WO2024046273A1 - 翅片结构及其换热器 - Google Patents

翅片结构及其换热器 Download PDF

Info

Publication number
WO2024046273A1
WO2024046273A1 PCT/CN2023/115277 CN2023115277W WO2024046273A1 WO 2024046273 A1 WO2024046273 A1 WO 2024046273A1 CN 2023115277 W CN2023115277 W CN 2023115277W WO 2024046273 A1 WO2024046273 A1 WO 2024046273A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin structure
flat tube
opening
tube groove
structure according
Prior art date
Application number
PCT/CN2023/115277
Other languages
English (en)
French (fr)
Inventor
王冠军
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2024046273A1 publication Critical patent/WO2024046273A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Definitions

  • This application relates to the field of heat exchangers, in particular to fin structures and heat exchangers thereof.
  • Heat exchangers are usually used in refrigeration systems to absorb or release heat from the air through the medium flowing in them, thereby achieving the function of cooling or heating.
  • fin heat exchangers usually include heat exchange tubes and fins.
  • the fins are plugged into the heat exchange tubes to increase the contact area between the heat exchanger and the air and improve the heat exchange efficiency.
  • ordinary fins The heat exchange efficiency of the fin structure is not high. When the moisture in the air stays on the fins, the drainage effect of the fins is not good enough.
  • a fin structure is provided.
  • a fin structure used in a microchannel heat exchanger is provided with a flat tube groove, and the flat tube groove penetrates one side of the fin structure to form an opening.
  • the flat tube groove is A flat tube is provided through it, and the flat tube allows the medium to flow and cooperates with the fin structure to absorb or release heat to the air;
  • the fin structure includes a plurality of inclined sections, each of which extends from one end of the fin structure to the other end.
  • the plurality of inclined sections are connected in sequence to form a wave shape, and the inclined sections face away from each other. Both side surfaces are inclined surfaces inclined relative to the direction of the opening.
  • an angle ⁇ between the directions of the plurality of inclined surfaces and the opening is 5°-20°.
  • angles between the plurality of inclined surfaces and the direction in which the opening faces are all the same.
  • the angle between the inclined surface close to the flat tube groove and the direction of the opening is smaller than the angle between the inclined surface away from the flat tube groove and the direction of the opening.
  • the connecting curvatures between the plurality of inclined surfaces are continuous.
  • the number of inclined segments is 3-5.
  • the fin structure is formed into a wavy shape through a bending process.
  • a protrusion is provided on an edge of the flat tube groove, and the protrusion extends in a direction perpendicular to the direction of the opening.
  • the inner wall of the opening is provided with a guide section, and the guide section is connected to the inner wall of the flat tube groove.
  • the present application also provides a heat exchanger, including the fin structure as described above.
  • Figure 1 is a schematic structural diagram of the fin structure provided by this application.
  • Figure 2 is a cross-sectional view of the fin structure provided by this application.
  • Figure 3 is a schematic structural diagram of the fin structure provided by the present application with a first flange and a second flange.
  • FIG. 4 is a schematic structural diagram of the heat exchanger provided by this application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the first feature being "on” or “below” the second feature may mean that the first feature is in direct contact with the second feature, or the first feature and the second feature are in indirect contact. Contact through intermediaries.
  • the terms “above”, “above” and “above” the first feature of the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature of the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • This application provides a fin structure 100, which is used in micro-channel heat exchangers and is plugged and matched with heat exchange tubes to increase the contact area between the heat exchanger and the air and improve heat exchange. efficiency.
  • a fin structure 100 The fin structure 100 is provided with a flat tube groove 10.
  • the flat tube groove 10 penetrates the side of the fin structure 100 to form an opening 12.
  • a flat tube is passed through the flat tube groove 10, and the flat tube passes through the opening. 12 places are inserted into the flat tube slot 10, and the flat tube provides medium flow to cooperate with the fin structure 100 to absorb or release heat to the air;
  • the fin structure 100 includes a plurality of inclined sections 20.
  • the plurality of inclined sections 20 extend from one end to the other end of the fin structure 100.
  • the plurality of inclined sections 20 are connected end to end in order to form a wave shape. Both sides of the inclined section are facing away from each other. It is an inclined surface inclined with respect to the direction of the opening 12 .
  • the air flowing through the corrugated fin structure 100 can lengthen the flow path of the air on the surface of the fin structure 100 while the total width remains unchanged, prolong the contact time between the air and the surface of the fin structure 100, and increase the length of the air flow path.
  • the contact area between the air and the fin structure 100 is large, thereby improving the heat exchange efficiency.
  • the corrugated fins will also increase the resistance to air flow, slow down the air flow speed, and also increase the time that the air stays on the surface of the fin structure 100.
  • the heat exchange efficiency is improved; in addition, since the inclined section 20 extends from one end of the fin structure 100 to the other end, drainage will be smoother, preventing moisture from staying or even condensing on the fins.
  • the direction in which the opening 12 faces in this application is the direction in which the opening 12 faces away from the bottom of the flat tube groove 10 .
  • the angle ⁇ between the multiple inclined surfaces 21 and the direction in which the opening 12 faces is 5°-20°, such as 5°, 8°, 12°, 13°, 15°, 18° or 20°. °, such an arrangement can keep the slope of the inclined surface 21 at a reasonable value. If the slope angle is less than 5°, the fin structure 100 will not greatly improve the heat exchange efficiency; if the slope angle is greater than 20°, the external blowing element will The power requirement is too high, the power loss is too large, and the inclination angle is too large. There is a risk of deformation when the flat tube and the fin structure 100 are assembled.
  • the included angle here refers to the minimum positive angle formed between the inclined surface 21 and the flat tube groove 10.
  • the included angle ⁇ is embodied as an acute angle.
  • angles between the plurality of inclined surfaces 21 and the direction in which the opening 12 faces are all the same.
  • the angle ⁇ between the inclined surface 21 and the direction in which the opening 12 faces is both 8°.
  • the ratio between heat transfer efficiency and power requirements for the external blowing element is optimal.
  • the angle between the inclined surface 21 close to the flat tube groove 10 and the direction of the opening 12 is smaller than the angle between the inclined surface 21 far away from the flat tube groove 10 and the direction of the opening 12, thereby improving the connection between the fin structure 100 and the air.
  • the heat exchange efficiency of Condensation occurs on the leeward side of the groove 10 and flows and drips along the inclined surface 21 on the leeward side to facilitate drainage.
  • connection curvature between the inclined surfaces 21 is continuous. With this arrangement, the surface of the fin structure 100 is smoother, reducing dust accumulation and making the flow of liquid smoother.
  • Continuous curvature means that each inclined surface 21 is connected through a smooth transition section, and there is no discontinuous drop in the connection between the inclined surfaces 21 .
  • the fin structure 100 includes three, four or five inclined segments 20 .
  • the increase in the number of inclined sections 20 can make the number of wave peaks and wave troughs on the surface of the fin structure 100 denser, which further increases the flow path of the air, increases the contact area between the fin structure 100 and the air, and increases the flow resistance of the air, etc. factors, thereby improving the heat exchange efficiency of the fin structure 100.
  • the number of inclined sections 20 of the fin structure 100 is three, the power requirements for the external blowing elements can be reduced.
  • the number of inclined sections 20 of the fin structure 100 is five, Then the heat exchange efficiency of the fin structure 100 can be improved.
  • the fin structure 100 is formed into a wavy shape through a bending process. With this arrangement, the fin structure 100 is formed by bending its own material, without the need for additional structures, thereby reducing consumables and costs.
  • the fin structure 100 can also be formed into a corrugated shape through other processes, such as a stamping process.
  • a flange is formed on the inner wall of the flat tube groove 10.
  • the flange includes a first flange 40 and a second flange 50.
  • the second flange 50 surrounds the edge of the flat tube groove 10.
  • the first flange 40 Set on the second flanging 50 to enhance the strength of the flanging Spend.
  • the second flange 50 contacts the flat tube, which can increase the contact area between the fin structure 100 and the flat tube, thereby improving the stability of the connection between the two.
  • the second flange 50 can effectively control multiple fins of the heat exchanger.
  • the spacing between the sheet structures 100 facilitates assembly of the heat exchanger.
  • the edge of the flat tube groove 10 is provided with a protrusion 30 , the protrusion 30 is provided on the first flange 40 , and the protrusion 30 extends in a direction perpendicular to the direction in which the opening 12 faces.
  • This arrangement facilitates the control of the spacing between adjacent fin structures 100 when the multiple fin structures 100 are matched with the flat tubes, and also ensures the consistency of the spacing between the multiple fin structures 100 .
  • the surface of the protrusion 30 facing the adjacent fin structure 100 is flat, which can better fit the side surface of the adjacent fin structure 100 .
  • protrusions 30 There are multiple protrusions 30 , and the protrusions 30 on adjacent fin structures 100 can abut each other or be arranged staggered to adjust the spacing between adjacent fin structures 100 .
  • a guide section 11 is provided at the slot of the flat tube groove 10 .
  • the guide section 11 is connected with the inner wall of the flat tube groove 10 and can guide the direction of the flat tube when it is assembled, so as to facilitate the insertion of the flat tube into the flat tube groove 10 .
  • the guide section 11 is an inclined surface formed by chamfering. In other embodiments, the guide section 11 may also be an arc surface formed by chamfering.
  • this application also provides a heat exchanger 200, including the fin structure 100 as described above.
  • the fin structure 100 provided in this application adopts a corrugated design.
  • the air flowing through the corrugated fin structure 100 can make the air flow on the surface of the fin structure 100 while the total width remains unchanged. The path becomes longer, prolonging the contact time between the air and the surface of the fin structure 100, and increasing the contact area between the air and the fin structure 100, thereby improving the heat transfer efficiency.
  • the corrugated fins will also increase the resistance to the air flow, making the air Slowing down the flow speed can also increase the time the air stays on the surface of the fin structure 100 and improve the heat exchange efficiency; in addition, since the inclined section 20 extends from one end of the fin structure 100 to the other end, drainage will be smoother, preventing moisture from staying or even Condensation on the fins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种翅片结构(100),应用于微通道换热器中,翅片结构(100)开设有扁管槽(10),扁管槽(10)中穿设有扁管,扁管供介质流动,以与翅片结构(100)配合对空气进行吸热或放热;所述翅片结构(100)包括多个倾斜段(20),多个所述倾斜段(20)均从所述翅片结构(100)的一端延伸至另一端,多个所述倾斜段(20)依次首尾连接,构成波浪形状,所述倾斜段(20)的背向两侧均具有倾斜面(21)。

Description

翅片结构及其换热器
相关申请
本申请要求2022年8月30日申请的,申请号为202222312278.5,名称为“翅片结构及其换热器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及换热器领域,特别是涉及翅片结构及其换热器。
背景技术
换热器通常应用于制冷系统中,用于通过其中流动的介质对空气进行吸热或者放热,从而实现制冷或制热的功能。
相关的翅片式换热器,通常包括换热管和翅片,翅片与换热管插接配合,用于增大换热器与空气的接触面积,提升换热效率,但是普通的翅片结构换热效率不高,当空气中的水分停留于翅片上时,翅片的排水效果也不够好。
发明内容
根据本申请的各种实施例,提供一种翅片结构。
一种翅片结构,应用于微通道换热器中,所述翅片结构开设有扁管槽,所述扁管槽贯穿所述翅片结构的一侧以形成开口,所述扁管槽中穿设有扁管,所述扁管供介质流动,以与翅片结构配合对空气进行吸热或放热;
所述翅片结构包括多个倾斜段,多个所述倾斜段均从所述翅片结构的一端延伸至另一端,多个所述倾斜段依次连接以形成波浪形状,所述倾斜段背向的两侧面均为相对于所述开口的朝向倾斜设置的倾斜面。
在其中一个实施方式中,多个所述倾斜面与所述开口的朝向的夹角α为5°-20°。
在其中一个实施方式中,多个所述倾斜面与所述开口朝向的方向的夹角均相同。
在其中一个实施方式中,靠近所述扁管槽的所述倾斜面与所述开口的朝向的夹角小于远离所述扁管槽的所述倾斜面与所述开口的朝向的夹角。
在其中一个实施方式中,多个所述倾斜面之间的连接曲率连续。
在其中一个实施方式中所述倾斜段的个数为3-5。
在其中一个实施方式中,所述翅片结构通过折弯工艺形成波浪形状。
在其中一个实施方式中,所述扁管槽的边沿处设有凸起,所述凸起朝向与所述开口的朝向垂直的方向延伸。
在其中一个实施方式中,所述开口处的内壁设有引导段,所述引导段与所述扁管槽的内壁连接。
本申请还提供一种换热器,包括如上所述的翅片结构。
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的翅片结构的结构示意图。
图2为本申请提供的翅片结构的剖视图。
图3为本申请提供的翅片结构的设有第一翻边和第二翻边的结构示意图。
图4为本申请提供的换热器的结构示意图。
图中各符号表示含义如下:
100、翅片结构;10、扁管槽;11、引导段;12、开口;20、倾斜段;21、倾斜面;30、
凸起;40、第一翻边;50、第二翻边;200、换热器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“固定于”或“设置于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本申请的说明书所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说 明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”、“下”可以是第一特征直接和第二特征接触,或第一特征和第二特征间接地通过中间媒介接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅表示第一特征水平高度小于第二特征。
除非另有定义,本申请的说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请的说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1-3,本申请提供一种翅片结构100,应用于微通道换热器中,与换热管插接配合,用于增大换热器与空气的接触面积,提升换热效率。
一种翅片结构100,翅片结构100开设有扁管槽10,扁管槽10贯穿翅片结构100的侧部以形成开口12,扁管槽10中穿设有扁管,扁管从开口12处插入扁管槽10内,扁管供介质流动,以与翅片结构100配合对空气进行吸热或放热;
翅片结构100包括多个倾斜段20,多个倾斜段20均从翅片结构100的一端延伸至另一端,多个倾斜段20依次首尾连接,构成波浪形状,倾斜段背向的两侧面均为相对于开口12的朝向倾斜设置的倾斜面。
如此设置,空气流经波浪形状的翅片结构100能够在总宽度不变的情况下,使空气在翅片结构100表面的流动路径变长,延长空气与翅片结构100表面接触的时间,增大空气与翅片结构100的接触面积,从而提高换热效率,波纹状的翅片还会增强空气流动受到的阻力,使空气流速减缓,同样能够提高空气在翅片结构100表面停留的时间,提升换热效率;此外,由于倾斜段20从翅片结构100的一端延伸至另一端,所以排水会更加顺畅,防止水分停留甚至凝结在翅片上。
可以理解地,请参见图1,本申请所述的开口12朝向的方向为开口12朝向远离扁管槽10的槽底的方向。
具体地,请参见图2,多个倾斜面21与开口12朝向的方向的夹角α为5°-20°,例如5°、8°、12°、13°、15°、18°或20°,如此设置能够使倾斜面21的斜度处于合理值,若倾斜角度小于5°,则翅片结构100对于换热效率的提升不大;若倾斜角度大于20°,则对于外部吹风元件的功率要求过高,功率损耗也过大,同时倾斜角度过大,扁管与翅片结构100组装时存在变形的风险。
可以理解地,此处的夹角是指倾斜面21与扁管槽10之间形成的最小正角,在本实施例中,夹角α体现为锐角。
进一步地,多个倾斜面21与开口12朝向的方向的夹角均相同。如此设置,翅片结构100的成型更为方便,降低了工艺成本,并且装配的过程中,多个翅片结构100的一致性更好。
可选地,倾斜面21与开口12朝向的方向的夹角α均为8°。在该倾斜度下,换热效率和对外部吹风元件的功率要求的比例达到最佳。
在一实施例中,靠近扁管槽10的倾斜面21与开口12的朝向的夹角小于远离扁管槽10的倾斜面21与开口12的朝向的夹角,从而提高翅片结构100与空气的换热效率,具体地,在本实施例中,倾斜面21靠近扁管槽10的一侧为迎风侧,远离扁管槽10的一侧为背风侧,空气中的水分易于在远离扁管槽10的背风侧处凝结,并且沿着背风侧的倾斜面21流淌和滴落,便于排水。
倾斜面21之间的连接曲率连续。如此设置,翅片结构100表面更加光滑,减少灰尘累积,使液体的流动更加流畅。
曲率连续是指各个倾斜面21之间通过光滑的过渡段连接起来,倾斜面21之间的连接不存在不连续的落差。
翅片结构100包括三个、四个或五个倾斜段20。倾斜段20数量的增加能够使翅片结构100表面的波峰和波谷数量更加密集,也就进一步增加了空气的流动路径、提高了翅片结构100与空气的接触面积以及对于空气的流动阻力等等因素,从而提高翅片结构100的换热效率,当翅片结构100的倾斜段20为三个时,能够降低对于外部吹风元件的功率要求,翅片结构100的倾斜段20为五个时,则能够提高翅片结构100的换热效率。
翅片结构100通过折弯工艺形成波浪形状。如此设置,翅片结构100通过本身材质弯折成型,无需另外增设结构,减少耗材,降低成本。
当然,可以理解地,翅片结构100也能通过其他工艺形成波浪形状,例如冲压工艺。
请参见图3,扁管槽10的内壁形成有翻边,翻边包括第一翻边40和第二翻边50,第二翻边50环绕于扁管槽10的边缘,第一翻边40设置在第二翻边50上,以加强翻边的强 度。第二翻边50与扁管抵接,能够增加翅片结构100与扁管之间的接触面积,从而提高两者连接的稳固性,同时第二翻边50能有效控制换热器多个翅片结构100之间的间距,便于换热器的组装。
扁管槽10的边沿处设有凸起30,凸起30设置在第一翻边40上,凸起30朝向与开口12朝向的方向垂直的方向延伸。如此设置,方便多个翅片结构100与扁管配合时,相邻多个翅片结构100之间的间距控制,也能保证多个翅片结构100之间的间距一致性。
凸起30朝向相邻的翅片结构100的表面为平面,能够更好地与相邻的翅片结构100的侧面贴合。
凸起30为多个,相邻的翅片结构100上的凸起30可以互相抵接,也能够交错设置,从而调整相邻翅片结构100之间的间距。
扁管槽10的槽口处设有引导段11,引导段11与扁管槽10的内壁连接,能够在扁管装配时,引导其方向,便于扁管插入扁管槽10中。
在一实施例中,引导段11为斜面,通过倒角形成,在其他实施例中,引导段11还可为弧面,通过倒圆角形成。
请参见图4,本申请还提供一种换热器200,包括如上所述的翅片结构100。
相较于相关技术,本申请提供的翅片结构100通过波纹式的设计,空气流经波浪形状的翅片结构100能够在总宽度不变的情况下,使空气在翅片结构100表面的流动路径变长,延长空气与翅片结构100表面接触的时间,增大空气与翅片结构100的接触面积,从而提高换热效率,波纹状的翅片还会增强空气流动受到的阻力,使空气流速减缓,同样能够提高空气在翅片结构100表面停留的时间,提升换热效率;此外,由于倾斜段20从翅片结构100的一端延伸至另一端,所以排水会更加顺畅,防止水分停留甚至凝结在翅片上。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种翅片结构,应用于微通道换热器中,所述翅片结构开设有扁管槽,所述扁管槽贯穿所述翅片结构的一侧以形成开口,所述扁管槽中穿设有扁管,所述扁管供介质流动,以与翅片结构配合对空气进行吸热或放热;
    其特征在于,所述翅片结构包括多个倾斜段,多个所述倾斜段均从所述翅片结构的一端延伸至另一端,多个所述倾斜段依次连接以形成波浪形状,所述倾斜段背向的两侧面均为相对于所述开口的朝向倾斜设置的倾斜面。
  2. 根据权利要求1所述的翅片结构,其中,多个所述倾斜面与所述开口的朝向的夹角α为5°-20°。
  3. 根据权利要求1所述的翅片结构,其中,多个所述倾斜面与所述开口朝向的方向的夹角均相同。
  4. 根据权利要求1所述的翅片结构,其中,靠近所述扁管槽的所述倾斜面与所述开口的朝向的夹角小于远离所述扁管槽的所述倾斜面与所述开口的朝向的夹角。
  5. 根据权利要求1所述的翅片结构,其中,多个所述倾斜面之间的连接曲率连续。
  6. 根据权利要求1所述的翅片结构,其中,所述倾斜段的个数为3-5。
  7. 根据权利要求1所述的翅片结构,其中,所述翅片结构通过折弯工艺形成波浪形状。
  8. 根据权利要求1所述的翅片结构,其中,所述扁管槽的边沿处设有凸起,所述凸起朝向与所述开口的朝向垂直的方向延伸。
  9. 根据权利要求1所述的翅片结构,其中,所述开口处的内壁设有引导段,所述引导段与所述扁管槽的内壁连接。
  10. 一种换热器,其特征在于,包括权利要求1-9任意一项所述的翅片结构。
PCT/CN2023/115277 2022-08-30 2023-08-28 翅片结构及其换热器 WO2024046273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222312278.5 2022-08-30
CN202222312278.5U CN218723446U (zh) 2022-08-30 2022-08-30 翅片结构及其换热器

Publications (1)

Publication Number Publication Date
WO2024046273A1 true WO2024046273A1 (zh) 2024-03-07

Family

ID=85631456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115277 WO2024046273A1 (zh) 2022-08-30 2023-08-28 翅片结构及其换热器

Country Status (2)

Country Link
CN (1) CN218723446U (zh)
WO (1) WO2024046273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218723446U (zh) * 2022-08-30 2023-03-24 浙江盾安热工科技有限公司 翅片结构及其换热器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339587A (ja) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd 熱交換器
CN2643266Y (zh) * 2003-08-20 2004-09-22 青岛海信空调有限公司 空调用热交换器
CN102192674A (zh) * 2010-03-16 2011-09-21 乐金电子(天津)电器有限公司 扁管换热器及其装配方法
CN202195738U (zh) * 2011-03-16 2012-04-18 深圳山源电器有限公司 尖峰圆谷式波纹翅片管传热元件
CN105987540A (zh) * 2015-02-10 2016-10-05 上海交通大学 管片式平行流换热器
KR20220101401A (ko) * 2021-01-11 2022-07-19 엘지전자 주식회사 핀튜브 열교환기
CN218723446U (zh) * 2022-08-30 2023-03-24 浙江盾安热工科技有限公司 翅片结构及其换热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339587A (ja) * 1997-06-10 1998-12-22 Nippon Light Metal Co Ltd 熱交換器
CN2643266Y (zh) * 2003-08-20 2004-09-22 青岛海信空调有限公司 空调用热交换器
CN102192674A (zh) * 2010-03-16 2011-09-21 乐金电子(天津)电器有限公司 扁管换热器及其装配方法
CN202195738U (zh) * 2011-03-16 2012-04-18 深圳山源电器有限公司 尖峰圆谷式波纹翅片管传热元件
CN105987540A (zh) * 2015-02-10 2016-10-05 上海交通大学 管片式平行流换热器
KR20220101401A (ko) * 2021-01-11 2022-07-19 엘지전자 주식회사 핀튜브 열교환기
CN218723446U (zh) * 2022-08-30 2023-03-24 浙江盾安热工科技有限公司 翅片结构及其换热器

Also Published As

Publication number Publication date
CN218723446U (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
JP2007232246A (ja) 熱交換器
EP2295919B1 (en) Fin and heat exchanger having the same
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
WO2024046273A1 (zh) 翅片结构及其换热器
JP3110196U (ja) 細径管型熱交換器
WO2017016414A1 (zh) 用于换热器的翅片组件和具有该翅片组件的换热器
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
WO2018054319A1 (zh) 换热器芯体和具有其的换热器
WO2013054540A1 (ja) フィンチューブ熱交換器
EP2699867B1 (en) Heat exchanger
US11988462B2 (en) Heat exchanger and air conditioner using the heat exchanger
WO2019218429A1 (zh) 换热器及换热设备
WO2020062722A1 (zh) 一种翅片及具有其的热交换器
US6942024B2 (en) Corrugated heat exchange element
JPH04177091A (ja) 熱交換器
US10451352B2 (en) Micro-channel heat exchanger
CN211855020U (zh) 换热管和具有其的换热器
JP6656279B2 (ja) 熱交換器
CN107860248B (zh) 一种微通道换热器及空调
WO2018041138A1 (zh) 翅片和具有该翅片的换热器
CN108413803A (zh) 管翅单体和具有其的换热器、空调器
CN115790237A (zh) 一种换热翅片结构、换热管及换热器
CN212431870U (zh) 一种换热器
JP2010139115A (ja) 熱交換器及び熱交換器ユニット
EP2224198A1 (en) Fin and tube type heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859303

Country of ref document: EP

Kind code of ref document: A1