WO2024046501A1 - 一种基于三维电位响应的巷道围岩应力状态探测方法 - Google Patents

一种基于三维电位响应的巷道围岩应力状态探测方法 Download PDF

Info

Publication number
WO2024046501A1
WO2024046501A1 PCT/CN2023/124177 CN2023124177W WO2024046501A1 WO 2024046501 A1 WO2024046501 A1 WO 2024046501A1 CN 2023124177 W CN2023124177 W CN 2023124177W WO 2024046501 A1 WO2024046501 A1 WO 2024046501A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
dimensional
tunnel
cuboid
value
Prior art date
Application number
PCT/CN2023/124177
Other languages
English (en)
French (fr)
Inventor
李忠辉
单天成
王笑然
钮月
张昕
张超林
陈栋
蔡超
殷山
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2024046501A1 publication Critical patent/WO2024046501A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to the technical field of tunnel surrounding rock stability, and in particular to a method for detecting the stress state of the tunnel surrounding rock based on three-dimensional potential response.
  • the main monitoring methods for the stress state and damage characteristics of tunnel surrounding rocks include in-hole imaging monitoring, displacement monitor monitoring, acoustic emission positioning monitoring and wave velocity imaging monitoring.
  • these traditional monitoring methods still have their own limitations, and new monitoring methods are needed to supplement and replace the research on damage and failure characteristics of tunnel surrounding rocks.
  • the surface potential signals provide a direction for monitoring the damage and destruction characteristics of the surrounding rock in the tunnel.
  • Surface potential is a reliable and common geophysical exploration method. Many studies have applied surface potential in fire detection, water inrush prediction and permeability measurement.
  • patent CN114088782B published a method for coal and rock mass under the action of stress and seepage.
  • Potential identification method of water inrush dangerous area patent CN110989018A and patent CN111123365B respectively published a goaf fire location detection system and detection method based on the natural potential method and a delayed water inrush early warning system and its use in the goaf area
  • patent CN112799140A A permeability estimation method based on natural potential inversion was announced.
  • the present invention provides a method for detecting the stress state of tunnel surrounding rocks based on three-dimensional potential response.
  • the present invention adopts the following technical solutions :
  • a method for detecting the stress state of tunnel surrounding rocks based on three-dimensional potential response including the following steps:
  • S1 The tunnel space with a length of S along the tunnel direction at the front end of the mining work is used as the detection area.
  • Several tunnel construction sections are selected in the detection area.
  • Each tunnel construction section has tunnels with different orientations toward the roof, both sides of the tunnel walls, and the floor. Drill holes in the surrounding rock, at least two holes in each direction;
  • the potential measurement surface is obtained after similar amplification of the tunnel contour around the tunnel according to the similar amplification proportion coefficient ⁇ i .
  • the potential measurement surface intersects with the tunnel construction section to form a potential measurement line. Determine the distance between the i-th potential measurement line and the tunnel outline. Li , the positive electrode is set at the intersection of the drilling hole and the potential measuring line, and the position of the positive electrode is used as the potential measuring point;
  • S3 Arrange the common negative electrode in the tunnel away from the positive electrode, collect potential data in real time, that is, the potential difference between each positive electrode and the common negative electrode, and combine the potential data and three-dimensional coordinates of each potential measuring point in the borehole with the tunnel
  • the surrounding geological information is stored in the analysis computer
  • S5 Perform spatial interpolation on all potential measuring points to obtain a three-dimensional potential imaging volume, extract and draw a three-dimensional abnormal potential isosurface model from the three-dimensional potential imaging volume;
  • S6 Perform unilateral inversion outside the borehole area through the potential measuring point on the potential measuring line at the highest position.
  • the resulting potential inversion plane cloud map divides the space outside the borehole into several cuboid spaces, using the radial basis function.
  • the surface interpolation method extracts and draws a three-dimensional abnormal potential inversion probability isosurface model;
  • the three-dimensional potential response digital model which is composed of a three-dimensional abnormal potential isosurface model and a three-dimensional abnormal potential inversion probability isosurface model, intuitively visualizes the potential distribution spatial characteristics of the tunnel surrounding rock and clearly displays the spatial range and direction of the stress abnormal zone. As well as development trends, identify and determine the stress state and abnormal potential response areas of the tunnel.
  • the present invention displays the stress state of the surrounding rock of the tunnel through a three-dimensional potential response digital model, and proposes a method of flattening the tunnel outline and constructing a visual model in the space above it, which improves the analysis efficiency and accuracy of potential data and facilitates Analyze spatial potential changes from a global perspective to avoid problems of incoherence and large errors in local analysis.
  • the present invention proposes to use the trilinear near-point interpolation method and the Marching Cubes algorithm to obtain the three-dimensional potential imaging isosurface cloud map, and use the unilateral inversion tomography and the radial basis function surface interpolation method to obtain the abnormal potential inversion probability isosurface
  • the cloud chart dynamically visualizes the potential spatial evolution characteristics of the surrounding rock area of the tunnel, effectively making up for the shortcomings of traditional potential monitoring such as strong local interference, inability to accurately locate hidden dangers, and difficulty in judging the development trend of hidden dangers.
  • the monitoring accuracy is high, clear and intuitive, and the results are reliable.
  • Figure 1 is a flow chart of the method of the present invention
  • Figure 2 is a schematic diagram of the tunnel outline and the space visualization model after tiled according to the present invention.
  • Figure 3 is a schematic cross-sectional view of the arrangement and positioning position of drilling electrodes according to the present invention.
  • Figure 4 is a schematic diagram of a cuboid grid for trilinear near-point interpolation and radial basis function surface interpolation according to the present invention
  • Figure 5 is a schematic diagram of a cuboid unit of the MC algorithm process in the embodiment of the present invention.
  • a method for detecting the stress state of tunnel surrounding rocks based on three-dimensional potential response including the following steps:
  • the tunnel space with length S along the direction of tunnel 1 at the front end of the mining work is used as the detection area.
  • Two tunnel construction sections are selected in the detection area.
  • the first tunnel construction section 3 is located at the front of the detection area.
  • located at the end of the detection area is the second tunnel construction section 4.
  • holes 2 are drilled into the roof, side walls and floor of the tunnel surrounding rock in different directions. At least two holes are drilled in each direction. 2. In order to show it more clearly in Figure 1, only the drilling of one tunnel construction section is shown.
  • the potential measurement surface is obtained after similar amplification of the tunnel contour around tunnel 1 according to the similar amplification proportion coefficient ⁇ i .
  • the potential measurement surface intersects with the tunnel construction section to form the potential measurement line 5, and the i-th potential measurement surface is determined.
  • the distance L i between the line and the tunnel contour, the positive electrode is set at the intersection position of the drilling hole and the potential measuring line, and the position of the positive electrode is used as the potential measuring point 6;
  • the distance Li between the i-th potential measuring line 5 and the tunnel outline is calculated as follows:
  • L f is the length of the bottom edge of the tunnel
  • n is the number of potential measuring lines
  • ⁇ i is the similar amplification coefficient of the i-th potential measuring line
  • S3 Arrange the common negative electrode in the tunnel away from the positive electrode, collect potential data in real time, that is, the potential difference between each positive electrode and the common negative electrode, and combine the potential data and three-dimensional coordinates of each potential measuring point in the borehole with the tunnel
  • the surrounding geological information is stored in the analysis computer
  • an edge line AA1 along the direction of the tunnel flattens the tunnel outline into plane 7, and the potential measuring line 5 is expanded into horizontal lines arranged from low to high, and the tunnel outline is scaled into numbers according to equal proportions.
  • Model the proportional digital model of the tunnel is based on the plane where the tunnel outline is spread, and the potential measuring point 6 in the tunnel borehole is drawn on the plane 7 according to the spatial three-dimensional coordinates of the potential measuring line to form a spatial three-dimensional visualization model, and The position coordinates of borehole 2 and each potential measuring point 6 are positioned on the model;
  • S5 Perform spatial interpolation on all potential measuring points 6 to obtain a three-dimensional potential imaging volume, extract and draw a three-dimensional abnormal potential isosurface model from the three-dimensional potential imaging volume; the steps are as follows:
  • S51 Use trilinear near-point interpolation method to spatially interpolate all potential measuring points to obtain a three-dimensional potential imaging volume, including:
  • S511 As shown in Figure 4, use the potential measuring point 6 in the space as a vertex, divide the entire detection area into several cuboid grids composed of 8 nearest vertices, set the interpolation density ⁇ , and set the interpolation density near any interpolation point. Use three-dimensional grid search to lock the cuboid grid where the interpolation point is located;
  • the potential abnormality threshold evaluation method is used to determine whether the potential value V(P) of a certain point has a dangerous potential value: first, set the potential abnormality threshold ⁇ based on historical data and laboratory tests. If V(P) ⁇ , then determine the point It is an abnormal potential, that is, the surrounding rock of the tunnel at this point is in danger of abnormal stress state and unstable deformation. On the contrary, there is no risk of abnormal stress state and unstable deformation;
  • S53 Use the Marching Cubes (MC) algorithm to extract potential isosurfaces, including:
  • m 1 , m 2 , and m 3 are the scale factors in the length, width, and height directions of the cuboid unit respectively;
  • S534 Use linear interpolation method to process the normal vector of the vertex of the cuboid unit to calculate the normal vector of the intersection between the edge of the cuboid unit and the isosurface, and determine the potential isosurface based on the coordinates and normal vector of the intersection between the edge of the cuboid unit and the isosurface. space shape.
  • S6 Perform unilateral inversion outside the borehole area through the potential measuring point on the potential measuring line at the highest position.
  • the resulting potential inversion plane cloud diagram 9 divides the space outside the borehole into several rectangular parallelepiped spaces, using a radial basis.
  • the function surface interpolation method extracts and draws the three-dimensional abnormal potential inversion probability isosurface model;
  • One-sided inversion is performed outside the borehole area through the potential measuring point on the potential measuring line at the highest position, and the potential inversion plane cloud diagram 9 is obtained.
  • the space outside the borehole is divided into several cuboid spaces, and a radial basis function surface is used
  • the interpolation method interpolates inside the cuboid grid, and after splicing and merging, a three-dimensional isosurface model of the potential inversion probability value is obtained.
  • the specific calculation method is:
  • S61 Perform unilateral inversion outside the drilling area through the potential measuring point on the potential measuring line at the highest position, and obtain the potential inversion probability value of each point on the potential inversion plane cloud map, which represents the probability of abnormal potential.
  • the value range is between 0 and 1, and the larger the value, the higher the degree of danger; the outer ring space of the borehole is divided into several cuboid grids through the potential inversion plane cloud map, and a certain cuboid grid is selected, whose length , width and height are (x 2 -x 1 ), (y 2 -y 1 ), (z 3 -z 2 ) respectively.
  • a total of m inversion probability values with the same potential are selected for the 6 edges of the cuboid grid.
  • R (x, y, z) is the coordinate vector of an interpolation point inside the cuboid grid
  • R i (x i , y i , z i )
  • R j (x j , y j , z j ) respectively is the coordinate vector of points i and j on the rectangular grid edge
  • is the distance between the farthest scattered points
  • vector E (e 1 , e 2 , e 3 ,..., em , c 0 , c 1 , c 2 , c 3 ), e i is an unknown parameter
  • u ij u(
  • ) and i,j 1,2,3,...,m;
  • S65 Obtain the isosurfaces in each cuboid grid, connect the isosurfaces inside all cuboid grids according to the shared relationship between the edges and edges, and obtain the isosurface model when the potential inversion probability value is eta. .
  • the three-dimensional potential response digital model which is composed of a three-dimensional abnormal potential isosurface model and a three-dimensional abnormal potential inversion probability isosurface model, intuitively visualizes the potential distribution spatial characteristics of the tunnel surrounding rock and clearly displays the spatial range and direction of the stress abnormal zone. As well as development trends, identify and determine the stress state and abnormal potential response areas of the tunnel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于三维电位响应的巷道围岩应力状态探测方法,通过采集钻孔中各电位测点的电位数据,然后沿着巷道走向的一条边线将巷道轮廓平铺展布为平面,对所有电位测点进行空间插值得到三维电位成像体,提取并绘制三维异常电位等值面模型;通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,采用径向基函数曲面插值法提取并绘制三维异常电位反演概率等值面模型。本发明由三维异常电位等值面模型和三维异常电位反演概率等值面模型联合构成的三维电位响应数字模型直观可视化巷道围岩的电位分布空间特征,清晰展示应力异常区的空间范围、走向以及发展趋势,准确判别和确定巷道应力状态及异常电位响应的区域。

Description

一种基于三维电位响应的巷道围岩应力状态探测方法 技术领域
本发明涉及巷道围岩稳定技术领域,具体涉及一种基于三维电位响应的巷道围岩应力状态探测方法。
背景技术
在煤炭开采及地下工程设施建设过程中,巷道掘进及投入生产期间的稳定性对正常的生产生活至关重要,然而,时常伴随发生的岩体变形及失稳会诱发冲击地压、岩爆和矿震等严重的工程地质灾害。这些灾害本质上是煤岩体由于应力集中而产生的破坏断裂,在灾变过程中如何及时有效判别危险的应力状态可以及早采取防治措施是岩石力学领域的聚焦点,而地球物理方法是灾变预测的有效方法。另一方面,巷道围岩由于工程施工扰动而处于复杂且不均匀的承压状态,内部裂隙发育扩展无法确定,清晰准确获得不同应力状态在巷道围岩中的分布区域和影响范围并直观展示有助于对煤岩动力灾害的防治提供有力的支撑。因此,开展煤岩巷道围岩应力状态的准确测定对深入认识岩石灾变演化及损伤破裂过程、提早预测灾害发生具有重要的工程实际意义,可以避免人员伤亡和财产损失。
目前,对于巷道围岩应力状态和损伤特征的监测方法主要有孔内成像监测、位移监测仪监测、声发射定位监测及波速成像监测等。然而,这些传统监测方法仍存在着各自的局限性,需要新的监测方法对巷道围岩损伤破坏特征研究进行补充和替代。研究表明岩石变形破裂会引发电荷的产生和运移,从而在岩石的不同位置处产生表面电位,表面电位信号为巷道围岩损伤破坏特征的监测提供了方向。表面电位是一种可靠、普遍的地球物理勘探方法,许多研究将表面电位应用在火灾探测、突水预测和渗透率测量等方面:例如,专利CN114088782B公布了一种应力与渗透作用下煤岩体突水危险区域电位判识方法,专利CN110989018A和专利CN111123365B分别公布了一种基于自然电位法的采空区火灾位置探测系统及探测方法和采空区滞后突水预警系统及其使用方法,专利CN112799140A公布了一种基于自然电位反演的渗透率估计方法,这些技术方法还都停留在布置网格电极阵列、分析时序特征以及采用二维表面云图和反演层析云图的层面,容易遗漏关键信息点,难以准确定位危险源的位置,无法全局把握危险隐患的发展趋势,鲜少能实现对三维空间电位特征的分析。
发明内容
为了解决现有技术存在的鲜少能实现对三维空间电位特征的分析问题,本发明提供一种基于三维电位响应的巷道围岩应力状态探测方法,为了实现上述技术目的,本发明采用如下技术方案:
一种基于三维电位响应的巷道围岩应力状态探测方法,包括如下步骤:
S1:采掘工作面前端沿巷道走向长度为S的巷道空间作为探测区域,在探测区域内选取若干个巷道施工截面,每个巷道施工截面内均向顶板、两侧巷壁以及底板不同方位的巷道围岩打钻孔,每个方位至少打两个钻孔;
S2:在巷道周围按照相似放大比例系数δi将巷道轮廓相似放大后得到电位测面,电位测面与巷道施工截面相交为电位测线,确定第i条电位测线与巷道轮廓之间的距离Li,钻孔与电位测线交叉位置上均设置正电极,正电极的位置作为电位测点;
S3:将公用负电极布置在远离正电极的巷道内,实时采集电位数据,即各个正电极与公用负电极之间的电位差,将钻孔中各电位测点的电位数据和三维坐标以及巷道周围地质信息存储在分析微机中;
S4:沿着巷道走向的一条边线将巷道轮廓平铺展布为平面,电位测线展开成从低到高依次排列的水平线,按照等比例将巷道轮廓缩放为数字模型,并将钻孔及各电位测点的位置坐标在模型上定位;
S5:对所有电位测点进行空间插值得到三维电位成像体,从三维电位成像体中提取并绘制三维异常电位等值面模型;
S6:通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到的电位反演平面云图将钻孔外侧空间划分为若干个长方体空间,采用径向基函数曲面插值法提取并绘制三维异常电位反演概率等值面模型;
S7:由三维异常电位等值面模型和三维异常电位反演概率等值面模型联合构成的三维电位响应数字模型直观可视化巷道围岩的电位分布空间特征,清晰展示应力异常区的空间范围、走向以及发展趋势,判别和确定巷道应力状态及异常电位响应的区域。
与现有技术相比,本发明的有益效果:
1、本发明将巷道围岩的应力状态通过三维电位响应数字模型展示出来,提出将巷道轮廓平铺展开以及在其上方空间构建可视化模型的方法,提高了电位数据的分析效率和准确度,便于从全局对空间电位变化进行分析,避免局部分析的不连贯以及误差较大的问题。
2、本发明提出采用三线性近点插值法、Marching Cubes算法得到三维电位成像等值面云图,采用单边反演层析成像和径向基函数曲面插值法得到异常电位反演概率等值面云图,动态可视化巷道围岩区域的电位空间演变特征,有效弥补传统电位监测存在的局部干扰强、无法准确定位隐患位置、难以判断隐患发展趋势的不足,监测精度较高,清晰直观,结果可靠。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域中的普通技术人员来说,在不付出创造性劳动的前提下,还可根据这些附图获得其他附图。
图1为本发明方法流程图;
图2为本发明巷道轮廓及其平铺后的空间可视化模型示意图;
图3为本发明钻孔电极布置方式及定位位置剖面示意图;
图4为本发明三线性近点插值及径向基函数曲面插值的长方体网格示意图;
图5为本发明实施例中MC算法流程的长方体单元示意图。
图中:1-巷道,2-钻孔,3-第一巷道施工截面,4-第二巷道施工截面,5-电位测线,6-电位测点,7-平面,8-长方体网格,9-电位反演平面云图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
一种基于三维电位响应的巷道围岩应力状态探测方法,包括如下步骤:
S1:如图2所示,采掘工作面前端沿巷道1走向长度为S的巷道空间作为探测区域,在探测区域内选取两个巷道施工截面,位于探测区域最前端的是第一巷道施工截面3,位于探测区域最后端的是第二巷道施工截面4,每个巷道施工截面内均向顶板、两侧巷壁以及底板不同方位的巷道围岩打钻孔2,每个方位至少打两个钻孔2,图1中为了更清楚的表示,仅展示出了其中一个巷道施工截面的钻孔。
S2:如图3所示,在巷道1周围按照相似放大比例系数δi将巷道轮廓相似放大后得到电位测面,电位测面与巷道施工截面相交为电位测线5,确定第i条电位测线与巷道轮廓之间的距离Li,钻孔与电位测线交叉位置上均设置正电极,正电极的位置作为电位测点6;
第i条电位测线5与巷道轮廓之间的距离Li计算方法如下:
其中,Lf为巷道底边的长度,n为电位测线的条数,δi为第i条电位测线的相似放大比例系数,且δi>1。
S3:将公用负电极布置在远离正电极的巷道内,实时采集电位数据,即各个正电极与公用负电极之间的电位差,将钻孔中各电位测点的电位数据和三维坐标以及巷道周围地质信息存储在分析微机中;
S4:如图2所示,沿着巷道走向的一条边线AA1将巷道轮廓平铺展布为平面7,电位测线5展开成从低到高依次排列的水平线,按照等比例将巷道轮廓缩放为数字模型,巷道等比例数字模型以巷道轮廓展布的平面作为基底,将巷道钻孔中电位测点6按照所在电位测线上的空间三维坐标绘制在平面7上方,形成空间三维可视化模型,并将钻孔2及各电位测点6的位置坐标在模型上定位;
S5:对所有电位测点6进行空间插值得到三维电位成像体,从三维电位成像体中提取并绘制三维异常电位等值面模型;步骤如下:
S51:采用三线性近点插值法对所有电位测点进行空间插值得到三维电位成像体,包括:
S511:如图4所示,将在空间中的电位测点6作为顶点,将整个探测区域划分为若干个由8个最近顶点组成的长方体网格,设置插值密度λ,对任一插值点附近采用立体网格搜索,锁定插值点所在的长方体网格;
S512:对于某一插值点P的坐标为(x,y,z),电位值为V(P),长方体顶点Mijk的坐标为(xi,yj,zk),且i、j、k可以分别取为1或2,长方体顶点Mijk电位值分别为V(Mijk);插值点P在平面M111M121M221M211内的投影点P1处的电位值V(P1)的计算公式为:
插值点P在平面M112M122M222M212内的投影点P2处的电位值V(P2)的计算公式为:
则插值点P处的电位值V(P)的计算公式为:
S52:从三维电位成像体中提取三维异常电位:
采用电位异常阈值评估法确定某点的电位值V(P)是否有危险趋势的电位值:首先依据历史数据及实验室试验设置电位异常阈值ζ,若V(P)≥ζ,则判定该点为异常电位,即该点的巷道围岩有应力状态异常和失稳变形的危险,反之无应力状态异常和失稳变形的危险;
S53:采用Marching Cubes(MC)算法提取电位等值面,包括:
S531:根据插值密度λ,提取三维电位成像体中的长方体单元及其顶点的坐标和电位值,长方体单元的长r1、宽r2、高r3满足如下条件:
其中,m1、m2、m3分别为长方体单元的长、宽、高方向上的比例因子;
S532:将长方体单元每个顶点的电位值Uq(q=1~8)与等值面的电位值V进行比较,若Uq<V,则该顶点的索引值Iq设为0,若Uq≥V,则该顶点的索引值Iq设为1,当长方体单元任一棱边上的两个顶点的索引值分别为0和1时,表明该等值面一定经过这条棱边,并有一个交点;写出该长方体单元的状态表索引Index={I1,I2,I3,I4,I5,I6,I7,I8},依据状态表索引得到该等值面与长方体单元的哪几个棱边相交,从而通过线性插值法得到长方体单元棱边与等值面的交点、交点坐标以及交点组成的交面信息;
S533:如图5所示,采用中心差分理论计算长方体单元各个顶点在不同方向上的梯度值,进而确定其法向量值对于长方体单元顶点G在不同方向上的梯度值计算公式为:
其中,分别为顶点G在x轴上相邻插值点处的电位值,分别为顶点G在y轴上相邻插值点处的电位值,分别为顶点G在z轴上相邻插值点处的电位值,顶点G处的法向量值为Grad(xi)、Grad(yi)和Grad(zi)的矢量和;
S534:采用线性插值法处理长方体单元顶点的法向量来计算长方体单元棱边与等值面的交点的法向量,依据长方体单元棱边与等值面的交点的坐标和法向量确定电位等值面的空间形状。
S6:通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到的电位反演平面云图9将钻孔外侧空间划分为若干个长方体空间,采用径向基函数曲面插值法提取并绘制三维异常电位反演概率等值面模型;
通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到的电位反演平面云图9将钻孔外侧空间划分为若干个长方体空间,采用径向基函数曲面插值法对长方体网格内部进行插值,进行拼接和汇合后得到电位反演概率值的三维等值面模型,具体计算方法为:
S61:通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到电位反演平面云图上各个点的电位反演概率值,其表示存在异常电位的概率,取值范围在0到1之间,并且取值越大表明危险程度越高;通过电位反演平面云图将钻孔外环空间划分为若干个长方体网格,选取某一长方体网格,其长、宽、高分别为(x2-x1)、(y2-y1)、(z3-z2),对长方体网格的6个棱面选取共计m个具有相同电位反演概率值η的散点,其电位反演概率值为Ti,Ti=η,且其坐标向量为Rr=(xr,yr,zr);
S62:组建各个散点的电位反演概率值的矩阵向量T=(T1,T2,T3,……,Tm,0,0,0,0),采用的高斯型径向基函数u(R-Rr)的表达式为:
其中,R=(x,y,z)为长方体网格内部某一插值点的坐标向量,Ri=(xi,yi,zi)、Rj=(xj,yj,zj)分别为长方体网格棱面上i、j点的坐标向量,Max||Ri-Rj||为相距最远的散点之间的距离;
S63:通过采用最小二乘法对下面的矩阵公式进行求解得到未知参数向量E,计算公式如下:
U·E=T
其中,向量E=(e1,e2,e3,……,em,c0,c1,c2,c3),ei为未知参数,
uij=u(||Ri-Rj||)且i,j=1,2,3,…,m;
S64:将求解出的未知参数向量E中的未知参数代入下面的公式,构建约束条件进而计算得到长方体网格内部的所有插值点的坐标向量R=(x,y,z):
其中,T(R)为等值面上插值点处的电位反演概率值,且T(R)=η。
S65:获得每个长方体网格内的等值面,依据棱面和棱边的共用关系将全部长方体网格内部的等值面进行连接,得到电位反演概率值为η时的等值面模型。
S7:由三维异常电位等值面模型和三维异常电位反演概率等值面模型联合构成的三维电位响应数字模型直观可视化巷道围岩的电位分布空间特征,清晰展示应力异常区的空间范围、走向以及发展趋势,判别和确定巷道应力状态及异常电位响应的区域。

Claims (5)

  1. 一种基于三维电位响应的巷道围岩应力状态探测方法,其特征在于,包括如下步骤:
    S1:采掘工作面前端沿巷道走向长度为S的巷道空间作为探测区域,在探测区域内选取若干个巷道施工截面,每个巷道施工截面内均向顶板、两侧巷壁以及底板不同方位的巷道围岩打钻孔,每个方位至少打两个钻孔;
    S2:在巷道周围按照相似放大比例系数δi将巷道轮廓相似放大后得到电位测面,电位测面与巷道施工截面相交为电位测线,确定第i条电位测线与巷道轮廓之间的距离Li,钻孔与电位测线交叉位置上均设置正电极,正电极的位置作为电位测点;
    S3:将公用负电极布置在远离正电极的巷道内,实时采集电位数据,即各个正电极与公用负电极之间的电位差,将钻孔中各电位测点的电位数据和三维坐标以及巷道周围地质信息存储在分析微机中;
    S4:沿着巷道走向的一条边线将巷道轮廓平铺展布为平面,电位测线展开成从低到高依次排列的水平线,按照等比例将巷道轮廓缩放为数字模型,并将钻孔及各电位测点的位置坐标在模型上定位;
    S5:对所有电位测点进行空间插值得到三维电位成像体,从三维电位成像体中提取并绘制三维异常电位等值面模型;
    S6:通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到的电位反演平面云图将钻孔外侧空间划分为若干个长方体空间,采用径向基函数曲面插值法提取并绘制三维异常电位反演概率等值面模型;
    S7:由三维异常电位等值面模型和三维异常电位反演概率等值面模型联合构成的三维电位响应数字模型直观可视化巷道围岩的电位分布空间特征,清晰展示应力异常区的空间范围、走向以及发展趋势,判别和确定巷道应力状态及异常电位响应的区域。
  2. 根据权利要求1所述的基于三维电位响应的巷道围岩应力状态探测方法,其特征在于,步骤S2中第i条电位测线与巷道轮廓之间的距离Li计算方法如下:
    其中,Lf为巷道底边的长度,n为电位测线的条数,δi为第i条电位测线的相似放大比例系数,且δi>1。
  3. 根据权利要求1所述的基于三维电位响应的巷道围岩应力状态探测方法,其特征在于,步骤S4还包括:巷道等比例数字模型以巷道轮廓展布的平面作为基底,将巷道钻孔中电位测点按照所在电位测线上的空间三维坐标绘制在平面上方,形成空间三维可视化模型。
  4. 根据权利要求1所述的基于三维电位响应的巷道围岩应力状态探测方法,其特征在于,步骤S5中对所有电位测点进行空间插值得到三维电位成像体,从三维电位成像体中提取并绘制三维异常电位等值面模型的步骤如下:
    S51:采用三线性近点插值法对所有电位测点进行空间插值得到三维电位成像体,包括:
    S511:将在空间中的电位测点作为顶点,将整个探测区域划分为若干个由8个最近顶点组成的长方体网格,设置插值密度λ,对任一插值点附近采用立体网格搜索,锁定插值点所在的长方体网格;
    S512:对于某一插值点P的坐标为(x,y,z),电位值为V(P),长方体顶点Mijk的坐标为(xi,yj,zk),且i、j、k可以分别取为1或2,长方体顶点Mijk电位值分别为V(Mijk);插值点P在平面M111M121M221M211内的投影点P1处的电位值V(P1)的计算公式为:
    插值点P在平面M112M122M222M212内的投影点P2处的电位值V(P2)的计算公式为:
    则插值点P处的电位值V(P)的计算公式为:
    S52:从三维电位成像体中提取三维异常电位:
    采用电位异常阈值评估法确定某点的电位值V(P)是否有危险趋势的电位值:首先设置电位异常阈值ζ,若V(P)≥ζ,则判定该点为异常电位,即该点的巷道围岩有应力状态异常和失稳变形的危险,反之无应力状态异常和失稳变形的危险;
    S53:采用MC算法提取电位等值面,包括:
    S531:根据插值密度λ,提取三维电位成像体中的长方体单元及其顶点的坐标和电位值,长方体单元的长r1、宽r2、高r3满足如下条件:
    其中,m1、m2、m3分别为长方体单元的长、宽、高方向上的比例因子;
    S532:将长方体单元每个顶点的电位值Uq(q=1~8)与等值面的电位值V进行比较,若Uq<V,则该顶点的索引值Iq设为0,若Uq≥V,则该顶点的索引值Iq设为1,当长方体单元任一棱边上的两个顶点的索引值分别为0和1时,表明该等值面一定经过这条棱边,并有一个交点;写出该长方体单元的状态表索引Index={I1,I2,I3,I4,I5,I6,I7,I8},依据状态表索引得到该等值面与长方体单元的哪几个棱边相交,从而通过线性插值法得到长方体单元棱边与等值面的交点、交点坐标以及交点组成的交面信息;
    S533:采用中心差分理论计算长方体单元各个顶点在不同方向上的梯度值,进而确定其法向量值对于长方体单元顶点G在不同方向上的梯度值计算公式为:
    其中,分别为顶点G在x轴上相邻插值点处的电位值,分别为顶点G在y轴上相邻插值点处的电位值,分别为顶点G在z轴上相邻插值点处的电位值,顶点G处的法向量值为Grad(xi)、Grad(yi)和Grad(zi)的矢量和;
    S534:采用线性插值法处理长方体单元顶点的法向量来计算长方体单元棱边与等值面的交点的法向量,依据长方体单元棱边与等值面的交点的坐标和法向量确定电位等值面的空间形状。
  5. 根据权利要求1所述的基于三维电位响应的巷道围岩应力状态探测方法,其特征在于, 步骤S6包括:
    通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到的电位反演平面云图将钻孔外侧空间划分为若干个长方体空间,采用径向基函数曲面插值法对长方体网格内部进行插值,进行拼接和汇合后得到电位反演概率值的三维等值面模型,具体计算方法为:
    S61:通过最高位置处的电位测线上的电位测点在钻孔区域外侧进行单边反演,得到电位反演平面云图上各个点的电位反演概率值,其表示存在异常电位的概率,取值范围在0到1之间,并且取值越大表明危险程度越高;通过电位反演平面云图将钻孔外环空间划分为若干个长方体网格,选取某一长方体网格,对长方体网格的6个棱面选取共计m个具有相同电位反演概率值η的散点,其电位反演概率值为Ti,Ti=η,且其坐标向量为Rr=(xr,yr,zr);
    S62:组建各个散点的电位反演概率值的矩阵向量T=(T1,T2,T3,……,Tm,0,0,0,0),采用的高斯型径向基函数u(R-Rr)的表达式为:
    其中,R=(x,y,z)为长方体网格内部某一插值点的坐标向量,Ri=(xi,yi,zi)、Rj=(xj,yj,zj)分别为长方体网格棱面上i、j点的坐标向量,Max||Ri-Rj||为相距最远的散点之间的距离;
    S63:通过采用最小二乘法对下面的矩阵公式进行求解得到未知参数向量E,计算公式如下:
    U·E=T
    其中,向量E=(e1,e2,e3,……,em,c0,c1,c2,c3),ei为未知参数,
    uij=u(||Ri-Rj||)且i,j=1,2,3,…,m;
    S64:将求解出的未知参数向量E中的未知参数代入下面的公式,计算得到长方体网格 内部的所有插值点的坐标向量R=(x,y,z):
    其中,T(R)为等值面上插值点处的电位反演概率值,且T(R)=η。
    S65:获得每个长方体网格内的等值面,依据棱面和棱边的共用关系将全部长方体网格内部的等值面进行连接,得到电位反演概率值为η时的等值面模型。
PCT/CN2023/124177 2022-11-28 2023-10-12 一种基于三维电位响应的巷道围岩应力状态探测方法 WO2024046501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211499444.5A CN116452767B (zh) 2022-11-28 2022-11-28 一种基于三维电位响应的巷道围岩应力状态探测方法
CN202211499444.5 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024046501A1 true WO2024046501A1 (zh) 2024-03-07

Family

ID=87129052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124177 WO2024046501A1 (zh) 2022-11-28 2023-10-12 一种基于三维电位响应的巷道围岩应力状态探测方法

Country Status (2)

Country Link
CN (1) CN116452767B (zh)
WO (1) WO2024046501A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452767B (zh) * 2022-11-28 2023-09-29 中国矿业大学 一种基于三维电位响应的巷道围岩应力状态探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090070042A1 (en) * 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
CN104018882A (zh) * 2014-05-20 2014-09-03 中国矿业大学 一种分布式煤岩动力灾害电位实时监测方法及系统
CN113433595A (zh) * 2021-07-08 2021-09-24 中南大学 基于自然电场隧道裂隙水的超前预报方法
CN113759097A (zh) * 2021-09-07 2021-12-07 重庆大学 基于煤矿巷道围岩应力在线监测系统的应力状态分析方法
CN116452767A (zh) * 2022-11-28 2023-07-18 中国矿业大学 一种基于三维电位响应的巷道围岩应力状态探测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233150B2 (en) * 2004-06-18 2007-06-19 Schlumberger Technology Corporation While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics
CN104181611B (zh) * 2014-08-28 2016-02-24 山东科技大学 一种矿井工作面顶底板采动破坏裂隙发育动态监测方法
CN112433253A (zh) * 2020-10-14 2021-03-02 高军 一种动水软弱破碎围岩隧道三维探测方法
CN114660662A (zh) * 2022-03-01 2022-06-24 湖南继善高科技有限公司 一种油气井下实时监测压裂方法、系统及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090070042A1 (en) * 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
CN104018882A (zh) * 2014-05-20 2014-09-03 中国矿业大学 一种分布式煤岩动力灾害电位实时监测方法及系统
CN113433595A (zh) * 2021-07-08 2021-09-24 中南大学 基于自然电场隧道裂隙水的超前预报方法
CN113759097A (zh) * 2021-09-07 2021-12-07 重庆大学 基于煤矿巷道围岩应力在线监测系统的应力状态分析方法
CN116452767A (zh) * 2022-11-28 2023-07-18 中国矿业大学 一种基于三维电位响应的巷道围岩应力状态探测方法

Also Published As

Publication number Publication date
CN116452767B (zh) 2023-09-29
CN116452767A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
EP2924471B1 (en) Systems and methods for modeling fracture networks in reservoir volumes from microseismic events
RU2602752C1 (ru) Анализ микросейсмических данных от операции по разрыву пласта
WO2019042483A2 (zh) 一种tbm在掘岩体状态实时感知系统和方法
WO2024046501A1 (zh) 一种基于三维电位响应的巷道围岩应力状态探测方法
US9880302B2 (en) Identifying reservoir drainage patterns from microseismic data
US10853533B2 (en) Three-dimensional fracture abundance evaluation of subsurface formation based on geomechanical simulation of mechanical properties thereof
WO2021243967A1 (zh) 一种三维电阻率层析成像方法及系统
CA2918303C (en) Determining reserve estimates for a reservoir
CN105785471A (zh) 一种矿井预开采煤层的冲击危险性评价方法
Zhao et al. Inversion of seepage channels based on mining-induced microseismic data
CN110174463B (zh) 一种工作面三向采动应力场的无损定量测试方法
CN106919770A (zh) 一种基于数值模拟的损伤变量确定方法
WO2023000257A1 (zh) 一种砂岩型铀矿成矿有利部位地质-地震三维预测方法
US10113421B2 (en) Three-dimensional fracture abundance evaluation of subsurface formations
JP2018004494A (ja) 地質境界面または断層面の予測方法
US10650107B2 (en) Three-dimensional subsurface formation evaluation using projection-based area operations
CN107945271B (zh) 基于地质块体追踪的三维压力场建模方法
Bandpey et al. Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran
Gangrade et al. Investigating seismicity surrounding an excavation boundary in a highly stressed dipping underground limestone mine
CN114135277A (zh) 基于地化特征随钻感知的隧道超前地质预报方法及系统
CN112035931A (zh) 动载作用下巷道围岩破坏的数值模拟研究方法、装置
CN117233840B (zh) 一种基于地震波的地下洞室全空间超前地质预报方法
CN113236345B (zh) 一种钻孔裂隙可视化系统的设计方法
Namysłowska-Wilczyńska et al. Geostatistical investigations of displacements on the basis of data from the geodetic monitoring of a hydrotechnical object
Shao et al. The Scaling Ellipsoid Method to Calculate Wellbore Separation Factors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859527

Country of ref document: EP

Kind code of ref document: A1