WO2021243967A1 - 一种三维电阻率层析成像方法及系统 - Google Patents

一种三维电阻率层析成像方法及系统 Download PDF

Info

Publication number
WO2021243967A1
WO2021243967A1 PCT/CN2020/129416 CN2020129416W WO2021243967A1 WO 2021243967 A1 WO2021243967 A1 WO 2021243967A1 CN 2020129416 W CN2020129416 W CN 2020129416W WO 2021243967 A1 WO2021243967 A1 WO 2021243967A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
data
resistivity
module
coordinate
Prior art date
Application number
PCT/CN2020/129416
Other languages
English (en)
French (fr)
Inventor
苏茂鑫
李术才
刘轶民
薛翊国
管理
王鹏
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/431,051 priority Critical patent/US11960048B2/en
Publication of WO2021243967A1 publication Critical patent/WO2021243967A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/30Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • G01V2210/665Subsurface modeling using geostatistical modeling
    • G01V2210/6652Kriging

Definitions

  • the invention belongs to the field of geophysical prospecting, and in particular relates to a three-dimensional resistivity tomography imaging method and system.
  • the reflection signal of the geological radar high-frequency electromagnetic wave carries the dielectric constant information of the formation, which has strong resolving power but limited detection depth; the high-density electrical method obtains a large amount of data in a single detection and responds well to high-resistance anomalies, but it is affected by the terrain.
  • the ups and downs have a greater impact.
  • the first aspect of the present invention provides a three-dimensional resistivity tomography method, which can compare resistivity data obtained by at least two geophysical prospecting methods to select resistivity data points with the same exploration area coordinates , And based on the principal component analysis method to perform data fusion on the data points obtained by at least two geophysical methods, and finally realize the formation of a three-dimensional model through three-dimensional coordinate conversion, improve the detection accuracy, and make the detection results have good intuitiveness and visibility sex.
  • a three-dimensional electrical resistivity tomography method including:
  • the resistivity data obtained after the fusion is converted into a three-dimensional coordinate to form a three-dimensional model.
  • the second aspect of the present invention provides a three-dimensional electrical resistivity tomography system.
  • a three-dimensional electrical resistivity tomography system including:
  • a two-dimensional resistivity data acquisition module which is used to separately explore regions containing geological anomalies by adopting at least two exploration methods to obtain two-dimensional resistivity data of the corresponding detection plane;
  • the same coordinate data point extraction module which is used to unify the coordinate system of the resistivity data points obtained by all exploration methods, and extract data points with the same coordinates;
  • a data fusion module which is used to perform data fusion on the extracted resistivity data at the same position using principal component analysis
  • the three-dimensional conversion module is used to perform three-dimensional coordinate conversion on the resistivity data obtained after fusion to form a three-dimensional model.
  • the third aspect of the present invention provides a computer-readable storage medium.
  • a computer-readable storage medium has a computer program stored thereon, and when the program is executed by a processor, the steps in the above-mentioned three-dimensional resistivity tomography method are realized.
  • the fourth aspect of the present invention provides a computer device.
  • a computer device includes a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor implements the above-mentioned three-dimensional resistivity tomography method when the program is executed. A step of.
  • the present invention compares the resistivity data obtained by at least two geophysical prospecting methods to select resistivity data points with the same exploration area coordinates, and performs data fusion on the data points obtained by the at least two geophysical prospecting methods based on the principal component analysis method Finally, the formation of a three-dimensional model is realized through three-dimensional coordinate conversion, which improves the detection accuracy, and at the same time makes the detection results have good intuitiveness and visibility.
  • the three-dimensional coordinate conversion imaging method of the present invention has good visibility and can aggregate the cross-sectional data of multiple two-dimensional planes into a three-dimensional model, which can very intuitively reflect the reality of abnormal objects in the detection area. Circumstances, it is also convenient for later interpretation, analysis and guidance.
  • Figure 1 is a flow chart of a three-dimensional electrical resistivity tomography method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a three-dimensional electrical resistivity tomography system according to an embodiment of the present invention
  • Fig. 3(a) is the coordinate conversion mode under the first line survey mode within the tunnel range of the embodiment of the present invention
  • Fig. 3(b) is the coordinate conversion mode in the second way of surveying the line in the tunnel area according to the embodiment of the present invention
  • Fig. 3(c) is the coordinate conversion mode in the third way of surveying the line in the tunnel range according to the embodiment of the present invention.
  • Fig. 3(d) is the coordinate conversion mode under the fourth line survey mode within the tunnel range according to the embodiment of the present invention.
  • the component analysis method performs data fusion on the extracted resistivity data at the same position; the resistivity data obtained after the fusion is converted into a three-dimensional coordinate to form a three-dimensional model.
  • the geological data first analyze the geological data to roughly determine the location of geological anomalies such as water-filled caves and water-conducting faults, and then conduct geophysical exploration of the geological anomaly area, that is, cross-hole resistivity CT detection and high-density electrical detection.
  • the two-dimensional resistivity cross-section distribution map of the cross-hole resistivity detection and the two-dimensional resistivity cross-section distribution map of the high-density electrical method detection are obtained by the geophysical inversion method.
  • the coordinate system is unified, so that the coordinates of the data points obtained by the two methods for the same location in the area are the same.
  • extract the data points with the same coordinates in the exploration area from the data obtained by the high-density electrical method and the data obtained by the cross-hole method, and use the method based on principal component analysis for data fusion.
  • the resistivity data of multiple two-dimensional sections are obtained. Then, the obtained data points in the two-dimensional coordinate system are converted to the three-dimensional coordinate system, and the data points in multiple three-dimensional coordinates are collectively imaged through the Kriging interpolation method to form a three-dimensional model.
  • the cross-hole resistivity can be improved through data fusion.
  • the CT method has a poor effect near the hole, and can accurately locate the low-resistance abnormal body adjacent to the electrode, reducing the cross-hole resistance.
  • the distribution range and number of high-resistance pseudo-abnormal bodies in the hole attachment; for the side-by-side abnormal bodies, through data fusion, the problem of poor cross-hole resistivity CT imaging in the horizontal direction and high-density electrical method in the vertical direction can be improved, so that The separation of the two geoelectrical anomalies makes the image more visible.
  • the two complement each other and improve the image interpretation capability of the ERT method.
  • the three-dimensional electrical resistivity tomography method process includes:
  • the resistivity data points detected by one of the exploration methods Take the resistivity data points detected by one of the exploration methods as the benchmark, and transform the coordinates of the resistivity data points detected by the other exploration method. For example: Taking the resistivity data points obtained by the cross-hole method as a reference, the high-density method resistivity data points are transformed into coordinates. Because in the field detection, the position of the starting point of the survey line of cross-hole detection and high-density electrical detection may be different, the resistivity data points obtained by the two methods are located at the coordinate origin of the coordinate system, which leads to two methods The initial coordinates are different.
  • the invention uses the data detected by the cross-hole method as a reference, and adjusts the position of the coordinate origin of the data point coordinate system of the high-density electrical resistivity to keep it consistent with the coordinate system where the cross-hole method is located.
  • First carry out data centering that is, standardize the resistivity sample data obtained by the cross-hole method and the high-density electrical method to eliminate errors caused by different dimensions, self-variation or large differences in values;
  • the sample points of the centralized data are projected onto the eigenvector base with the largest eigenvalue, and the result of the fused resistivity data can be considered as the comprehensive nature of the cross-hole detection data and the high-density detection data.
  • R 1 is the position matrix
  • R 2 is the data point matrix
  • X, Y, Z are the final three-dimensional coordinates with O as the origin
  • X 1 is the horizontal distance from the starting point of the survey line to the origin of the coordinates
  • Y 1 is the distance coordinate from the starting point of the survey line
  • the longitudinal depth of the origin, Z 1 is the vertical height from the starting point of the survey line to the origin of the coordinates
  • X' is the horizontal length of the original data point
  • Y' is the detection depth of the original data point.
  • the direction of the survey line is the positive direction of the coordinate axis, Y'is usually negative, ⁇ is the angle between the tangent of the survey line along the XOZ plane and the Z axis (acute angle), and ⁇ is the angle between the horizontal direction and the longitudinal direction of the survey line (take Acute angle).
  • the acquired resistivity data points in the three-dimensional rectangular coordinate system under multiple planes are kriging interpolation to form a three-dimensional model with a smooth curved surface.
  • the three-dimensional electrical resistivity tomography system of this embodiment includes:
  • a two-dimensional resistivity data acquisition module which is used to separately explore areas containing geological anomalies using at least two exploration methods to obtain two-dimensional resistivity data of the corresponding detection plane;
  • geological analysis is performed to determine the geological anomaly area.
  • geological and hydrological phenomena such as geological structure, topography, overburden, karst cave development, water-conducting faults, etc. in the area.
  • the coordinate system of the resistivity data points obtained by one survey method is used as a reference, and the resistivity data points obtained by other survey methods are coordinate transformed.
  • a data fusion module which is used to perform data fusion on the extracted resistivity data at the same position by using principal component analysis
  • the data fusion module includes:
  • Data centralization module which is used to standardize the resistivity data obtained by all exploration methods
  • the covariance matrix solving module is used to solve the covariance matrix between the variables after centralization, and to measure whether the deviation change trends of the two variables are consistent;
  • the eigenvalue and eigenvector solution module is used to find the eigenvalues and eigenvectors of the covariance, arrange the eigenvalues in ascending order, select the largest one among them, and find the corresponding eigenvector;
  • the data projection module is used to project the sample points of the centralized data onto the eigenvector base with the largest eigenvalue to obtain the fused resistivity data result.
  • a three-dimensional conversion module which is used to perform three-dimensional coordinate conversion on the resistivity data obtained after fusion to form a three-dimensional model.
  • the converted three-dimensional coordinates form a three-dimensional model by kriging interpolation.
  • the resistivity data obtained by at least two geophysical prospecting methods are compared to select resistivity data points with the same exploration area coordinates, and the data points obtained by the at least two geophysical prospecting methods are data fused based on the principal component analysis method, and finally Through the conversion of three-dimensional coordinates, the formation of three-dimensional models is realized, the detection accuracy is improved, and the detection results have good intuitiveness and visibility.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the three-dimensional resistivity tomography method described in the first embodiment are implemented.
  • the resistivity data obtained by at least two geophysical prospecting methods are compared to select resistivity data points with the same exploration area coordinates, and the data points obtained by the at least two geophysical prospecting methods are data fused based on the principal component analysis method, and finally Through the conversion of three-dimensional coordinates, the formation of three-dimensional models is realized, the detection accuracy is improved, and the detection results have good intuitiveness and visibility.
  • This embodiment provides a computer device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • a computer program as described in the first embodiment is implemented. Steps in the three-dimensional electrical resistivity tomography method.
  • the resistivity data obtained by at least two geophysical prospecting methods are compared to select resistivity data points with the same exploration area coordinates, and the data points obtained by the at least two geophysical prospecting methods are data fused based on the principal component analysis method, and finally Through the conversion of three-dimensional coordinates, the formation of three-dimensional models is realized, the detection accuracy is improved, and the detection results have good intuitiveness and visibility.
  • the embodiments of the present invention can be provided as a method, a system, or a computer program product. Therefore, the present invention may adopt the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may be in the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the program can be stored in a computer readable storage medium. During execution, it may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种三维电阻率层析成像方法及系统。其中,三维电阻率层析成像方法包括采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;将融合后得到的电阻率数据进行三维坐标转换形成三维模型。

Description

一种三维电阻率层析成像方法及系统 技术领域
本发明属于地质物探领域,尤其涉及一种三维电阻率层析成像方法及系统。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
在当今的物探领域,各种各样的地球物理勘探方法种类繁多,诸如地质雷达、跨孔法、井地法、高密度电法、瞬变电磁法等都是在工程现场较为常见的探测手段。上述物探方法往往只在某些范围具有良好的探测效果,方法本身也往往具有各自的缺陷。比如,地质雷达高频电磁波的反射信号中携带有地层介电常数信息,分辨能力强但探测深度有限;高密度电法一次探测获得的数据量多且对高阻异常响应较好,但受地形起伏影响较大。
发明人发现,不同物探结果单独成像时,受各自精度和探测深度的局限,异常体边界的区分不明显或存在假异常干扰,从而降低了探测精度。
发明内容
为了解决上述问题,本发明的第一个方面提供一种三维电阻率层析成像方法,其能够将至少两种物探方式获得的电阻率数据进行比对挑选出勘探区域坐标相同的电阻率数据点,并基于主成分分析法对至少两种物探方法获得的数据点进行数据融合,最后通过三维坐标转换从而实现三维立体模型的形成,提高探测精度,同时使得探测结果具有良好的直观性与可视性。
为了实现上述目的,本发明采用如下技术方案:
一种三维电阻率层析成像方法,包括:
采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;
统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;
利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;
将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
本发明的第二个方面提供一种三维电阻率层析成像系统。
一种三维电阻率层析成像系统,包括:
二维电阻率数据获取模块,其用于采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;
相同坐标数据点提取模块,其用于统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;
数据融合模块,其用于利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;
三维转换模块,其用于将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
本发明的第三个方面提供一种计算机可读存储介质。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上所述的一种三维电阻率层析成像方法中的步骤。
本发明的第四个方面提供一种计算机设备。
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上所述的一种三维电阻 率层析成像方法中的步骤。
本发明的有益效果是:
(1)本发明将至少两种物探方式获得的电阻率数据进行比对挑选出勘探区域坐标相同的电阻率数据点,并基于主成分分析法对至少两种物探方法获得的数据点进行数据融合,最后通过三维坐标转换从而实现三维立体模型的形成,提高探测精度,同时使得探测结果具有良好的直观性与可视性。
(2)本发明的三维坐标转换成像方法,该方法具有良好的可视性,可以将多个二维平面的剖面数据集合成一个三维立体模型,能够非常直观的反映出探测区域异常体的真实情况,也便于后期的解释、分析与指导。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明实施例的一种三维电阻率层析成像方法流程图;
图2是本发明实施例的一种三维电阻率层析成像系统结构示意图;
图3(a)是本发明实施例的隧道范围内第一种测线方式下的坐标转换方式;
图3(b)是本发明实施例的隧道范围内第二种测线方式下的坐标转换方式;
图3(c)是本发明实施例的隧道范围内第三种测线方式下的坐标转换方式;
图3(d)是本发明实施例的隧道范围内第四种测线方式下的坐标转换方式。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的 普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
本实施例的三维电阻率层析成像方法的思路是:
采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
例如:先通过地质资料进行分析大致确定诸如充水溶洞、导水断层等地质异常体的位置,再对该地质异常区域进行地球物理勘探,即跨孔电阻率CT探测以及高密度电法探测。获得两种方法的探测数据之后,通过地球物理反演方法获得跨孔电阻率探测的电阻率二维断面分布图以及高密度电法探测的电阻率二维断面分布图。
通过探测以及反演获得了两种方法的多个二维剖面电阻率数据之后,先通过坐标转换的方式,将所得高密度电法电阻率数据点所在坐标系与跨孔法电阻率数据点所在坐标系相统一,使两种方法对于区域内同一位置勘探所得数据点的坐标相同。再将高密度电法所得数据与跨孔法所得数据在勘探区域内坐标相同的数据点提取出来,以基于主成分分析的方法进行数据融合。
将高密度电法与跨孔法两种方法所得的数据融合之后,获得多个二维剖面的电阻率数据。再将所获得的二维坐标系下的数据点转换到三维坐标系下,通过克里金插值法将多个三维坐标下的数据点集合成像,形成三维模型。
本实施例的数据融合方法,针对单个异常体,通过数据融合可以提高跨孔电阻率CT方法在孔附近成效效果较差的问题,可以准确定位出临近电极的低阻异常体,减小了跨孔附件高阻假异常体分布的范围和数量;对于并排分布的异常体,通过数据融合,可以提高跨孔电阻率CT在水平方向、高密度电法在竖直方向成像较差的问题,使得两个地电异常体分离,使得图像更可视化,两者互为补充,提高了ERT方法的图像解译能力。
以高密度电法与跨孔法两种方法为例:
如图1所示,三维电阻率层析成像方法流程,包括:
1:进行地质分析,确定地质异常区域。通过工程地质调查和钻孔柱状信息,分析该片区域的地质构造、地形起伏、覆盖岩层、溶洞发育、导水断层等等地质与水文现象的分布情况,也可以查阅该地区地质资料等,确定地质异常体大致位置,结合现场岩石的矿物组成、含水性等因素,确定地球物理勘探的方式。
2:对含有地质异常体的区域分别进行高密度电法勘探以及跨孔电阻率CT勘探,并通过地球物理反演方法获得电阻率的二维剖面。进行跨孔电阻率勘探时,先在规定的位置处进行钻孔,再按一定的电极间距分别将发射电极与接收电极布置在发射孔与接收孔之中,再对电极进行通电从而获得跨孔法电阻率探测数据;进行高密度电法勘探时,把全部电极(几十至上百根)置于地面测线上,然后,再使用程控电极转换开关以及微机工程电测仪,同时也可以实现不同电极排列方式的数据,快速、自动的采集,从而获得高密度电法勘探的探测数据。 在获取了跨孔法以及高密度电法的探测数据之后,对采集到的数据进行地球物理反演,以现场采集到的数据作为正演基础,不断调整模型参数,使其模型响应向观测数据响应,即通过反演对数据进行解释,从而得到探测平面的二维电阻率剖面。
3:以其中一种勘探方式探测获得的电阻率数据点为基准,对另一种勘探方式探测获得的电阻率数据点进行坐标转化。例如:以跨孔法探测获得的电阻率数据点为基准,对高密度法电阻率数据点进行坐标转化。因为在现场探测中,跨孔法探测和高密度电法探测的测线起始点的位置可能不同,两种方法所得到的电阻率数据点所在坐标系坐标原点的位置不同,从而导致两种方法初始坐标不同。本发明采用跨孔法探测的数据为基准,通过调整高密度电法电阻率的数据点坐标系坐标原点的位置使其与跨孔法所在坐标系保持一致。
4:对比坐标转换后相同坐标系下两种探测方法获得的电阻率数据,提取出坐标相同的数据点。提取并输出两种方法探测所得到的数据点中坐标相同的部分,即勘探现场相同位置的电阻率数据。
5:将提取后的相同位置的电阻率数据以主成分分析法进行数据融合。
先进行数据中心化,即对跨孔法以及高密度电法获得的电阻率样本数据进行标准化,消除由于量纲不同、自身变异或数值相差较大所引起的误差;
再求解中心化后变量间的协方差矩阵,衡量两个变量的偏差变化趋势是否一致;
之后再求出协方差的特征值和特征向量,将特征值按照从小到大的顺序排列,选择其中最大的一个,求出其对应的特征向量;
最后,将中心化数据的样本点投影到特征值最大的特征向量基上,得到的 融合后的电阻率数据结果,可以认为是跨孔法探测数据与高密度法探测数据的综合性质。
6:将融合后得到的二维剖面电阻率数据进行三维坐标转换,通过克里金插值法形成三维模型。上面的几个步骤包括融合后得到的均为二维剖面下的电阻率数据,需要将电阻率数据点的二维坐标转换为三维坐标。
如图3(a)-图3(d)所示,常规ERT多以二维剖面为主,成像解译时需要结合测线在空间的具体位置才能对异常体的范围和形态有很好的分辨。为了将不同ERT方法的数据归至同一坐标系下,以更好的进行三维成果解释,提出了隧道范围内四种常规测线方式下的坐标转换方式。
通过数学公式运算,即可获得隧道内任意数据点的三维坐标,为后期三维成图奠定了方法基础。通过下列的公式进行三维坐标转换:
Figure PCTCN2020129416-appb-000001
其中R 1为位置矩阵,R 2为数据点矩阵,X、Y、Z为以O为原点的最终三维坐标,X 1为测线起点距离坐标原点的水平距离,Y 1为测线起点距离坐标原点的纵向埋深,Z 1为测线起点距离坐标原点的垂直高度,X′为原始数据点的水平长度,Y′为原始数据点的探测深度。
具体计算参数如表1所示:
表1具体计算参数
Figure PCTCN2020129416-appb-000002
Figure PCTCN2020129416-appb-000003
其中,测线方向取坐标轴正向,Y'通常取负,α为测线沿XOZ面的切线与Z轴的夹角(取锐角),β为测线水平方向与纵向的夹角(取锐角)。
得到三维坐标系下的电阻率数据点之后,将获取的多个平面下的三维直角坐标系下的电阻率数据点通过克里金插值法形成光滑曲面的三维立体模型。
可以理解的是,也可采用其他值法形成光滑曲面的三维立体模型。
实施例二
如图2所示,本实施例的三维电阻率层析成像系统,包括:
(1)二维电阻率数据获取模块,其用于采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;
具体地,进行地质分析,确定地质异常区域。通过工程地质调查和钻孔柱状信息,分析该片区域的地质构造、地形起伏、覆盖岩层、溶洞发育、导水断层等等地质与水文现象的分布情况,也可以查阅该地区地质资料等,确定地质异常体大致位置,结合现场岩石的矿物组成、含水性等因素,确定地球物理勘探的方式。
(2)相同坐标数据点提取模块,其用于统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;
具体地,在所述相同坐标数据点提取模块中,以一种勘探方式获得的电阻率数据点的坐标系为基准,对其他勘探方式获得的电阻率数据点进行坐标转化。
(3)数据融合模块,其用于利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;
其中,所述数据融合模块,包括:
数据中心化模块,其用于所有勘探方式获得的电阻率数据进行标准化;
协方差矩阵求解模块,其用于求解中心化后变量间的协方差矩阵,衡量两个变量的偏差变化趋势是否一致;
特征值和特征向量求解模块,其用于求出协方差的特征值和特征向量,将特征值按照从小到大的顺序排列,选择其中最大的一个,求出其对应的特征向量;
数据投影模块,其用于将中心化数据的样本点投影到特征值最大的特征向量基上,得到的融合后的电阻率数据结果。
(4)三维转换模块,其用于将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
具体地,在所述三维转换模块中,转换后的三维坐标通过克里金插值法形成三维模型。
本实施例将至少两种物探方式获得的电阻率数据进行比对挑选出勘探区域坐标相同的电阻率数据点,并基于主成分分析法对至少两种物探方法获得的数据点进行数据融合,最后通过三维坐标转换从而实现三维立体模型的形成,提高探测精度,同时使得探测结果具有良好的直观性与可视性。
实施例三
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如实施例一所述的一种三维电阻率层析成像方法中的步骤。
本实施例将至少两种物探方式获得的电阻率数据进行比对挑选出勘探区域 坐标相同的电阻率数据点,并基于主成分分析法对至少两种物探方法获得的数据点进行数据融合,最后通过三维坐标转换从而实现三维立体模型的形成,提高探测精度,同时使得探测结果具有良好的直观性与可视性。
实施例四
本实施例提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如实施例一所述的一种三维电阻率层析成像方法中的步骤。
本实施例将至少两种物探方式获得的电阻率数据进行比对挑选出勘探区域坐标相同的电阻率数据点,并基于主成分分析法对至少两种物探方法获得的数据点进行数据融合,最后通过三维坐标转换从而实现三维立体模型的形成,提高探测精度,同时使得探测结果具有良好的直观性与可视性。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程 和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种三维电阻率层析成像方法,其特征在于,包括:
    采用至少两种勘探方式分别对含有地质异常体区域进行勘探,获得相应探测平面的二维电阻率数据;
    统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;
    利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;
    将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
  2. 如权利要求1所述的三维电阻率层析成像方法,其特征在于,利用主成分分析法对提取的相同位置的电阻率数据进行数据融合的过程为:
    数据中心化,即所有勘探方式获得的电阻率数据进行标准化;
    求解中心化后变量间的协方差矩阵,衡量两个变量的偏差变化趋势是否一致;
    求出协方差的特征值和特征向量,将特征值按照从小到大的顺序排列,选择其中最大的一个,求出其对应的特征向量;
    将中心化数据的样本点投影到特征值最大的特征向量基上,得到的融合后的电阻率数据结果。
  3. 如权利要求1所述的三维电阻率层析成像方法,其特征在于,以一种勘探方式获得的电阻率数据点的坐标系为基准,对其他勘探方式获得的电阻率数据点进行坐标转化。
  4. 如权利要求1所述的三维电阻率层析成像方法,其特征在于,转换后的三维坐标通过克里金插值法形成三维模型。
  5. 一种三维电阻率层析成像系统,其特征在于,包括:
    二维电阻率数据获取模块,其用于采用至少两种勘探方式分别对含有地质 异常体区域进行勘探,获得相应探测平面的二维电阻率数据;
    相同坐标数据点提取模块,其用于统一所有勘探方式获得的电阻率数据点的坐标系,提取坐标相同的数据点;
    数据融合模块,其用于利用主成分分析法对提取的相同位置的电阻率数据进行数据融合;
    三维转换模块,其用于将融合后得到的电阻率数据进行三维坐标转换形成三维模型。
  6. 如权利要求5所述的三维电阻率层析成像系统,其特征在于,所述数据融合模块,包括:
    数据中心化模块,其用于所有勘探方式获得的电阻率数据进行标准化;
    协方差矩阵求解模块,其用于求解中心化后变量间的协方差矩阵,衡量两个变量的偏差变化趋势是否一致;
    特征值和特征向量求解模块,其用于求出协方差的特征值和特征向量,将特征值按照从小到大的顺序排列,选择其中最大的一个,求出其对应的特征向量;
    数据投影模块,其用于将中心化数据的样本点投影到特征值最大的特征向量基上,得到的融合后的电阻率数据结果。
  7. 如权利要求5所述的三维电阻率层析成像系统,其特征在于,在所述相同坐标数据点提取模块中,以一种勘探方式获得的电阻率数据点的坐标系为基准,对其他勘探方式获得的电阻率数据点进行坐标转化。
  8. 如权利要求5所述的三维电阻率层析成像系统,其特征在于,在所述三维转换模块中,转换后的三维坐标通过克里金插值法形成三维模型。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一项所述的一种三维电阻率层析成像方法中的步骤。
  10. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-4中任一项所述的一种三维电阻率层析成像方法中的步骤。
PCT/CN2020/129416 2020-06-03 2020-11-17 一种三维电阻率层析成像方法及系统 WO2021243967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/431,051 US11960048B2 (en) 2020-06-03 2020-11-17 Three-dimensional electrical resistivity tomography method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010495471.X 2020-06-03
CN202010495471.XA CN111722292B (zh) 2020-06-03 2020-06-03 一种三维电阻率层析成像方法及系统

Publications (1)

Publication Number Publication Date
WO2021243967A1 true WO2021243967A1 (zh) 2021-12-09

Family

ID=72565871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129416 WO2021243967A1 (zh) 2020-06-03 2020-11-17 一种三维电阻率层析成像方法及系统

Country Status (3)

Country Link
US (1) US11960048B2 (zh)
CN (1) CN111722292B (zh)
WO (1) WO2021243967A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090486A1 (en) * 2020-09-24 2022-03-24 Halliburton Energy Services, Inc. Borehole localization relative to objects and subterranean formations
CN114509822A (zh) * 2022-01-20 2022-05-17 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873074B (zh) * 2018-04-18 2020-03-24 浙江大学 一种电极随机分布式高密度电阻率测量方法及勘探系统
CN111722292B (zh) 2020-06-03 2021-06-01 山东大学 一种三维电阻率层析成像方法及系统
CN113552635B (zh) * 2021-06-25 2023-03-03 山东大学 固源瞬变电磁数据融合隧道三维超前预报方法及系统
CN114397329A (zh) * 2022-01-24 2022-04-26 中国矿业大学 一种煤层瓦斯含量原位动态探测系统及方法
CN117272213B (zh) * 2023-11-21 2024-02-02 中南大学 地下污染物的地物化综合参数扫面方法、装置、设备及介质
CN118094438A (zh) * 2024-04-18 2024-05-28 江西四联节能环保股份有限公司 一种基于大数据的配电电缆运行分析方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018492A1 (en) * 2014-07-30 2016-02-04 Battelle Memorial Institute Method of imaging the electrical conductivity distribution of a subsurface
CN110361792A (zh) * 2019-06-24 2019-10-22 山东大学 一种地球物理数据融合及成像方法、介质与设备
CN110823962A (zh) * 2019-11-14 2020-02-21 山东大学 一种滑坡体的三维成像方法及系统
CN111123404A (zh) * 2020-01-13 2020-05-08 安徽理工大学 一种地震和直流电法巷道超前探测的数据融合方法
CN111722292A (zh) * 2020-06-03 2020-09-29 山东大学 一种三维电阻率层析成像方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295512B1 (en) * 1998-05-01 2001-09-25 John Bryant Subsurface mapping apparatus and method
US10197702B2 (en) * 2015-04-27 2019-02-05 Pgs Geophysical As Seismic guided inversion of electromagnetic survey data
US11112516B2 (en) * 2018-04-30 2021-09-07 Schlumberger Technology Corporation Data fusion technique to compute reservoir quality and completion quality by combining various log measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016018492A1 (en) * 2014-07-30 2016-02-04 Battelle Memorial Institute Method of imaging the electrical conductivity distribution of a subsurface
CN110361792A (zh) * 2019-06-24 2019-10-22 山东大学 一种地球物理数据融合及成像方法、介质与设备
CN110823962A (zh) * 2019-11-14 2020-02-21 山东大学 一种滑坡体的三维成像方法及系统
CN111123404A (zh) * 2020-01-13 2020-05-08 安徽理工大学 一种地震和直流电法巷道超前探测的数据融合方法
CN111722292A (zh) * 2020-06-03 2020-09-29 山东大学 一种三维电阻率层析成像方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU, JIFENG ET AL.: " Chapter 8: Principal Components and Factor Analysis", GEOMATHEMATICS: METHODS AND APPLICATIONS , 28 February 2019 (2019-02-28), CN, pages 110 - 111, XP009532664, ISBN: 978-7-5646-3694-4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090486A1 (en) * 2020-09-24 2022-03-24 Halliburton Energy Services, Inc. Borehole localization relative to objects and subterranean formations
CN114509822A (zh) * 2022-01-20 2022-05-17 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法
CN114509822B (zh) * 2022-01-20 2023-04-07 中铁二院工程集团有限责任公司 铁路隧道的地空电磁法阵列勘察方法及其测线布置方法

Also Published As

Publication number Publication date
CN111722292B (zh) 2021-06-01
US11960048B2 (en) 2024-04-16
CN111722292A (zh) 2020-09-29
US20220308251A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021243967A1 (zh) 一种三维电阻率层析成像方法及系统
CN108345049B (zh) 地下工程不良地质探测多方法约束反演与联合解释方法
CN110823962B (zh) 一种滑坡体的三维成像方法及系统
Cao et al. Automatic fracture detection based on Terrestrial Laser Scanning data: A new method and case study
CN106780730A (zh) 三维地质模型的构建方法和装置
US10385658B2 (en) In-situ wellbore, core and cuttings information system
CN111221048B (zh) 基于跨孔电阻率ct多尺度反演的孤石边界识别与成像方法
CN111812730B (zh) 一种用于滑坡探测的电阻率数据融合三维成像方法及系统
US20230184983A1 (en) Vector-resistivity-based real-time advanced detection method for water-bearing hazard body
CN111986321B (zh) 三维地质建模方法、装置、设备及存储介质
CN108873073B (zh) 一种基于网络并行电法的三维跨孔电阻率层析成像方法
US20140095078A1 (en) Method and system for presenting seismic information
CN110073246B (zh) 与质量控制有关的改进的方法
BR112018017328B1 (pt) Método e sistema para caracterização de uma formação subterrânea
CN112433253A (zh) 一种动水软弱破碎围岩隧道三维探测方法
CN105220694B (zh) 一种工程抛石量估算方法
CN113077546B (zh) 一种面向矿产资源储量估算的搜索椭球体自动设置方法
CN114820969B (zh) 一种三维地质模型构建方法
CN116484670A (zh) 一种基于综合物探的三维地质建模与受力分析方法及系统
CN115577616A (zh) 基于深度学习的碳酸岩缝洞地震刻画方法及装置
US20220090486A1 (en) Borehole localization relative to objects and subterranean formations
US20210381365A1 (en) Borehole localization relative to objects and subterranrean formations
CN105279305B (zh) 一种地面三维激光扫描技术测站选取方法
CN106951644A (zh) 基于gocad的软基砂土液化范围确定方法
CN112347901A (zh) 一种基于三维激光扫描技术岩体块体分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939241

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20939241

Country of ref document: EP

Kind code of ref document: A1