WO2024046359A1 - 引导组件、消融装置及消融系统 - Google Patents

引导组件、消融装置及消融系统 Download PDF

Info

Publication number
WO2024046359A1
WO2024046359A1 PCT/CN2023/115750 CN2023115750W WO2024046359A1 WO 2024046359 A1 WO2024046359 A1 WO 2024046359A1 CN 2023115750 W CN2023115750 W CN 2023115750W WO 2024046359 A1 WO2024046359 A1 WO 2024046359A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
sheath
catheter
distal end
section
Prior art date
Application number
PCT/CN2023/115750
Other languages
English (en)
French (fr)
Inventor
张庭超
丘信炯
李阳
王柏栋
Original Assignee
杭州诺沁医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州诺沁医疗器械有限公司 filed Critical 杭州诺沁医疗器械有限公司
Publication of WO2024046359A1 publication Critical patent/WO2024046359A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges

Definitions

  • the present disclosure relates generally to the field of medical device technology, and more specifically to guide assemblies, ablation devices, and ablation systems.
  • Hypertrophic cardiomyopathy is a common autosomal dominant cardiovascular disease, with an incidence rate of approximately 1:500 in the general population and a mortality rate of approximately 1.4% to 2.2%. It is the most common cause of sudden death among young people and athletes.
  • the main manifestation of hypertrophic cardiomyopathy is hypertrophy of one or more segments of the left ventricle (LeftVentricular, LV).
  • the general diagnostic standard is that the thickness is greater than or equal to 15mm. Its treatment methods mainly include drug therapy and ventricular septal myectomy. , Ventricular septal ablation (Ventricular septal ablation), etc.
  • AMVL anterior mitral valve
  • IVS interventricular Septum
  • LVOT Left Ventricular Outflow Tract
  • obstructive hypertrophic cardiomyopathy In recent years, some technologies for the treatment of obstructive hypertrophic cardiomyopathy have also been disclosed, such as using an ablation needle to reach the left ventricle through the aorta, and then inserting it into the hypertrophic interventricular septum for ablation to reduce the left ventricular outflow tract pressure difference and alleviate its purpose of obstruction.
  • the ablation needle In establishing the path of the ablation needle to the ventricular septum, the ablation needle needs to be guided by a guiding assembly.
  • the guiding component includes a sheath and a catheter movable through the sheath. During the operation, the sheath is first guided by the guide wire across the aortic valve and into the left ventricle, and then the guide wire is withdrawn, and then the patient is accommodated.
  • the catheter of the ablation needle then crosses the aortic valve along the sheath and enters the left ventricle. Since the left ventricular outflow tract is relatively narrow and the outer diameter of the sheath is large, it will be further aggravated by the sheath crossing the aortic valve and entering the left ventricle for a long time. Left ventricular outflow tract obstruction can easily cause compression and damage to the aortic valve. Therefore, after the catheter crosses the aortic valve, it is necessary to control the sheath to retreat to the aortic valve and close to the aorta.
  • control catheter continues to extend in the distal direction and the distal end of the control catheter is abutted against the surface of the ventricular septum target ablation area to guide the ablation needle to stably penetrate into the ventricular septum target ablation area.
  • the present disclosure relates to a guide assembly configured to achieve stable needle withdrawal and guide ablation needle penetration into the interventricular septum
  • the guide assembly including: a sheath and a catheter, wherein the sheath is configured to enter the aorta and has a distal end open Positioned in the ascending aorta; the catheter is movably threaded in the sheath, the catheter can extend from the distal end of the sheath and cross the aortic valve into the left ventricle, and the catheter can pass from
  • the maximum length of the protruding part of the distal end of the sheath in the X direction is at least 10 mm, and the X direction is roughly the direction from the left ventricle to the right ventricle.
  • the maximum length in the X direction of the portion of the catheter that can extend from the distal end of the sheath is at least 15 mm.
  • the maximum length in the X-direction of the portion of the catheter that can extend from the distal end of the sheath is at most 25 mm.
  • the distal opening of the sheath is adjacent to the aortic valve, and the maximum length of the portion of the catheter that can extend from the distal end of the sheath is at least 25 mm in the Z direction, and the The Z direction is perpendicular to the X direction, and the Z direction is generally from the atrium to the ventricle.
  • the maximum length of the portion of the catheter that can extend from the distal end of the sheath is at least 45 mm in the Z direction.
  • the maximum length in the Z direction of the portion of the catheter that can extend from the distal end of the sheath is at least 60 mm.
  • the portion of the catheter that can extend from the distal end of the sheath has a maximum length in the Z direction of up to 90 mm.
  • the maximum length of the portion of the catheter that can extend from the distal end of the sheath is at least 26 mm in the Y direction, the Y direction is perpendicular to the X direction, and the Y direction Perpendicular or nearly perpendicular to the direction from the atria to the ventricles.
  • the maximum length of the portion of the catheter that can extend from the distal end of the sheath is at most 52 mm in the Y direction.
  • the sheath includes a first main body segment, a first plastic and the first bending section.
  • the sheath matches the shape of the aorta.
  • the shape of the first body section matches the shape of the descending aorta.
  • the shape of the first shaping section matches the shape of the descending aorta.
  • the shape of the aortic arch matches; the shape of the first bending segment matches the shape of the ascending aorta; and
  • the catheter includes a second main body section, a second shaping section, and a second bending section in sequence from the proximal end to the distal end.
  • the second main body section is adapted to the first main body section.
  • the second shaping section is adapted to the first shaping section and the first bending section.
  • the first body section and the first shaping section are located together on a first plane, and at least a distal end portion of the first bending section is located between the first body section and the first plane.
  • the second plane of the angle is located between the first body section and the first plane.
  • the angle between the first plane and the second plane is a, where 10° ⁇ a ⁇ 45°.
  • a handle structure is connected to the proximal end of the catheter, the handle structure is configured to control the second bending section to bend toward the X direction, and the handle structure is further configured to control the The second bending section is bent toward the X direction while controlling the second bending section to swing in the Y direction.
  • the Y direction is perpendicular to the X direction, and the Y direction is perpendicular or nearly perpendicular to the atrium to the atrium. The direction of the ventricles.
  • the catheter in the guide assembly of the present disclosure, can extend out of the sheath and enter the left ventricle, and the maximum length of the portion of the catheter that can extend from the distal end of the sheath in the X direction At least 10mm to ensure that the distal end of the catheter can reach and adhere to the surface of the ventricular septum in patients with different tissue morphologies (different degrees of ventricular septal hypertrophy) to avoid mismatching the sizes of the catheter and sheath.
  • tissue morphologies different degrees of ventricular septal hypertrophy
  • the present disclosure relates to an ablation device that includes an ablation needle and a guide assembly of the present disclosure, wherein the ablation needle is movably threaded through the catheter and can extend from a distal opening of the catheter; and The ablation needle is configured to protrude from the distal opening of the catheter and penetrate the ventricular septum through the endocardium, and ablate the ventricular septum.
  • the ablation needle includes an ablation segment that is at least partially capable of penetrating into the ventricular septum and capable of releasing ablation energy to disrupt myocardial activity of the ventricular septum;
  • the ablation needle has an axial lumen, and the ablation section is provided with at least one perfusion hole connected to the lumen of the ablation needle, and the perfusion hole is configured to drain fluid in the lumen of the ablation section. Released into the interventricular septum.
  • the present disclosure relates to an ablation system that includes an energy generator, a fluid perfusion device, and an ablation device of the present disclosure; wherein the energy generator is electrically connected to the ablation needle and configured to provide ablation energy to the ablation needle , and the fluid perfusion device is connected to the ablation needle and configured to deliver the fluid to the cavity of the ablation needle.
  • the fluid perfusion device includes: a fluid reservoir, a perfusion pump, and a fluid conduit;
  • the fluid reservoir is configured to store the fluid
  • the perfusion pump is configured to deliver the fluid from the fluid reservoir through the fluid conduit to the lumen of the ablation needle.
  • the sheath is configured to enter the aorta and its distal opening is positioned within the ascending aorta
  • the catheter is movably threaded in the sheath and the catheter
  • the catheter can extend from the distal end of the sheath into the left ventricle, and the maximum length of the portion of the catheter that can extend from the distal end of the sheath is at least 10 mm in the X direction, and the X direction is roughly from the left ventricle to the right ventricle.
  • the distal end of the catheter can reach and stick to individuals with different tissue shapes, such as individuals with different degrees of ventricular septal hypertrophy and different distances from the aortic valve orifice to the ventricular septum in the X direction.
  • tissue shapes such as individuals with different degrees of ventricular septal hypertrophy and different distances from the aortic valve orifice to the ventricular septum in the X direction.
  • to the surface of the interventricular septum to avoid the problem of difficulty in reaching and attaching the catheter to the surface of the interventricular septum due to factors such as mismatched lengths of the catheter and sheath, bending angles or bending direction restrictions of the catheter and/or sheath, etc. It ensures that the ablation needle can be withdrawn stably and avoids deformation and damage of the ablation needle, which is beneficial to improving the success rate of the operation.
  • Figure 1 is a schematic diagram of the overall structure of an ablation system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the positional relationship between the part of the ablation device that enters the heart and the heart in an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the positional relationship between the sheath crossing the aortic valve and entering the left ventricle in an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of the positional relationship of the catheter extending out of the distal end of the sheath and entering the left ventricle in an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of the positional relationship between the sheath tube and the W plane and the K plane in an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of the positional relationship between the sheath tube and the W plane in an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the overall structure of a catheter in an embodiment of the present disclosure.
  • Figure 8 is a schematic diagram of the sheath retracting into the aorta and the first bending section of the sheath bending in direction A according to an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of the second bending section of the catheter bending in the X direction after entering the left ventricle in an embodiment of the present disclosure
  • Figure 10 is a schematic diagram of the selection point of the second bending section of the conduit in an embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of the positional relationship between the part of the second bending section of the catheter extending out of the distal end of the sheath in an embodiment of the present disclosure when it extends in the X direction;
  • Figure 12 is an enlarged view of circle I in Figure 11;
  • Figure 13 is a schematic diagram of the positional relationship between the part of the second bending section of the catheter extending out of the distal end of the sheath in an embodiment of the present disclosure when it extends in the Z direction;
  • Figure 14 is an enlarged view of circle J in Figure 13;
  • Figure 15 is a schematic diagram of the positional relationship between the second bending section of the catheter extending out of the sheath and abutting against the interventricular septum in an embodiment of the present disclosure
  • Figure 16 is a cross-sectional view at M-M in Figure 15;
  • Figure 17 is a schematic diagram of the overall structure of an ablation needle in an embodiment of the present disclosure.
  • Figure 18 is a side view of the overall structure of the ablation needle in one embodiment of the present disclosure.
  • Figure 19 is a cross-sectional view of the overall structure at A-A in Figure 18;
  • Figure 20 is a schematic structural diagram of the sheath swinging in the B direction and the C direction in the aorta according to an embodiment of the present disclosure.
  • the proximal end refers to the end closer to the operator, while the distal end refers to the end farther from the operator;
  • the rotation center of objects such as cylinders and tubes is The direction of the axis is defined as the axial direction;
  • the circumferential direction is the direction around the axis of objects such as cylinders and tubes (perpendicular to the axis and perpendicular to the section radius);
  • the radial direction refers to the direction along the diameter or radius.
  • the X direction is roughly the direction from the left ventricle 91 to the right ventricle
  • the Y direction is perpendicular to the X direction and perpendicular or nearly perpendicular to the direction from the atrium to the ventricle, that is, the Y direction is generally parallel.
  • the Z direction is perpendicular to the X direction and perpendicular to the Y direction.
  • the direction from the atrium to the ventricle is specifically the direction from the left atrium to the left ventricle or the direction from the right atrium to the right ventricle.
  • the above-mentioned close to vertical means that the angle between the two is greater than or equal to 85° and less than 90°, that is, when the Y direction
  • the Y direction is close to perpendicular to the direction from the atrium to the ventricle.
  • the present disclosure provides an ablation system 1, which is suitable for ablating myocardial tissue through a vascular path to destroy the myocardial activity of the myocardial tissue.
  • the myocardial tissue includes the ventricular wall, the atrial wall, the ventricular septum 96, and the interatrial septum.
  • the ablation system 1 in the present disclosure is particularly suitable for ablation of the ventricular septum 96 via an interventional path through the aorta 97 .
  • the following description takes ablation of the ventricular septum 96 via an interventional path through the aorta 97 as an example.
  • ablation system 1 includes ablation device 10 and energy generator 20 .
  • Ablation device 10 includes ablation needle 160 and guide assembly 100.
  • the energy generator 20 is electrically connected to the ablation needle 160 , and the energy generator 20 is configured to deliver ablation energy to the ablation needle 160 .
  • the guide assembly 100 is configured to guide the ablation needle 160 through the aorta 97 and into the hypertrophic tissue of the interventricular septum 96 . After the ablation needle 160 enters the hypertrophic tissue of the interventricular septum 96 under the guidance of the guide assembly 100, the energy generator 20 releases ablation energy to the hypertrophic tissue of the interventricular septum 96 through the ablation needle 160.
  • the “ablation energy” mentioned in this disclosure can act on the hypertrophic tissue of the interventricular septum 96 to destroy the activity of the hypertrophic tissue there, thereby causing protein denaturation and/or cell apoptosis in the hypertrophic tissue of the interventricular septum 96 . to thin the hypertrophic tissue there, thereby achieving the purpose of reducing the left ventricular outflow tract pressure difference and alleviating its obstruction.
  • Ablation energy in this disclosure may include, but is not limited to: radiofrequency energy, ultrasound energy, microwave energy, etc.
  • the energy generator 20 may be optional and the energy generator 20 may be replaced by a device capable of injecting alcohol or other drugs into the ablation needle 160 to pass the ablation needle 160 through the hypertrophic tissue toward the interventricular septum 96 Methods such as infusing alcohol or drugs are used to ablate the hypertrophic tissue of the interventricular septum 96 .
  • the guiding assembly 100 includes a sheath 110 and a catheter 120 .
  • the catheter 120 is movably inserted into the sheath 110
  • the ablation needle 160 is movably inserted into the catheter 120 .
  • Both the sheath 110 and the catheter 120 can bend under the action of external force.
  • the catheter 120 can enter the lumen of the sheath 110 from the proximal end of the sheath 110, the distal end of the catheter 120 can extend from the distal opening of the sheath 110, and the ablation needle 160 can enter the catheter 120 from the proximal end of the catheter 120.
  • the lumen and the ablation needle 160 can extend out of the catheter 120 from the distal opening of the catheter 120 .
  • the guide assembly 100 delivers the ablation needle 160 to the hypertrophic tissue of the interventricular septum 96
  • the ablation needle 160 is received in the inner cavity of the catheter 120
  • the sheath 110 and the catheter 120 cooperate to provide the ablation needle 160 with extracorporeal access to the interventricular septum 96 Guidance channels of hypertrophic tissue.
  • at least the distal portion of the sheath 110 and catheter 120 is adjustable to direct the ablation needle 160 to different locations on the interventricular septum 96 . Such an arrangement allows the ablation needle 160 to safely and smoothly pass through the guide assembly 100 and accurately penetrate the hypertrophic tissue of the interventricular septum 96 without causing damage to the human body.
  • the ablation device 10 further includes a handle structure 150 connected to the sheath 110 , the catheter 120 , and the ablation needle 160 , and the handle structure 150 is configured to control the sheath 110 the bending and movement trajectories of the catheter 120 , and the movement trajectory of the ablation needle 160 within the catheter 120 .
  • the handle structure 150 may include multiple independent handles, such as three handles, which are respectively connected to the sheath 110, the catheter 120, and the ablation needle 160, or may be combined and assembled into one handle. The handle is connected to the sheath 110, the catheter 120, and the ablation needle 160 at the same time.
  • the handle structure 150 first controls the sheath 110 to pass through the descending aorta 93, the aortic arch 94, and the ascending aorta 95 in sequence under the guidance of a guidewire (not shown), and then crosses the aortic valve 92 and enters the left ventricle 91, and then withdraw the guidewire from the human body (as shown in Figure 3); and then control the catheter 120 containing the ablation needle 160 to be transported along the inner cavity of the sheath 110 to the side of the aortic valve 92 close to the aortic arch 94 , and then control the catheter 120 to cross the aortic valve 92 and enter the left ventricle 91, thereby realizing the crossing of the catheter 120 (as shown in Figure 4); then control the sheath 110 to retreat to the aortic valve 92 close to the aortic arch 94 The position on one side (as shown in Figure 8); then control the catheter 120 to continue to extend in the distal direction, and control
  • the sheath 110 is a tubular structure having a hollow lumen, and the sheath 110 is adapted to the shape of the aorta 97 .
  • the sheath 110 includes a first main body section 111, a first shaping section 112, and a first bending section 113 in sequence from the proximal end to the distal end.
  • the first main body segment 111, The first shaping section 112 and the first bending section 113 are both located on the same plane.
  • the first shaping section 112 first extends in a direction away from the proximal end of the first main body section 111 , and then extends in a direction close to the proximal end of the first main body section 111 .
  • the first bending section 113 extends in a direction close to the proximal end of the first main body section 111 . Extending in the direction, the first shaping section 112 is arched relative to its two ends.
  • the shape of the first body section 111 is adapted to the shape of the descending aorta 93
  • the shape of the first shaping section 112 is adapted to the shape of the aortic arch 94
  • the shape of the first bending section 113 is adapted to the shape of the ascending aorta 95 suitable.
  • the sheath 110 has a predetermined shape in its natural state, and the predetermined shape is adapted to the shape of the human aorta 97 .
  • the positions of the proximal end and the distal end of the first shaping section 112 are respectively matched with the starting position and the ending position of the aortic arch 94, and the bending curvature of the first shaping section 112 is consistent with the position of the aortic arch 94.
  • the bending curvatures are basically the same to ensure that the first shaping section 112 matches the aortic arch 94 so as to transport the sheath 110 to the designated position more smoothly.
  • the first shaping section 112 can be well positioned on the aortic arch 94 in the bent state, so that the first shaping section 112 can be stably positioned on the aortic arch 94, thereby reducing the risk of The natural movement of the sheath 110 or the operator's misoperation may adversely affect the operation.
  • the first main body section 111 is configured to support the first shaping section 112 and the first bending section 113 .
  • the material hardness of the first body section 111 should be greater than the material hardness of the first shaping section 112 .
  • the first shaping section 112 The material hardness of should also be greater than the material hardness of the first bending section 113 .
  • the sheath 110 may adopt the structure of a composite braided mesh tube, so that the sheath 110 can maintain high bending resistance while having good flexibility, pushability, and twist control.
  • the sheath 110 is also connected to a first adjustment member (not shown).
  • the first adjusting member is movably installed in the inner wall of the sheath 110.
  • the distal end of the first adjusting member is connected to an anchoring ring (not shown) fixedly provided on the distal end of the first bending section 113.
  • the first adjusting member The proximal end of the piece is connected to the handle structure 150.
  • a channel tube (not shown) is provided in the inner wall of the sheath 110, the distal end of the channel tube extends to the distal end of the first bending section 113, and the proximal end of the channel tube extends to the proximal end of the first body section 111.
  • the channel tube can extend along the axial direction of the conduit 120, and the first adjusting member is movably disposed in the channel tube. Therefore, the handle structure 150 can move along the axial direction of the channel tube within the channel tube by controlling the first adjusting member, Thereby, the bending of the first bending section 113 is controlled or restored to a natural state.
  • the first bending section 113 can be bent in different directions, thereby controlling the catheter 120 subsequently inserted into the sheath 110 to point in different directions after extending from the distal opening of the first bending section 113 .
  • guide grooves may also be directly opened on the wall of the sheath 110 , that is to say, the channel tube in the sheath 110 may be unnecessary.
  • the distal end of the guide groove extends to the distal end of the first bending section 113
  • the proximal end of the guide groove extends to the proximal end of the first main body section 111
  • the guide groove can extend along the axial direction of the sheath 110
  • the first adjustment member is movable Penetrating through the guide groove
  • the handle structure 150 can control the bending or restoration of the first bending section 113 to a natural state by controlling the first adjusting member to move along the axial direction of the guide groove.
  • the first adjusting member controls the bending direction of the first bending section 113 to at least include the A direction (direction indicated by the A arrow in Figure 8), wherein the A direction is approximately
  • the first bending section 113 points in the direction of the first main body section 111.
  • the ascending aorta 95 is close to the descending aorta 93.
  • the handle structure 150 can be used to control the sheath 110 to rotate in the circumferential direction to control the first bending section 113 in the direction B and in the direction B (B in FIG. 20
  • the direction pointed by the arrow) is opposite to the C direction (the direction pointed by the C arrow in Figure 20).
  • the B direction is generally the direction in which the aorta 97 points to the chest of the human body
  • the C direction is generally the direction in which the aorta 97 points to the back of the human body. This is to facilitate control of the direction pointed by the distal opening of the first bending section 113 and to facilitate subsequent selection of different ablation positions for the ablation needle 160 in cooperation with the catheter 120 .
  • the handle structure 150 when the handle structure 150 controls the sheath 110 to rotate clockwise, the first bending section 113 will swing in the B direction. Similarly, when the handle structure 150 controls the sheath 110 to rotate counterclockwise, the first bending section 113 will swing in the C direction.
  • the sheath 110 in the natural state, can also be a three-dimensional three-dimensional tube structure (considering that the aortic arch 94 is not a standard planar structure, but a three-dimensional structure). three-dimensional structure), therefore, the first main body section 111 and the first shaping section 112 can be arranged to be jointly located in the first plane K according to the actual shape of the aorta 97, and the first bending section 113, at least its distal end portion, is located in the second plane K. In plane W. The angle between the first plane K and the second plane W is ⁇ , 10° ⁇ 45°.
  • the included angle a further adapts to the anatomical shape of the aorta 97 so that the sheath 110 can be more stably positioned in the aorta 97, thereby reducing the impact of the natural movement of the sheath 110 or the operator's misoperation on the operation. cause adverse effects.
  • the above arrangement can also enable the distal end of the sheath 110 to be directed closer to the aortic valve orifice, thereby reducing the pressure on the aortic valve 92 when the sheath 110 crosses the valve.
  • catheter 120 is a tube body having a hollow lumen.
  • the catheter 120 includes a second main body section 121, a second shaping section 122, and a second bending section 123 in sequence from the proximal end to the distal end.
  • the shape of the second body section 121 is adapted to the shape of the first body section 111 .
  • the shape of the second shaping section 122 is adapted to the shapes of the first shaping section 112 and the first bending section 113. Therefore, the catheter 120 and the sheath 110 have good morphological adaptability.
  • the second bending section 123 is The material hardness of the second bending section 123 should be smaller than the material hardness of the second shaping section 122 .
  • the second body section 121 is mainly configured to support the second shaping section 122 and the second bending section 123, in order to ensure that the second shaping section 122 will not cause the second body section 121 to bend significantly during the bending process. , therefore the material hardness of the second shaping section 122 should also be smaller than the material hardness of the second body section 121 .
  • catheter 120 also includes a second adjustment member (not shown).
  • the second adjusting member is movably disposed on the inner wall of the catheter 120, and the distal end of the second adjusting member is connected to an anchoring ring (not shown) fixedly provided on the distal end of the second bending section 123.
  • the proximal end is connected to handle structure 150.
  • a channel tube (not shown) is provided in the inner wall of the catheter 120 , and the distal end of the channel tube extends to the distal end of the second bending section 123 .
  • the proximal end of the channel tube extends to the proximal end of the second main body section 121, the channel tube can extend along the axial direction of the catheter 120, and the second adjusting member is movably inserted into the channel tube. Therefore, the handle structure 150 can control the second bending section 123 to bend or return to a natural state by controlling the second adjustment member to move along the axial direction of the channel tube.
  • guide grooves may also be provided directly on the wall of the conduit 120, that is, the channel tube in the conduit 120 may be unnecessary.
  • the distal end of the guide groove extends to the distal end of the second bending section 123, the proximal end of the guide groove extends to the proximal end of the second main body section 121, the guide groove can extend along the axial direction of the catheter 120, and the second adjustment member movablely passes through Located in the guide groove. Therefore, the handle structure 150 can control the second bending section 123 to bend or return to a natural state by controlling the second adjusting member to move along the axial direction of the guide groove.
  • the first adjusting member and/or the second adjusting member may be a pulling wire
  • the pulling wire may be a wire or tube made of metal material or polymer material.
  • the metal material is selected from stainless steel, nickel titanium, Cobalt-chromium alloy, etc.
  • the polymer material is selected from at least one of polymer materials such as PP (Polypropylene, polypropylene), HDPE (High Density Polyethylene, high-density polyethylene), PTFE (Poly tetra fluoroethylene, polytetrafluoroethylene), etc. .
  • sheath 110 is configured to enter aorta 97 with its distal opening positioned within ascending aorta 95 , and catheter 120 is delivered through the lumen of sheath 110 , and catheter 120 exits from the distal opening of sheath 110 . Extend out and cross the aortic valve 92 to reach the location of the left ventricular outflow tract.
  • the second adjusting member controls the bending direction of the second bending section 123 to at least include the X direction (the direction pointed by the X arrow in FIG. 7 , the X direction is roughly the left ventricular 91 to the direction of the right ventricle, thereby ensuring that the distal end of the second bending section 123 can face the side of the interventricular septum 96.
  • the angle between the X direction and the A direction is ⁇ (as shown in Figure 16), 160° ⁇ ⁇ 180°.
  • the second adjusting member can also control the second bending section 123 to bend in the X direction and at the same time control the second bending section 123 to swing in the Y direction, where the Y direction is vertical in the X direction, and the Y direction is perpendicular or nearly perpendicular to the direction from the atrium to the ventricle (left atrium to left ventricle 91 or right atrium to right ventricle).
  • the Y direction is generally parallel to the width direction of the interventricular septum 96 (ie, the direction from the anterior septum 7 to the posterior septum 8 of the interventricular septum 96), and the Y direction is generally the direction from the anterior septum 7 to the posterior septum 8 of the interventricular septum 96, or the interventricular septum 96.
  • the handle structure 150 can be used to control the catheter 120 to rotate in the circumferential direction to control the second bending section 123 to swing in the Y direction, thereby controlling the distance of the second bending section 123.
  • the direction of the end opening taking the Y direction as the direction from the anterior septum 7 to the posterior septum 8 of the interventricular septum 96 as an example, when the catheter 120 is controlled to rotate in the counterclockwise direction through the handle structure 150, the second bending section 123 moves toward Y When the control conduit 120 rotates in the clockwise direction, the second bending section 123 swings in the opposite direction of the Y direction.
  • the catheter 120 in order to ensure that the catheter 120 can reach and abut against the surface of the hypertrophic tissue that needs to be ablated in the interventricular septum 96 after extending from the distal end of the sheath 110 .
  • the maximum length of the portion of the catheter 120 that can extend from the distal end of the sheath 110 in the The distal end of the catheter 120 can reach and abut against the surface of the ventricular septum 96 .
  • the distal end of the catheter 120 can reach and abut against the surface of the ventricular septum 96 .
  • the surface of the interventricular septum 96 avoids the mismatch in length of the catheter 120 and the sheath 110, the bending angle or the bending direction of the catheter 120 and/or the sheath 110. Due to factors such as directional restrictions, it is difficult for the catheter 120 to reach and adhere to the surface of the hypertrophic tissue that needs to be ablated in the interventricular septum 96.
  • the ablation needle 160 can achieve stable needle withdrawal, increasing the ablation system. 1’s applicable range, and at the same time it is conducive to improving the success rate of surgery.
  • the catheter 120 can be removed from the sheath 110 .
  • the maximum length of the distal end extension should be at least X1 and X2 in the X direction, where X1 ⁇ X2.
  • the maximum length that the catheter 120 can extend from the distal end of the sheath 110 is only X1 in the The surface of the septum 96 makes it difficult for the ablation needle 160 to be stably withdrawn during the operation, thus failing to achieve the puncture strength required to penetrate the interventricular septum 96 , resulting in puncture failure, or even deformation and damage of the ablation needle 160 .
  • the maximum length of the portion of the catheter 120 extending from the distal end of the sheath 110 in the X direction is at least 10 mm.
  • This setting can adapt to differences in the physiological anatomy of the aortic valve 92 and/or the interventricular septum 96 of different individuals, It is ensured that for different patients, the distal end of the catheter 120 can at least reach and stick to the surface of the interventricular septum 96 , so that the ablation needle 160 can stably puncture into the hypertrophic tissue of the interventricular septum 96 under the guidance of the guide assembly 100 , thereby improving the success of the operation. Rate.
  • the catheter 120 in order to ensure that when facing an extreme individual, the distal end of the catheter 120 can at least reach and abut against the surface of the interventricular septum 96 of the extreme individual, the catheter 120 can extend from the distal end of the sheath 110
  • the maximum length of the section in the X direction is at least 15mm.
  • the maximum length in the X direction of the portion of the catheter 120 that can extend from the distal end of the sheath 110 is at most 25 mm. It can be understood that by limiting the maximum length of the portion of the catheter 120 protruding from the distal end of the sheath 110 in the It causes inconvenience to the surgical operator, making it easier to adjust the length of the catheter 120 extending from the distal end of the sheath 110. In addition, it can also avoid the length of the catheter 120 extending from the distal end of the sheath 110 in the X direction due to operational errors. If it is too large, the distal end of the catheter 120 may cause damage to the endocardium.
  • the difference in axial length between the catheter 120 and the sheath 110 can be limited, the bending angle and direction of the sheath 110 can be limited, and a stroke limiting structure can be added to the handle structure 150 (not shown in the figure)
  • One or more of the above methods are used to limit the length that the catheter 120 can extend from the distal end of the sheath 110 in the X direction.
  • the distal opening of sheath 110 is positioned within ascending aorta 95 adjacent to the aortic valve 92.
  • the distance between the distal opening of the sheath 110 and the aortic valve 92 is between 0-10 mm.
  • the maximum length of the portion of the catheter 120 that can extend from the distal end of the sheath 110 is at least 25 mm in the Z direction (the direction pointed by the Z arrow in Figure 13).
  • the Z direction is roughly the direction from the atrium to the ventricle (the Z direction is the same as the direction of the ventricle).
  • the height direction of the space 96 is generally parallel), and the Z direction is perpendicular to the X direction.
  • the distal end of the catheter 120 can be at least The portion that can extend from the distal end of the sheath 110 extends along the Z direction to the bottom of the base portion 6 (the bottom of the base portion 6 is close to the middle portion 5 of the interventricular septum 96, and the top of the base portion 6 is close to the interatrial septum), thereby ensuring that The puncture site of the ablation needle 160 can reach the farthest point of the base 6 in the Z direction relative to the distal end of the sheath 110 , thus avoiding the need to ablate the bottom of the base 6 due to the distal end of the catheter 120
  • the length protruding in the Z direction is insufficient, making it difficult for the distal end of the catheter 120 to abut against the desired ablation point of the base 6 , making it difficult for
  • the ablation system 1 can meet the needs of most patients.
  • the required portion of the catheter 120 that can extend from the distal end of the sheath 110 The maximum length in the Z direction is at least Z1 and Z2, Z1 ⁇ Z2. If the desired puncture site is d, and the maximum length of the catheter 120 extending from the distal end of the sheath 110 in the Z direction is only Z1, it will be difficult for the catheter 120 to reach the puncture site d, resulting in the ablation needle 160 cannot puncture and ablate the hypertrophic tissue at the puncture point d.
  • the needs of most patients for the puncture (ablation) site of the base 6 in the Z direction can be basically met.
  • the distal end of the catheter 120 is not sufficiently extendable in the Z direction, causing the distal end of the catheter 120 to be difficult to reach the desired ablation site of the base 6 , making it difficult for the ablation needle 160 to perform the ablation at any position on the base 6 in the Z direction. Puncture ablation occurs, thereby expanding the applicable scope of the ablation system 1 and improving reliability.
  • the maximum length in the Z direction of the portion of the catheter 120 that can extend from the distal end of the sheath 110 is at least 45 mm. It can be understood that for patients with hypertrophy of the middle portion 5 of the ventricular septum 96 , setting the maximum length of the portion of the catheter 120 that can extend from the distal end of the sheath 110 to at least 45 mm in the Z direction can basically cover the ablation needs of such patients.
  • Performing puncture ablation can ensure that the puncture and ablation range of the ablation needle 160 along the Z-axis direction can at least cover the middle part 5, which can avoid the need to ablate the bottom of the middle part 5 due to the distal end of the catheter 120 being self-sheathed.
  • the protruding length of the distal end of 110 in the Z-axis direction is not enough, and it is difficult to reach the bottom of the middle part 5, resulting in puncture failure of the middle part 5 and insufficient ablation, further improving the reliability of the ablation system 1 and the success rate of surgery.
  • the portion of catheter 120 extending from the distal end of sheath 110 has a maximum length in the Z direction of at least 60 mm. It can be understood that for patients with hypertrophy of the apex 4 of the ventricular septum 96, the maximum length of the portion of the catheter 120 extending from the distal end of the sheath 110 in the Z direction is at least 60 mm, which can ensure that the ablation needle 160 is in the Z direction.
  • Puncture can be achieved at any position of the apical portion 4 (including the bottom of the apical portion 4 (the bottom of the apical portion 4 is close to the apex of the heart 2, and the top of the apical portion 4 is close to the middle portion 5)), thereby ensuring that the ablation needle 160 can
  • the scope of puncture ablation can cover the apex 4, which can avoid the difficulty in using the ablation needle 160 due to the insufficient length of the part of the catheter 120 protruding from the distal end of the sheath 110 in the Z direction in the use scenario where the bottom of the apex 4 needs to be ablated. Puncturing any position of the cardiac apex 4 may cause ablation failure of the cardiac apex 4 , which is beneficial to further improving the reliability of the ablation system 1 and the surgical success rate.
  • the maximum length of the portion of catheter 120 that can extend from the distal end of sheath 110 in the Z direction is up to 90 mm. It can be understood that limiting the maximum length of the portion of the catheter 120 protruding from the distal end of the sheath 110 to 90 mm in the Z direction can prevent the catheter 120 from excessively extending the distal end of the sheath 110 in the Z direction, thereby causing the catheter 120 to If the distal end reaches the apex of the heart or breaks within the left ventricle 91 , it is helpful to prevent the catheter 120 from causing damage to the endocardium.
  • limiting the maximum length of the portion of the catheter 120 extending from the distal end of the sheath 110 to within 90 mm in the Z direction can also facilitate the operation of the surgical operator, making it easier to extend the length of the catheter 120 from the distal end of the sheath 110 adjust.
  • the difference in axial length between the catheter 120 and the sheath 110 can be limited, the bending angle and direction of the sheath 110 can be limited, and a stroke limiting structure can be added to the handle structure 150 (not shown in the figure)
  • One or more of the following methods are used to limit the length of the catheter 120 protruding from the distal end of the sheath 110 in the Z direction. Spend.
  • the maximum length of the portion of the catheter 120 that can extend from the distal end of the sheath 110 in the Y direction is at least 26 mm.
  • the Y direction is perpendicular or nearly perpendicular to the direction from the atrium to the ventricle (that is, the Y direction is perpendicular to the Z direction, and the Y direction is also generally parallel to the width direction of the ventricular septum 96 (that is, the width direction of the ventricular septum 96 from the anterior septum 7 to the posterior septum 8 direction)), and the Y direction is perpendicular to the
  • the length extending in the direction is not long enough to ensure that the distal end of the catheter 120 can reach any position of the interventricular septum 96 in the Y direction (for example, the farthest point).
  • the range that the ablation needle 160 can puncture in the Y direction cannot cover the interventricular septum 96. , which in turn leads to the problem of insufficient ablation of the ventricular septum 96 in the Y direction, which is conducive to further improving the reliability and surgical success rate of the ablation system 1 .
  • the lengths of the required portion of the catheter 120 that can extend from the distal end of the sheath 110 in the Y direction are Y1 and Y2 respectively, and Y1 is smaller than Y2 . If the desired puncture site is f, and the maximum length of the part of the catheter 120 extending out of the distal end of the sheath 110 in the Y direction is only Y1, it will be difficult for the distal end of the catheter 120 to reach the puncture site f, thereby making ablation The needle 160 cannot puncture and ablate the puncture point f.
  • the maximum length of the portion of the catheter 120 that can be extended from the distal end of the sheath 110 in the Y direction is at least 26 mm to ensure that the same individual or different patients who need to ablate the interventricular septum 96 at different positions in the Y direction can
  • the distal end of the catheter 120 can reach any position of the interventricular septum 96 in the Y direction, thereby ensuring that the puncture range of the ablation needle 160 in the Y direction can cover the interventricular septum 96 , thereby avoiding the occurrence of the interventricular septum 96 in the Y direction.
  • the problem of insufficient ablation in the direction is at least 26 mm to ensure that the same individual or different patients who need to ablate the interventricular septum 96 at different positions in the Y direction.
  • the maximum length of the portion of the catheter 120 that can extend from the distal end of the sheath 110 in the Y direction is up to 52 mm. Such an arrangement can prevent the distal end of the catheter 120 from overextending in the Z direction, causing damage to the endocardium or breakage in the left ventricle 91 . In addition, it is also convenient for the surgical operator to operate, making it easier to adjust the length of the catheter 120 extending from the distal end of the sheath 110 .
  • the difference in axial length between the catheter 120 and the sheath 110 can be limited, the bending angle and direction of the sheath 110 can be limited, and a stroke limiting structure can be added to the handle structure 150 (not shown in the figure)
  • One or more of the above methods are used to limit the length of the catheter 120 extending from the distal end of the sheath 110 in the Y direction.
  • the ablation energy released by the ablation needle 160 is radio frequency energy.
  • Energy generator 20 Includes a radio frequency generating circuit (not shown).
  • the radiofrequency generating circuit is electrically connected to the ablation needle 160 and is configured to deliver radiofrequency energy to the ablation needle 160 so that the ablation needle 160 can release radiofrequency energy to the tissue surrounding the ablation needle 160 .
  • the ablation needle 160 includes a needle body 162 and a needle tip 161 located at the distal end of the needle body 162 .
  • the needle tip 161 and the distal portion of the needle body 162 constitute an ablation segment 163 that is electrically connected to the energy generator 20 and capable of releasing ablation energy to destroy the myocardial activity of the interventricular septum 96 .
  • the ablation segment 163 can at least partially penetrate into the interventricular septum 96 and can release ablation energy to destroy the myocardial activity of the interventricular septum 96 .
  • the ablation needle 160 has an axial lumen 166 , and the lumen 166 axially penetrates the needle body 162 .
  • the ablation section 163 is provided with at least one perfusion hole 164 communicating with the inner cavity 166 of the ablation needle 160 .
  • Irrigation hole 164 is configured to release fluid within lumen 166 of ablation needle 160 to the hypertrophic tissue of interventricular septum 96 .
  • the needle tip 161 may not constitute the ablation segment 163, the needle tip 161 may be made of an insulating material or the outer surface of the needle tip 161 may be covered with an insulating material.
  • At least the distal portion of the ablation needle 160 can penetrate the endocardial tissue and enter the hypertrophic area of the interventricular septum 96 under the guidance of the needle tip 161 .
  • the energy is released through the ablation section 163 to destroy the cell activity of the hypertrophic tissue of the interventricular septum 96, making the hypertrophic myocardial tissue of the interventricular septum 96 thinner and reducing the contractility, thereby reducing the obstruction of the outflow tract of the left ventricle 91.
  • the perfusion hole 164 releases the fluid located in the lumen 166 of the ablation needle 160 to the hypertrophic tissue of the interventricular septum 96. Through the diffusion of the fluid in the hypertrophic tissue of the interventricular septum 96, the fluid can expand the ablation range of the ablation segment 163.
  • the above fluid is an electrolyte solution.
  • the range of the ablation area 3 of the ablation needle 160 has a clear relationship with the output power, output time, tissue impedance and ablation temperature of the radiofrequency current. In a stable state, the range of the ablation area 3 is closely related to the tissue and ablation. The temperature between the segment 163 interface and the output power of the radiofrequency current are proportional. In theory, the size of the ablation area 3 can be increased through higher output power and higher tissue temperature. However, once the peak temperature of the tissue exceeds the threshold of 100°C, the tissue in contact with the ablation section 163 will be burned and scabbed.
  • the burned and scabbed tissue will adhere to the surface of the ablation section 163 to form an electrically insulating condensation. , accompanied by a sudden increase in electrical impedance, prevents current from flowing into the tissue and further heating, thereby greatly reducing the scope of the ablation area 3 (shown in Figure 2). Therefore, in order to prevent this phenomenon, improve the ablation efficiency, and expand the scope of the ablation area 3, the temperature of the contact surface between the ablation section 163 and the tissue can be reduced to reduce the risk of tissue scabbing.
  • the electrolyte solution perfused through the perfusion hole can cool the ablation segment 163 to a certain extent and reduce the temperature between the ablation segment 163 and the tissue contact interface, thereby making the ablation segment 163
  • the energy generated can be transmitted deeper into the hypertrophic tissue of the ventricular septum 96, thereby achieving the purpose of increasing the ablation range.
  • the electrolyte solution since the electrolyte solution will diffuse after being perfused into the hypertrophic tissue of the interventricular septum 96, the diffused electrolyte solution will serve as a good transmission medium for radio frequency current and carry the radio frequency current further to the myocardial tissue. By passing it everywhere, through this principle, the purpose of increasing the scope of the ablation area 3 can also be achieved.
  • the above electrolyte solutions that can be used include, but are not limited to, 0.9% NaCl solution at room temperature, 0.9% NaCl solution at 5°C, 5% glucose solution, heparinized 0.9% NaCl solution, a mixed solution of 0.9% NaCl solution and contrast agent, etc. .
  • 0.9% NaCl solution at room temperature 0.9% NaCl solution at 5°C
  • 5% glucose solution heparinized 0.9% NaCl solution
  • a mixed solution of 0.9% NaCl solution and contrast agent etc.
  • the electrolyte The solution can be a mixed solution of cold normal saline + developer.
  • the operator can intuitively observe the diffusion of the electrolyte solution mixed with the developer in the myocardial tissue, thereby regulating the ablation time and perfusion rate in real time. Flow rate and flow rate, etc., in order to achieve the purpose of accurately controlling the size of the ablation area 3.
  • the structure of the ablation needle 160 using ablation methods such as microwave ablation and alcohol ablation is basically the same as the structure of the ablation needle 160 using radiofrequency ablation, which will not be described again here.
  • ablation system 1 further includes a fluid perfusion device 30.
  • the fluid perfusion device 30 includes a fluid storage 31 , an perfusion pump 32 , and a fluid conduit 33 .
  • the fluid storage 31 is configured to store fluid
  • the perfusion pump 32 draws fluid out of the fluid storage 31
  • the fluid conduit 33 is configured to connect the fluid storage 31 and the inner cavity of the ablation needle 160 .
  • the needle tip 161 of the ablation needle 160 is a sharp tip structure, the shape of which includes but is not limited to a cone, a triangular pyramid, a quadrangular pyramid, a single bevel edge, and other shapes.
  • the purpose of the shape 161 is to provide the ablation needle 160 with a sharp enough tip 161 structure so that it can puncture the endocardial tissue with a small puncture force, thereby smoothly entering the myocardial tissue of the interventricular septum 96 .
  • the needle tip 161 is fixed to the distal end of the needle body 162 through connection methods including but not limited to bonding, laser welding, welding, etc.
  • the needle tip 161 and the needle body 162 can also be an integral structure.
  • the needle body 162 is a long and hollow tubular structure.
  • the ablation needle 160 can infuse the above-mentioned fluid through the proximal opening of the needle body 162 .
  • the above-mentioned fluid is transported to the ablation needle 160 through the inner cavity 166 of the ablation needle 160 .
  • the distal part ie, the ablation segment 163
  • the perfusion hole 164 provided on the ablation segment 163 .
  • the ablation needle 160 may not be provided with the perfusion hole 164, but may be provided with an internal circulation channel within the ablation needle 160, with cooling liquid flowing in the internal circulation channel, and the cooling liquid flows in the internal circulation channel, thereby The ablation needle 160 is cooled to prevent local tissue overheating or even tissue damage caused by high temperature.
  • the needle body 162 may be a columnar structure with a circular cross-section, or may be a columnar structure with an elliptical cross-section.
  • the outer wall of the needle body 162 should be smooth without obvious protrusions or edges to prevent it from scratching the vascular intima and other tissues when entering the target position of the human body.
  • the needle body 162 can be made of a metal material with good electrical conductivity, so that it can achieve the purpose of releasing radio frequency energy through the excellent electrical conductivity of the needle body 162 itself.
  • the material of the needle body 162 may include, but is not limited to, stainless steel pipes, nickel-titanium alloy and other metal pipes.
  • the ablation needle 160 since the ablation needle 160 needs to reach the target position of the interventricular septum 96 through a complex and tortuous peripheral vascular path, and in order to ensure a good puncture angle, the distal part of the ablation needle 160 will simultaneously pass through the sheath 110,
  • the conduit 120 has a long path to bend, and may cause scratches and friction. Therefore, in addition to the excellent electrical energy conduction performance, the good mechanical and mechanical properties that the needle body 162 should have should also be taken into consideration.
  • ablation needle 160 is made of biocompatible metal tubing. In some embodiments, it is made of nitinol tubing. Since nickel-titanium alloy has excellent biocompatibility, high strength, good shapeability, and can exhibit super-elastic mechanical properties after heat treatment, the needle body 162 made of nickel-titanium alloy can survive complex twists and turns. After the blood vessel path and repeated bending, it maintains good resilience and does not undergo plastic deformation, so that the system can more smoothly pass through the blood vessel to reach the target position without increasing the elasticity due to the plastic deformation of the needle body 162. Great passing resistance.
  • the needle body 162 can also be made of polymer material, and a component with good electrical conductivity can be provided on the needle body 162 so that a release-capable device can be formed on the needle body 162.
  • Ablation segment 163 of ablation energy can be one or more annular metal electrodes, which are fixed on the needle by means including but not limited to bonding, welding, crimping, welding, etc.
  • the distal portion of the body 162 is electrically connected to the energy generator 20 through wires.
  • the ring-shaped metal electrode can be made of radiopaque metal materials such as platinum-iridium alloy, cobalt-chromium alloy, tantalum, etc., so that while having excellent electrical conductivity, it can also It has a developing effect under rays and helps the surgeon confirm the position of the ablation segment 163.
  • radiopaque metal materials such as platinum-iridium alloy, cobalt-chromium alloy, tantalum, etc.
  • the polymer material used should have excellent strength, hardness, high elastic modulus and good bending resistance, and should be able to withstand repeated bending without breaking or becoming plastic. deformation.
  • the material should have a low surface friction coefficient, which can reduce the friction of the ablation needle 160 in the inner cavity of the catheter 120.
  • the material should have excellent dielectric insulation, high insulation resistance, small dielectric constant, and high voltage resistance.
  • the needle body 162 can be made of polymer materials such as PP, HDPE, and PTFE.
  • an ablation segment 163 is provided at the distal end of the ablation needle 160 .
  • the ablation segment 163 can be electrically connected to the energy generator 20 , thereby releasing energy into the tissue through the ablation segment 163 .
  • the needle body 162 is a metal pipe
  • the ablation section 163 should exist as a part of the needle body 162.
  • an insulating layer 165 should be attached to the outside of the needle body 162, and the distal end of the needle body 162 should be exposed without being covered with insulating material.
  • the area serves as the ablation segment 163 for releasing radiofrequency energy.
  • the insulating layer 165 can be a layer of polymer material coated on the needle body 162 through heat shrinkage, or it can be directly placed on the outside of the needle body 162, or it can also be attached through a coating process. outside the needle body 162.
  • the outer surface of the insulating layer 165 should have a low friction coefficient and a high insulation resistance.
  • the low friction coefficient can give the ablation needle 160 good lubricity and pushing performance, and the high insulation resistance can make the insulating layer 165 operate at a high temperature. Under the action of high-frequency radio frequency current, it still maintains excellent dielectric insulation without being broken down.
  • the insulating material can be PET (Polyethylene terephthalate, polyethylene terephthalate), PTFE (Poly tetra fluoroethylene, polytetrafluoroethylene), FEP ( Fluorinated ethylene propylene, fluorinated ethylene propylene) and other materials.
  • PET Polyethylene terephthalate, polyethylene terephthalate
  • PTFE Poly tetra fluoroethylene, polytetrafluoroethylene
  • FEP Fluorinated ethylene propylene, fluorinated ethylene propylene
  • the insulating layer 165 When the insulating layer 165 is fixed on the outside of the needle body 162 by being sleeved, the insulating layer 165 can be made of PEEK (Poly-ether-ether-ketone), PI (Polyimide) or other materials.
  • Parylene may be used as the insulating material.
  • the effective length L (not labeled in the figure) of the ablation segment 163 refers to the length exposed outside the insulating layer 165 and capable of contacting the tissue to be treated. In certain embodiments, the effective length L of ablation segment 163 is 5 mm to 15 mm.
  • the length of the ablation segment 163 is fixed, that is, the relative position between the needle body 162 and the insulating layer 165 is fixed.
  • the effective length of the ablation segment 163 in the same set of ablation needles 160 is a certain With a certain fixed value, a plurality of ablation needles 160 of different models and specifications can be designed by setting ablation segments 163 of different effective lengths to meet the needs of different patients with different tissue shapes and sizes.
  • the relative position between the needle body 162 and the insulating layer 165 can be adjusted to achieve different exposed lengths of the needle body 162, thereby achieving the purpose of adjusting the effective lengths of different ablation sections 163.
  • an insulating sleeve is provided around the needle body 162, and the insulating sleeve is used as the above-mentioned insulating layer 165.
  • the insulating sleeve and the needle body 162 can slide relative to each other, and the effective length L of the ablation section 163 can be controlled by controlling the relative movement between the needle body 162 and the insulating layer 165 .
  • the handle structure 150 is provided with a push structure (not shown), the push structure is connected to the above-mentioned insulating sleeve, and can drive the insulating sleeve to slide relative to the needle body 162, thereby adjusting the exposed surface of the insulating sleeve.
  • the outer length of the needle body 162 is the effective length L of the ablation segment 163.
  • the handle structure 150 is also provided with a locking structure (not shown). The locking structure is connected to the needle body 162 and is configured to lock and fix the needle body 162 and limit the relative movement between the needle body 162 and the insulating sleeve.
  • the endocardial tissue and the myocardial tissue of the ventricular septum 96 can be punctured together while the needle body 162 and the insulating sleeve remain relatively fixed, that is, the effective length of the ablation segment 163 remains unchanged. middle.
  • the needle body 162 can be locked by the locking structure of the handle structure 150 so that it remains fixed in the direction along the central axis of the adjustable bending catheter 120, and then the handle structure can be pushed
  • the push structure 150 is fixedly connected to the insulating sleeve, so that the insulating sleeve can realize the relative movement back and forth along the central axis of the needle body 162, thereby controlling the elongation or shortening of the ablation section 163 exposed outside the insulating sleeve. This changes the effective length of ablation segment 163.
  • the locking structure is connected to the insulating sleeve and is configured to lock and fix the insulating sleeve.
  • the pushing structure is connected to the needle body 162 and can drive the needle body 162 to slide relative to the insulating sleeve.
  • the endocardial tissue is pierced and inserted into the myocardial tissue of the ventricular septum 96.
  • the locking structure is controlled to keep the insulating sleeve fixed along the central axis of the needle body 162, and then the pushing structure is pushed to enable the needle body 162 to move along the central axis of the insulating sleeve.
  • the direction of the wire enables relative movement back and forth, thereby achieving the purpose of controlling the elongation or shortening of the ablation segment 163 exposed outside the insulating sleeve, thereby changing the effective length of the ablation segment 163.
  • the plurality of irrigation holes are evenly distributed in the axial and circumferential directions of needle body 162 .
  • the shape of the perfusion hole can be circular, elliptical, etc.
  • the injection holes can be processed using laser cutting.
  • the operation process of the ablation system 1 in the present disclosure is as follows:
  • the femoral artery Under the guidance of imaging equipment such as ultrasound/CT, the femoral artery is punctured. Under the guidance of the guidewire, it passes through the descending aorta 93, aortic arch 94, and ascending aorta 95 in sequence, and then crosses the aortic valve 92 and enters the left ventricle 91 ,As shown in Figure 3;
  • the handle structure 150 Operate the handle structure 150.
  • the sheath 110 When the sheath 110 reaches the target position, transport the catheter 120 along the inner cavity of the sheath 110 to the upper side of the aortic valve 92 membrane near the aortic arch 94, and use it under the imaging equipment such as ultrasound/CT. Under guidance, cross the aortic valve 92 and enter the left ventricle 91 without damaging the membrane of the aortic valve 92, as shown in Figure 4;
  • the control sheath 110 retreats to a position on the side of the aortic valve close to the aortic arch 94, and then controls the catheter 120 to continue extending in the distal direction, as shown in Figure 8;
  • steps S2-S6 can be repeated one or more times until puncture and ablation of all the points that are desired to be ablated are completed.
  • the ablation system 1 of the present disclosure is also capable of trans-inferior vena cava-right atrium-right ventricle, trans-inferior vena cava-right atrium-atrial septum-left atrium-left ventricle, trans-superior vena cava-right atrium-
  • the interventricular septum 96 is ablated through interventional pathways such as the right ventricle and the superior vena cava-right atrium-atrial septum-left atrium-left ventricle.
  • the ablation system 1 of the present disclosure can also ablate other myocardial tissues, such as ablation of the interatrial septum or left atrial wall through the femoral artery-aorta-left ventricle-left atrium, or ablation of the atrial septum or left atrium wall through the femoral artery-aorta.
  • the left ventricular wall is ablated through the artery-left ventricle
  • the right atrial wall is ablated through the inferior vena cava-right atrium, etc. This disclosure will not list them one by one.
  • references in the specification to "one embodiment,” “an embodiment,” “exemplary embodiments,” “certain embodiments,” etc. mean that the described embodiment may include specific features, structures or characteristics, but Not every embodiment may include this particular feature, structure or characteristic. Furthermore, such phrases are not necessarily referring to the same embodiment. Furthermore, when a particular feature, structure or characteristic is described in connection with an embodiment, it is within the knowledge of those skilled in the art to implement such feature, structure or characteristic in conjunction with other embodiments, explicitly or not explicitly described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

公开了配置为实现稳定出针的引导组件、消融装置及消融系统,该引导组件,配置为实现稳定出针并引导消融针穿刺进入室间隔,所述引导组件包括:鞘管和导管,所述鞘管配置为进入主动脉且其远端开口定位于升主动脉内;所述导管活动穿设于所述鞘管中,所述导管能够从所述鞘管的远端伸出并且跨过主动脉瓣进入左心室,并且所述导管能够从所述鞘管的远端伸出的部分在X方向上的最大长度至少为10mm,X方向大致为左心室到右心室的方向。

Description

引导组件、消融装置及消融系统
相关申请的引用
本公开要求于2022年8月31日向中华人民共和国国家知识产权局提交的申请号为202211056042.8、发明名称为用于实现稳定出针的引导组件、消融装置及消融系统的中国发明专利申请的全部权益,并通过引用的方式将其全部内容并入本公开。
领域
本公开大体上涉及医疗器械技术领域,更具体地涉及引导组件、消融装置及消融系统。
背景
肥厚型心肌病是一种常见的常染色体显性遗传心血管疾病,在普通人群中的发病率约1∶500,病死率约1.4%至2.2%,是年轻人和运动员猝死的最常见原因。肥厚型心肌病的主要表现为左心室((LeftVentricular,LV)一个或多个节段肥厚,一般诊断标准为厚度大于或者等于15mm,其治疗方法主要有药物治疗、室间隔切除(Surgical septal myectomy)、室间隔消融(Ventricular septal ablation)等。而当出现二尖瓣前叶(Anterior Mitral Valve Leaflet,AMVL)收缩期前向运动贴靠室间隔(Interventricular Septum,IVS),造成左室流出道(Left Ventricular Outflow Tract,LVOT)狭窄甚至梗阻,即左室流出道压差过大时,便称为梗阻性肥厚型心肌病。
近年来也公开了一些治疗梗阻性肥厚型心肌病的技术,例如采用消融针经主动脉路径到达左心室,然后插入肥厚的室间隔内进行消融,以达到降低左室流出道压差并减轻其梗阻的目的。在建立消融针到室间隔的路径中,需要通过引导组件对消融针进行引导。引导组件包括鞘管、以及活动穿设于鞘管中的导管,在手术过程中,鞘管先在导丝的引导下跨过主动脉瓣进入左心室,然后撤出导丝,接着将收容有消融针的导管再顺着鞘管跨过主动脉瓣进入左心室,由于左室流出道较为狭窄且鞘管的外径尺寸较大,鞘管长时间跨过主动脉瓣膜进入左心室会进一步加重左室流出道梗阻并且容易对主动脉瓣膜造成压迫和损伤,因此,导管跨过主动脉瓣后就需要控制鞘管回退至主动脉瓣膜靠近主动脉 弓一侧的位置,然后再控制导管继续往远端方向伸出并且控制导管的远端贴靠在室间隔目标消融区域表面,以引导消融针稳定地穿刺进入室间隔目标消融区域。
概述
一方面,本公开涉及引导组件,配置为实现稳定出针并引导消融针穿刺进入室间隔,所述引导组件包括:鞘管和导管,其中所述鞘管配置为进入主动脉且其远端开口定位于升主动脉内;所述导管活动穿设于所述鞘管中,所述导管能够从所述鞘管的远端伸出并且跨过主动脉瓣进入左心室,并且所述导管能够从所述鞘管的远端伸出的部分在X方向上的最大长度至少为10mm,X方向大致为左心室到右心室的方向。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述X方向上的最大长度至少为15mm。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述X方向上的最大长度至多为25mm。
在某些实施方案中,所述鞘管的远端开口邻近于主动脉瓣,所述导管能够从所述鞘管的远端伸出的部分在Z方向上的最大长度至少为25mm,所述Z方向垂直于所述X方向,且所述Z方向大致为心房到心室的方向。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至少为45mm。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至少为60mm。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至多为90mm。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在Y方向上的最大长度至少为26mm,所述Y方向垂直于所述X方向,并且所述Y方向垂直或者接近垂直于心房到心室的方向。
在某些实施方案中,所述导管能够从所述鞘管的远端伸出的部分在所述Y方向上的最大长度至多为52mm。
在某些实施方案中,所述鞘管从近端到远端依次包括第一主体段、第一塑 型段以及第一调弯段,所述鞘管与主动脉的形状相适配,所述第一主体段的形状与降主动脉的形状相适配;所述第一塑型段的形状与主动脉弓的形状相适配;所述第一调弯段的形状与升主动脉的形状相适配;以及
所述导管从近端到远端依次包括第二主体段、第二塑型段、以及第二调弯段,所述第二主体段与所述第一主体段相适配,所述第二塑型段与所述第一塑型段以及第一调弯段相适配,当所述鞘管的远端开口位于升主动脉内时,所述第二调弯段从所述第一调弯段的远端的开口伸出后进入左心室并且能够朝向所述X方向弯曲。
在某些实施方案中,所述第一主体段与所述第一塑型段共同位于第一平面,所述第一调弯段至少其远端部分位于与所述第一平面之间具有夹角的第二平面。
在某些实施方案中,所述第一平面与所述第二平面的夹角为a,其中10°≤a≤45°。
在某些实施方案中,所述导管的近端连接有手柄结构,所述手柄结构配置为控制所述第二调弯段朝向所述X方向弯曲,且所述手柄结构还配置为在控制所述第二调弯段朝向所述X方向弯曲的同时控制所述第二调弯段向Y方向摆动,所述Y方向垂直于所述X方向,并且所述Y方向垂直或者接近垂直于心房到心室的方向。
在某些实施方案中,在本公开的引导组件中,导管能够伸出鞘管后进入左心室,且所述导管能够从所述鞘管的远端伸出的部分在X方向上的最大长度至少为10mm,以保证面对具有不同组织形态的患者(室间隔肥厚的程度不同),导管的远端均能够抵达并贴靠至室间隔表面,避免出现因导管和鞘管的尺寸不匹配,而导致导管难以抵达并贴靠至室间隔表面的问题,有利于增加手术的成功率。
另一方面,本公开涉及消融装置,其包括消融针以及本公开的引导组件,其中所述消融针活动穿设于所述导管中,且能够从所述导管的远端开口伸出;以及所述消融针配置为从所述导管的远端开口伸出后经心内膜刺入室间隔,并对所述室间隔进行消融。
在某些实施方案中,所述消融针包括消融段,所述消融段至少部分能够穿刺进入所述室间隔且能够释放消融能量破坏所述室间隔的心肌活性;以及
所述消融针具有轴向内腔,且所述消融段开设有至少一个与所述消融针的内腔相连通的灌注孔,所述灌注孔配置为将所述消融段的内腔内的流体释放至所述室间隔。
又一方面,本公开涉及消融系统,其包括能量发生器、流体灌注装置以及本公开的消融装置;其中所述能量发生器与所述消融针电连接,配置为为所述消融针提供消融能量,以及所述流体灌注装置与所述消融针连接,配置为为所述消融针的空腔输送所述流体。
在某些实施方案中,所述流体灌注装置包括:流体存储器、灌注泵及流体管道;
所述流体存储器配置为存储所述流体;以及
所述灌注泵配置为将所述流体从所述流体存储器中经所述流体管道输送到所述消融针的内腔。
在某些实施方案中,在本公开的引导组件中,所述鞘管配置为进入主动脉且其远端开口定位于升主动脉内,所述导管活动穿设于所述鞘管中并且导管能够伸出鞘管的远端后进入左心室,且所述导管能够从所述鞘管的远端伸出的部分在X方向上的最大长度至少为10mm,X方向大致为左心室到右心室的方向,以保证面对具有不同组织形态的个体,例如面对室间隔肥厚程度不同、主动脉瓣口到室间隔在X方向上的距离不同的个体,导管的远端均能够抵达并贴靠至室间隔表面,避免出现因导管和鞘管的长度不适配、导管和/或鞘管的弯曲角度或者弯曲方向的限制等因素,导致导管难以抵达并贴靠至室间隔表面的问题,进而保证消融针能够稳定出针,避免消融针变形及损毁,有利于提高手术的成功率。
附图简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一实施例提供的消融系统的整体结构示意图;
图2为本公开一实施例中消融装置进入心脏的部分与心脏的位置关系示意图;
图3为本公开一实施例中鞘管跨过主动脉瓣进入左心室的位置关系示意图;
图4为本公开一实施例中导管伸出鞘管远端并进入左心室的位置关系示意图;
图5为本公开一实施例中鞘管与W平面和K平面的位置关系示意图;
图6为本公开一实施例中鞘管与W平面的位置关系示意图;
图7为本公开一实施例中导管的整体结构示意图;
图8为本公开一实施例中鞘管回退至主动脉内且鞘管的第一调弯段向A方向调弯的示意图;
图9为本公开一实施例中导管的第二调弯段进入左心室后朝X方向弯曲的示意图;
图10为本公开一实施例中导管的第二调弯段的选点示意图;
图11为本公开一实施例中导管的第二调弯段伸出鞘管远端的部分在X方向上延伸时的位置关系示意图;
图12为图11中圈I处的放大图;
图13为本公开一实施例中导管的第二调弯段伸出鞘管远端的部分在Z方向上延伸时的位置关系示意图;
图14为图13中圈J处的放大图;
图15为本公开一实施例中导管的第二调弯段伸出鞘管后贴靠至室间隔的位置关系示意图;
图16为图15中M-M处的剖视图;
图17为本公开一实施例中消融针的整体结构示意图;
图18为本公开一实施例中消融针的整体结构侧视图;
图19为图18中A-A处的整体结构剖视图;
图20为本公开一实施例中鞘管在主动脉内朝B方向和C方向摆动时的结构示意图。
附图标记说明:
1:消融系统;2:心脏;3:消融区域;4:心尖部;5:中间部;6:基底
部;7:前间隔;8:后间隔;91:左心室;92:主动脉瓣;93:降主动脉;94: 主动脉弓;95:升主动脉;96:室间隔;97:主动脉;10:消融装置;20:能量发生器;30:流体灌注装置;31:流体存储器;32:灌注泵;33:流体管道;100:引导组件;110:鞘管;111:第一主体段;112:第一塑型段;113:第一调弯段;120:导管;121:第二主体段;122:第二塑型段;123:第二调弯段;150:手柄结构;160:消融针;161:针尖;162:针体;163:消融段;164:灌注孔;165:绝缘层;166:内腔。
详述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
当元件被称为“固定于”或“设置于”另一个元件时,该元件可以直接地连接在另一个元件上,也可以通过一个或者多个连接元件间接地连接在另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接地连接到另一个元件上,或者通过一个或者多个连接元件连接到另一元件上。
还需要说明的是,在介入医疗器械领域,近端是指距离操作者较近的一端,而远端是指距离操作者较远的一端;将柱体、管体等一类物体的旋转中心轴的方向定义为轴向;周向为围绕柱体、管体等一类物体的轴线的方向(垂直于轴线,同时垂直于截面半径);径向指沿直径或半径的方向。值得注意的是,无论“近端”、“远端”、“一端”、“另一端”、“第一端”、“第二端”、“初始端”、“末端”、“两端”、“自由端”、“上端”、“下端”等词语中所出现的“端”,并不仅限于端头、端点或端面,也包括自端头、端点、或端面在端头、端点、或端面所属元件上延伸一段轴向距离和/或径向距离的部位。上述定义只是为了表述方便,并不 能理解为对本公开的限制。
需要说明的是,在某些实施方案中,X方向大致为左心室91到右心室的方向,Y方向为垂直于X方向且垂直或者接近垂直于心房到心室的方向,也即Y方向大致平行于室间隔的前间隔到后间隔的方向,Z方向垂直于X方向且垂直于Y方向。心房到心室的方向具体为左心房到左心室的方向或者右心房到右心室的方向,上述接近垂直是指两者之间的夹角大于或等于85°且小于90°,也即当Y方向与心房到心室的方向之间的夹角为大于或等于85°且小于90°时,Y方向与心房到心室的方向接近垂直。
如图1所示,本公开提供了消融系统1,该消融系统1适用于经血管路径对心肌组织进行消融,以破坏心肌组织的心肌活性。需要说明的是,心肌组织包括心室壁、心房壁、室间隔96、以及房间隔。本公开中的消融系统1尤其适用于经主动脉97介入路径对室间隔96进行消融的应用场景,下文以经主动脉97介入路径对室间隔96进行消融为例进行说明。
如图1和图2所示,在某些实施方案中,消融系统1包括消融装置10以及能量发生器20。消融装置10包括消融针160和引导组件100。能量发生器20与消融针160电性连接,能量发生器20配置为向消融针160输送消融能量。引导组件100配置为引导消融针160经主动脉97到达并刺入至室间隔96的肥厚组织。当消融针160在引导组件100的引导下进入室间隔96的肥厚组织后,能量发生器20通过消融针160向室间隔96的肥厚组织释放消融能量。
需要说明的是,本公开中提到的“消融能量”能够作用在室间隔96的肥厚组织,以破坏该处肥厚组织的活性,从而使得室间隔96的肥厚组织出现蛋白质变性和/或细胞凋亡,以将该处肥厚组织变薄,从而达到以降低左室流出道压差并减轻其梗阻的目的。
本公开中的消融能量可以包括但不限于:射频能量、超声能量、微波能量等。在某些实施方案中,能量发生器20可以是非必要的,能量发生器20可以由能够向消融针160内注入酒精或其他药物的装置代替,以使消融针160通过向室间隔96的肥厚组织中灌注酒精或药物等方式,以实现对室间隔96的肥厚组织进行消融。
如图1和图2所示,引导组件100包括鞘管110和导管120,导管120活动穿设于鞘管110内,消融针160活动穿设于导管120内。需要说明的是,本公开中的 鞘管110和导管120均可在外力的作用下弯曲。导管120能够从鞘管110的近端进入鞘管110的内腔,导管120的远端能够从鞘管110的远端开口处伸出,消融针160能够从导管120的近端进入导管120的内腔并且消融针160能够从导管120的远端开口伸出导管120。在该引导组件100将消融针160输送至室间隔96肥厚组织的过程中,消融针160收容在导管120的内腔里,鞘管110和导管120配合,以为消融针160提供体外到室间隔96肥厚组织的引导通道。在某些实施方案例中,鞘管110和导管120至少远端部分可调弯,以带动消融针160指向室间隔96的不同位置。如此设置,能够使得消融针160在安全、顺畅地经过该引导组件100,并准确地穿刺进入室间隔96的肥厚组织的过程中,不对人体造成损伤。
如图1所示,在某些实施方案中,消融装置10还包括手柄结构150,手柄结构150与鞘管110、导管120、以及消融针160均连接,该手柄结构150配置为控制鞘管110的弯曲和运动轨迹、导管120的弯曲和运动轨迹、以及消融针160在导管120内的运动轨迹。需要说明的是,该手柄结构150可以包括多个相互独立的手柄,例如三个手柄,三个手柄分别与鞘管110、导管120、以及消融针160连接,也可以是合并组装为一个手柄,该手柄同时与鞘管110、导管120、以及消融针160连接。
在手术过程中,手柄结构150先控制鞘管110在导丝(图未示出)的引导下依次经过降主动脉93、主动脉弓94、以及升主动脉95,然后跨过主动脉瓣92进入左心室91,然后在人体内撤出导丝(如图3所示);然后控制收容有消融针160的导管120顺着鞘管110的内腔,运送至主动脉瓣92靠近主动脉弓94的一侧,接着控制导管120跨过主动脉瓣92瓣口进入到左心室91,从而实现导管120的跨瓣(如图4所示);然后再控制鞘管110回退至主动脉瓣92靠近主动脉弓94一侧的位置(如图8所示);然后再控制导管120继续往远端方向伸出,并且通过控制导管120和鞘管110远端部分弯曲,使得导管120的远端能够贴靠在肥厚的室间隔96表面的待穿刺消融点位处(如图15所示);接着再控制消融针160从导管120的远端伸出,并刺入室间隔96肥厚组织;最后通过能量发生器20释放消融能量,以对室间隔96肥厚组织进行消融(如图2所示)。
如图3所示,在某些实施方案中,鞘管110为具有中空内腔的管状结构,且鞘管110与主动脉97的形状相适配。鞘管110从近端到远端依次包括第一主体段111、第一塑型段112、以及第一调弯段113。在自然状态下,第一主体段111、 第一塑型段112、以及第一调弯段113均位于同一个平面上。第一塑型段112先朝远离第一主体段111近端的方向延伸,再朝向靠近第一主体段111近端的方向延伸,第一调弯段113朝靠近第一主体段111近端的方向延伸,第一塑型段112相对于其两端拱起。第一主体段111的形状与降主动脉93的形状相适配,第一塑型段112的形状与主动脉弓94的形状相适配,第一调弯段113的形状与升主动脉95的形状相适配。由此可知,在某些实施方案中,鞘管110在自然状态下具有预定形状,该预定形状与人体主动脉97的形状相适配。
在工作状态下,第一塑型段112的近端和远端的位置分别匹配于主动脉弓94开始弯曲的位置和结束弯曲的位置,且第一塑型段112各处的弯曲曲率与主动脉弓94各处的弯曲曲率基本一致,以保证第一塑型段112与主动脉弓94相适配,以更顺畅地将鞘管110运送至指定位置。此外,当鞘管110到达指定位置后,第一塑型段112在弯曲状态下能够很好地定位于主动脉弓94,使得第一塑型段112能够稳定定位在主动脉弓94的位置,从而减小因鞘管110的自然移动或者操作者的误操作对手术造成不良影响。
还需要说明的是,该第一主体段111配置为支撑第一塑型段112和第一调弯段113。为了确保第一塑型段112在弯曲过程中不会带动第一主体段111大幅度弯曲,因此,第一主体段111的材料硬度应大于第一塑型段112的材料硬度。同理,为了保证第一调弯段113在调弯过程中的调弯角度可控,且不会在调弯过程中带动第一塑型段112大幅度弯曲,因此,第一塑型段112的材料硬度也应大于第一调弯段113的材料硬度。
在某些实施方案中,鞘管110可采用复合编织网管的结构,以使得该鞘管110在具有良好的柔顺性、推送性、以及扭控性的同时,能够保持较高的抗折性能。
在某些实施方案中,鞘管110还连接有第一调节件(图未示出)。第一调节件活动穿设于鞘管110的内壁中,第一调节件的远端与固定设置于第一调弯段113的远端的锚定环(图未示出)连接,第一调节件的近端与手柄结构150连接。
在某些实施方案中,鞘管110的内管壁内设有通道管(图未示出),该通道管的远端延伸至第一调弯段113的远端,通道管的近端延伸至第一主体段111的近端。通道管可沿导管120的轴向延伸,第一调节件活动穿设于该通道管中。因此,手柄结构150能够通过控制第一调节件在通道管内沿通道管的轴向移动, 从而控制第一调弯段113的弯曲或恢复成自然状态。在工作过程中,第一调弯段113可以向不同的方向弯曲,从而控制后续穿设在鞘管110中的导管120从第一调弯段113的远端开口伸出后能指向不同的方向。
在某些实施方案中,也可直接在鞘管110的管壁上开设导槽(图未示出),也就是说,鞘管110中的通道管可以是非必要的。导槽的远端延伸至第一调弯段113的远端,导槽的近端延伸至第一主体段111的近端,导槽可沿鞘管110的轴向延伸,第一调节件活动穿设于导槽内,因此,手柄结构150能够通过控制第一调节件在导槽内沿导槽的轴向移动,从而控制第一调弯段113的弯曲或恢复成自然状态。
在某些实施方案中,根据实际主动脉弓94的形态,第一调节件控制第一调弯段113调弯的方向至少包括A方向(如图8中A箭头所指方向),其中,A方向大致为第一调弯段113指向第一主体段111的方向,在手术过程中,也就是升主动脉95靠近降主动脉93的方向,通过调节第一调弯段113的弯曲角度,从而有利于使鞘管110的远端能靠近或远离室间隔96,方便后续消融针160选择不同的消融位置。
此外,如图20所示,在某些实施方案中,可以通过手柄结构150控制鞘管110沿周向旋转,以控制第一调弯段113向B方向以及与B方向(如图20中B箭头所指方向)相反的C方向(如图20中C箭头所指方向)摆动,其中,B方向大致为主动脉97指向人体胸部的方向,C方向大致为主动脉97指向人体背部的方向,以便于控制第一调弯段113远端开口所指的方向,方便后续与导管120配合为消融针160选择不同的消融位置。在某些实施方案中,手柄结构150控制鞘管110沿顺时针转动时,此时第一调弯段113将向B方向摆动。同理,当手柄结构150控制鞘管110沿逆时针转动时,第一调弯段113将向C方向摆动。
如图5及图6所示,在某些实施方案中,在自然状态下,鞘管110也可以为立体的三维管体结构(考虑到主动脉弓94并不是一个标准的平面结构,而是一个三维立体结构),因此,可根据实际的主动脉97的形态设置第一主体段111与第一塑型段112共同位于第一平面K中,第一调弯段113至少其远端部分位于第二平面W中。第一平面K与第二平面W之间的夹角为α,10°≤α≤45°。当鞘管110位于主动脉97内时,第一调弯段113至少远端部分相对于第一平面K向B方向偏摆,使得第一调弯段113的远端部分所在的第二平面W与第一平面K具有上述 夹角a,从而更进一步地适配主动脉97的解剖形状,使得鞘管110能够更稳定的定位于主动脉97内,从而减小因鞘管110的自然移动或者操作者的误操作对手术造成不良影响。另外,上述设置还能够使得鞘管110远端的指向能够更靠近主动脉瓣口,减少鞘管110跨瓣期间对主动脉瓣92的压迫。
如图7所示,在某些实施方案中,导管120为具有中空内腔的管体。导管120从近端到远端依次包括第二主体段121、第二塑型段122、以及第二调弯段123。第二主体段121的形状与第一主体段111的形状相适应。第二塑型段122的形状与第一塑型段112和第一调弯段113的形状相适应,因此,导管120与鞘管110在形态上具有良好的适配性。
在某些实施方案中,为了保证第二调弯段123在调弯过程中的角度具有可控性,而不会在调弯过程中带动第二塑型段122发生大幅度的弯曲,因此第二调弯段123的材料硬度应小于第二塑型段122的材料硬度。此外,第二主体段121主要配置为支撑第二塑型段122和第二调弯段123,为了确保第二塑型段122在弯曲过程中不会带动第二主体段121发生大幅度的弯曲,因此第二塑型段122的材料硬度也应小于第二主体段121的材料硬度。
在某些实施方案中,导管120还包括第二调节件(图未示出)。第二调节件活动穿设于导管120的内壁上,第二调节件的远端与固定设置于第二调弯段123远端的锚定环(图未示出)连接,第二调节件的近端与手柄结构150连接。
在某些实施方案中,导管120的内壁内设有通道管(图未示出),该通道管的远端延伸至第二调弯段123的远端。通道管的近端延伸至第二主体段121的近端,通道管可沿导管120的轴向延伸,第二调节件活动穿设于通道管中。因此,手柄结构150能够通过控制第二调节件在通道管内沿通道管的轴向移动,从而控制第二调弯段123的弯曲或恢复成自然状态。
在某些实施方案中,也可直接在导管120的管壁上开设导槽,也就是说,导管120中的通道管可以是非必要的。导槽的远端延伸至第二调弯段123的远端,导槽的近端延伸至第二主体段121的近端,导槽可沿导管120的轴向延伸,第二调节件活动穿设于导槽内。因此,手柄结构150能够通过控制第二调节件在导槽内沿导槽的轴向移动,从而控制第二调弯段123弯曲或恢复成自然状态。
在某些实施方案中,第一调节件和/或第二调节件可以是牵引丝,牵引丝可以为金属材料或高分子材料制成的线材或者管材,金属材料选自不锈钢、镍钛、 钴铬合金等,高分子材料选自PP(Polypropylene,聚丙烯)、HDPE(High Density Polyethylene,高密度聚乙烯)、PTFE(Poly tetra fluoroethylene,聚四氟乙烯)等高分子材料中的至少一种。
如图8所示,鞘管110配置为进入主动脉97且其远端开口定位于升主动脉95内,通过鞘管110的内腔运送导管120,导管120从鞘管110远端的开口处伸出,并跨过主动脉瓣92,到达左室流出道的位置。
如图7所示,在手柄结构150的驱动下,第二调节件控制第二调弯段123调弯的方向至少包括X方向(如图7中X箭头所指方向,X方向大致为左心室91到右心室的方向,从而保证第二调弯段123的远端能够朝向室间隔96一侧。X方向与A方向之间的夹角为β(如图16所示),160°≤β≤180°。
如图9、图10及图16所示,第二调节件还能够在控制第二调弯段123向X方向弯曲的同时,控制第二调弯段123向Y方向摆动,其中,Y方向垂直于X方向,并且Y方向垂直或者接近垂直于心房到心室(左心房到左心室91或者右心房到右心室)的方向。另外Y方向大致与室间隔96的宽度方向(即室间隔96的前间隔7到后间隔8的方向)平行,Y方向大致为室间隔96的前间隔7到后间隔8的方向,或者室间隔96的后间隔8到前间隔7的方向。上述设置能够实现对第二调弯段123远端开口不同的朝向的控制,进而方便控制后续选择不同的消融位置。
此外,如图16所示,在某些实施方案中,可以通过手柄结构150控制导管120沿周向旋转,以控制第二调弯段123向Y方向摆动,从而控制第二调弯段123远端开口的指向。在某些实施方案中,以Y方向为室间隔96的前间隔7到后间隔8的方向为例,当通过手柄结构150控制导管120沿逆时针方向转动时,第二调弯段123向Y方向摆动,当控制导管120沿顺时针方向转动时,第二调弯段123向Y方向的反方向摆动。
如图10和图11所示,为了保证导管120从鞘管110远端伸出后能够抵达并贴靠至室间隔96需要消融的肥厚组织的表面。在某些实施方案中,导管120能够从鞘管110的远端伸出的部分在X方向上的最大长度至少为10mm,以保证面对具有不同组织形态的患者,导管120的远端均能够抵达并贴靠至室间隔96表面,例如面对室间隔96肥厚程度不同、主动脉瓣92到室间隔96在X方向上的距离不同的个体,导管120的远端均能够抵达并贴靠至室间隔96表面,避免出现因导管120和鞘管110的长度不适配、导管120和/或鞘管110的弯曲角度或者弯曲方 向的限制等因素,导致导管120难以抵达并贴靠至室间隔96需要消融的肥厚组织的表面的问题,针对不同患者的不同心脏解剖形态,消融针160均能够实现稳定出针,增加消融系统1的可应用范围,同时有利于提高手术的成功率。
在某些实施方案中,如图11及图12所示,针对a、b两种室间隔96形态,如果导管120的远端要抵达至室间隔96表面,那么导管120能够从鞘管110的远端伸出的最大长度在X方向上至少应为X1和X2,其中X1<X2。假如,针对b种室间隔96形态,若导管120能够从鞘管110的远端伸出的最大长度在X方向上最多仅为X1,就会导致导管120的远端难以抵达并贴靠在室间隔96表面,从而使得手术过程中,消融针160难以稳定出针,从而达不到刺进室间隔96所需要的穿刺强度导致穿刺失败,甚至会出现消融针160变形及损毁的问题。
因此,设置导管120从鞘管110的远端伸出的部分在X方向上的最大长度至少为10mm,该设置能够适应不同个体主动脉瓣92和/或室间隔96的生理解剖结构的差异,保证面对不同患者,导管120的远端均至少能够抵达并贴靠在室间隔96表面,从而使消融针160能够在引导组件100的引导下稳定穿刺进入室间隔96肥厚组织,提升手术的成功率。
在某些实施方案中,为了保证在面对极端个体的情况下,导管120的远端至少能够抵达并贴靠至极端个体的室间隔96表面,导管120能够从鞘管110远端伸出的部分在X方向上的最大长度至少为15mm。
在某些实施方案中,导管120能够从鞘管110远端伸出的部分在X方向上的最大长度至多为25mm。可以理解地,通过限制导管120从鞘管110远端伸出的部分在X方向上的最大长度在25mm以内,能够避免导管120与鞘管110在轴向上的长度之间的差距过大导致对手术操作者造成不便,使得导管120自鞘管110的远端伸出的长度更易调节,此外,还能够避免因操作失误导致导管120在鞘管110的远端在X方向上伸出的长度过大,导致导管120的远端对心内膜造成损伤的问题。
需要说明的是,可以通过限制导管120与鞘管110轴向长度的差距、限制鞘管110的调弯角度和调弯方向、以及在手柄结构150中增加行程限位结构(图未示出)等方式中的一个或多个,以限制导管120自鞘管110远端在X方向可伸出的长度。
如图13所示,鞘管110的远端开口定位于升主动脉95内且邻近于主动脉瓣 92,通常情况下,鞘管110的远端开口与主动脉瓣92之间的距离在0-10mm之间。导管120能够从鞘管110远端伸出的部分在Z方向(如图13中Z箭头所指的方向)上的最大长度至少为25mm,Z方向大致为心房到心室的方向(Z方向与室间隔96的高度方向大致平行),Z方向与X方向垂直。可以理解地,通过设置导管120能够从鞘管110远端伸出的部分在Z方向(如图13中Z箭头所指的方向)上的最大长度至少为25mm,能够使得导管120的远端至少能够自鞘管110的远端伸出的部分沿Z方向延伸至基底部6的底部(基底部6的底部靠近室间隔96的中间部5,基底部6的顶部靠近房间隔),从而能够保证消融针160能够进行穿刺的位点相对于鞘管110的远端能够到达基底部6在Z方向上的最远处,避免在需要消融基底部6的底部的场景下,因导管120的远端在Z方向伸出的长度不够,导致导管120的远端难以贴靠至基底部6的期望的消融点位处,从而导致消融针160难以抵达至该消融位点从而难以对该消融位点进行穿刺消融的问题,进而扩展消融系统1的应用范围,有利于提高消融系统1的可靠性和手术的成功率。
需要说明的是,通常情况下,梗阻型肥厚心肌病最常见的表现型为室间隔96位于主动脉瓣92下方的基底部的肥大和增厚。因此,大部分的室间隔96消融手术需要的穿刺位点位于室间隔96的基底部6,其次为室间隔96的中间部5,然后才是室间隔96的心尖部4。因此,通过设置导管120能够从鞘管110远端伸出的部分在Z方向上的最大长度至少为25mm,能够使得消融系统1满足绝大多数患者的需求。
在某些实施方案中,如图14所示,假设手术期望的穿刺位点(也即消融位点)分别为c和d,那么所需导管120能够从鞘管110的远端伸出的部分在Z方向上的最大长度至少为Z1和Z2,Z1<Z2。若期望的穿刺的位点为d,而导管120在Z方向上从鞘管110的远端伸出的最大长度仅为Z1,则将会导致导管120难以到达穿刺位点d,从而导致消融针160无法对穿刺点位d处的肥厚组织进行穿刺并消融。因此,通过设置导管120从鞘管110的远端伸出的部分在Z方向上的最大长度至少为25mm,能够基本满足大多数患者在Z方向对基底部6的穿刺(消融)位点的需求,避免导管120的远端在Z方向可伸出的长度不够导致导管120的远端难以到达基底部6期望的消融位点,导致消融针160难以满足在Z方向对基底部6的任意位置进行穿刺消融的情况发生,从而扩展了消融系统1可应用范围,提高了可靠性。
在某些实施方案中,导管120能够从鞘管110的远端伸出的部分在Z方向上的最大长度至少为45mm。可以理解的是,针对室间隔96中间部5肥厚的患者,设置导管120能够从鞘管110的远端伸出的部分在Z方向上的最大长度至少为45mm能够基本覆盖该类患者的消融需求,保证消融针160沿Z方向在中间部5的任意位置(包括中间部5的底部(中间部5的底部靠近室间隔96的心尖部4,中间部5的顶部靠近基底部6的底部))进行穿刺消融,进而能够保证沿Z轴方向上消融针160所能穿刺消融的范围能够至少覆盖中间部5,能够避免在需要消融中间部5底部的场景下,因导管120的远端自鞘管110的远端在Z轴方向可伸出的长度不够,难以到达中间部5的底部导致中间部5穿刺失败进而消融不充分的问题,进一步提高消融系统1的可靠性和手术成功率。
在某些实施方案中,导管120从鞘管110的远端伸出的部分在Z方向上的最大长度至少为60mm。可以理解的是,针对室间隔96心尖部4肥厚的患者,设置导管120从鞘管110的远端伸出的部分在Z方向上的最大长度至少为60mm,能够确保消融针160沿Z方向在心尖部4的任意位置(包括心尖部4的底部(心尖部4的底部靠近心脏2的心尖,心尖部4的顶部靠近中间部5))实现穿刺,从而保证在Z方向上消融针160所能穿刺消融的范围能够覆盖心尖部4,能够避免在需要消融心尖部4底部的使用场景下,因导管120自鞘管110远端伸出的部分在Z方向上的长度不够,导致消融针160难以对心尖部4的任意位置进行穿刺,而使心尖部4消融失败的问题发生,有利于进一步提升该消融系统1的可靠性和手术成功率。
在某些实施方案中,导管120能够从鞘管110远端伸出的部分在Z方向上的最大长度至多为90mm。可以理解地,限制导管120从鞘管110远端伸出的部分在Z方向上的最大长度在90mm,能够避免导管120在Z方向上过度伸出鞘管110的远端,从而导致导管120的远端抵顶到心尖处,或在左心室91内发生折损的情况发生,有利于避免导管120对心内膜造成伤害。此外,限制导管120从鞘管110远端伸出的部分在Z方向上的最大长度在90mm以内,还能够方便手术操作者进行操作,使得导管120自鞘管110的远端伸出的长度更易调节。
需要说明的是,可以通过限制导管120与鞘管110轴向长度的差距、限制鞘管110的调弯角度和调弯方向、以及在手柄结构150中增加行程限位结构(图未示出)等方式中的一个或多个,以限制导管120自鞘管110远端在Z方向伸出的长 度。
如图15和图16所示,导管120能够从鞘管110远端伸出的部分在Y方向(如图中Y箭头所指方向)上的最大长度至少为26mm。Y方向垂直或接近垂直于心房到心室的方向(也就是说,Y方向垂直于Z方向,Y方向也大致平行于室间隔96的宽度方向(即室间隔96的前间隔7到后间隔8的方向)),并且Y方向与X方向垂直,设置导管120能够从鞘管110远端伸出的部分在Y方向上的最大长度至少为26mm能够避免因导管120自鞘管110的远端在Y方向伸出的长度不够,难以保证导管120的远端能够到达室间隔96在Y方向的任意位置(例如最远处),导致消融针160在Y方向上所能穿刺的范围不能覆盖室间隔96,进而导致室间隔96在Y方向上消融不充分的问题,有利于进一步提升消融系统1的可靠性和手术成功率。
如图16所示,假设期望的穿刺位点分别为e和f,所需的导管120能够从鞘管110的远端伸出的部分在Y方向上的长度分别为Y1和Y2,Y1小于Y2。如果期望的穿刺位点为f,而导管120伸出鞘管110远端的部分在Y方向上的最大长度仅为Y1,将会导致导管120的远端难以到达穿刺位点f,从而使得消融针160无法实现对穿刺点位f进行穿刺和消融。可以理解地,通过设置导管120能够从鞘管110远端伸出的部分在Y方向上的最大长度至少为26mm,以保证在面对需要消融室间隔96在Y方向不同位置的同一个体或者不同个体的情况下,导管120的远端能够到达室间隔96在Y方向的任意位置,进而保证消融针160在Y方向上所能穿刺的范围能够覆盖室间隔96,进而避免出现室间隔96在Y方向上消融不充分的问题。
在某些实施方案中,导管120能够从鞘管110的远端伸出的部分在Y方向上的最大长度至多为52mm。如此设置能够避免导管120的远端在Z方向上过度伸出导致损伤心内膜、或在左心室91内发生折损。此外,还能够方便手术操作者进行操作,使得导管120自鞘管110的远端伸出的长度更易调节。
需要说明的是,可以通过限制导管120与鞘管110轴向长度的差距、限制鞘管110的调弯角度和调弯方向、以及在手柄结构150中增加行程限位结构(图未示出)等方式中的一个或多个,以限制导管120自鞘管110远端在Y方向伸出的长度。
如图1和图17所示,消融针160释放的消融能量为射频能量。能量发生器20 包括射频发生电路(图未示出)。射频发生电路与消融针160电性连接,配置为向消融针160输送射频能量,以使消融针160能够将射频能量释放至消融针160周围的组织。
如图2及图18所示,消融针160包括针体162以及位于针体162远端的针尖161。在某些实施方案中,针尖161和针体162的远端部分构成与能量发生器20电性连接且能够释放消融能量破坏室间隔96的心肌活性的消融段163。消融段163至少部分能够穿刺进入室间隔96,且能够释放消融能量破坏室间隔96的心肌活性。此外,如图19所示,消融针160具有轴向内腔166,上述内腔166轴向贯通针体162。消融段163开设有至少一个与消融针160的内腔166连通的灌注孔164。灌注孔164配置为将消融针160的内腔166内的流体释放至室间隔96的肥厚组织。在某些实施方案中,针尖161可不构成消融段163,针尖161可以采用绝缘材料制成或者针尖161的外表面覆盖有绝缘材料。
消融针160至少远端部分能够在针尖161的引导下刺破心内膜组织并进入室间隔96的肥厚区域。通过消融段163释放能量,以破坏室间隔96肥厚组织的细胞活性,使得室间隔96肥厚的心肌组织变薄、收缩力下降,从而降低左心室91流出道梗阻的现象。此外,灌注孔164将位于消融针160内腔166内的流体释放至室间隔96的肥厚组织,通过该流体在室间隔96肥厚组织内的扩散,流体能够扩大消融段163的消融范围。
需要说明的是,上述流体为电解质溶液。应当知晓的是,消融针160的消融区域3的范围与射频电流的输出功率、输出时间、组织的阻抗和消融温度有明确的关系,在稳定的状态下,消融区域3的范围与组织与消融段163界面之间的温度及射频电流的输出功率呈正比,理论上,通过更高的输出功率和更高的组织温度,可以增加消融区域3范围的大小。但是,一旦组织的峰值温度超过了100℃的阈值,就会使得与消融段163接触的组织烧焦、结痂,烧焦结痂的组织粘附在消融段163表面,形成电绝缘的凝结物,并伴有电阻抗的突然增加,阻止了电流流入组织并进一步的发热,从而大大地减小了消融区域3(如图2所示)的范围。所以,为了防止这种现象,提高消融效率、增大消融区域3范围,可通过降低消融段163与组织接触面的温度来降低组织结痂的风险。
在某些实施方案中,经由灌注孔灌注出来的电解质溶液能够一定程度的冷却消融段163,降低消融段163与组织接触界面之间的温度,从而使得消融段163 产生的能量能向室间隔96肥厚组织的更深处进行传递,以此达到增大消融范围的目的。在某些实施方案中,由于电解质溶液在灌注进入室间隔96肥厚组织后,会发生扩散现象,扩散的电解质溶液将作为一种良好的射频电流的传递介质,将射频电流向心肌组织的更远处传递,通过此种原理,也可以达到增大消融区域3范围的目的。
上述电解质溶液,可以使用包括但不限于室温下的0.9%NaCl溶液、5℃的0.9%NaCl溶液、5%的葡萄糖溶液、肝素化0.9%NaCl溶液、0.9%NaCl溶液和造影剂的混合溶液等。同时,我们应考虑的是,为了在射频放电时更好地降低消融段163与心肌组织接触界面之间的温度,使用55℃左右的0.9%NaCl溶液,冷盐水能够更加有效地降低温度。
在某些实施方案中,为了能够在术中有效地实时观察并控制电解质溶液在心肌组织内的扩散范围,防止其过度扩散,造成消融范围过大损伤到心内膜上传导束的风险,电解质溶液可以选择冷生理盐水+显影剂的混合溶液,通过X-射线造影,术者能够直观地观测到混合有显影剂的电解质溶液在心肌组织内的扩散情况,从而实时调控消融的时间和灌注的流量及流速等情况,以此达到精准控制消融区域3范围大小的目的。
在某些实施方案中,采用微波消融、酒精消融等消融方式的消融针160的结构与采用射频消融的消融针160的结构基本相同,在此不再赘述。
在某些实施方案中,如图1所示,消融系统1还包括流体灌注装置30。流体灌注装置30包括流体存储器31、灌注泵32、以及流体管道33。流体存储器31配置为存储流体,灌注泵32将流体从流体存储器31中引出,流体管道33配置为导通流体存储器31和消融针160的内腔。
如图18和图19所示,在某些实施方案中,消融针160的针尖161为尖锐的尖端结构,其形状包括但不限于圆锥、三棱锥、四棱锥、单斜面刃口等形状,针尖161的形状的目的在于为消融针160提供足够锋利的针尖161结构,使得其能通过较小的穿刺力刺破心内膜组织,从而顺畅地进入到室间隔96的心肌组织中。针尖161通过包括但不限于粘接、激光焊接、熔接等连接方式实现与针体162的远端之间的固定。在某些实施方案中,针尖161与针体162也可以为一体结构。
如图19所示,针体162为中空的长管状结构,消融针160能通过针体162的近端开口灌注上述流体,上述流体通过消融针160的内腔166输送到消融针160 的远端部分(即消融段163),并通过设置于消融段163上的灌注孔164释放出来。
在某些实施方案中,消融针160也可以不设置灌注孔164,而是在消融针160内设置内循环通道,内循环通道内流通有冷却液体,冷却液体在该内循环通道中流动,从而对消融针160进行降温,避免高温导致局部组织过热甚至组织损伤。
需要说明的是,针体162可以为截面呈圆形的柱状结构,也可以为截面呈椭圆形的柱状结构。针体162的外壁应光滑,无明显凸起及棱角,防止其在进入人体目标位置的过程中,划伤血管内膜等组织。
此外,针体162可以使用具有良好电性导通的金属材料制成,使得其能通过针体162自身的优良电性传导性能,达到释放射频能量的目的。
需要说明的是,针体162的材料可以使用包括但不限于不锈钢管、镍钛合金等金属管材。
在某些实施方案中,由于消融针160需要通过复杂且曲折的外周血管路径到达室间隔96这个目标位置,且为了保证良好的穿刺角度,消融针160的远端部分同时将经过鞘管110、导管120调弯的漫长通路,且可能产生的剐蹭及摩擦。所以除开优良的电能传导性能这个因素之外,也应考虑到针体162所应具备的良好的机械及力学性能。
在某些实施方案中,消融针160由生物相容性高的金属管材制成。在某些实施方案中,为镍钛合金管材制成。由于镍钛合金具备优良的生物相容性,并且具有强度高、可塑形好、且在热处理之后能体现出超弹性的力学特性,所以镍钛合金制成的针体162能在经过复杂曲折的血管路径后及反复多次的调弯后,保持良好的回弹性能,不发生塑形变形,从而使得系统能更顺畅地通过血管到达目标位置,而不会因为针体162的塑性变形而增大通过的阻力。
可以理解地,在某些实施方案中,针体162也可以是由高分子材料制成,可在针体162上设置具有良好电性导通性的部件,使得针体162上能够形成能够释放消融能量的消融段163。在某些实施方案中,上述良好电性导通性的部件可以是一个或多个环状的金属电极,该金属电极通过包括但不限于粘接、熔接、压接、焊接等方式固定在针体162的远端部分,并通过导线与能量发生器20实现电性导通。在某些实施方案中,环状金属电极可以使用铂铱合金、钴铬合金、钽等不透射线的金属材料制成,这样,在具有优良的导电性能的同时,还能在 射线下具有显影效果,起到帮助术者确认消融段163位置的作用。
当针体162为高分子材料制成时,所使用的高分子材料应具有优异的强度、硬度、较高的弹性模量及良好的耐弯曲性能,能在反复的弯曲下不发生断裂及塑性变形,另一方面,为了保证针体162在沿导管120中心轴线前后运动的过程中具有优良的推送性能,所以该材料应具有较低的表面摩擦系数,能够降低消融针160在导管120内腔中的推送阻力,同时,为了保证针体162的绝缘,该材料应具有优良的介电绝缘性,绝缘电阻高,介电常数小,耐高压。
综上所述,针体162可以为由PP、HDPE、PTFE等高分子材料制成。
如图18所示,在消融针160的远端设置消融段163,该消融段163能与能量发生器20实现电性导通,从而通过消融段163向组织内部释放能量。当针体162为金属管材时,消融段163应作为针体162的一部分而存在,此时,针体162外部应贴附有一层绝缘层165,针体162远端未包覆绝缘材料的裸露区域则作为释放射频能量的消融段163。
在某些实施方案中,绝缘层165可以是通过热缩包覆在针体162上的一层高分子材料,也可以是直接套设于针体162外侧,同时也可以是通过涂覆工艺附着在针体162外侧。
绝缘层165的外表面应具有较低的摩擦系数和较高的绝缘电阻,较低的摩擦系数可以赋予消融针160良好的润滑性和推送性能,较高的绝缘电阻可以使得绝缘层165在高频的射频电流作用下依然保持优良的介电绝缘性而不被击穿。
当绝缘层165是通过热缩包覆在针体162外侧时,绝缘材料可以使用PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)、PTFE(Poly tetra fluoroethylene,聚四氟乙烯)、FEP(Fluorinated ethylene propylene,氟化乙丙烯)等材料。当绝缘层165是通过套设固定于针体162外侧时,绝缘层165可以使用PEEK(Poly-ether-ether-ketone,聚醚醚酮)、PI(Polyimide,聚酰亚胺)等材料。当绝缘层165是通过涂覆工艺粘附于针体162的外侧时,绝缘材料可以使用Parylene(派瑞林)。
消融段163的有效长度L(图未标)是指裸露在绝缘层165外能够与待治疗组织接触的长度。在某些实施方案中,消融段163的有效长度L为5mm至15mm。
在某些实施方案中,消融段163长度固定,即针体162与绝缘层165之间的相对位置固定不动,此时在同一套消融针160中消融段163的有效长度为一个确 定的固定值,可以通过设置不同有效长度的消融段163来设计多款不同型号规格的消融针160,以此满足不同患者不同组织形态尺寸的使用需求。
在某些实施方案中,针体162与绝缘层165之间的相对位置可以进行调节,从而实现针体162不同的裸露长度,达到实现调节不同消融段163的有效长度的目的。
区别于上述消融段163的有效长度固定不变的方式,在某些实施方案中,在针体162外套设有绝缘套管,将绝缘套管作为上述的绝缘层165,绝缘套管与针体162之间可相对滑动,可以通过控制针体162与绝缘层165之间的相对运动来控制消融段163的有效长度L。可以知道的是,过短的消融段163会使得消融区域3范围过小,不足以达到降低左室流出道压差的目的,或者为了达到这个目的,需要进行多次消融,增加了手术的时长;而过长的消融段163会过度增加消融区域3的范围,存在损伤心内膜上分布的传导束的风险。
在某些实施方案中,手柄结构150上设置有推送结构(图未示出),推送结构与上述绝缘套管相连接,能够驱动绝缘套管相对针体162滑动,从而调整暴露在绝缘套管外的针体162长度,即调整消融段163的有效长度L。手柄结构150上还设置有锁止结构(图未示出),锁止结构与针体162相连,配置为锁止并固定针体162,限制针体162与绝缘套管的相对运动。
在某些实施方案中,可以在针体162与绝缘套管保持相对固定的状态下,即消融段163的有效长度不变的情况下,一起刺破心内膜组织并扎入室间隔96心肌组织中。当需要调节消融段163的有效长度时,可以通过手柄结构150的锁止结构锁住针体162,使其在沿可调弯导管120中心轴线的方向上保持固定不动,再通过推动手柄结构150与绝缘套管固定连接的推送结构,使得绝缘套管能够实现沿着针体162中心轴线的前后相对运动,以此来控制暴露在绝缘套管外的消融段163的伸长或者缩短,由此改变消融段163的有效长度。
在某些实施方案中,锁止结构与绝缘套管相连,配置为锁止固定绝缘套管,推送结构与针体162相连,能够驱动针体162相对于绝缘套管滑动。
在某些实施方案中,在保持针体162与绝缘套管两者之间无相对运动的状态下,一起刺破心内膜组织并扎入室间隔96心肌组织中,当需要改变消融段163的有效长度时,通过控制锁止结构,使得绝缘套管保持沿针体162中心轴线的方向上固定不动,再通过推动推送结构,使得针体162能够沿绝缘套管中心轴 线的方向实现前后的相对运动,从而达到控制暴露在绝缘套管外的消融段163伸长或者缩短的目的,由此改变消融段163的有效长度。
在某些实施方案中,多个灌注孔在针体162轴向和周向上均匀分布。灌注孔形状可以是圆形、椭圆等形状。灌注孔可以使用激光切割的方式进行加工成型。
综上所述,以室间隔96的肥厚组织进行消融为例,本公开中的消融系统1的操作流程如下:
在超声/CT等影像设备的引导下,经股动脉穿刺,在导丝的引导下,依次经过降主动脉93、主动脉弓94、以及升主动脉95,然后跨过主动脉瓣92进入左心室91,如图3所示;
操作手柄结构150,当鞘管110达到目标位置后,将导管120顺着鞘管110的内腔输送到主动脉瓣92膜的靠近主动脉弓94部上方一侧,并在超声/CT等影像设备的引导下,在不损伤主动脉瓣92膜的情况下跨过主动脉瓣92进入左心室91,如图4所示;
控制鞘管110回退至主动脉瓣膜靠近主动脉弓94部一侧的位置,然后再控制导管120继续往远端方向伸出,如图8所示;
控制鞘管110的第一调弯段113及导管120的第二调弯段123的调弯方向与调弯角度,使得导管120的远端能够良好的贴靠在肥厚的室间隔96目标穿刺消融点位表面,如图15所示,可以理解地,通过设置导管120能够从鞘管110的远端伸出的部分在X方向上的最大长度至少为10mm,1以保证面对具有不同组织形态的患者,导管120的远端均能够抵达并贴靠至室间隔96肥厚组织的外壁上;
操作手柄结构150,控制消融针160从导管120的远端伸出,刺破室间隔96,到达室间隔96内部肥厚的心肌组织中,并在超声/CT影像及手柄上刻度标识的双重判断下,控制消融针160刺入的角度和深度,如图2所示;
启动灌注泵32,灌注泵32通过流体管道33向消融针160的内腔灌注流体,随后开启能量发生器,通过消融段163对目标穿刺消融点位的肥厚组织进行消融;以及
通过造影影像观察,当消融范围到达理想尺寸时,停止能量发生器20的能量输出,以及停止灌注泵32的流体灌注,操作手柄结构50将消融针160退回到导管120中。
在某些实施方案中,当期望消融的点位为多个时,可以重复操作步骤S2-S6一次或者多次,直至完成所有期望消融的点位的穿刺及消融。
在其他实施方案中,本公开的消融系统1还能够经下腔静脉-右心房-右心室、经下腔静脉-右心房-房间隔-左心房-左心室、经上腔静脉-右心房-右心室、经上腔静脉-右心房-房间隔-左心房-左心室等介入路径对室间隔96进行消融。在某些实施方案中,本公开的消融系统1还能够对其他心肌组织进行消融,例如经股动脉-主动脉-左心室-左心房对房间隔或者左心房壁进行消融,经股动脉-主动脉-左心室对左心室壁进行消融,经下腔静脉-右心房对右心房壁进行消融等等,本公开不一一列举。
应当指出,在说明书中提到的“一实施方案”、“实施方案”、“示例性实施方案”、“某些实施方案”等表示所述的实施方案可以包括特定特征、结构或特性,但未必每个实施方案都包括该特定特征、结构或特性。此外,这样的短语未必是指同一实施方案。此外,在结合实施方案描述特定特征、结构或特性时,结合明确或未明确描述的其他实施方案实现这样的特征、结构或特性处于本领域技术人员的知识范围之内。
最后应说明的是,以上各实施例仅用以说明本公开的技术方案,而非对其限制。尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (17)

  1. 引导组件,配置为实现稳定出针并引导消融针穿刺进入室间隔,所述引导组件包括:鞘管和导管,其中所述鞘管配置为进入主动脉且其远端开口定位于升主动脉内;所述导管活动穿设于所述鞘管中,所述导管能够从所述鞘管的远端伸出并且跨过主动脉瓣进入左心室,并且所述导管能够从所述鞘管的远端伸出的部分在X方向上的最大长度至少为10mm,X方向大致为左心室到右心室的方向。
  2. 如权利要求1所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述X方向上的最大长度至少为15mm。
  3. 如权利要求1或2所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述X方向上的最大长度至多为25mm。
  4. 如权利要求1至3中任一权利要求所述的引导组件,其中所述鞘管的远端开口邻近于主动脉瓣,所述导管能够从所述鞘管的远端伸出的部分在Z方向上的最大长度至少为25mm,所述Z方向垂直于所述X方向,且所述Z方向大致为心房到心室的方向。
  5. 如权利要求4所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至少为45mm。
  6. 如权利要求5或6所述的用引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至少为60mm。
  7. 如权利要求4至6中任一权利要求所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述Z方向上的最大长度至多为90mm。
  8. 如权利要求1至7中任一权利要求所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在Y方向上的最大长度至少为26mm,所述Y方向 垂直于所述X方向,并且所述Y方向垂直或者接近垂直于心房到心室的方向。
  9. 如权利要求1至8中任一权利要求所述的引导组件,其中所述导管能够从所述鞘管的远端伸出的部分在所述Y方向上的最大长度至多为52mm。
  10. 如权利要求1至9中任一权利要求所述的引导组件,其中所述鞘管从近端到远端依次包括第一主体段、第一塑型段以及第一调弯段,所述鞘管与主动脉的形状相适配,所述第一主体段的形状与降主动脉的形状相适配;所述第一塑型段的形状与主动脉弓的形状相适配;所述第一调弯段的形状与升主动脉的形状相适配;以及
    所述导管从近端到远端依次包括第二主体段、第二塑型段、以及第二调弯段,所述第二主体段与所述第一主体段相适配,所述第二塑型段与所述第一塑型段以及第一调弯段相适配,当所述鞘管的远端开口位于升主动脉内时,所述第二调弯段从所述第一调弯段的远端的开口伸出后进入左心室并且能够朝向所述X方向弯曲。
  11. 如权利要求10所述的引导组件,其中所述第一主体段与所述第一塑型段共同位于第一平面,所述第一调弯段至少其远端部分位于与所述第一平面之间具有夹角的第二平面。
  12. 如权利要求11所述的引导组件,其中所述第一平面与所述第二平面的夹角为a,其中10°≤a≤45°。
  13. 如权利要求10至12中任一权利要求所述的引导组件,其中所述导管的近端连接有手柄结构,所述手柄结构配置为控制所述第二调弯段朝向所述X方向弯曲,且所述手柄结构还配置为在控制所述第二调弯段朝向所述X方向弯曲的同时控制所述第二调弯段向Y方向摆动,所述Y方向垂直于所述X方向,并且所述Y方向垂直或者接近垂直于心房到心室的方向。
  14. 消融装置,其包括消融针以及权利要求1至13中任一权利要求所述的 引导组件,其中所述消融针活动穿设于所述导管中,且能够从所述导管的远端开口伸出;以及所述消融针配置为从所述导管的远端开口伸出后经心内膜刺入室间隔,并对所述室间隔进行消融。
  15. 如权利要求14所述的消融装置,其中所述消融针包括消融段,所述消融段至少部分能够穿刺进入所述室间隔且能够释放消融能量破坏所述室间隔的心肌活性;以及
    所述消融针具有轴向内腔,且所述消融段开设有至少一个与所述消融针的内腔相连通的灌注孔,所述灌注孔配置为将所述消融段的内腔内的流体释放至所述室间隔。
  16. 消融系统,其包括能量发生器、流体灌注装置以及权利要求14或15所述的消融装置,其中
    所述能量发生器与所述消融针电连接,配置为为所述消融针提供消融能量,以及
    所述流体灌注装置与所述消融针连接,配置为为所述消融针的内腔输送所述流体。
  17. 如权利要求16所述的消融系统,其中所述流体灌注装置包括:流体存储器、灌注泵及流体管道;
    所述流体存储器配置为存储所述流体;以及
    所述灌注泵配置为将所述流体从所述流体存储器中经所述流体管道输送到所述消融针的内腔。
PCT/CN2023/115750 2022-08-31 2023-08-30 引导组件、消融装置及消融系统 WO2024046359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211056042.8A CN117653322A (zh) 2022-08-31 2022-08-31 用于实现稳定出针的引导组件、消融装置及消融系统
CN202211056042.8 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024046359A1 true WO2024046359A1 (zh) 2024-03-07

Family

ID=90064923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115750 WO2024046359A1 (zh) 2022-08-31 2023-08-30 引导组件、消融装置及消融系统

Country Status (2)

Country Link
CN (1) CN117653322A (zh)
WO (1) WO2024046359A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120259A1 (en) * 2000-10-24 2003-06-26 Scimed Life Systems, Inc. Deflectable tip guide in guide system
WO2013146546A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
CN108024803A (zh) * 2015-04-10 2018-05-11 安吉戴尼克公司 使用热控电极进行不可逆电穿孔的系统和方法
CN111329558A (zh) * 2019-04-02 2020-06-26 闫朝武 用于经导管心脏室间隔穿刺的刺针系统及方法
CN111991674A (zh) * 2020-09-26 2020-11-27 龙德勇 一种肥厚梗阻性心肌病消融装置及方法
CN114652429A (zh) * 2021-12-31 2022-06-24 杭州诺沁医疗器械有限公司 经导管心肌消融装置及经导管心肌消融系统
CN114795454A (zh) * 2022-04-25 2022-07-29 绍兴梅奥心磁医疗科技有限公司 用于导管射频消融的可控序列弯长鞘管及导管射频消融装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120259A1 (en) * 2000-10-24 2003-06-26 Scimed Life Systems, Inc. Deflectable tip guide in guide system
WO2013146546A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 イントロデューサー
CN108024803A (zh) * 2015-04-10 2018-05-11 安吉戴尼克公司 使用热控电极进行不可逆电穿孔的系统和方法
CN111329558A (zh) * 2019-04-02 2020-06-26 闫朝武 用于经导管心脏室间隔穿刺的刺针系统及方法
CN111991674A (zh) * 2020-09-26 2020-11-27 龙德勇 一种肥厚梗阻性心肌病消融装置及方法
CN114652429A (zh) * 2021-12-31 2022-06-24 杭州诺沁医疗器械有限公司 经导管心肌消融装置及经导管心肌消融系统
CN114795454A (zh) * 2022-04-25 2022-07-29 绍兴梅奥心磁医疗科技有限公司 用于导管射频消融的可控序列弯长鞘管及导管射频消融装置

Also Published As

Publication number Publication date
CN117653322A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110809435B (zh) 医疗器械及处置方法
EP3777741B1 (en) Medical device
WO2020088139A1 (zh) 消融针组件及消融系统
US10118004B2 (en) Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
EP3275390B1 (en) Apparatus to create and maintain an intra-atrial pressure relief opening
US20040215186A1 (en) Electrical block positioning devices and methods of use therefor
JP7309688B2 (ja) 医療デバイス
WO2013101632A1 (en) Devices, systems, and methods for tissue crossings
JP7025409B2 (ja) ガイドワイヤおよび医療デバイス
CN115363740A (zh) 一种用于心肌消融的消融针、消融装置以及消融系统
CN111741788B (zh) 导丝及医疗器械
WO2023124180A1 (zh) 可调节的导引鞘、消融装置、消融系统及心肌消融方法
WO2023125927A1 (zh) 一种用于心肌消融的消融针、消融装置及消融系统
WO2024046359A1 (zh) 引导组件、消融装置及消融系统
WO2024046350A1 (zh) 引导组件、消融装置及消融系统
WO2024046356A1 (zh) 消融针、消融装置及消融系统
WO2020038216A1 (zh) 消融针组件及消融系统
EP4302715A1 (en) Medical device
WO2022071179A1 (ja) 医療デバイスおよびシャント形成方法
JP2022042115A (ja) 医療デバイスおよび方法
JP2022038122A (ja) 医療デバイスおよびシャント形成方法
JP2022038121A (ja) 医療デバイスおよびシャント形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859388

Country of ref document: EP

Kind code of ref document: A1