressed.
  • ⁇ Time-sharing ranging in master device 100M and slave device 100S The master device 100M and the slave device 100S perform distance measurement alternately in a time-sharing manner so that the laser beams emitted and received by the devices do not interfere with each other.
  • FIG. 12 is a diagram showing the light emission timing when the master device 100M and the slave device 100S perform distance measurement alternately in a time-sharing manner.
  • the light emission timings of the master device 100M and the slave device 100S are indicated by black circles ( ⁇ ).
  • the light emission timing of the slave device 100S is delayed by half (T1/2) of the light emission period T1 with respect to the light emission timing of the master device 100M. Even if the light emission timing of the slave device 100S is delayed by half of the light emission period T1 (T1/2) with respect to the light emission timing of the master device 100M in order to perform distance measurement in time division, the light emission timing of the master device 100M and the slave device 100S The light emission timing of the device 100S is synchronized with a difference of half (T1/2) of the light emission period T1.
  • the light emission period T1 is 320 ns, which is the time during which the master device 100M and the slave device 100S can receive the reflected light of the emitted laser light when the object is at the maximum distance that can be measured. (160 ns as an example).
  • the maximum measurable distance is the distance between the master device 100M and the slave device 100S.
  • the slave device 100S by delaying the light emission timing of the slave device 100S with respect to the light emission timing of the master device 100M by half (T1/2) of the light emission period T1, the slave device 100S receives the laser beam of the master device 100M. It is possible to suppress the master device 100 from receiving the laser light from the slave device 100SM.
  • FIG. 13 is a task diagram showing light emission synchronization processing in the posture recognition system 400.
  • FIG. 13 shows a process that is executed by the control device 300, the master device 100M, and the slave device 100S in cooperation.
  • control device 300 transmits a measurement start command that causes the master device 100M and the slave device 100S to start measuring distance (step S0).
  • the master device 100M generates a frame pulse and outputs it to the slave device 100S (step S1M).
  • the slave device 100S receives a frame pulse from the master device 100M (step S1S).
  • the master device 100M starts driving the MEMS mirror 12 (step S2M).
  • the MEMS mirror 12 of the master device 100M performs horizontal scanning at the resonance frequency and is also scanned in the vertical direction.
  • the slave device 100S starts driving the MEMS mirror 12 (step S2S).
  • the MEMS mirror 12 of the slave device 100S performs horizontal scanning at the resonance frequency and is also scanned in the vertical direction.
  • the master device 100M generates a line pulse (step S3M).
  • the master device 100M outputs the line pulse and light emission start timing data to the slave device 100S (step S4M). Further, the master device 100M uses the line pulse generated in step S3M within itself.
  • the slave device 100S receives the line pulse and light emission start timing data from the master device 100M (step S3S).
  • the slave device 100S performs light emission synchronization control (step S4S). Details of the light emission synchronization control will be described later using FIG. 14.
  • the master device 100M emits laser light (step S5M).
  • the slave device 100S emits laser light (step S5S).
  • the laser emission of the slave device 100S is synchronized with the laser emission of the master device 100M based on the emission start timing data.
  • the master device 100M performs a process of measuring the distance to the object to be measured (step S6M).
  • the slave device 100S performs a process of measuring the distance to the object to be measured (step S6S).
  • the master device 100M is By repeating this process every time a pulse is generated, the three-dimensional point group data of 64,000 points in one frame period can be acquired, and then steps S6M and S6S can be performed.
  • FIG. 14 is a flowchart showing the light emission synchronization control process executed by the slave device 100S.
  • the slave device 100S receives the line pulse and light emission start timing data from the master device 100M in step S3S shown in FIG. 13, it executes the process of light emission synchronization control shown in FIG. 14.
  • the data acquisition unit 140S receives the line pulse and light emission start timing data, and outputs it to the light projection control unit 130S (step S51).
  • the light projection control unit 130S generates a light emission trigger signal based on the line pulse and light emission start timing data (step S52). As a result, a light emission trigger signal as shown in FIGS. 10 and 12 is generated.
  • the determination unit 110F determines whether the scanning angle of the MEMS mirror 12 of the slave device 100S is within the angle range of the effective measurement range of the slave device 100S (step S53).
  • the light emission control unit 130S When the determination unit 110F determines that the scanning angle of the MEMS mirror 12 is within the effective measurement range, the light emission control unit 130S generates a light emission control command at the timing of the pulse of the light emission trigger signal, and causes the laser drive unit 20 to A light emission control command for causing the light emitting device 11 to emit light is output (step S54).
  • the light emission control command is generated at the timing of the pulse of the light emission trigger signal and is output to the laser drive section 20. Since the light emission trigger signal is generated based on the light emission start timing data, the light emission timing of the slave device 100S is as follows. It is synchronized with the light emission timing of the master device 100M. Note that when the master device 100M and the slave device 100S perform distance measurement alternately in a time-sharing manner as shown in FIG. 12, the timing for outputting the light emission control command in step S54 is set to half the light emission period T1 (T1/2). Just delay it.
  • FIG. 15 is a diagram illustrating an example of application of the posture recognition system 400.
  • one master device 100M and three slave devices 100S are installed. These master device 100M and slave device 100S are installed so as to surround the object 1 to be measured (a gymnast in the example of FIG. 15). Parts of the athlete's own body or the equipment may cast shadows, creating areas where three-dimensional point cloud data of the athlete's body cannot be obtained. Therefore, a master device 100M and a slave device 100S are installed so as to sandwich the player from the front and back. Thereby, detailed three-dimensional point data (posture data) of the player can be measured.
  • the master device 100M By the master device 100M outputting light emission start timing data to the slave device 100S, the timing of light emission in the master device 100M and the slave device 100S can be synchronized. With the master device 100M and the slave device 100S being synchronously controlled, detailed three-dimensional point data (posture data) of the player can be accurately measured.
  • the posture recognition system 400 generates three-dimensional point cloud data of the player by integrating three-dimensional point cloud data acquired by each of the master device 100M and slave device 100S. Then, the posture recognition system 400 identifies the posture of the player from the three-dimensional point cloud data of the player. Thereby, it is possible to support the referee's evaluation of the player's posture.
  • FIG. 16 is an example of the hardware configuration of the master device 100M.
  • the MCU 110 of the master device 100M includes a CPU 31, a memory 32, a network I/F 33, a recording medium I/F 34, and a recording medium 35. Further, each configuration is connected to each other by a bus 36.
  • the CPU 31 controls the entire master device 100M.
  • the memory 32 includes, for example, ROM, RAM, flash ROM, and the like. Specifically, for example, a flash ROM or ROM stores various programs, and a RAM is used as a work area for the CPU 31.
  • the program stored in the memory 32 is loaded into the CPU 31 and causes the CPU 31 to execute the coded processing.
  • the network I/F 33 is connected to a network through a communication line, and is connected to other computers via the network.
  • the network I/F 33 manages the network and internal interface, and controls the input/output of data from other computers.
  • the network I/F 33 is, for example, a modem or a LAN adapter.
  • the recording medium I/F 34 controls reading/writing of data to/from the recording medium 35 under the control of the CPU 31.
  • the recording medium I/F 34 is, for example, a disk drive, an SSD, a USB port, or the like.
  • the recording medium 35 is a nonvolatile memory that stores data written under the control of the recording medium I/F 34.
  • the recording medium 35 is, for example, a disk, a semiconductor memory, a USB memory, or the like.
  • the recording medium 35 may be removable from the master device 100M.
  • each configuration of the MCU 110 and FPGA 130M of the master device 100M realizes its functions by causing the CPU 31 to execute a program stored in a storage area such as the memory 32 or the recording medium 35, or by the network I/F 33. may be done.
  • FIG. 17 is an example of the hardware configuration of the slave device 100S.
  • the MCU 110 of the slave device 100S includes a CPU 31A, a memory 32A, a network I/F 33A, a recording medium I/F 34A, and a recording medium 35A. Further, each configuration is connected to each other by a bus 36A.
  • the CPU 31A is in charge of overall control of the slave device 100S.
  • the memory 32A includes, for example, ROM, RAM, and flash ROM. Specifically, for example, a flash ROM or ROM stores various programs, and a RAM is used as a work area for the CPU 31A.
  • the program stored in the memory 32A is loaded into the CPU 31A to cause the CPU 31A to execute the coded processing.
  • the network I/F 33A is connected to a network through a communication line and to other computers via the network.
  • the network I/F 33A controls the network and internal interface, and controls the input/output of data from other computers.
  • the network I/F 33A is, for example, a modem or a LAN adapter.
  • the recording medium I/F 34A controls data read/write to the recording medium 35A under the control of the CPU 31A.
  • the recording medium I/F 34A is, for example, a disk drive, an SSD, a USB port, or the like.
  • the recording medium 35A is a nonvolatile memory that stores data written under the control of the recording medium I/F 34A.
  • the recording medium 35A is, for example, a disk, a semiconductor memory, a USB memory, or the like.
  • the recording medium 35A may be removable from the master device 100M.
  • each configuration of the MCU 110 and FPGA 130M of the slave device 100S realizes its functions by having the CPU 31A execute a program stored in a storage area such as the memory 32A or the recording medium 35A, or by the network I/F 33A. may be done.
  • the posture recognition system 400 includes the master device 100M and the slave device 100S that operates subordinate to the master device 100M.
  • the master device 100M includes a light emitting device 11 that emits laser light, a MEMS mirror 12 that scans the laser light emitted by the light emitting device 11 using a raster scan method, and a scanning angle of the light emitting device 11 based on the scanning angle of the MEMS mirror 12.
  • a timing data acquisition unit 110C that acquires light emission start timing data representing the light emission start timing
  • a data output unit 110D that outputs light emission start timing data to the slave device 100S
  • a light projection control that controls the emission of laser light by the light emitting device 11. 130M.
  • the slave device 100S includes a light emitting device 11 that emits laser light, a MEMS mirror 12 that scans the laser light emitted by the light emitting device 11 using a raster scan method, and a scanning angle of the MEMS mirror 12 that is within the effective measurement range of the slave device 100S.
  • the determination unit 110F determines whether the scanning angle is within the effective measurement range, based on the light emission start timing data supplied from the master device 100M, It has a light projection control section 130S that controls the emission of laser light by the light emitting device 11.
  • the emission timing of the laser beam of the slave device 100S is determined based on the emission start timing data. can be synchronized with the emission timing of the laser beam of the master device 100M.
  • the light emission start timing is the light emission timing of the light emitting device 11 relative to the scan start timing (line pulse timing) in the resonance vibration direction of the MEMS mirror 12 of the master device 100M. Therefore, the timing of light emission of the slave device 100S can be matched with the timing of light emission of the light emitting device 11 in relation to the timing of line pulses in the master device 100M, and the timing of light emission in the master device 100M and the slave device 100S can be easily synchronized. be able to.
  • the light projection control unit 130S generates a light emission trigger signal in the light emission cycle of the laser beam based on the light emission start timing data, and when the determination unit 110F determines that the scanning angle is within the effective measurement range, the light emission control unit 130S generates a light emission trigger signal based on the light emission start timing data.
  • Light emission control is performed to cause the light emitting device 11 to output laser light according to the trigger signal. Therefore, when the scanning angle is within the effective measurement range determined by the determination unit 110F, the slave device 100S outputs laser light according to the light emission trigger signal according to the light emission start timing data and the light emission cycle of the laser light, thereby making it possible for the master device 100S to output laser light.
  • the light emission timings of the device 100M and the slave device 100S can be easily synchronized.
  • the master device 100M emits a laser beam to when the master device 100M receives the first reflected light from which the laser beam is reflected by the object to be measured, and when the slave device 100S emits the laser beam.
  • Control is performed in a time-division manner so that the second period from when the laser beam is emitted to when the slave device 100S receives the second reflected light from the object to be measured does not overlap. Therefore, even if the master device 100M and the slave device 100S perform measurements by emitting laser beams in a time-sharing manner, interference of each other's laser beams can be suppressed. Measurements can be taken.
  • the master device 100M is included in an attitude recognition system 400 that includes the master device 100M and a slave device 100S that operates in dependence on the master device 100M.
  • the master device 100M includes a light emitting device 11 that emits laser light, A MEMS mirror 12 that scans the laser light emitted by the light emitting device 11 in a raster scan method, and timing data acquisition that obtains light emission start timing data representing the light emission start timing of the light emitting device 11 based on the scanning angle of the MEMS mirror 12. section 110C, and a data output section 110D that outputs light emission start timing data to the slave device 100S.
  • the light emission start timing data can be supplied to the slave device 100S, and the slave device 100S can The emission timing of the laser beam can be synchronized with the emission timing of the laser beam of the master device 100M.
  • the master device 100M can synchronize the laser beams scanned by the two MEMS mirrors 12. can be provided.
  • the slave device 100S is included in a posture recognition system 400 that includes a master device 100M and a slave device 100S that operates subordinate to the master device 100M.
  • the slave device 100S includes a light emitting unit that emits laser light, a MEMS mirror that scans the laser light emitted by the light emitting unit using a raster scan method, and determines whether the scanning angle of the MEMS mirror is within an effective measurement range.
  • the determination unit 110F and the determination unit 110F determine that the scanning angle is within the effective measurement range, the light emission starts based on the light emission start timing data that is supplied from the master device 100M and represents the light emission start timing in the master device 100M. and a light emission control section that controls the emission of laser light by the section.
  • the slave device 100S can master the master device by acquiring the light emission start timing data. Light emission timing at 100M can be obtained. As a result, the slave device 100S can synchronize the emission timing of the laser beam of the slave device 100S with the emission timing of the laser beam of the master device 100M based on the emission start timing data.
  • the slave device 100S can synchronize the laser beams scanned by the two MEMS mirrors 12. can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

2つのMEMSミラーの共振周波数にばらつきがあっても、2つのMEMSミラーで走査するレーザ光を同期させることが可能なセンサシステムを提供する。 マスタ装置は、第1発光部によって発光される第1レーザ光をラスタースキャンで走査する第1MEMSミラーと、第1MEMSミラーの走査角度に基づいて第1発光部の発光開始タイミングを表す発光開始タイミングデータを取得する取得部と、第1レーザ光の発光制御を行う第1発光制御部とを有し、スレーブ装置は、第2発光部によって発光される第2レーザ光をラスタースキャンで走査する第2MEMSミラーと、第2MEMSミラーの走査角度がスレーブ装置の有効測定範囲の角度範囲内にあるかどうかを判定する判定部と、判定部によって走査角度が有効測定範囲内にあると判定されると、マスタ装置から供給される発光開始タイミングデータに基づいて第2レーザ光の発光制御を行う第2発光制御部とを有する。

Description

センサシステム、マスタ装置、及びスレーブ装置
 本開示は、センサシステム、マスタ装置、及びスレーブ装置に関する。
 従来より、通路を通る人や物の動きを監視するためのシステムであって、各々が、レーザ光を送信し、人または物体で反射された信号を受信する2つ以上の飛行時間測距センサと、感知された各反射信号の飛行時間を測定する手段と、人又は物体が移動する速度を決定する手段と、前記2つ以上のセンサによって測定された飛行時間信号に基づいて、通路を通過する人又は物体の数及び方向を決定する手段とを備えるシステムがある。
 前記センサのうちの少なくとも2つは、前記通路の対向する側部に配置され、前記通路を横断する実質的に対向する方向にレーザ光を送信し、前記各センサは、時間間隔にわたって一連の一次元距離データ点を測定するように構成され、前記システムは、前記一連の一次元距離データ点における一次元距離データ点を、前記人または物体が前記通路を通って移動する決定された速度と組み合わせて、前記通路を通過する人または物体の、各センサに対する二次元断面プロファイルを作成する手段をさらに備える(例えば、特許文献1参照)。
特表2020-518046号公報
 ところで、従来のシステムにおいて、2つのセンサがそれぞれMEMS(Micro Electro Mechanical System)ミラーでレーザ光を走査する場合に、2つのMEMSミラーの共振周波数のばらつきによって、2つのセンサが出力するレーザ光の同期が取れなくなり、測定に支障が生じるおそれがある。
 そこで、2つのMEMSミラーの共振周波数にばらつきがあっても、2つのMEMSミラーで走査するレーザ光を同期させることが可能なセンサシステム、マスタ装置、及びスレーブ装置を提供することを目的とする。
 本開示の実施形態のセンサシステムは、マスタ装置と、前記マスタ装置に従属して動作するスレーブ装置とを含むセンサシステムであって、前記マスタ装置は、第1レーザ光を発光する第1発光部と、前記第1発光部によって発光される第1レーザ光をラスタースキャン方式で走査する第1MEMSミラーと、前記第1MEMSミラーの走査角度に基づいて、前記第1発光部の発光開始タイミングを表す発光開始タイミングデータを取得するタイミングデータ取得部と、前記スレーブ装置に前記発光開始タイミングデータを出力するデータ出力部と、前記第1発光部による前記第1レーザ光の発光制御を行う第1発光制御部とを有し、前記スレーブ装置は、第2レーザ光を発光する第2発光部と、前記第2発光部によって発光される第2レーザ光をラスタースキャン方式で走査する第2MEMSミラーと、前記第2MEMSミラーの走査角度が前記スレーブ装置の有効測定範囲の角度範囲内にあるかどうかを判定する判定部と、前記判定部によって前記走査角度が前記有効測定範囲内にあると判定されると、前記マスタ装置から供給される前記発光開始タイミングデータに基づいて、前記第2発光部による前記第2レーザ光の発光制御を行う第2発光制御部とを有する。
 2つのMEMSミラーの共振周波数にばらつきがあっても、2つのMEMSミラーで走査するレーザ光を同期させることが可能なセンサシステム、マスタ装置、及びスレーブ装置を提供することができる。
実施形態に係る姿勢認識システム400の全体構成を例示する概略図である。 マスタ装置100Mのラスタースキャンを説明する図である。 マスタ装置100MのMCU110及びFPGA150Mの内部構成を説明する図である。 TOF方式の説明図である。 スレーブ装置100Sの内部構成を説明する図である。 比較例1のマスタ装置及びスレーブ装置における水平方向サンプリング領域を示す図である。 比較例1のマスタ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である 比較例1のスレーブ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。 比較例2のマスタ装置及びスレーブ装置におけるサンプリングを示す図である。 比較例2のマスタ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。 比較例2のスレーブ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。 実施形態のマスタ装置100M及びスレーブ装置100Sにおけるサンプリングのための発光タイミングを示す図である。 実施形態のマスタ装置100MのMEMSミラー12で反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。 実施形態のスレーブ装置100SのMEMSミラー12で反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。 マスタ装置100M及びスレーブ装置100Sが時分割で交互に測距を行う場合における発光タイミングを示す図である。 姿勢認識システム400における発光同期処理を示すタスク図である。 スレーブ装置100Sが実行する発光同期制御の処理を表すフローチャートである。 姿勢認識システム400の適用例を例示する図である。 マスタ装置100Mのハードウェア構成例である。 スレーブ装置100Sのハードウェア構成例である。
 以下、本開示のセンサシステム、マスタ装置、及びスレーブ装置を適用した実施形態について説明する。
 <実施形態>
 図1は、実施形態に係る姿勢認識システム400の全体構成を例示する概略図である。図1で例示するように、姿勢認識システム400は、マスタ装置100M、スレーブ装置100S、及び制御装置300を含む。マスタ装置100M及びスレーブ装置100Sは、測距装置の一例である。姿勢認識システム400は、複数のスレーブ装置100Sを含んでもよいが、ここでは一例として、1つのスレーブ装置100Sを含む形態について説明する。
 マスタ装置100Mと、スレーブ装置100Sとは、センサシステム200を構築する。このため、姿勢認識システム400は、センサシステム200と制御装置300とを含む。マスタ装置100M、スレーブ装置100S、及び制御装置300は、有線又は無線ネットワークによってデータ通信可能に接続されている。なお、スレーブ装置100Sが複数ある場合には、センサシステム200は、複数のスレーブ装置100Sを含む。
 姿勢認識システム400は、マスタ装置100M及びスレーブ装置100Sを測距装置として用いて、マスタ装置100M及びスレーブ装置100Sが出射するレーザ光を測距対象物に対してスキャン(走査)し、測距対象物の各部までの距離を測定することで、測距対象物の姿勢を認識するシステムである。測距対象物は、どのようなものであってもよいが、ここでは一例として体操競技を行う競技者である。
 マスタ装置100Mとスレーブ装置100Sとは、互いが連携した同期制御により、互いに異なるタイミング(測定周期)でレーザ光を出射し、測距対象物で反射された反射波を受光する。自装置以外が出射したレーザ光を誤って受光すると、正しい測定結果が得られないからである。このため、マスタ装置100M及びスレーブ装置100Sは、自装置が出射及び受信するレーザ光が互いに干渉しないように、レーザ光の出射及び受信を交互に行う。なお、スレーブ装置100Sが複数ある場合には、マスタ装置100Mと複数のスレーブ装置100Sとの各々が出射及び受信するレーザ光が干渉しないようにすればよい。この場合に、マスタ装置100Mと、複数のスレーブ装置100Sのうちの1つとで、レーザ光が干渉しないように、測距を交互に行ってもよい。
 マスタ装置100M及びスレーブ装置100Sは、ハードウェア構成は略同様であり、相違点は多くないため、図1にはマスタ装置100Mのハードウェア構成を示す。マスタ装置100M及びスレーブ装置100Sの相違については後述する。
 マスタ装置100Mは、発光装置11、MEMS(Micro Electro Mechanical System)ミラー12、投光レンズ12L、受光レンズ13、受光素子14、レーザ駆動部20、飛行時間測定部30、MCU(Micro Controller Unit)110、及びFPGA150Mを含む。
 マスタ装置100Mにおいて、発光装置11は第1発光部の一例であり、発光装置11が出射するレーザ光は第1レーザ光の一例である。MEMSミラー12は第1MEMSミラーの一例であり、受光素子14は第1受光部の一例である。MCU110は第1制御装置の一例であり、基準クロック生成部120はタイミングデータ生成部の一例である。ここでは、マスタ装置100Mの具体的な構成を説明する前に、図2を用いてマスタ装置100Mのラスタースキャンについて説明する。
 <マスタ装置100Mのラスタースキャン>
 図2は、マスタ装置100Mのラスタースキャンを説明する図である。図2には、マスタ装置100Mについて説明するが、スレーブ装置100Sも同様のラスタースキャンを行う。マスタ装置100Mとスレーブ装置100Sとの連携は、上述した同期制御によりマスタ装置100Mが交互にレーザ光を出射させて測定を行う。
 図2(a)は、水平方向サンプリング領域(横軸は時間、縦軸はレーザ光の水平方向の走査角度)を示す。ここでは、一例として、MEMSミラー12の共振の振動方向が水平方向である。図2(b)は、垂直方向サンプリング領域(横軸は時間(MEMSミラー12の水平往復走査期間200往復)、縦軸はレーザ光の垂直方向の走査角度)を示す。図2(c)は、MEMSミラー12で反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す。
 図2(a)において、縦軸は水平方向の相対走査角度を表す。縦軸の「+1」と「-1」は、MEMSミラー12の水平方向における走査振幅を表し、水平方向の走査振幅が「1」であることを表している。相対走査角度は、±1の間の値を取ることができ、縦軸の「-1」が、水平方向の最も小さい走査角度を表し、「1」が、水平方向の最も大きい走査角度を表す。水平方向の相対走査角度が「-1」と「1」との間を往復することで、水平方向の走査角度が一往復する。水平駆動信号は、正弦波となる。
 図2(b)において、縦軸は垂直方向の相対走査角度を表す。縦軸の「+1」と「-1」は、MEMSミラー12の垂直方向における走査振幅を表し、垂直方向の走査振幅が「1」であることを表している。縦軸の「-1」が、垂直方向の最も小さい走査角度を表し、縦軸の「1」が、垂直方向の最も大きい走査角度を表す。この垂直方向の相対走査角度が「-1」と「1」との間を往復することで、垂直方向の走査角度が一往復する。垂直方向の相対走査角度を1000分割した各角度は、各ライン(水平走査線)に対応する。
 ここで、1フレーム(1フレーム期間)あたりのサンプリング数は64000点(x軸320×y軸200のラスタースキャン(プログレッシブ)、MEMSミラー12の水平方向の共振周波数(固有の周波数)fhは約28.3kHz(1サイクル、1フレームデータ)、データサンプリングは3.2MHzとした。1秒当たり30フレームとなる。
 図2(a)に示すように、MEMSミラー12は、水平方向に対し、駆動信号により共振周波数fh(例えば、約28.3kHz)で振動し、一対の往路/復路の1区間を320ns固定のサンプリング間隔で80点ずつサンプリングする。MEMSミラー12は水平方向の4往復で320点分をサンプリングする(図2(c)参照)。MEMSミラー12は、1区間ずつサンプリングスタートのトリガをMEMSミラー12のセンサ信号に基づき生成する。これにより、図2(c)に示すように、4往復で320点のサンプリングデータを取得する。1往復で80点、各往復で水平角度をシフトさせ隙間を埋めるようにサンプリングする。1往復の中では、「0.95」から「-0.95」までの往路で40点のサンプリングが行われ、次の「-0.95」から「0.95」までの復路で40点のサンプリングが行われる。
 図2(b)において、MEMSミラー12は、垂直方向に対し、駆動信号により周波数fv(例えば、約28.3Hz)で振動する。MEMSミラー12は、水平往復(合計200往復)の全期間中、測定期間Tsの間は走査角度を増加させ、測定期間Ts以外の間(フライバック期間Fbに相当)は操作角度を減少させている。なお、走査角度が増加する期間の開始と終了それぞれの所定期間(水平40往復分)は振幅の影響を除外するため、測定に用いない不感帯n1(水平40往復),n2(水平40往復)としている。不感帯n1,n2を除く水平800往復のサンプリング区間を測定期間Tsとしている。なお、フライバック期間Fbは水平120往復に相当する)。不感帯n1,n2は、MEMSミラー12の水平共振方向の不発光期間である。
 マスタ装置100Mとスレーブ装置100Sは、1つのフレーム期間において、互いに干渉が発生しないように時分割で発光タイミングをコントロールしている。そして、1フレームにつき64000点でサンプリングすることにより、64000点の3次元点群データを取得する。
 このような3次元点群データを取得するために、マスタ装置100Mは、MEMSミラー12の水平方向の走査角度がゼロになるタイミング(以下、ゼロタイミングと称す)を基準として、レーザ光の発光制御を行う。また、スレーブ装置100Sは、マスタ装置100Mから供給されるゼロタイミングを基準として、レーザ光の発光制御を行う。
 また、マスタ装置100Mとスレーブ装置100Sを連携させた同期制御において、例えば測距対象物の移動に伴う測距対象物との距離が変わることに合わせて、MEMSミラー12がラスタースキャン方式で走査する場合の画角を変更する場合がある。画角は、主制御部110Aから入力される振幅目標値に基づいて変更される。
 <マスタ装置100Mの構成>
 ここでは、図1及び図3を用いてマスタ装置100Mの構成について説明する。図3は、マスタ装置100MのMCU110及びFPGA150Mの内部構成を説明する図である。図3には、マスタ装置100MのMCU110及びFPGA150Mに加えて、マスタ装置100MのMEMSミラー12、レーザ駆動部20、及び飛行時間測定部30を示すとともに、スレーブ装置100S及び制御装置300を示す。図3では、発光装置11、受光レンズ13、及び受光素子14は省略する。ここでは、図1及び図3を用いて、マスタ装置100M、スレーブ装置100S、制御装置300、及び姿勢認識システム400について説明する。
 発光装置11は、レーザ駆動部20の指示に従ってレーザ光を出射する装置であり、半導体レーザなどの発光素子を備える。発光装置11は、一例として、所定のサンプリング周期でパルス状のレーザ光を出射する。FPGA150Mは、レーザ駆動部20を制御する。レーザ駆動部20が発光装置11にパルス状のレーザ光の出射を指示するタイミングは、レーザ駆動部20から飛行時間測定部30に送られる。すなわち、飛行時間測定部30は、パルス状のレーザ光の出射タイミングを取得する。
 MEMSミラー12は、3次元に出射するレーザ光の角度を変化させるミラーである。MEMSミラー12は、2軸回転式のミラーであって、例えば水平軸の回転角度および垂直軸の回転角度が変化することによって、出射するレーザ光の角度が3次元に変化する。水平軸の回転角度を水平角度Hと称し、垂直軸の回転角度を垂直角度Vと称する。FPGA150Mは、MEMSミラー12の水平角度Hおよび垂直角度Vを指示する。発光装置11から出射されたパルス状のレーザ光は、MEMSミラー12の水平角度Hおよび垂直角度Vに応じて偏向される。
 MEMSミラー12によって反射されたパルス状のレーザ光は、測距対象に照射され、散乱(反射)され、受光レンズ13に戻る。この戻り光は、受光レンズ13で集光され、受光素子14で受光される。
 MEMSミラー12は、走査速度を大きくしかつ駆動角度を大きくするために、水平軸および垂直軸の2軸のうち少なくとも1軸については、通常共振を利用している。本実施形態においては、一例として、往復回数が多い水平方向に通常共振が利用されている。
 また、MEMSミラー12は、角度センサ12Aを有する。角度センサ12Aは、MEMSミラー12の角度(駆動角度)を表す角度データをFPGA150Mに出力する。角度データが表す角度は、時間経過に伴って図2(a)に示す走査角度のように正弦波状に変化する。
 受光レンズ13は、MEMSミラー12で反射されたレーザ光(パルス状のレーザ光)が測距対象物で反射された反射波を透過し、集光して受光素子14に導く。受光レンズ13で集光され、受光素子14で受光される。
 受光素子14は、一例としてPD(Photo Diode)であり、例えばアバランシェフォトダイオード(APD)を用いることができる。受光素子14は、受光したタイミングを表す受光タイミングデータを飛行時間測定部30に出力する。
 レーザ駆動部20は、FPGA150Mから入力される発光制御指令に基づいて、発光装置11を発光させる駆動回路である。レーザ駆動部20は、発光装置11を発光させるタイミングを表す発光タイミングデータを飛行時間測定部30に出力する。
 飛行時間測定部30は、TOF(Time OF Flight)方式を採用することによって、発光装置11でレーザ光が発光され、測距対象物で反射された反射光が受光素子14で受光されるまでの光の往復時間を測定する。図4は、TOF方式の説明図である。図4における発光タイミングデータは、発光装置11がパルス状のレーザ光を出射するタイミング(START)を表す。受光タイミングデータは、測距対象から戻って来たレーザ光を受信するタイミング(STOP)を表す。
 図4で例示するように、飛行時間測定部30は、2値化処理等を行うことによって、発光装置11がパルス状のレーザ光を出射して反射光が測距対象物から戻ってくるまでの往復時間(ΔT)を計測する。往復時間に光速を乗じ、2で除算すれば、測距対象物までの距離を算出できる。なお、このように往復時間の半分の時間(ΔT/2)に光速を乗じた値を測距対象物までの距離として利用可能なのは、MEMSミラー12と受光素子14の間の距離が充分に近くて無視できる場合である。飛行時間測定部30は、発光装置11がパルス状のレーザ光を射出するごとに往復時間(ΔT)の計測を行なうことができるため、サンプリング周期で往復時間(ΔT)の計測を行なうことができる。飛行時間測定部30は、往復時間(ΔT)を計測する度に、往復時間(ΔT)を表す往復時間データをMCU110に出力する。
 制御装置300は、マスタ装置100M及びスレーブ装置100Sの動作タイミングを規定する基準クロック信号の周波数を、マスタ装置100M及びスレーブ装置100Sに送信する。制御装置300から送信された周波数は、MCU110が受信する。
 マスタ装置100Mは、マスタ装置100Mのフレームパルス(マスタフレームパルス)およびラインパルス(マスタラインパルス)を、マスタ装置100Mの内とスレーブ装置100Sとに送る。フレームパルスは、MEMSミラー12が垂直方向に振動する周波数fvの1周期毎に出力され、ラインパルスは、ゼロタイミングで生成されるパルスであり、ゼロタイミングデータと同一のものである。
 MCU110は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、入出力インターフェース、及び内部バス等を含むコンピュータによって実現される。MCU110は、主制御部110A、距離算出部110B、タイミングデータ取得部110C、データ出力部110D、及びメモリ110Eを有する。主制御部110Aは、マスタ装置100Mの動作を統括的に制御する。主制御部110A、距離算出部110B、タイミングデータ取得部110C、及びデータ出力部110Dは、MCU110が実行するプログラムの機能を機能ブロックとして示したものである。メモリ110Eは、MCU110のメモリを機能的に表したものである。
 主制御部110Aは、制御装置300から基準クロック信号の周波数を表すデータを受信する。基準クロック信号は、マスタ装置100M及びスレーブ装置100Sの動作タイミングを規定するクロック信号である。主制御部110Aは、基準クロック信号の周波数を表すデータを基準クロック生成部120に出力する。基準クロック生成部120は、基準クロックを生成し、主制御部110Aに出力する。主制御部110Aは、基準クロック生成部120から入力される基準クロックをFPGA150Mに出力する。また、主制御部110Aは、発光装置11を発光させる位相目標値等をFPGA150Mに出力する。
 距離算出部110Bは、算出部の一例であり、飛行時間測定部30から入力される往復時間データが表す往復時間の半分の時間(ΔT/2)に光速を乗じた値を測距対象物までの距離として算出する。距離算出部110Bが算出する距離は、ToF方式で算出される距離である。
 タイミングデータ取得部110Cは、発光開始タイミングデータをメモリ110Eから読み出して取得する。発光開始タイミングデータは、発光装置11の発光開始タイミングを表すデータである。発光開始タイミングデータについては、図10を用いて後述する。
 データ出力部110Dは、タイミングデータ取得部110Cが取得した発光開始タイミングデータをスレーブ装置100Sに出力する。なお、データ出力部110Dを設けずに、タイミングデータ取得部110Cが発光開始タイミングデータをスレーブ装置100Sに出力してもよい。この場合には、タイミングデータ取得部110Cがデータ出力部としての機能を有することになる。
 メモリ110Eは、主制御部110A、距離算出部110B、タイミングデータ取得部110C、及びデータ出力部110Dが処理を実行する際に利用するプログラム及びデータを格納する。また、メモリ110Eは、各サンプリング点における水平角度Hおよび垂直角度Vを表すデータを含む角度テーブルデータ、マスタ装置100MのMEMSミラー12の周波数fv及び共振周波数fhを表すデータ、及び、発光開始タイミングデータ等を格納する。水平角度Hおよび垂直角度Vを表すデータを含む角度テーブルデータは、図2(c)に示す1フレーム内で64000点でのサンプリングを行う際に、MEMSミラー12の反射面を駆動制御する際の角度を表すデータであり、水平方向の角度と垂直方向の角度とを表すデータを64000点含む。
 FPGA150Mは、主制御部110Aから入力される基準クロックに応じて動作し、MEMSミラー12の振幅目標値、及び、発光装置11を発光させる位相目標値等に基づいて、MEMSミラー12の駆動制御と発光装置11の発光制御を行う。
 FPGA150Mは、基準クロック生成部120、投光制御部130M及びタイミング出力部140Mを有する。投光制御部130Mは、第1発光制御部の一例である。
 基準クロック生成部120は、主制御部110Aから基準クロック信号の周波数を表すデータを取得すると、基準クロックを生成し、主制御部110Aに出力する。なお、基準クロック生成部120は、FPGA150Mの外部に設けられていてもよい。
 投光制御部130Mは、主制御部110Aから入力される振幅目標値と、MEMSミラー12の角度センサ12Aの出力とに基づいてMEMSミラー12の駆動制御を行う。また、投光制御部130Mは、主制御部110Aから入力される位相目標値と、タイミング出力部140Mから入力されるMEMSミラー12の走査角度がゼロになるタイミングを表すラインパルス(ゼロタイミングデータ)とに基づいて、レーザ駆動部20に発光装置11を発光させる発光制御指令を出力する。投光制御部130Mが発光制御指令を出力することは、投光制御部130Mが発光制御を行うことであり、投光制御部130Mの第1発光制御部としての機能によって実現される。振幅目標値は、走査振幅を表す。走査振幅は、図2(c)における2軸(x軸、y軸)方向の振幅を含む。位相目標値は、ゼロタイミングを基準とした発光のタイミングを位相で表す。換言すれば、位相目標値は、フレームの開始時点を基準とした発光のタイミングを位相で表す。
 タイミング出力部140Mは、MEMSミラー12の角度センサ12Aから入力される角度データに基づいて、MEMSミラー12の走査角度のゼロタイミングを検出し、ゼロタイミングを表すラインパルス(ゼロタイミングデータ)を生成し、投光制御部130Mとスレーブ装置100Sに出力する。ゼロゼロタイミングは、図2(a)において、MEMSミラー12の水平方向の走査角度がゼロになるタイミングである。
 <スレーブ装置100Sの構成>
 図5は、スレーブ装置100Sの内部構成を説明する図である。図5は、マスタ装置100Mについての図3に対応する図である。スレーブ装置100Sは、マスタ装置100Mと同様に、発光装置11、受光レンズ13、及び受光素子14を含むが、ここでは省略する。なお、スレーブ装置100Sにおいて、発光装置11は第2発光部の一例であり、発光装置11が出射するレーザ光は第2レーザ光の一例である。MEMSミラー12は第2MEMSミラーの一例であり、受光素子14は第2受光部の一例である。MCU110は第2制御装置の一例である。
 スレーブ装置100Sは、発光装置11、受光レンズ13、及び受光素子14(図4参照)に加えて、MEMSミラー12、レーザ駆動部20、飛行時間測定部30、MCU110、基準クロック生成部120、及びFPGA150Sを含む。スレーブ装置100Sは、タイミング出力部140を含まない。マスタ装置100Mの構成要素と同様の構成要素には同一符号を付し、その説明を省略する。以下、スレーブ装置100Sについて、マスタ装置100Mとの相違点を中心に説明する。
 MCU110は、主制御部110A、距離算出部110B、判定部110F、及びメモリ110Eを有する。主制御部110A及び距離算出部110Bは、マスタ装置100Mの主制御部110A及び距離算出部110Bと同様である。メモリ110Eは、スレーブ装置100SのMEMSミラー12の周波数fv及び共振周波数fhを表すデータ、及び、発光開始タイミングデータを格納しない点がマスタ装置100Mのメモリ110Eと異なるが、その他は同様である。
 判定部110Fは、スレーブ装置100SのMEMSミラー12の走査角度がスレーブ装置100Sの有効測定範囲の角度範囲内にあるかどうかを判定する。この処理については、図13及び図14を用いて後述する。
 FPGA150Sは、主制御部110Aから入力される基準クロックに応じて動作し、マスタ装置100Mから供給されるフレームパルス、ラインパルス(ゼロタイミングデータ)、及び発光開始タイミングデータに基づいて、MEMSミラー12の振幅目標値、及び、発光装置11を発光させる位相目標値等に基づいて、MEMSミラー12の駆動制御と発光装置11の発光制御を行う。
 FPGA150Sは、基準クロック生成部120、投光制御部130S、及びデータ取得部140Sを有する。投光制御部130Sは、第2発光制御部の一例である。基準クロック生成部120は、マスタ装置100Mの基準クロック生成部120と同様である。
 投光制御部130Sは、主制御部110Aから入力される振幅目標値と、MEMSミラー12の角度センサ12Aの出力と、データ取得部140Sから入力されるフレームパルス、ラインパルス(ゼロタイミングデータ)、及び発光開始タイミングデータに基づいてMEMSミラー12の駆動制御を行う。
 また、投光制御部130Sは、判定部110Fによってスレーブ装置100SのMEMSミラー12の走査角度がスレーブ装置100Sの有効測定範囲の角度範囲内にあると判定されると、発光制御指令を出力する。具体的には、判定部110Fによって有効測定範囲の角度範囲内にあると判定された場合に、投光制御部130Sは、主制御部110Aから入力される位相目標値と、データ取得部140Sから入力されるMEMSミラー12の走査角度がゼロになるタイミングを表すタイミングデータと、発光開始タイミングデータとに基づいて、レーザ駆動部20に発光装置11を発光させる発光制御指令を出力する。投光制御部130Sが発光制御指令を出力することは、投光制御部130Sが発光制御を行うことであり、投光制御部130Sの第2発光制御部としての機能によって実現される。振幅目標値は、走査振幅を表す。走査振幅は、図2(c)における2軸(x軸、y軸)方向の振幅を含む。位相目標値は、ゼロタイミングを基準とした発光のタイミングを位相で表す。換言すれば、位相目標値は、フレームの開始時点を基準とした発光のタイミングを位相で表す。
 データ取得部140Sは、マスタ装置100Mのタイミング出力部140Mから出力されるタイミングデータを取得し、投光制御部130Sに出力する。また、データ取得部140Sは、マスタ装置100MのMCU110から出力されるフレームパルス、ラインパルス、及び発光開始タイミングデータを投光制御部130Sに出力する。
 <比較例の水平方向サンプリング領域とラスタースキャン>
 ここで、比較例1、2の水平方向サンプリング領域とラスタースキャンについて説明する。図6は、比較例1のマスタ装置及びスレーブ装置における水平方向サンプリング領域を示す図である。図6には、上側に比較例1のマスタ装置の水平方向サンプリング領域を示し、下側に比較例1のスレーブ装置の水平方向サンプリング領域を示す。図2(a)と同様に、図6の横軸を表し、縦軸は相対走査角度を表す。図6には、図2(a)に示す相対走査角度が-0.95以上で+0.95以下の範囲(有効測定範囲)を示す。有効測定範囲は、サンプリングが行われる相対走査角度の範囲を表す。
 <比較例1の水平方向サンプリング領域とラスタースキャン>
 図6には、比較例1のマスタ装置及びスレーブ装置におけるサンプリングのための発光タイミングを黒丸(●)で示す。レーザ光の発光周期はT1であり、比較例1のマスタ装置及びスレーブ装置において同一である。MEMSミラーの水平方向における走査周期はT2である。図6には、マスタ装置とスレーブ装置の発光タイミングを説明するにあたり、マスタ装置とスレーブ装置が時分割で交互にサンプリングを行うのではなく、同一期間内にサンプリングを行う場合の発光タイミングを示す。
 比較例1のマスタ装置及びスレーブ装置は、互いに共振周波数のばらつきの小さいMEMSミラーを含む。MEMSミラーは、半導体製造技術で作製されるため共振周波数のばらつきは少ないが、体操競技の競技者の測距を行う場合には、僅かな共振周波数のばらつきが測定誤差に繋がる。比較例1のマスタ装置及びスレーブ装置は、製造された多数のMEMSミラーの中から選択された共振周波数のばらつきが極めて少ない2つのMEMSミラーを1つずつ含む構成である。このようなMEMSミラーの選択は、コストが嵩む。なお、マスタ装置及びスレーブ装置が互いに共振周波数のばらつきが小さくないMEMSミラーを含む場合には、コストの問題は生じないが、どちらか一方の共振周波数に合わせるように、他方のMEMSミラーに大きな電力を供給して駆動することになる。
 また、比較例1のマスタ装置は、フレームパルスとラインパルスをスレーブ装置に供給する。ラインパルスは、各ラインを走査する際にマスタ装置からスレーブ装置に供給される。このため、比較例1のマスタ装置及びスレーブ装置は、完全に同期したラインパルスで、共振周波数が略一致したMEMSミラーを駆動することができる。図6に示すように、比較例1のマスタ装置及びスレーブ装置の発光タイミングは、相対走査角度が-0.95以上で+0.95以下の範囲(サンプリングが行われる範囲)において、完全に一致している。
 図7Aは、図2(c)に示すサンプリングデータの位置と同様に、比較例1のマスタ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。図7Bは、図2(c)に示すサンプリングデータの位置と同様に、比較例1のスレーブ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。
 また、図7Aには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr1と、比較例1のマスタ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Amとを示す。また、図7Bには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr2と、比較例1のスレーブ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Asとを示す。
 比較例1のマスタ装置及びスレーブ装置は、完全に同期したフレームパルス及びラインパルスで動作するため、1つのフレーム期間において、マスタ装置においてMEMSミラーの駆動を開始する位置Sm1(図7A参照)と、スレーブ装置においてMEMSミラーの駆動を開始する位置Ss1(図7A参照)とを合わせることができる。また、1つのフレーム期間において、マスタ装置においてMEMSミラーの駆動を終了する位置Sm2(図7A参照)と、スレーブ装置においてMEMSミラーの駆動を終了する位置Ss2(図7A参照)とを合わせることができる。
 また、図7Aに示すように、x方向走査範囲xr1の左端に破線の丸で囲んで示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。+x方向への水平走査は往路であり、-x方向への水平走査は復路である。
 また、比較例1のマスタ装置及びスレーブ装置は、完全に同期したフレームパルス及びラインパルスで動作するため、図7Bに示すように、x方向走査範囲xr2の左端に破線の丸で囲んで示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上に揃っている。同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上に揃っている。なお、図7Aに示すx方向走査範囲xr1と、図7Bに示すx方向走査範囲xr2とは等しい。
 このように、比較例1のマスタ装置及びスレーブ装置は、完全に同期したフレームパルス及びラインパルスで動作するため、図6に示すように、マスタ装置とスレーブ装置における発光のタイミングは揃っており、図7A及び図7Bに示すように、サンプリング点の位置も揃っている。このため、比較例1のマスタ装置及びスレーブ装置は、時分割で交互にサンプリングを行っても、干渉が生じることはない。
 しかしながら、共振周波数のばらつきが極めて少ない2つのMEMSミラーを選択する場合にはコストが嵩む。また、マスタ装置及びスレーブ装置が互いに共振周波数のばらつきの小さくないMEMSミラーを含む場合には、コストの問題は生じないが、どちらか一方の共振周波数に合わせるため、他方のMEMSミラーに大きな電力を供給して駆動することになり、消費電力が増大する。また、大きな電力を供給して駆動することによって、MEMSミラーの破損に繋がるおそれがある。
 <比較例2の水平方向サンプリング領域とラスタースキャン>
 図8は、比較例2のマスタ装置及びスレーブ装置におけるサンプリングを示す図である。図8には、比較例2のマスタ装置及びスレーブ装置におけるサンプリングのための発光タイミングを黒丸(●)で示す。レーザ光の発光周期はT1であり、比較例2のマスタ装置及びスレーブ装置において同一である。
 比較例2のマスタ装置及びスレーブ装置は、製造された多数のMEMSミラーの中からランダムに選択されたMEMSミラーを1つずつ含む構成である。ここでは、比較例2のマスタ装置及びスレーブ装置のMEMSミラーの共振周波数に比較的大きな違いがあり、マスタ装置のMEMSミラーの共振周波数が、スレーブ装置の共振周波数よりも高いこととする。マスタ装置のMEMSミラーの共振周波数と、スレーブ装置のMEMSミラーの共振周波数とのばらつきによって、図8に示すように、マスタ装置のMEMSミラーの相対走査角度がピークになる時点と、スレーブ装置のMEMSミラーの相対走査角度がピークになる時点とは、時間Tpdだけずれている。
 マスタ装置のMEMSミラーの水平方向における走査周期をT2a、スレーブ装置のMEMSミラーの水平方向における走査周期をT2bとする。図8には、マスタ装置とスレーブ装置の発光タイミングを説明するにあたり、マスタ装置とスレーブ装置が時分割で交互にサンプリングを行うのではなく、同一期間内にサンプリングを行う場合の発光タイミングを示す。
 また、比較例2のマスタ装置は、フレームパルスをスレーブ装置に供給するが、ラインパルスは供給しない。比較例2のスレーブ装置は、ラインパルスをゼロタイミングで生成して利用する。このため、比較例2のマスタ装置及びスレーブ装置は、フレーム期間は同期するが、互いのMEMSミラーの共振周波数の違いによって、発光のタイミングが異なる。マスタ装置のMEMSミラーの共振周波数が、スレーブ装置の共振周波数よりも高いため、図8に示すように、比較例2のスレーブ装置のMEMSミラーの相対走査角度が有効測定範囲内に入って1回目の発光が行われるタイミングは、マスタ装置に対して時間Tmdだけ遅れている。
 図9Aは、図2(c)に示すサンプリングデータの位置と同様に、比較例2のマスタ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。図9Bは、図2(c)に示すサンプリングデータの位置と同様に、比較例2のスレーブ装置のMEMSミラーで反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。
 また、図9Aには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr1と、比較例2のマスタ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Amとを示す。また、図9Bには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr2と、比較例2のスレーブ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Asとを示す。
 比較例2のマスタ装置及びスレーブ装置は、フレームパルスが同期して動作するため、1つのフレーム期間において、マスタ装置においてMEMSミラーの駆動を開始する位置Sm1(図9A参照)と、スレーブ装置においてMEMSミラーの駆動を開始する位置Ss1とを合わせることができる。
 また、図9Aに示すように、x方向走査範囲xr1の左端に破線の丸で囲んで示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。+x方向への水平走査は往路であり、-x方向への水平走査は復路である。
 また、比較例2のマスタ装置及びスレーブ装置は、フレームパルスが同期して動作するため、図9Bに示すように、x方向走査範囲xr2の左端に破線の丸で囲んで示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上に揃っている。同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上に揃っている。なお、図9Aに示すx方向走査範囲xr1と、図9Bに示すx方向走査範囲xr2とは等しい。
 しかしながら、一例として、マスタ装置のMEMSミラーの共振周波数が、スレーブ装置の共振周波数よりも高く、マスタ装置はスレーブ装置よりもフレーム期間におけるサンプリングが早く終わるため、サンプリングが終了した後に、スレーブ装置のサンプリングが終了するまで、破線Bで囲むように、MEMSミラーを駆動することになる。
 このように、比較例2のマスタ装置及びスレーブ装置は、フレームパルスが同期しており、図9A及び図9Bに示すように、サンプリング点の位置は揃っているが、互いのMEMSミラーの共振周波数の違いによって、図8に示すように発光のタイミングが異なる。このため、比較例2のマスタ装置及びスレーブ装置において、時分割で交互にサンプリングを行うと、レーザ光同士の干渉が生じる。
 <実施形態の水平方向サンプリング領域とラスタースキャン>
 図10は、実施形態のマスタ装置100M及びスレーブ装置100Sにおけるサンプリングのための発光タイミングを示す図である。図10には、発光タイミングを黒丸(●)で示す。レーザ光の発光周期はT1であり、実施形態のマスタ装置100M及びスレーブ装置100Sにおいて同一である。
 実施形態のマスタ装置100M及びスレーブ装置100Sは、製造された多数のMEMSミラーの中からランダムに選択されたMEMSミラー12を1つずつ含む構成である。ここでは、より厳しい条件での説明を行うため、実施形態のマスタ装置100M及びスレーブ装置100SのMEMSミラー12の共振周波数に比較的大きな違いがあり、マスタ装置のMEMSミラーの共振周波数が、スレーブ装置の共振周波数よりも高いこととする。マスタ装置100MのMEMSミラー12の共振周波数と、スレーブ装置100SのMEMSミラー12の共振周波数とのばらつきによって、図10に示すように、マスタ装置100MのMEMSミラー12の相対走査角度がピークになる時点と、スレーブ装置100SのMEMSミラー12の相対走査角度がピークになる時点とは、時間Tpdだけずれている。
 マスタ装置100MのMEMSミラー12の水平方向における走査周期をT2a、スレーブ装置100SのMEMSミラー12の水平方向における走査周期をT2bとする。図10には、マスタ装置100Mとスレーブ装置100Sの発光タイミングを説明するにあたり、マスタ装置100Mとスレーブ装置100Sが時分割で交互にサンプリングを行うのではなく、同一期間内にサンプリングを行う場合の発光タイミングを示す。
 また、実施形態のマスタ装置100Mは、フレームパルス、ラインパルス、及び発光開始タイミングデータをスレーブ装置100Sに供給する。発光開始タイミングデータは、ラインパルスから発光を開始するまでの待機時間(以下、発光開始待機時間)を表す。ラインパルスのタイミングは、MEMSミラー12の水平方向の走査開始のタイミングである。発光開始待機時間は、一例として、往路の走査(図2(a)参照)で発光すべき所定数の発光タイミング(図10に示す+0.95と-0.95との間の7つの発光タイミング)が、往路の走査を行う期間に収まり、特に7つのうちの最後の発光タイミングが復路の走査を行う期間に含まれないように調整して設定すればよい。スレーブ装置100Sは、ラインパルスから、発光開始待機時間が経過する時点t1において、発光トリガ信号を生成する。発光トリガ信号は、レーザ光の発光周期T1で立ち上がるパルス状の信号である。発光トリガ信号は、投光制御部130Sが生成する。図10では、一例として、ラインパルスから発光開始待機時間が経過した時点が、有効測定範囲の開始時点と一致しているが、一致していなくてよい。
 このときに、判定部110Fは、スレーブ装置100SのMEMSミラー12の相対走査角度が有効測定範囲内にあるかどうかを判定し、相対走査角度が有効測定範囲内に入ると、相対走査角度が有効測定範囲内にあることを投光制御部130Sに通知する。図10には、相対走査角度が有効測定範囲内にある期間TINを示す。通知を受けた投光制御部130Sは、発光トリガ信号に合わせて発光装置11を発光させる。このため、投光制御部130Sは、時点t2において発光装置11を発光させる。
 判定部110Fは、スレーブ装置100SのMEMSミラー12の相対走査角度が有効測定範囲内にあるかどうかを判定し続け、相対走査角度が有効測定範囲内にある場合は、相対走査角度が有効測定範囲内にあることを投光制御部130Sに通知し、通知を受けた投光制御部130Sは、発光トリガ信号に合わせて発光装置11を発光させる。このため、期間TIN内において、投光制御部130Sは、発光トリガ信号に応じて発光装置11を発光させる。
 期間TINは、時点t3まで継続するため、時点t3までレーザ光の発光周期T1で断続的に発光装置11が発光される。時点t3を経過すると、スレーブ装置100SのMEMSミラー12の相対走査角度が有効測定範囲から外れるため、発光装置11は発光されなくなる。
 図11Aは、図2(c)に示すサンプリングデータの位置と同様に、実施形態のマスタ装置100MのMEMSミラー12で反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。図11Bは、図2(c)に示すサンプリングデータの位置と同様に、実施形態のスレーブ装置100SのMEMSミラー12で反射されたレーザ光のある平面(x、y軸)上でのサンプリングデータの位置を示す図である。
 また、図11Aには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr1と、実施形態のマスタ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Amとを示す。また、図11Bには、相対走査角度の有効測定範囲にx軸方向で対応するx方向走査範囲xr2と、実施形態のスレーブ装置によって水平方向(x方向)及び垂直方向(y方向)の走査が行われる範囲Asとを示す。
 実施形態のマスタ装置100M及びスレーブ装置100Sは、フレームパルス及びラインパルスが同期して動作するため、1つのフレーム期間において、マスタ装置100MにおいてMEMSミラー12の駆動を開始する位置Sm1(図11A参照)と、スレーブ装置100SにおいてMEMSミラー12の駆動を開始する位置Ss1とを合わせることができる。また、1つのフレーム期間において、マスタ装置100MにおいてMEMSミラー12の駆動を終了する位置Sm2(図11A参照)と、スレーブ装置100SにおいてMEMSミラー12の駆動を終了する位置Ss2(図11A参照)とを合わせることができる。
 また、図11Aに示すように、x方向走査範囲xr1の左端に破線の丸で囲んで示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Amの境界上に揃っている。+x方向への水平走査は往路であり、-x方向への水平走査は復路である。
 また、実施形態のマスタ装置100M及びスレーブ装置100Sは、マスタ装置100Mから供給されるフレームパルス、ラインパルス、及び発光開始タイミングデータに基づいて動作する。特に、発光開始タイミングデータに基づいて、マスタ装置100Mが有効測定範囲内で1回目の発光を行うタイミングに合わせて生成される発光トリガ信号に従って、スレーブ装置100SのMEMSミラー12の相対走査角度が有効測定範囲内にある期間TIN内において発光を行う。このため、図11Bに示すように、+x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上には揃わない。白丸(○)は、発光トリガ信号が存在するが、期間TIN内に位置しないために、発光が行われない位置を表す。
 同様に、-x方向への水平走査における最初のサンプリング点の位置は、領域Asの境界上に揃わない。白丸(○)で示すように、発光トリガ信号が存在するが、期間TIN内に位置しないために、発光が行われない位置が現れる。なお、図11Aに示すx方向走査範囲xr1と、図11Bに示すx方向走査範囲xr2とは等しい。
 このように、スレーブ装置100Sがマスタ装置100Mから供給されるフレームパルス、ラインパルス、及び発光開始タイミングデータに基づいて動作することによって、マスタ装置100M及びスレーブ装置100Sの発光タイミングを一致させることができる。
 また、スレーブ装置100Sは、図11Bに示すように、サンプリングの位置が領域Asの境界上に揃わないため、得られる3次元点群データは、水平方向の端が垂直方向においてジグザグ状になるが、測距の際には測距対象物を領域Asの中央部に捉えるため、水平方向の端が垂直方向においてジグザグ状になっても影響は生じない。
 以上のように、マスタ装置100Mとスレーブ装置100SのMEMSミラー12の共振周波数が異なっていても、スレーブ装置100Sがマスタ装置100Mから供給されるフレームパルス、ラインパルス、及び発光開始タイミングデータに基づいて動作することによって、マスタ装置100M及びスレーブ装置100Sの発光タイミングを一致させることができる。このため、実施形態のマスタ装置100M及びスレーブ装置100Sにおいて、時分割で交互にサンプリングを行った場合には、レーザ光同士の干渉を抑制できる。
 <マスタ装置100M及びスレーブ装置100Sにおける時分割での測距>
 マスタ装置100M及びスレーブ装置100Sは、自装置が出射及び受信するレーザ光が互いに干渉しないように、時分割で交互に測距を行う。
 図12は、マスタ装置100M及びスレーブ装置100Sが時分割で交互に測距を行う場合における発光タイミングを示す図である。図10では、マスタ装置100M及びスレーブ装置100Sの発光タイミングを黒丸(●)で示す。
 時分割で測距を行う場合には、マスタ装置100Mの発光タイミングに対して、スレーブ装置100Sの発光タイミングを発光周期T1の半分(T1/2)だけ遅らせる。時分割で測距を行うために、マスタ装置100Mの発光タイミングに対してスレーブ装置100Sの発光タイミングを発光周期T1の半分(T1/2)だけ遅らせる場合でも、マスタ装置100Mの発光タイミングと、スレーブ装置100Sの発光タイミングとは、発光周期T1の半分(T1/2)だけずれた状態で同期している。
 一例として、発光周期T1は320nsであり、マスタ装置100M及びスレーブ装置100Sが測距可能な最大の距離に測距対象物があるときに、発光したレーザ光の反射光を受光することができる時間(一例として160ns)の2倍の時間に対応している。測距可能な最大の距離は、マスタ装置100M及びスレーブ装置100Sの間の距離である。
 図12に示すように、スレーブ装置100Sの発光タイミングをマスタ装置100Mの発光タイミングに対して発光周期T1の半分(T1/2)だけ遅らせることにより、スレーブ装置100Sがマスタ装置100Mのレーザ光を受信することを抑制でき、マスタ装置100がスレーブ装置100SMのレーザ光を受信することを抑制できる。
 <発光同期処理>
 図13は、姿勢認識システム400における発光同期処理を示すタスク図である。図13には、制御装置300、マスタ装置100M、及びスレーブ装置100Sが連携して実行する処理を示す。
 まず、制御装置300は、マスタ装置100M及びスレーブ装置100Sに距離の測定を開始させる測定開始コマンドを送信する(ステップS0)。
 マスタ装置100Mは、フレームパルスを生成し、スレーブ装置100Sに出力する(ステップS1M)。
 スレーブ装置100Sは、マスタ装置100Mからフレームパルスを受信する(ステップS1S)。
 マスタ装置100Mは、MEMSミラー12の駆動を開始する(ステップS2M)。これにより、マスタ装置100MのMEMSミラー12は共振周波数で水平走査を行うとともに、垂直方向に走査される。
 スレーブ装置100Sは、MEMSミラー12の駆動を開始する(ステップS2S)。これにより、スレーブ装置100SのMEMSミラー12は共振周波数で水平走査を行うとともに、垂直方向に走査される。
 マスタ装置100Mは、ラインパルスを生成する(ステップS3M)。
 マスタ装置100Mは、ラインパルスと発光開始タイミングデータをスレーブ装置100Sに出力する(ステップS4M)。また、マスタ装置100Mは、ステップS3Mで生成したラインパルスを自装置内で利用する。
 スレーブ装置100Sは、ラインパルスと発光開始タイミングデータをマスタ装置100Mから受信する(ステップS3S)。
 スレーブ装置100Sは、発光同期制御を行う(ステップS4S)。発光同期制御の詳細については、図14を用いて後述する。
 マスタ装置100Mは、レーザ発光を行う(ステップS5M)。
 スレーブ装置100Sは、レーザ発光を行う(ステップS5S)。スレーブ装置100Sのレーザ発光は、発光開始タイミングデータに基づいてマスタ装置100Mのレーザ発光に同期する。
 マスタ装置100Mは、測距対象物までの距離を測定する処理を行う(ステップS6M)。
 スレーブ装置100Sは、測距対象物までの距離を測定する処理を行う(ステップS6S)。
 なお、ここでは、マスタ装置100M及びスレーブ装置100Sの処理を簡易化して説明したが、ステップS3M、S4M、S5M、S3S、S4S、S5Sの処理については、各水平走査線において、マスタ装置100Mがラインパルスを生成する度に繰り返し行うことで、1つのフレーム期間における64000点の3次元点群データを取得してから、ステップS6M及びS6Sの処理を行えばよい。
 <スレーブ装置100Sの発光同期制御>
 図14は、スレーブ装置100Sが実行する発光同期制御の処理を表すフローチャートである。スレーブ装置100Sは、図13に示すステップS3Sにおいて、マスタ装置100Mからラインパルスと発光開始タイミングデータを受信すると、図14に示す発光同期制御の処理を実行する。
 データ取得部140Sは、ラインパルスと発光開始タイミングデータを受信し、投光制御部130Sに出力する(ステップS51)。
 投光制御部130Sは、ラインパルスと発光開始タイミングデータに基づいて、発光トリガ信号を生成する(ステップS52)。この結果、図10及び図12に示すような発光トリガ信号が生成される。
 判定部110Fは、スレーブ装置100SのMEMSミラー12の走査角度がスレーブ装置100Sの有効測定範囲の角度範囲内にあるかどうかを判定する(ステップS53)。
 判定部110FによってMEMSミラー12の走査角度が有効測定範囲内にあると判定されると、投光制御部130Sは、発光トリガ信号のパルスのタイミングで発光制御指令を生成し、レーザ駆動部20に発光装置11を発光させる発光制御指令を出力する(ステップS54)。
 発光制御指令は、発光トリガ信号のパルスのタイミングで生成されてレーザ駆動部20に出力され、発光トリガ信号は、発光開始タイミングデータに基づいて生成されているため、スレーブ装置100Sの発光タイミングは、マスタ装置100Mの発光タイミングと同期する。なお、図12に示すように時分割でマスタ装置100M及びスレーブ装置100Sが交互に測距を行う場合には、ステップS54において発光制御指令を出力するタイミングを発光周期T1の半分(T1/2)だけ遅らせればよい。
 <姿勢認識システム400の適用例>
 図15は、姿勢認識システム400の適用例を例示する図である。図15で例示するように、1つのマスタ装置100Mと3つのスレーブ装置100Sを設置する。これらのマスタ装置100M及びスレーブ装置100Sは、測距対象物1(図15の例では体操選手)を取り囲むように設置される。選手自身の体の一部や、器具によって、陰ができ、選手の体の3次元点群データが取得できない部分が生じるおそれがある。そこで、選手の表裏から挟み込むようにマスタ装置100M及びスレーブ装置100Sを設置する。それにより、選手の詳細な3次元点データ(姿勢データ)を測定することができる。マスタ装置100Mが発光開始タイミングデータをスレーブ装置100Sに出力することで、マスタ装置100Mとスレーブ装置100Sにおける発光のタイミングを同期させることができる。マスタ装置100M及びスレーブ装置100Sが同期制御された状態で、選手の詳細な3次元点データ(姿勢データ)を正確に測定することができる。
 姿勢認識システム400は、マスタ装置100M及びスレーブ装置100Sの各々の各々が取得した3次元点群データを統合することで、選手の3次元点群データを生成する。そして、姿勢認識システム400は、選手の3次元点群データから選手の姿勢を特定する。これにより、審判による選手の姿勢の評価を支援することができる。
 図16は、マスタ装置100Mのハードウェア構成例である。図16において、マスタ装置100MのMCU110は、CPU31と、メモリ32と、ネットワークI/F33と、記録媒体I/F34と、記録媒体35とを有する。また、各構成は、バス36によってそれぞれ接続される。
 ここで、CPU31は、マスタ装置100Mの全体の制御を司る。メモリ32は、例えば、ROM、RAMおよびフラッシュROMなどを有する。具体的には、例えば、フラッシュROMやROMが各種プログラムを記憶し、RAMがCPU31のワークエリアとして使用される。メモリ32に記憶されるプログラムは、CPU31にロードされることにより、コーディングされている処理をCPU31に実行させる。
 ネットワークI/F33は、通信回線を通じてネットワークに接続され、ネットワークを介して他のコンピュータに接続される。そして、ネットワークI/F33は、ネットワークと内部のインターフェースを司り、他のコンピュータからのデータの入出力を制御する。ネットワークI/F33は、例えば、モデムやLANアダプタなどである。
 記録媒体I/F34は、CPU31の制御に従って記録媒体35に対するデータのリード/ライトを制御する。記録媒体I/F34は、例えば、ディスクドライブ、SSD、USBポートなどである。記録媒体35は、記録媒体I/F34の制御で書き込まれたデータを記憶する不揮発メモリである。記録媒体35は、例えば、ディスク、半導体メモリ、USBメモリなどである。記録媒体35は、マスタ装置100Mから着脱可能であってもよい。
 なお、マスタ装置100MのMCU110およびFPGA130Mの有する各構成は、メモリ32や記録媒体35などの記憶領域に記憶されたプログラムをCPU31に実行させることにより、または、ネットワークI/F33により、その機能を実現されてもよい。
 図17は、スレーブ装置100Sのハードウェア構成例である。図17において、スレーブ装置100SのMCU110は、CPU31Aと、メモリ32Aと、ネットワークI/F33Aと、記録媒体I/F34Aと、記録媒体35Aとを有する。また、各構成は、バス36Aによってそれぞれ接続される。
 ここで、CPU31Aは、スレーブ装置100Sの全体の制御を司る。メモリ32Aは、例えば、ROM、RAMおよびフラッシュROMなどを有する。具体的には、例えば、フラッシュROMやROMが各種プログラムを記憶し、RAMがCPU31Aのワークエリアとして使用される。メモリ32Aに記憶されるプログラムは、CPU31Aにロードされることにより、コーディングされている処理をCPU31Aに実行させる。
 ネットワークI/F33Aは、通信回線を通じてネットワークに接続され、ネットワークを介して他のコンピュータに接続される。そして、ネットワークI/F33Aは、ネットワークと内部のインターフェースを司り、他のコンピュータからのデータの入出力を制御する。ネットワークI/F33Aは、例えば、モデムやLANアダプタなどである。
 記録媒体I/F34Aは、CPU31Aの制御に従って記録媒体35Aに対するデータのリード/ライトを制御する。記録媒体I/F34Aは、例えば、ディスクドライブ、SSD、USBポートなどである。記録媒体35Aは、記録媒体I/F34Aの制御で書き込まれたデータを記憶する不揮発メモリである。記録媒体35Aは、例えば、ディスク、半導体メモリ、USBメモリなどである。記録媒体35Aは、マスタ装置100Mから着脱可能であってもよい。
 なお、スレーブ装置100SのMCU110およびFPGA130Mの有する各構成は、メモリ32Aや記録媒体35Aなどの記憶領域に記憶されたプログラムをCPU31Aに実行させることにより、または、ネットワークI/F33Aにより、その機能を実現されてもよい。
 <効果>
 以上のように、姿勢認識システム400は、マスタ装置100Mと、マスタ装置100Mに従属して動作するスレーブ装置100Sとを含む姿勢認識システム400である。マスタ装置100Mは、レーザ光を発光する発光装置11と、発光装置11によって発光されるレーザ光をラスタースキャン方式で走査するMEMSミラー12と、MEMSミラー12の走査角度に基づいて、発光装置11の発光開始タイミングを表す発光開始タイミングデータを取得するタイミングデータ取得部110Cと、スレーブ装置100Sに発光開始タイミングデータを出力するデータ出力部110Dと、発光装置11によるレーザ光の発光制御を行う投光制御部130Mとを有する。スレーブ装置100Sは、レーザ光を発光する発光装置11と、発光装置11によって発光されるレーザ光をラスタースキャン方式で走査するMEMSミラー12と、MEMSミラー12の走査角度がスレーブ装置100Sの有効測定範囲の角度範囲内にあるかどうかを判定する判定部110Fと、判定部110Fによって走査角度が有効測定範囲内にあると判定されると、マスタ装置100Mから供給される発光開始タイミングデータに基づいて、発光装置11によるレーザ光の発光制御を行う投光制御部130Sとを有する。このため、マスタ装置100MのMEMSミラー12の共振周波数と、スレーブ装置100SのMEMSミラー12の共振周波数とにばらつきがあっても、発光開始タイミングデータに基づいて、スレーブ装置100Sのレーザ光の発光タイミングをマスタ装置100Mのレーザ光の発光タイミングに同期させることができる。
 したがって、2つのMEMSミラー12の共振周波数のばらつきがあっても、2つのMEMSミラー12で走査するレーザ光を同期させることが可能な姿勢認識システム400を提供することができる。
 また、発光開始タイミングは、マスタ装置100MのMEMSミラー12の共振の振動方向における走査開始のタイミング(ラインパルスのタイミング)に対する発光装置11の発光のタイミングである。このため、スレーブ装置100Sの発光のタイミングをマスタ装置100Mにおける、ラインパルスのタイミングに対する発光装置11の発光のタイミングに合わせることができ、マスタ装置100M及びスレーブ装置100Sでの発光タイミングを容易に同期させることができる。
 また、投光制御部130Sは、発光開始タイミングデータに基づいて、レーザ光の発光周期で発光トリガ信号を生成し、判定部110Fによって走査角度が有効測定範囲内にあると判定されると、発光トリガ信号に従って発光装置11にレーザ光を出力させる発光制御を行う。このため、判定部110Fによって走査角度が有効測定範囲内にあるときに、発光開始タイミングデータとレーザ光の発光周期とに応じた発光トリガ信号に従ってスレーブ装置100Sがレーザ光を出力させることで、マスタ装置100M及びスレーブ装置100Sでの発光タイミングを容易に同期させることができる。
 また、マスタ装置100Mがレーザ光を発光してから、レーザ光が測距対象物で反射された第1反射光をマスタ装置100Mが受光するまでの第1期間と、スレーブ装置100Sがレーザ光を発光してから、レーザ光が測距対象物で反射された第2反射光をスレーブ装置100Sが受光するまでの第2期間とが重ならないように時分割的に制御される。このため、マスタ装置100M及びスレーブ装置100Sが時分割でレーザ光を発光して測定を行っても、互いのレーザ光の干渉を抑制でき、同一期間内においてマスタ装置100M及びスレーブ装置100Sの両方で測定を行うことができる。
 また、マスタ装置100Mは、マスタ装置100Mと、マスタ装置100Mに従属して動作するスレーブ装置100Sとを含む姿勢認識システム400に含まれる。マスタ装置100Mは、レーザ光を発光する発光装置11と、
 発光装置11によって発光されるレーザ光をラスタースキャン方式で走査するMEMSミラー12と、MEMSミラー12の走査角度に基づいて、発光装置11の発光開始タイミングを表す発光開始タイミングデータを取得するタイミングデータ取得部110Cと、スレーブ装置100Sに発光開始タイミングデータを出力するデータ出力部110Dとを含む。このため、マスタ装置100MのMEMSミラー12の共振周波数と、スレーブ装置100SのMEMSミラー12の共振周波数とにばらつきがあっても、スレーブ装置100Sに発光開始タイミングデータを供給でき、スレーブ装置100Sは、レーザ光の発光タイミングをマスタ装置100Mのレーザ光の発光タイミングに同期させることができる。
 したがって、姿勢認識システム400のマスタ装置100M及びスレーブ装置100Sの2つのMEMSミラー12の共振周波数のばらつきがあっても、2つのMEMSミラー12で走査するレーザ光を同期させることが可能なマスタ装置100Mを提供することができる。
 また、スレーブ装置100Sは、マスタ装置100Mと、マスタ装置100Mに従属して動作するスレーブ装置100Sとを含む姿勢認識システム400に含まれる。スレーブ装置100Sは、レーザ光を発光する発光部と、発光部によって発光されるレーザ光をラスタースキャン方式で走査するMEMSミラーと、MEMSミラーの走査角度が有効測定範囲内にあるかどうかを判定する判定部110Fと、判定部110Fによって走査角度が有効測定範囲内にあると判定されると、マスタ装置100Mから供給される、マスタ装置100Mにおける発光開始タイミングを表す発光開始タイミングデータに基づいて、発光部によるレーザ光の発光制御を行う発光制御部とを含む。このため、マスタ装置100MのMEMSミラー12の共振周波数と、スレーブ装置100SのMEMSミラー12の共振周波数とにばらつきがあっても、スレーブ装置100Sは、発光開始タイミングデータを取得することで、マスタ装置100Mにおける発光タイミングを入手できる。この結果、スレーブ装置100Sは、発光開始タイミングデータに基づいて、スレーブ装置100Sのレーザ光の発光タイミングをマスタ装置100Mのレーザ光の発光タイミングに同期させることができる。
 したがって、姿勢認識システム400のマスタ装置100M及びスレーブ装置100Sの2つのMEMSミラー12の共振周波数のばらつきがあっても、2つのMEMSミラー12で走査するレーザ光を同期させることが可能なスレーブ装置100Sを提供することができる。
 以上、本開示の例示的な実施形態のセンサシステム、マスタ装置、及びスレーブ装置について説明したが、本開示は、具体的に開示された実施形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
1 測距対象物
11 発光装置
12 MEMSミラー
12A 角度センサ
12L 投光レンズ
13 受光レンズ
14 受光素子
20 レーザ駆動部
30 飛行時間測定部
100M マスタ装置
100S スレーブ装置
110A 主制御部
110B 距離算出部
110C タイミングデータ取得部
110Dデータ出力部
110E メモリ
110F 判定部
120 基準クロック生成部
130M、130S 投光制御部
140M タイミング出力部
140S データ取得部
150M、150S FPGA
200 センサシステム
300 制御装置
400 姿勢認識システム

Claims (7)

  1.  マスタ装置と、前記マスタ装置に従属して動作するスレーブ装置とを含むセンサシステムであって、
     前記マスタ装置は、
     第1レーザ光を発光する第1発光部と、
     前記第1発光部によって発光される第1レーザ光をラスタースキャン方式で走査する第1MEMSミラーと、
     前記第1MEMSミラーの走査角度に基づいて、前記第1発光部の発光開始タイミングを表す発光開始タイミングデータを取得するタイミングデータ取得部と、
     前記スレーブ装置に前記発光開始タイミングデータを出力するデータ出力部と、
     前記第1発光部による前記第1レーザ光の発光制御を行う第1発光制御部と
     を有し、
     前記スレーブ装置は、
     第2レーザ光を発光する第2発光部と、
     前記第2発光部によって発光される第2レーザ光をラスタースキャン方式で走査する第2MEMSミラーと、
     前記第2MEMSミラーの走査角度が前記スレーブ装置の有効測定範囲の角度範囲内にあるかどうかを判定する判定部と、
     前記判定部によって前記走査角度が前記有効測定範囲内にあると判定されると、前記マスタ装置から供給される前記発光開始タイミングデータに基づいて、前記第2発光部による前記第2レーザ光の発光制御を行う第2発光制御部と
     を有する、センサシステム。
  2.  前記マスタ装置及び前記スレーブ装置の各々が取得した3次元点群データを統合することで、人物の3次元点群データを生成する、請求項1に記載のセンサシステム。
  3.  前記発光開始タイミングは、前記第1MEMSミラーの共振の振動方向における走査開始のタイミングに対する前記第1発光部の発光のタイミングである、請求項1に記載のセンサシステム。
  4.  前記第2発光制御部は、発光開始タイミングデータに基づいて、前記第2レーザ光の発光周期で発光トリガ信号を生成し、前記判定部によって前記走査角度が前記有効測定範囲内にあると判定されると、前記発光トリガ信号に従って前記第2発光部に前記第2レーザ光を出力させる発光制御を行う、請求項1に記載のセンサシステム。
  5.  前記マスタ装置が前記第1レーザ光を発光してから、前記第1レーザ光が測距対象物で反射された第1反射光を前記マスタ装置が受光するまでの第1期間と、前記スレーブ装置が前記第2レーザ光を発光してから、前記第2レーザ光が前記測距対象物で反射された第2反射光を前記スレーブ装置が受光するまでの第2期間とが重ならないように時分割的に制御される、請求項1乃至4のいずれか1項に記載のセンサシステム。
  6.  マスタ装置と、前記マスタ装置に従属して動作するスレーブ装置とを含むセンサシステムに含まれるマスタ装置であって、
     第1レーザ光を発光する第1発光部と、
     前記第1発光部によって発光される第1レーザ光をラスタースキャン方式で走査する第1MEMSミラーと、
     前記第1MEMSミラーの走査角度に基づいて、前記第1発光部の発光開始タイミングを表す発光開始タイミングデータを取得するタイミングデータ取得部と、
     前記スレーブ装置に前記発光開始タイミングデータを出力するデータ出力部と
     を含む、マスタ装置。
  7.  マスタ装置と、前記マスタ装置に従属して動作するスレーブ装置とを含むセンサシステムに含まれるスレーブ装置であって、
     レーザ光を発光する発光部と、
     前記発光部によって発光されるレーザ光をラスタースキャン方式で走査するMEMSミラーと、
     前記MEMSミラーの走査角度が予め設定された有効測定範囲内にあるかどうかを判定する判定部と、
     前記判定部によって前記走査角度が前記有効測定範囲内にあると判定されると、前記マスタ装置から供給される、前記マスタ装置における発光開始タイミングを表す発光開始タイミングデータに基づいて、前記発光部による前記レーザ光の発光制御を行う発光制御部と
     を含む、スレーブ装置。
PCT/JP2022/032404 2022-08-29 2022-08-29 センサシステム、マスタ装置、及びスレーブ装置 WO2024047697A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032404 WO2024047697A1 (ja) 2022-08-29 2022-08-29 センサシステム、マスタ装置、及びスレーブ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032404 WO2024047697A1 (ja) 2022-08-29 2022-08-29 センサシステム、マスタ装置、及びスレーブ装置

Publications (1)

Publication Number Publication Date
WO2024047697A1 true WO2024047697A1 (ja) 2024-03-07

Family

ID=90099088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032404 WO2024047697A1 (ja) 2022-08-29 2022-08-29 センサシステム、マスタ装置、及びスレーブ装置

Country Status (1)

Country Link
WO (1) WO2024047697A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113670A (ja) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp レーザレーダシステム、レーザ測距装置および制御装置
JP2015197402A (ja) * 2014-04-03 2015-11-09 三菱電機株式会社 レーザ画像計測装置
CN107329145A (zh) * 2017-06-29 2017-11-07 深圳市速腾聚创科技有限公司 多激光雷达系统及其控制方法
WO2019159802A1 (ja) * 2018-02-13 2019-08-22 パイオニア株式会社 制御装置、照射システム、制御方法、及びプログラム
WO2019188639A1 (ja) * 2018-03-27 2019-10-03 パイオニア株式会社 制御装置、照射装置、制御方法、およびコンピュータプログラム
JP2021532368A (ja) * 2018-08-03 2021-11-25 オプシス テック リミテッド 分散型モジュール式ソリッドステートlidarシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113670A (ja) * 2011-11-28 2013-06-10 Mitsubishi Electric Corp レーザレーダシステム、レーザ測距装置および制御装置
JP2015197402A (ja) * 2014-04-03 2015-11-09 三菱電機株式会社 レーザ画像計測装置
CN107329145A (zh) * 2017-06-29 2017-11-07 深圳市速腾聚创科技有限公司 多激光雷达系统及其控制方法
WO2019159802A1 (ja) * 2018-02-13 2019-08-22 パイオニア株式会社 制御装置、照射システム、制御方法、及びプログラム
WO2019188639A1 (ja) * 2018-03-27 2019-10-03 パイオニア株式会社 制御装置、照射装置、制御方法、およびコンピュータプログラム
JP2021532368A (ja) * 2018-08-03 2021-11-25 オプシス テック リミテッド 分散型モジュール式ソリッドステートlidarシステム

Similar Documents

Publication Publication Date Title
US20200249352A1 (en) Determining positional information of an object in space
CN109791195B (zh) 用于光达的自适应发射功率控制
JP5466808B2 (ja) 光波距離測定方法、距離測定プログラム及び距離測定システム
JP2020504305A (ja) 高周波パルス発射を用いる高分解能ライダ
CN112051760B (zh) 激光扫描控制系统及方法
US20190072652A1 (en) Distance measuring apparatus, distance measuring method, and non-transitory computer-readable storage medium for storing distance measuring program
JP7541030B2 (ja) Lidarシステムにおける時間的ジッタ
JP4691701B2 (ja) 人数検出装置及び方法
JP5207665B2 (ja) 測定システム
JP2008523371A (ja) 携帯型測量装置および測量方法
TW202102877A (zh) 選擇用於感測飛行時間之脈衝重複間隔
US11531104B2 (en) Full waveform multi-pulse optical rangefinder instrument
JP6862751B2 (ja) 距離測定装置、距離測定方法及びプログラム
EP2952929B1 (en) Laser scanner system
JP2018523100A (ja) ポリゴンを用いて光パターンを生成するための方法およびシステム
CN109212544B (zh) 一种目标距离探测方法、装置及系统
WO2024047697A1 (ja) センサシステム、マスタ装置、及びスレーブ装置
JP7142981B2 (ja) マイクロ固体レーザレーダ及びそのデータ処理方法
CN102401901A (zh) 测距系统及测距方法
JP2023149369A (ja) 測距装置、測距プログラム、及び測距方法
US20230314573A1 (en) Master device and sensor system
JP6749191B2 (ja) スキャナ装置および測量装置
JP2001317935A (ja) 測距装置
WO2023199490A1 (ja) 情報処理システム及び情報処理方法
JP2022151080A (ja) 測定システム、測定装置および測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957301

Country of ref document: EP

Kind code of ref document: A1