WO2024046217A1 - 用于监控管土耦合作用的方法、装置及控制器 - Google Patents

用于监控管土耦合作用的方法、装置及控制器 Download PDF

Info

Publication number
WO2024046217A1
WO2024046217A1 PCT/CN2023/114820 CN2023114820W WO2024046217A1 WO 2024046217 A1 WO2024046217 A1 WO 2024046217A1 CN 2023114820 W CN2023114820 W CN 2023114820W WO 2024046217 A1 WO2024046217 A1 WO 2024046217A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
pipeline
parameters
buried pipeline
strain
Prior art date
Application number
PCT/CN2023/114820
Other languages
English (en)
French (fr)
Inventor
蔡永军
陈朋超
张栋
吴张中
李亮亮
施宁
白路遥
马云宾
Original Assignee
国家石油天然气管网集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家石油天然气管网集团有限公司 filed Critical 国家石油天然气管网集团有限公司
Publication of WO2024046217A1 publication Critical patent/WO2024046217A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow

Definitions

  • the present application relates to the technical field of safety monitoring of buried pipelines, and specifically to a method, device and controller for monitoring the coupling effect of pipes and soils.
  • the monitoring of pipelines passing through geological disaster areas mainly uses resistive strain gauges, vibrating wire strain gauges, and fiber Bragg grating strain gauges to monitor the strain of the pipeline to determine the stress of the pipeline.
  • This method can only obtain the stress condition of the pipe, but cannot obtain the condition of the soil.
  • the condition of the soil in the pipeline laying environment is mainly realized through soil displacement monitoring, and the thrust of the soil on the pipeline is calculated through the displacement of the soil.
  • the existing pipeline safety assessment does not integrate the coupling relationship between the pipeline and the existing environment (soil), and cannot predict the safety status of the pipeline based on the surrounding environment information.
  • the purpose of the embodiments of the present application is to provide a method, device and controller for monitoring the coupling effect of pipes and soils, so as to solve the problem of too one-sided monitoring of buried pipeline safety in the prior art. details as follows:
  • the present invention provides a method for monitoring pipe-soil coupling.
  • the specific technical solution is as follows:
  • the controller communicates with multiple sensors and display devices respectively.
  • the multiple sensors are set around or on the buried pipeline.
  • the method includes:
  • Corresponding alarm signals are sent to the display device based on the corrected soil parameters, the force exerted by the soil on the buried pipeline, or the strain change rate of the buried pipeline.
  • the environmental parameters, soil parameters and pipeline parameters of buried pipelines sent by multiple sensors are obtained in real time, and the soil parameters are corrected through the environmental parameters to obtain corrected soil parameters. Therefore, the force exerted by the soil on the buried pipeline can be determined based on the corrected soil parameters, and the strain change rate of the buried pipeline can be determined based on the pipeline parameters. And further combine the corrected soil parameters, the force of the soil on the buried pipeline or the strain change rate of the buried pipeline to send corresponding alarm signals to the display device.
  • this application can determine the force of soil on buried pipelines and the evolution law of the interaction between soil and buried pipelines, and realize the safety of buried pipelines.
  • the purpose of monitoring is to improve the reliability and accuracy of early warning forecasts.
  • environmental parameters include rainfall
  • soil parameters include moisture content and temperature. Correcting soil parameters through environmental parameters to obtain corrected soil parameters includes:
  • the corresponding alarm signal is sent to the display device, including:
  • the multiple sensors include rainfall sensors, moisture sensors and temperature sensors. According to Predicted values of rainfall to determine soil moisture content include:
  • Determining soil mechanical property parameters based on predicted values of moisture content and temperature includes:
  • the corrected soil parameters also include deep displacement and surface displacement. Determining the force of the soil on the buried pipeline based on the corrected soil parameters includes:
  • the corresponding alarm signal is sent to the display device, including:
  • the multiple sensors include deep displacement sensors and surface displacement sensors. Determining the volume of the soil based on the deep displacement and surface displacement includes:
  • pipeline parameters include pipeline strain
  • multiple sensors include strain sensors.
  • Real-time acquisition of environmental parameters, soil parameters, and pipeline parameters of buried pipelines sent by multiple sensors includes:
  • Determining the strain change rate of buried pipelines based on pipeline parameters includes:
  • the corresponding alarm signal is sent to the display device, including:
  • the pipeline parameters also include pipeline displacement
  • the plurality of sensors also include pipe body displacement sensors.
  • the method further includes:
  • the multiple sensors include Brillouin optical fiber sensors, and the method further includes:
  • the environmental parameters also include infrasonic signals and vibration signals
  • the multiple sensors include infrasonic sensors and seismic sensors.
  • the method also includes:
  • the present invention also provides a controller, including:
  • the processor is configured to call the instructions from the memory and when executing the instructions, can implement the method for monitoring the pipe-soil coupling effect according to the above.
  • the present invention also provides a device for monitoring pipe-soil coupling, including:
  • Multiple sensors are installed around or on the buried pipeline and are configured to collect environmental parameters, soil parameters and pipeline parameters of the buried pipeline;
  • the above-mentioned controller communicates with multiple sensors
  • the display device in communication with the controller, is configured to receive alarm signals sent by the controller.
  • multiple sensors include:
  • a rainfall sensor configured to monitor rainfall in the environment surrounding the buried pipeline
  • a moisture sensor configured to monitor the moisture content of the soil
  • a temperature sensor configured to monitor the temperature of the soil
  • a surface displacement sensor configured to acquire the surface displacement of the soil
  • a deep displacement sensor configured to acquire the deep displacement of the soil mass
  • a strain sensor configured to monitor pipeline strain in the buried pipeline
  • a pipe body displacement sensor configured to monitor pipeline displacement of the buried pipeline
  • Brillouin fiber optic sensors configured to monitor strain in accompanying fiber optic cables of buried pipelines
  • Infrasonic sensor configured to monitor infrasound signals in the environment around buried pipelines
  • Seismic sensors are configured to monitor vibration signals in the environment surrounding buried pipelines.
  • Figure 1 schematically shows a structural diagram of a device for monitoring pipe-soil coupling according to an embodiment of the present application
  • Figure 2 schematically shows an installation position diagram of a partial sensor according to an embodiment of the present application
  • Figure 3 schematically shows a flow chart of a method for monitoring pipe-soil coupling according to an embodiment of the present application
  • Figure 4 schematically shows a flow chart of a method for monitoring pipe-soil coupling according to a specific embodiment of the present application
  • Figure 5 schematically shows a structural block diagram of a controller according to an embodiment of the present application.
  • Figure 1 schematically shows the structural diagram of a device for monitoring pipe-soil coupling according to an embodiment of the present application.
  • this embodiment of the present application provides multiple sensors 110, a controller 120, and a display device 130.
  • the plurality of sensors 110 may include rainfall sensors, moisture sensors, temperature sensors, surface displacement sensors, deep displacement sensors, strain sensors, Brillouin fiber optic sensors, infrasonic wave sensors, and seismic sensors for monitoring environmental parameters, soil parameters, and pipelines. parameter.
  • a plurality of sensors 110 are provided around or on the buried pipeline.
  • the controller 120 can receive environmental parameters, soil parameters and pipeline parameters collected by multiple sensors 110 to determine the stress status of the buried pipeline and provide trend warning.
  • the display device 130 communicates with the controller and can be used to receive the environmental parameters, corrected soil parameters, pipeline parameters, the force of the soil on the buried pipeline, and the range of the soil's action on the buried pipeline sent by the controller 120.
  • the multiple sensors 110, the controller 120 and the display device 130 can realize all-round monitoring of the buried pipeline, meet the need for trend early warning of the safety of the buried pipeline, and improve the accuracy in the process of monitoring the safety of the buried pipeline.
  • Figure 2 schematically shows an installation position diagram of a partial sensor according to an embodiment of the present application.
  • multiple sensors are installed along the buried pipeline.
  • the accompanying optical cable 206 of the buried pipeline and the buried pipeline are laid along a line.
  • Some of the buried pipelines are affected by landslides.
  • Landslide mass refers to the part of soil or rock mass that slides downward from the slope.
  • the sliding surface is an interface formed between the moving landslide body and the immobile body along which it slides.
  • the processor can obtain the moisture content and temperature of the soil collected by the moisture sensor 203 and the temperature sensor 204 on both sides of the pipe body in the sliding surface, and the moisture content of the soil collected by the moisture sensor 203 and the temperature sensor 204 on both sides of the sliding surface. and temperature. By obtaining the moisture content and temperature of the soil at different locations, the accuracy in the process of correcting soil parameters can be improved.
  • At least two deep displacement sensors 205 are installed along the direction of the buried pipeline to estimate the sliding surface range.
  • the specific process is as follows:
  • each deep displacement sensor 205 can measure the displacement at different depths at its location and generate a displacement change curve at the location of each deep displacement sensor 205.
  • the inflection point determines the sliding depth at the location of each deep displacement sensor, and then the sliding surface is fitted based on the sliding depth at the location of each deep displacement sensor 205, thereby completing the estimation of the sliding surface range.
  • the strain sensor 201 is installed on the buried pipeline, and at least three strain sensors 201 are installed on a section of the buried pipeline to monitor the strain of the buried pipeline in different directions.
  • a pipe body displacement sensor 202 is provided on the buried pipeline to monitor the displacement of the buried pipeline.
  • the pipe displacement sensor 202 includes, but is not limited to, an acceleration sensor based on a micro-electromechanical system, an ordinary vibration acceleration sensor, an ordinary vibration velocity sensor, and a displacement sensor.
  • FIG 3 schematically shows a flow chart of a method for monitoring pipe-soil coupling according to an embodiment of the present application.
  • an embodiment of the present application provides a method for monitoring pipe-soil coupling. The method may include the following steps.
  • the processor can determine the safety of the buried pipeline under the interaction between the buried pipeline and the soil based on environmental parameters, soil parameters and pipeline parameters acquired through multiple sensors.
  • the processor can obtain the environmental parameters, soil parameters and pipeline parameters of buried pipelines sent by multiple sensors. Further, the processor can correct the soil parameters through environmental parameters to obtain corrected soil parameters.
  • the environmental parameters include rainfall, infrasound wave signals and vibration signals
  • the corrected soil parameters include soil moisture content, temperature, deep displacement and surface displacement.
  • Deep displacement refers to the absolute displacement and relative displacement between points in deep cracks or sliding zones in the soil.
  • Surface displacement refers to the horizontal displacement of surface measuring points over time.
  • soil parameters also include soil mechanical property parameters.
  • Soil mechanical property parameters refer to index parameters that measure the looseness, density, softness and hardness of soil.
  • the processor can determine the changing trend of soil moisture content and thus the changing trend of soil mechanical performance parameters. According to the changing trend of soil mechanical property parameters, the processor can send alarm signals in advance to achieve the purpose of early warning.
  • the processor can determine the force exerted by the soil on the buried pipeline based on the corrected soil parameters. Based on the deep displacement and surface displacement in the corrected soil parameters, the processor can determine the volume of soil acting on the buried pipeline. Combining the volume of the soil and the soil mechanical property parameters, the processor can determine the force exerted by the soil on the buried pipeline. Further, by using multiple sensors to measure the deep displacement and surface displacement of the soil within the unit sampling time, the processor can determine the displacement velocity of the soil at different locations. According to the difference in soil displacement velocity at different locations, the differential deformation position of the soil and the sheared section of the buried pipeline can be determined, thereby obtaining the range of soil action on the buried pipeline.
  • Soil parameters include temperature.
  • Pipe parameters include pipe strains.
  • Pipeline strain refers to the degree of local relative deformation of buried pipelines under the action of external forces. Buried pipelines will undergo strain under the influence of temperature. Different temperatures cause different strains of buried pipelines due to temperature. In the embodiment of this application, only the impact of long-term factors on buried pipelines is considered, and the impact of short-term factors on buried pipelines is not considered, that is, the pipeline strain caused by temperature is not considered. Therefore, the pipeline collected by the strain sensor needs to be corrected according to the temperature. strain.
  • the processor can determine the rate of change of strain in the buried pipeline by differentiating the strain in the pipeline.
  • the processor sends corresponding alarm signals to the display device based on the corrected soil parameters, the force of the soil on the buried pipeline, or the strain change rate of the buried pipeline.
  • Alarm signals are divided into first-level alarm signals, second-level alarm signals and third-level alarm signals. In this way, the need to monitor the safety of buried pipelines at different stages can be met and the accuracy of early warning can be improved.
  • the environmental parameters, soil parameters and pipeline parameters of buried pipelines sent by multiple sensors are obtained in real time, and the soil parameters are corrected through the environmental parameters to obtain the corrected soil parameters, so that the corrected soil parameters can be obtained according to the corrected parameters.
  • the soil parameters determine the force exerted by the soil on the buried pipeline, and the strain change rate of the buried pipeline is determined based on the pipeline parameters. And further combine the corrected soil parameters, the force of the soil on the buried pipeline or the strain change rate of the buried pipeline to send corresponding alarm signals to the display device.
  • this application can determine the force of soil on buried pipelines and the evolution law of the interaction between soil and buried pipelines, and realize the safety of buried pipelines.
  • the purpose of monitoring is to improve the reliability and accuracy of early warning forecasts.
  • the environmental parameters may include rainfall, and the soil parameters may include moisture content and temperature.
  • S302 correcting the soil parameters through the environmental parameters to obtain the corrected soil parameters may include:
  • S3020 Determine the predicted value of soil moisture content based on rainfall. Specifically: soil moisture content is related to rainfall, soil slope, and vegetation coverage. First, measure the distribution curve of local rainfall versus time, and measure the moisture content in the soil. The changes in rainfall and water content over time are used to predict the changes in rainfall and moisture content in the future through the actual measured values. Based on this change, the predicted value of the moisture content of the soil can be determined based on the rainfall.
  • the soil shear strength, friction angle, compression modulus, shear modulus, pore water pressure and other parameters of different types of soil under different water contents and temperature conditions are measured in the laboratory, and then through The measured temperature and moisture content correct the real-time soil mechanical properties, changing the fixed parameter soil mechanical parameters in the traditional pipe-soil coupling model into Dynamic parameters, then, enable the determination of soil mechanical property parameters based on predicted values of moisture content and temperature.
  • Sending corresponding alarm signals to the display device according to the corrected soil parameters, the force of the soil on the buried pipeline, or the strain change rate of the buried pipeline may include:
  • the alarm signals are divided into first-level alarm signals, second-level alarm signals and third-level alarm signals.
  • the first-level alarm signal is a disaster alarm signal sent when a buried pipeline faces a disaster.
  • the secondary alarm signal is a disaster alarm signal sent when the soil moves.
  • the third-level alarm signal is a trend alarm signal sent when carrying out long-term trend warning.
  • the processor can determine whether to send a three-level alarm signal based on the corrected soil parameters. Through the rainfall sensor, the processor can obtain the rainfall around the buried pipeline and establish the relationship between rainfall and time, thereby predicting the changing trend of the soil moisture content within a certain period of time. Moreover, the processor can pre-measure the soil mechanical property parameters of the soil under different moisture contents and temperatures.
  • the soil mechanical performance parameters can be determined based on the predicted value of soil moisture content and soil temperature.
  • the first setting value can be preset according to the actual situation.
  • the first set value is the critical value used to determine whether the soil is unstable. When it is greater than or equal to the first set value, the soil is stable and the possibility of geological disasters is low, so there is no need to send an alarm signal. When the value is less than the first set value, the possibility of soil sliding is high, and a three-level alarm signal needs to be sent for early warning.
  • Determining soil mechanical property parameters based on predicted values of moisture content and temperature includes:
  • the processor can obtain data collected by multiple sensors to determine soil mechanical performance parameters.
  • the multiple sensors include a rainfall sensor, a moisture sensor, and a temperature sensor.
  • Rainfall sensors are used to collect rainfall in the environment around buried pipelines.
  • Moisture sensors are used to collect the moisture content of soil around buried pipelines.
  • Temperature sensors are used to collect the temperature of the soil around buried pipelines.
  • the processor can obtain the rainfall in the surrounding environment of the buried pipeline and establish the relationship between rainfall and time, thereby predicting the changing trend of the soil moisture content within a certain period of time.
  • the processor can pre-measure the soil mechanical property parameters of the soil under different moisture contents and temperatures. In this way, in the process of monitoring the coupling effect of pipe and soil, the soil mechanical performance parameters can be determined based on the predicted value of soil moisture content and soil temperature.
  • the corrected soil parameters may also include deep displacement and surface displacement.
  • S303. Determining the force of the soil on the buried pipeline based on the corrected soil parameters may include:
  • S3030 Determine the volume of the soil based on the deep displacement and surface displacement; specifically: the depth of sliding can be determined based on the deep displacement, and the sliding area (projection range) can be determined based on the surface displacement.
  • the soil can be obtained by multiplying the area and depth. volume of.
  • S3031. Determine the force of the soil on the buried pipeline based on the volume of the soil and the soil mechanical performance parameters; specifically: the volume of the soil multiplied by the density is the weight of the soil, and the product of the weight of the soil and the sliding angle is force on the pipe.
  • the pushing force on the pipeline can be obtained by considering the mechanical properties of the soil such as the compressive strength of the soil.
  • Sending corresponding alarm signals to the display device according to the corrected soil parameters, the force of the soil on the buried pipeline, or the strain change rate of the buried pipeline may include:
  • the processor can determine the force exerted by the soil on the buried pipeline based on the corrected soil parameters.
  • the soil parameters also include deep displacement and surface displacement.
  • the deep displacement of the soil can be obtained through the deep displacement sensor.
  • the surface displacement of the soil can be obtained through the surface displacement sensor.
  • the thickness of the soil exerting force on the buried pipeline can be obtained based on the deep displacement of the soil.
  • Image acquisition equipment can be set up on the soil around the buried pipeline.
  • the image data of the soil body is collected in real time through the image acquisition equipment, and the surface displacement of the soil body is monitored by comparing it with the reference image collected in the previous stage.
  • the processor can correct the surface displacement. From this, the processor can determine the volume of soil exerting force on the buried pipeline based on the deep and surface displacements. Combining the volume of the soil and the soil mechanical property parameters, the processor can determine the force exerted by the soil on the buried pipeline.
  • the force exerted by the soil on the buried pipeline can be obtained through the earth pressure sensor.
  • pressure to correct the pressure of the soil on the buried pipeline determined based on the soil mechanical property parameters, deep displacement and surface displacement In one example, four earth pressure sensors are installed at equal intervals on the same section of a buried pipeline to monitor soil pressure in multiple directions of the buried pipeline. The soil force on the buried pipeline is collected by the earth pressure sensor, and the pressure of the soil on the buried pipeline determined based on the soil mechanical performance parameters, deep displacement and surface displacement can be corrected.
  • the processor can preset the second setting value, and the second setting value needs to be set according to actual conditions.
  • the second setting value refers to the critical value at which the pressure of the soil on the buried pipeline is enough to cause the buried pipeline to shift. When the force exerted by the soil on the buried pipeline is greater than the second set value, the buried pipeline is displaced and the processor needs to send a secondary alarm signal.
  • the processor can determine the soil displacement velocity at different locations through the depth displacement and surface displacement within the unit sampling time.
  • the soil displacement velocity is the displacement between two sampling intervals divided by the time interval. It is non-homogeneous, so the moving speed at each position is generally inconsistent, and the moving speed of the soil at different positions needs to be calculated separately.
  • the deep inclinometer is a measuring tube used to monitor the horizontal displacement inside the soil. Due to deviations in soil displacement velocity at different depths, deep inclinometer tubes can be installed on buried pipelines to monitor the deformation of the soil and determine the location of the displaced soil. Specifically: drill the inclinometer tube into the It is installed vertically in the soil to measure the displacement in the depth direction, and determine the depth of sliding through the displacement of soil edge points at different positions. Generally, the bedrock that has no displacement in the deep part is the depth of the sliding surface, and the depth above the bedrock that is displaced together with the surface is the depth of the sliding surface.
  • the sheared section of the buried pipeline can be determined.
  • the deep inclinometer tube can measure the soil deformation at different depths.
  • the surface and deep displacement speeds at multiple positions are inconsistent.
  • the displacement in the sliding body is large, the edge position is slow, and there is no displacement outside the sliding body. Therefore, the displacement change speed of multiple displacement monitoring points can be interpolated to fit the velocity curve.
  • the position where the acceleration is 0 is the stationary point, and the point where the acceleration obtained by interpolation is zero is the shear plane.
  • the processor can determine the range of soil action on the buried pipeline.
  • the length of the pipeline between two sheared locations is the range of soil action on the buried pipeline.
  • the deep displacement and surface displacement of the pipeline can determine the volume of the sliding soil.
  • the product of the volume and density can obtain the mass of the soil.
  • the product of the mass of the soil and the sliding angle can be obtained. It is the pushing force in the direction of the slope.
  • the processor can obtain data collected by multiple sensors, and then determine the volume of soil exerting force on the buried pipeline.
  • Multiple sensors include deep displacement sensors and surface displacement sensors.
  • the deep displacement of the soil surrounding the buried pipeline can be obtained through a deep displacement sensor.
  • the surface displacement of the soil surrounding the buried pipeline can be obtained through the surface displacement sensor.
  • the thickness of the soil exerting force on the buried pipeline can be obtained based on the deep displacement of the soil.
  • the processor can determine the volume of soil exerting a force on the buried pipe.
  • the volume of soil exerting force on the buried pipeline is determined through the deep displacement and surface displacement collected by the deep displacement sensor and surface displacement sensor, so that the processor can determine the force exerted by the soil on the buried pipeline.
  • pipeline parameters may include pipeline strain
  • multiple sensors may include strain sensors.
  • S301, real-time acquisition of environmental parameters, soil parameters, and pipeline parameters of buried pipelines sent by multiple sensors may include:
  • Determining the strain change rate of the buried pipeline based on the pipeline parameters may include:
  • Sending corresponding alarm signals to the display device according to the corrected soil parameters, the force of the soil on the buried pipeline, or the strain change rate of the buried pipeline may include:
  • the pipeline parameters include pipeline strains.
  • the processor can obtain the pipeline strain of the buried pipeline through the strain sensor. Buried pipelines will undergo strain under the influence of temperature. Different temperatures cause different strains of buried pipelines due to temperature. In the embodiment of this application, only the impact of long-term factors on the buried pipeline is considered, and the impact of short-term factors on the buried pipeline, that is, the pipeline strain caused by temperature, is not considered. Therefore, the pipeline strain collected by the strain sensor needs to be corrected according to the temperature. In one example, when the temperature of the buried pipeline changes, deformation occurs between two points of the buried pipeline according to the expansion coefficient of the pipeline.
  • the processor can simultaneously monitor the temperature, strain and displacement of multiple sections of the buried pipeline, and eliminate the pipeline strain of the buried pipeline caused by the influence of temperature by determining the difference between the actual displacement and the theoretical displacement.
  • the actual displacement is the number of pipelines.
  • the displacement is measured by a displacement meter on a section.
  • the theoretical displacement is the displacement predicted by the algorithm.
  • the algorithm is a value calculated based on the thrust of the pipe and soil.
  • the first preset range is a range of strain change rates in which the possibility of fracture of the buried pipeline is high.
  • the second preset range is the range of strain change rate in which the buried pipeline undergoes severe deformation due to the force exerted by the soil.
  • the third preset range refers to the range of strain change rate where significant deformation occurs in the pipeline.
  • the processor can send an alarm signal based on the strain change rate of the buried pipeline.
  • the plurality of sensors includes strain sensors. Pipe strain of buried pipelines can be collected through strain sensors. Pipeline strain refers to the degree of local relative deformation of buried pipelines under the action of external forces. The processor needs to correct for pipe strain based on temperature.
  • the processor differentiates the pipeline strain to obtain the strain rate of the buried pipeline. By differentiating the strain rate, the strain change rate of the buried pipeline can be determined.
  • the processor can send different levels of alarm signals based on the strain change rate of the buried pipeline. In one example, assume that the first preset range is greater than or equal to 0.8, the second preset range is greater than or equal to 0.5 and less than 0.8, and the third preset range is greater than or equal to 0.2 and less than 0.5.
  • the processor sends a first-level alarm signal.
  • the processor sends a secondary alarm signal.
  • the processor sends a three-level alarm signal. Sending an alarm signal according to the strain change rate of the buried pipeline can achieve the purpose of determining different alarm signals by monitoring the status of the buried pipeline itself.
  • the pipeline parameters may also include pipeline displacement
  • the plurality of sensors may also include pipe body displacement sensors.
  • the method may further include:
  • the target point is the point that needs to be analyzed.
  • compression or lifting can be determined. If the absolute value of the displacement becomes larger, it is pulling, and if the absolute value of the displacement becomes smaller, it is compression.
  • the traditional strain measurement method uses strain gauges to measure strain, which is generally within a range of several centimeters.
  • Macroscopic strain also uses the definition of strain. The ratio of elongation or compression to length within a given range is used as the strain quantity. The distance between two points is measured, as well as the relative displacement over a period of time. The relative displacement is divided by the original distance. It is the macroscopic strain quantity.
  • This method can measure the macroscopic strain trend of any length, such as 100m, 1km, and 10km pipe lengths. The actual length of the pipe section can be determined using internal inspection data.
  • the processor can determine the macroscopic strain of the buried pipeline based on the pipeline displacement of the buried pipeline.
  • Pipe parameters also include pipe displacements.
  • Pipeline displacement is the displacement of buried pipelines under the action of external factors.
  • the processor can determine the displacement values of multiple points on the buried pipeline.
  • Pipe displacement sensors include but are not limited to acceleration sensors based on micro-electromechanical systems, ordinary vibration acceleration sensors, ordinary vibration speed sensors and displacement sensors.
  • pipeline displacement of a buried pipeline is monitored via a three-axis acceleration sensor. Based on the relative value of the buried pipeline displacement between two adjacent points, the processor can further determine the macroscopic strain of the buried pipeline.
  • the target point refers to the point on the buried pipeline where pipeline strain occurs. If the strain direction of the target point on the buried pipeline is inconsistent with the macro strain, that is, macro strain stretching, local strain compression, or macro strain compression, local strain stretching, then the section where the target point is located is defined as an important section, and the processor It can be determined that the important section is more likely to be broken, so that the processor can send the position of the important section to the display device when sending the alarm signal.
  • the processor can determine the deformation of the buried pipeline through the pipe body displacement sensor, and assist the pipeline strain monitoring results of the buried pipeline to determine the safety status of the pipeline, so as to improve the monitoring of buried pipelines. Safe accuracy.
  • the multiple sensors may include Brillouin optical fiber sensors, and the method may further include:
  • the processor can monitor the strain of the accompanying optical cable of the buried pipeline through the Brillouin optical fiber sensor to determine the position of the strain of the accompanying optical cable of the buried pipeline.
  • the Brillouin optical fiber sensor is a sensor that performs long-distance optical fiber strain monitoring based on the sensitivity of Brillouin scattering in optical fibers to strain.
  • the Brillouin optical fiber sensor can determine the strain position of the accompanying optical cable of the buried pipeline, thereby determining the deformation position of the soil. Due to the material of the buried pipeline itself, there is an error in the process of determining the deformation position of the soil through the strain of the pipeline.
  • the processor may send a secondary alarm signal in the event that the number of locations where microstrain occurs in the accompanying optical cable exceeds 50. Among them, the range of microstrain needs to be determined according to the actual situation.
  • the processor can determine the associated movement of buried pipelines through Brillouin optical fiber sensors.
  • the strain position of the accompanying optical cable is determined, and the deformation position of the soil is determined based on the strain position of the accompanying optical cable, thereby determining the range of action of the soil on the buried pipeline.
  • the environmental parameters may also include infrasonic signals and vibration signals
  • the multiple sensors may include infrasonic sensors and seismic sensors.
  • the method may further include:
  • the processor can monitor the infrasound wave signal and the vibration signal through the infrasound wave sensor and the seismic sensor, and determine the alarm signal based on the infrasound wave signal and the vibration signal.
  • the infrasonic sensor detects the infrasound signal
  • the seismic sensor detects the vibration signal
  • there is a risk of geological disasters so a three-level alarm signal needs to be sent for early warning.
  • the probability of damage to buried pipelines due to geological disasters can be reduced.
  • Figure 4 schematically shows a flow chart of a method for monitoring pipe-soil coupling according to a specific embodiment of the present application.
  • long-period inducing factor monitoring and prediction refers to a monitoring method that predicts the safety of buried pipelines based on environmental parameters of the surrounding environment of buried pipelines.
  • the short-period soil parameter monitoring and forecasting of disaster-causing factors refers to a monitoring method that predicts the safety of buried pipelines based on the soil parameters of the soil surrounding buried pipelines.
  • Disaster pipeline monitoring and early warning refers to a monitoring method that predicts the safety of buried pipelines based on the status of the buried pipeline itself.
  • a rainfall measuring station and a rainfall sensor can be set up on the soil to monitor rainfall.
  • the rainfall measuring station can conduct real-time monitoring of rainfall per unit time and total rainfall, and transmit the monitoring data to the processor. Every time the rainfall exceeds 10 mm, the rainfall measuring station can automatically send data.
  • infrasonic sensors and seismic sensors can also be installed on the soil at the same time to monitor the signals of soil movement.
  • the embodiment of the present application adopts a three-level alarm signal, which includes a first-level alarm signal, a second-level alarm signal and a third-level alarm signal.
  • soil mechanical performance parameters can be corrected in real time. Predictions of soil moisture content and soil mechanical property parameters can be determined based on rainfall.
  • the processor sends a three-level alarm signal when it is predicted that the soil moisture content will reach saturation in one hour and the existing slope conditions may lead to slope instability conditions.
  • the processor will alert attention through a three-level alarm signal.
  • image acquisition equipment can be set up on the soil to collect video images of the soil in real time and compare them with the baseline images collected in the previous stage to correct the surface of the soil. Partial displacement. Combine deep displacement, surface displacement and real-time calculated soil mechanical property parameters to determine the area and depth of the soil.
  • the processor can obtain the quality parameters and mechanical parameters of the soil based on the volume of the soil and the mechanical performance parameters of the soil, and further establishes a mechanical model of the soil and the buried pipeline. The slope of the curve of the movement of the soil with time changes significantly. If changes or the force of the soil on the buried pipeline can cause the buried pipeline to move, a secondary alarm signal will be used to alert the user.
  • the establishment process of the mechanical model is to obtain the numerical model of the interaction between the soil and the pipeline by measuring the dynamic process of the displacement and force of the soil and the pipeline, and using the curve fitting method.
  • the application of the mechanical model is to use historical monitoring data to predict the trend of future monitoring data.
  • the processor can determine the displacement values of multiple points on the buried pipeline. Based on the relative value of the buried pipeline displacement between two adjacent points, the processor can further determine the macroscopic strain of the buried pipeline. When the strain direction of the target point on the buried pipeline is consistent with the macroscopic strain trend, it is judged that the deformation of the buried pipeline is uniform.
  • the section where the target point is located is defined as an important section, and the processor It can be determined that the important section is more likely to be broken, so that the processor can send the position of the important section to the display device when sending the alarm signal.
  • the processor can provide early warning based on the strain change rate of the buried pipeline.
  • the processor can correct pipeline parameters of buried pipelines based on temperature, including pipeline strain.
  • temperature strain relief means that the processor can correct the pipeline strain of the buried pipeline through the temperature of the soil. After eliminating the pipe strain due to temperature, the processor can differentiate the pipe strain of the buried pipe to obtain the strain rate, and then differentiate the strain rate to obtain the strain change rate.
  • a three-level alarm signal is sent to remind the management of earthquake disasters; when the strain change rate exceeds 0.5, a second-level alarm signal is sent for emergency treatment; when the strain change rate exceeds 0.8, it is judged that the pipe body has been displaced and the stress is concentrated, and the treatment
  • the device gives an early warning of an impending disaster by sending a first-level alarm signal.
  • FIG. 5 schematically shows a structural block diagram of a controller according to an embodiment of the present application. As shown in Figure 5, this embodiment of the present application provides a controller, which may include:
  • Memory 510 configured to store instructions
  • the processor 520 is configured to call instructions from the memory 510 and when executing the instructions, can implement the above-mentioned method for monitoring the pipe-soil coupling effect.
  • the processor 520 may be configured to:
  • Corresponding alarm signals are sent to the display device based on the corrected soil parameters, the force exerted by the soil on the buried pipeline, or the strain change rate of the buried pipeline.
  • processor 520 can also be configured to:
  • the corresponding alarm signal is sent to the display device, including:
  • processor 520 can also be configured to:
  • Determining soil mechanical property parameters based on predicted values of moisture content and temperature includes:
  • processor 520 can also be configured to:
  • the corresponding alarm signal is sent to the display device, including:
  • processor 520 can also be configured to:
  • Deep displacement is collected through a deep displacement sensor
  • processor 520 can also be configured to:
  • Determining the strain change rate of buried pipelines based on pipeline parameters includes:
  • the corresponding alarm signal is sent to the display device, including:
  • processor 520 can also be configured to:
  • processor 520 can also be configured to:
  • processor 520 can also be configured to:
  • the environmental parameters, soil parameters and pipeline parameters of buried pipelines sent by multiple sensors are obtained in real time, and the soil parameters are corrected through the environmental parameters to obtain corrected soil parameters. Therefore, the force exerted by the soil on the buried pipeline can be determined based on the corrected soil parameters, and the strain change rate of the buried pipeline can be determined based on the pipeline parameters. And further combine the corrected soil parameters, the force of the soil on the buried pipeline or the strain change rate of the buried pipeline to send corresponding alarm signals to the display device.
  • this application can determine the force of soil on buried pipelines and the evolution law of the interaction between soil and buried pipelines, and realize the safety of buried pipelines.
  • the purpose of monitoring is to improve the reliability and accuracy of early warning forecasts.
  • Embodiments of the present application also provide a device for monitoring pipe-soil coupling, which may include:
  • Multiple sensors are installed around or on the buried pipeline and are configured to collect environmental parameters, soil parameters and pipeline parameters of the buried pipeline;
  • the above-mentioned controller communicates with multiple sensors
  • the display device in communication with the controller, is configured to receive alarm signals sent by the controller.
  • this embodiment of the present application provides multiple sensors 110, a controller 120, and a display device 130.
  • the plurality of sensors 110 may include rainfall sensors, moisture sensors, temperature sensors, surface displacement sensors, deep displacement sensors, strain sensors, Brillouin fiber optic sensors, infrasonic wave sensors, and seismic sensors for monitoring environmental parameters, soil parameters, and pipelines. parameter.
  • a plurality of sensors 110 are provided around or on the buried pipeline.
  • the controller 120 can receive environmental parameters, soil parameters and pipeline parameters collected by multiple sensors 110 to determine the stress status of the buried pipeline and provide trend warning.
  • the display device 130 communicates with the controller and can be used to receive the environmental parameters, corrected soil parameters, pipeline parameters, the force of the soil on the buried pipeline, and the range of the soil's action on the buried pipeline sent by the controller 120.
  • the multiple sensors 110, the controller 120 and the display device 130 can realize all-round monitoring of the buried pipeline, meet the need for trend early warning of the safety of the buried pipeline, and improve the accuracy in the process of monitoring the safety of the buried pipeline.
  • multiple sensors may include:
  • a rainfall sensor configured to monitor rainfall in the environment surrounding the buried pipeline
  • a moisture sensor configured to monitor the moisture content of the soil
  • a temperature sensor configured to monitor the temperature of the soil
  • a surface displacement sensor configured to acquire the surface displacement of the soil
  • a deep displacement sensor configured to acquire the deep displacement of the soil
  • a strain sensor configured to monitor pipeline strain in the buried pipeline
  • a pipe body displacement sensor configured to monitor pipeline displacement of the buried pipeline
  • Brillouin fiber optic sensors configured to monitor strain in accompanying fiber optic cables of buried pipelines
  • Infrasonic sensor configured to monitor infrasound signals in the environment around buried pipelines
  • Seismic sensors are configured to monitor vibration signals in the environment surrounding buried pipelines.
  • the rainfall sensor is installed on the soil around the buried pipeline and is used to monitor the rainfall in the environment around the buried pipeline.
  • Moisture sensors are installed around buried pipelines to monitor the moisture content of the soil.
  • the temperature sensor is set at Around buried pipelines, it is used to monitor the temperature of the soil.
  • the surface displacement sensor is connected to the buried pipeline and used to obtain the surface displacement of the soil.
  • the deep displacement sensor is installed deep in the soil around the buried pipeline and is used to obtain the deep displacement of the soil.
  • the strain sensor is disposed on the buried pipeline and configured to monitor pipeline strain.
  • the pipe body displacement sensor is installed on the buried pipeline and is used to monitor the pipeline displacement of the buried pipeline.
  • Pipe displacement sensors include but are not limited to acceleration sensors based on micro-electromechanical systems, ordinary vibration acceleration sensors, ordinary vibration speed sensors and displacement sensors.
  • pipeline displacement of a buried pipeline is monitored via a three-axis acceleration sensor.
  • Brillouin optical fiber sensor is a sensor that monitors the strain of accompanying optical cables based on the sensitivity of Brillouin scattering in optical fibers to strain. It can monitor the strain of accompanying optical cables in buried pipelines.
  • Infrasonic sensors and vibration sensors are installed on the soil around buried pipelines to monitor infrasound signals and vibration signals around buried pipelines. Through multiple sensors, the processor can obtain environmental parameters, soil parameters and pipeline parameters to comprehensively monitor the safety of buried pipelines.
  • Embodiments of the present application also provide a machine-readable storage medium, with instructions stored on the machine-readable storage medium. The instructions are used to cause the machine to execute the above-mentioned method for monitoring pipe-soil coupling.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-volatile memory in computer-readable media, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical storage, Magnetic tape cassettes, tape disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

本申请公开了一种用于监控管土耦合作用的方法、装置及控制器。该方法包括:实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数;通过环境参数修正土体参数,以得到修正后的土体参数;根据修正后的土体参数确定土体对埋地管道的作用力;根据管道参数确定埋地管道的应变变化率;根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。本申请能够确定土体对埋地管道的作用力及土体与埋地管道在相互作用下的演变规律,实现对埋地管道与土体在相互作用下的安全进行监控的目的,并提高预警预报的可靠性与准确性。

Description

用于监控管土耦合作用的方法、装置及控制器 技术领域
本申请涉及埋地管道安全监测技术领域,具体地涉及一种用于监控管土耦合作用的方法、装置及控制器。
背景技术
管道穿越地质灾害区的监测主要采用电阻式应变片、振弦式应变计、光纤光栅应变计来进行管体应变监测,从而判断管道的受力情况。这种方法只能获得管道的受力情况,未能获得土壤的情况。管道敷设环境土壤的情况主要通过土体位移监测来实现,通过土体的位移来计算土体对管道的推力。
在管道的安全性评价中目前主要采用基于应力的评价或者基于应变的评价,但是当前的评价方法只适用于管道本体受力安全性评价,没有考虑地质灾害的发生和发展趋势,不能实现管道安全发展趋势的预测。
现有管道安全评价没有综合管道和赋存环境(土壤)的耦合关系,不能结合周围环境信息对管道的安全状况进行预测。
发明内容
本申请实施例的目的是提供一种用于监控管土耦合作用的方法、装置及控制器,用以解决现有技术中对埋地管道安全的监测过于片面的问题。具体如下:
1)第一方面,本发明提供一种用于监控管土耦合作用的方法,具体技术方案如下:
应用于控制器,控制器分别与多个传感器和显示设备通信,多个传感器设置在埋地管道的周边或埋地管道上,该方法包括:
实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数;
通过环境参数修正土体参数,以得到修正后的土体参数;
根据修正后的土体参数确定土体对埋地管道的作用力;
根据管道参数确定埋地管道的应变变化率;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。
本发明提供的一种用于监控管土耦合作用的方法的有益效果如下:
实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数,并通过环境参数修正土体参数,以得到修正后的土体参数。从而能够根据修正后的土体参数确定土体对埋地管道的作用力,根据管道参数确定埋地管道的应变变化率。并进一步结合修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。本申请基于埋地管道的环境数据、土体数据和管道数据,能够确定土体对埋地管道的作用力及土体与埋地管道在相互作用下的演变规律,实现对埋地管道安全进行监控的目的,并提高预警预报的可靠性与准确性。
在本申请实施例中,环境参数包括降雨量,土体参数包括含水量和温度,通过环境参数修正土体参数,以得到修正后的土体参数包括:
根据降雨量确定土体的含水量的预测值;
根据含水量的预测值和温度确定土体力学性能参数;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在土体力学性能参数小于第一设定值的情况下,发送三级报警信号。
在本申请实施例中,多个传感器包括降雨传感器、水分传感器和温度传感器,根据 降雨量确定土体的含水量的预测值包括:
通过降雨传感器采集埋地管道周边环境的降雨量;
通过水分传感器采集土体的含水量;
根据土体的含水量和降雨量确定土体的含水量预测值;
根据含水量的预测值和温度确定土体力学性能参数包括:
通过温度传感器采集土体的温度;
根据含水量的预测值和温度确定土体力学性能参数。
在本申请实施例中,修正后的土体参数还包括深部位移和表部位移,根据修正后的土体参数确定土体对埋地管道的作用力包括:
根据深部位移和表部位移确定土体的体积;
根据土体的体积和土体力学性能参数确定土体对埋地管道的作用力;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在土体对埋地管道的作用力大于第二设定值的情况下,发送二级报警信号。
在本申请实施例中,多个传感器包括深部位移传感器和表部位移传感器,根据深部位移和表部位移确定土体的体积包括:
通过深部位移传感器采集深部位移;
通过表部位移传感器采集表部位移;
根据深部位移和表部位移确定土体的体积。
在本申请实施例中,管道参数包括管道应变,多个传感器包括应变传感器,实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数包括:
通过应变传感器获取埋地管道的管道应变;
根据管道参数确定埋地管道的应变变化率包括:
将管道应变进行微分,以得到埋地管道的应变变化率;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在埋地管道的应变变化率在第一预设范围内的情况下,发送一级报警信号;
在埋地管道的应变变化率在第二预设范围内的情况下,发送二级报警信号;
在埋地管道的应变变化率在第三预设范围内的情况下,发送三级报警信号。
在本申请实施例中,管道参数还包括管道位移,多个传感器还包括管体位移传感器,该方法还包括:
通过管体位移传感器获取埋地管道的多个点的管道位移;
根据多个点中的相邻两个点的管道位移的相对值确定埋地管道的宏观应变趋势;
根据埋地管道的目标点的管道应变的方向与宏观应变趋势确定重要截面的位置;
将重要截面的位置发送至显示设备。
在本申请实施例中,多个传感器包括布里渊光纤传感器,该方法还包括:
通过布里渊光纤传感器确定埋地管道的伴行光缆应变的位置;
在伴行光缆应变的位置的数量超过预设数量的情况下,发送二级报警信号。
在本申请实施例中,环境参数还包括次声波信号和震动信号,多个传感器包括次声波传感器和地震传感器,该方法还包括:
通过次声波传感器检测次声波信号;
通过地震传感器检测震动信号;
在检测到次声波信号和震动信号的情况下,发送三级报警信号。
2)第二方面,本发明还提供一种控制器,包括:
存储器,被配置成存储指令;以及
处理器,被配置成从存储器调用指令以及在执行指令时能够实现根据上述的用于监控管土耦合作用的方法。
3)第三方面,本发明还提供一种用于监控管土耦合作用的装置,包括:
多个传感器,设置在埋地管道的周边或埋地管道上,被配置成采集埋地管道的环境参数、土体参数和管道参数;
上述的控制器,与多个传感器通信;
显示设备,与控制器通信,被配置成接收控制器发送的报警信号。
在本申请实施例中,多个传感器包括:
降雨传感器,被配置成监测埋地管道周边环境的降雨量;
水分传感器,被配置成监测土体的含水量;
温度传感器,被配置成监测土体的温度;
表部位移传感器,被配置成获取土体的表部位移;
深部位移传感器,被配置成获取土体的深部位移;
应变传感器,被配置成监测埋地管道的管道应变;
管体位移传感器,被配置成监测埋地管道的管道位移;
布里渊光纤传感器,被配置成监测埋地管道的伴行光缆的应变;
次声波传感器,被配置成监测埋地管道周边环境的次声波信号;
地震传感器,被配置成监测埋地管道周边环境的震动信号。
需要说明的是,本发明的第二方面至第三方面的技术方案及对应的可能的实现方式所取得的有益效果,可以参见上述对第一方面及其对应的可能的实现方式的技术效果,此处不再赘述。
附图说明
附图是用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施例,但并不构成对本申请实施例的限制。在附图中:
图1示意性示出了根据本申请实施例的一种用于监控管土耦合作用的装置的结构图;
图2示意性示出了根据本申请实施例的一种部分传感器的安装位置图;
图3示意性示出了根据本申请实施例的一种用于监控管土耦合作用的方法的流程图;
图4示意性示出了根据本申请一具体实施例的一种用于监控管土耦合作用的方法的流程图;
图5示意性示出了根据本申请实施例的一种控制器的结构框图。
附图标记说明:
201、应变传感器;202、管体位移传感器;203水分传感器;204、温度传感器;205、
深部位移传感器;206、伴行光缆。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请实施例,并不用于限制本申请实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等 的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
图1示意性示出了根据本申请实施例的一种用于监控管土耦合作用的装置的结构图。如图1所示,本申请实施例提供多个传感器110、控制器120、显示设备130。多个传感器110可以包括降雨传感器、水分传感器、温度传感器、表部位移传感器、深部位移传感器、应变传感器、布里渊光纤传感器、次声波传感器和地震传感器,用于监测环境参数、土体参数和管道参数。多个传感器110设置在埋地管道的周边或埋地管道上。控制器120可以接收多个传感器110采集的环境参数、土体参数和管道参数,从而判断埋地管道的受力状况,并进行趋势预警。显示设备130与控制器通信,可以用于接收控制器120发送的环境参数、修正后的土体参数、管道参数、土体对埋地管道的作用力、土体对埋地管道作用的范围、埋地管道的应变变化率和报警信号,其中,土体对埋地管道作用的范围根据修正后的土体参数中的深部位移和表部位移确定。通过多个传感器110、控制器120和显示设备130可以实现对埋地管道的全方位监测,并满足对埋地管道的安全进行趋势预警的需要,提高监测埋地管道安全过程中的准确性。
图2示意性示出了根据本申请实施例的一种部分传感器的安装位置图。如图2所示,本申请实施例沿埋地管道设置多个传感器。在一个示例中,埋地管道的伴行光缆206与埋地管道在沿一线路铺设。埋地管道的部分管道受滑坡体影响。滑坡体是指从斜坡上向下滑动的部分土体或岩体。滑动面是滑坡体移动时与不动体之间形成的一个沿其下滑的界面。处理器可以获取滑动面内管体两侧的水分传感器203和温度传感器204采集的土体的含水量和温度,以及滑动面外两侧的水分传感器203和温度传感器204采集的土体的含水量和温度。通过获取不同位置的土体的含水量和温度,可以提高在修正土体参数这一过程中的准确性。
沿埋地管道方向上至少设置两个深部位移传感器205,从而实现对滑动面范围的估算,具体过程如下:
首先,每个深部位移传感器205可以测量到所在位置的不同深度的位移情况,生成每个深部位移传感器205所在位置的位移变化曲线,其次,每个深部位移传感器205所在位置的位移变化曲线中的拐点确定每个深部位移传感器所在位置的滑动深度,然后,根据每个深部位移传感器205所在位置的滑动深度拟合出滑动面,从而完成滑动面范围的估算。
其中,应变传感器201设置在埋地管道上,埋地管道的一截面至少安装三个应变传感器201,以监测埋地管道在不同方向上的应变。此外,埋地管道上设置有管体位移传感器202,以监测埋地管道的位移。管体位移传感器202包括但不限于基于微机电系统的加速度传感器、普通振动类加速度传感器、普通振动类速度传感器和位移传感器。通过在埋地管道的周边或者埋地管道上设置多个传感器,可以获取埋地管道周边的环境参数、土体参数以及埋地管道的管道参数,从而实现对埋地管道全方面的监测。
图3示意性示出了根据本申请实施例的一种用于监控管土耦合作用的方法的流程图。如图1所示,本申请实施例提供一种用于监控管土耦合作用的方法,该方法可以包括下列步骤。
S301、实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数;
S302、通过环境参数修正土体参数,以得到修正后的土体参数;
S303、根据修正后的土体参数确定土体对埋地管道的作用力;
S304、根据管道参数确定埋地管道的应变变化率;
S305、根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。
在本申请实施例中,处理器可以根据通过多个传感器获取的环境参数、土体参数和管道参数确定在埋地管道和土体相互作用下的埋地管道安全。处理器可以获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数。进一步地,处理器可以通过环境参数修正土体参数,以得到修正后的土体参数。其中,环境参数包括降雨量、次声波信号和震动信号,修正后的土体参数包括土体的含水量、温度、深部位移和表部位移。深部位移是指土体的深部裂缝或滑带等的点与点之间的绝对位移量和相对位移量。表部位移是指地表测点随时间而发生水平位移的位移量。此外,土体参数还包括土体力学性能参数。土体力学性能参数是指衡量土体的松密和软硬的指标参数。通过监测降雨量,处理器可以确定土体含水量的变化趋势,从而可以确定土体力学性能参数的变化趋势。根据土体力学性能参数的变化趋势,处理器可以提前发送报警信号,以达到预警的目的。
处理器可以根据修正后的土体参数确定土体对埋地管道的作用力。根据修正后的土体参数中的深部位移和表部位移,处理器可以确定作用在埋地管道上的土体的体积。结合土体的体积和土体力学性能参数,处理器可以确定土体对埋地管道的作用力。进一步地,通过多个传感器测量单位采样时间内土体的深部位移和表部位移,处理器可以确定不同位置的土体位移速度。根据不同位置的土体位移速度的差异,可以确定土体差异性变形位置和埋地管道受剪切的截面,从而得到土体对埋地管道作用的范围。
土体参数包括温度。管道参数包括管道应变。管道应变是指埋地管道在外力作用下的局部的相对变形的程度。埋地管道在温度影响下会产生应变。温度不同,埋地管道因温度产生的应变也不同。在本申请实施例中仅考虑长期因素对埋地管道的影响,不考虑短期因素对埋地管道的影响,即不考虑因温度而产生的管道应变,因此需要根据温度修正通过应变传感器采集的管道应变。处理器通过对管道应变进行微分可以确定埋地管道的应变变化率。
处理器根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。报警信号分为一级报警信号、二级报警信号和三级报警信号。这样,可以满足对埋地管道在不同阶段的安全进行监测的需求,提高预警的准确度。
通过上述技术方案,实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数,并通过环境参数修正土体参数,以得到修正后的土体参数,从而能够根据修正后的土体参数确定土体对埋地管道的作用力,根据管道参数确定埋地管道的应变变化率。并进一步结合修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。本申请基于埋地管道的环境数据、土体数据和管道数据,能够确定土体对埋地管道的作用力及土体与埋地管道在相互作用下的演变规律,实现对埋地管道安全进行监控的目的,并提高预警预报的可靠性与准确性。
在本申请实施例中,环境参数可以包括降雨量,土体参数可以包括含水量和温度,S302、通过环境参数修正土体参数,以得到修正后的土体参数可以包括:
S3020、根据降雨量确定土体的含水量的预测值,具体地:土体的含水量与降雨量、土体坡度以及植被覆盖相关,首先测量当地降雨量与时间的分布曲线,土壤中的含水量随时间变化情况,通过实测值预测以后时间的降雨量与含水量的变化情况,基于该变化情况,能够根据降雨量确定土体的含水量的预测值。
S3021、根据含水量的预测值和温度确定土体力学性能参数,具体地:
首先,在实验室中测量获得不同类型的土壤在不同的含水量、温度条件下的土体剪切强度、摩擦角、压缩模量、剪切模量、孔隙水压等参数,然后,再通过测量的温度、含水量修正实时的土壤力学性能,将传统管土耦合模型中的固定参数土壤力学参数变为 动态参数,那么,能够根据含水量的预测值和温度确定土体力学性能参数。
S305、根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备可以包括:
S3050、在土体力学性能参数小于第一设定值的情况下,发送三级报警信号。
具体地,报警信号分为一级报警信号、二级报警信号和三级报警信号。一级报警信号是在埋地管道临灾时发送的临灾报警信号。二级报警信号是在土体发生移动时发送的致灾报警信号。三级报警信号是进行长周期趋势预警时发送的趋势报警信号。处理器可以根据修正后的土体参数确定是否发送三级报警信号。通过降雨传感器,处理器可以获取埋地管道周边的降雨量,并建立降雨量和时间的关系,从而预测土体的含水量在一定时间内的变化趋势。并且,处理器可以预先测定土体在不同的含水量和温度下的土体力学性能参数。这样,在监控管土耦合作用的过程中,根据土体的含水量的预测值及土体的温度可以确定土体力学性能参数。进一步地,根据实际情况可以预先设定第一设定值。第一设定值是用于判断土体是否失稳的临界值。在大于或等于第一设定值的情况下,土体稳定,发生地质灾害的可能性较低,因此不需要发送报警信号。在小于第一设定值的情况下,土体发生滑动的可能性较高,需要发送三级报警信号以进行预警。通过实时监测降雨量,并实时分析降雨强度、降雨时间和降雨量,预测土壤性质可能发生的变化,从而能够对地质灾害进行提前预警。
在本申请实施例中,多个传感器可以包括降雨传感器、水分传感器和温度传感器,根据降雨量确定土体的含水量的预测值可以包括:
通过降雨传感器采集埋地管道周边环境的降雨量;
通过水分传感器采集土体的含水量;
根据土体的含水量和降雨量确定土体的含水量预测值;
根据含水量的预测值和温度确定土体力学性能参数包括:
通过温度传感器采集土体的温度;
根据含水量的预测值和温度确定土体力学性能参数。
具体地,处理器可以获取多个传感器采集的数据,从而确定土体力学性能参数。在本申请实施例中,多个传感器包括降雨传感器、水分传感器和温度传感器。降雨传感器用于采集埋地管道周边环境的降雨量。水分传感器用于采集埋地管道周边土体的含水量。温度传感器用于采集埋地管道周边土体的温度。处理器可以获取埋地管道周边环境的降雨量,并建立降雨量和时间的关系,从而预测土体的含水量在一定时间内的变化趋势。并且,处理器可以预先测定土体在不同的含水量和温度下的土体力学性能参数。这样,在监控管土耦合作用的过程中,根据土体的含水量的预测值及土体的温度可以确定土体力学性能参数。
在本申请实施例中,修正后的土体参数还可以包括深部位移和表部位移,S303、根据修正后的土体参数确定土体对埋地管道的作用力可以包括:
S3030、根据深部位移和表部位移确定土体的体积;具体地:根据深部位移可以确定滑动的深度、表部位移确定滑动的面积(投影范围),通过面积和深度的乘积就可以得到土体的体积。
S3031、根据土体的体积和土体力学性能参数确定土体对埋地管道的作用力;具体地:土体的体积乘以密度就是土体的重量,土体的重量与滑动角度的乘积就是对管道的作用力。考虑土体的压缩强度等土体力学性能就可以获得对管道的推挤作用力。
S305、根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备可以包括:
S3051、在土体对埋地管道的作用力大于第二设定值的情况下,发送二级报警信号。
具体地,处理器可以根据修正后的土体参数确定土体对埋地管道的作用力。修正后 的土体参数还包括深部位移和表部位移。通过深部位移传感器可以获取土体的深部位移。通过表部位移传感器可以获取土体的表部位移。此外,根据土体的深部位移可以得到对埋地管道施加作用力的土体的厚度。
由于表部位移传感器采集的数据存在误差,因此需要对表部位移传感器采集的数据进行修正。在埋地管道周边的土体上可以设置图像采集设备。通过图像采集设备实时采集土体的图像数据,通过与前期采集的基准图像进行比对,以监测土体的表部位移。根据通过图像采集设备获取的土体的图像数据,处理器可以修正表部位移。由此,处理器可以根据深部位移和表部位移确定对埋地管道施加作用力的土体的体积。结合土体的体积和土体力学性能参数,处理器可以确定土体对埋地管道的作用力。
在监测过程中,深部位移传感器和表部位移传感器采集的数据存在偏差,导致处理器确定的土体对埋地管道的作用力存在误差,因此,可以通过土压力传感器获取土体对埋地管道的压力,以对根据土体力学性能参数、深部位移和表部位移确定的土体对埋地管道的压力进行修正。在一个示例中,在埋地管道同一截面上等间隔地安装四个土压力传感器,以监测埋地管道多个方向的土体压力。通过土压力传感器采集土体对埋地管道的作用力,可以修正根据土体力学性能参数、深部位移和表部位移确定的土体对埋地管道的压力。
处理器可以预设第二设定值,第二设定值需要根据实际情况设定。第二设定值是指土体对埋地管道的压力足以使埋地管道发生位移的临界值。在土体对埋地管道的作用力大于第二设定值的情况下,埋地管道发生位移,处理器需要发送二级报警信号。
进一步地,处理器通过单位采样时间内深部位移和表部位移可以确定不同位置的土体位移速度,具体地:土体位移速度就是两次采样间隔之间的位移除以时间间隔,土体是非均质的,因此各个位置处的移动速度一般不一致,需要分别计算不同位置的土体移动速度。
深部测斜管是一种用于监测土体内部水平位移的测量管。由于不同深度的土体位移速度存在偏差,可以在埋地管道上设置深部测斜管,以监测土体的形变,并确定发生位移的土体的位置,具体地:通过钻孔将测斜管垂直安装在土体中,从而测量深度方向上的位移,通过不同位置位移的土边点来确定发生滑动的深度。一般是深部没有位移的为基岩,基岩上方与表部一起发生位移的深度就是滑动面的深度。根据土体位移速度和通过深部测斜管确定的土体不均匀形变的位置,可以确定埋地管道受剪切的截面,具体地:深部测斜管可以测到不同深度的土体形变情况,多个位置的表部、深部位移的速度不一致,在滑动体内的位移量大,边缘位置速度慢,滑动体外没有位移,因此通过多个位移监测点的位移变化速度可以插值拟合速度曲线,速度为0的位置为静止点,插值获得的加速度为零的点为剪切面。通过确定埋地管道受剪切的截面,处理器可以确定土体对埋地管道作用的范围,其中,两个受剪切位置之间的管道长度就是土体对埋地管道作用的范围。
通过深部位移和表部位移确定土体对埋地管道的作用力、作用范围,并通过土压力传感器采集的土体压力数据修正通过深部位移和表部位移确定土体对埋地管道的作用力,可以实时监测埋地管道的受力状况,具体地:管道深部位移和表部位移可以确定滑动的土体的体积,体积与密度的乘积得到土体的质量,土体质量和滑动角度的乘积就是坡面方向的推挤作用力。这个推挤作用力与直接测量的土压力数据进行交互验证,就可以修正滑动土体变化之后的管土作用力。
在本申请实施例中,多个传感器可以包括深部位移传感器和表部位移传感器,根据深部位移和表部位移确定土体的体积可以包括:
通过深部位移传感器采集深部位移;
通过表部位移传感器采集表部位移;
根据深部位移和表部位移确定土体的体积。
具体地,处理器可以获取多个传感器采集的数据,进而确定对埋地管道施加作用力的土体的体积。多个传感器包括深部位移传感器和表部位移传感器。通过深部位移传感器可以获取埋地管道周边土体的深部位移。通过表部位移传感器可以获取埋地管道周边土体的表部位移。此外,根据土体的深部位移可以得到对埋地管道施加作用力的土体的厚度。由此,处理器可以确定对埋地管道施加作用力的土体的体积。通过深部位移传感器和表部位移传感器采集的深部位移和表部位移确定对埋地管道施加作用力的土体的体积,以便处理器确定土体对埋地管道施加的作用力。
在本申请实施例中,管道参数可以包括管道应变,多个传感器可以包括应变传感器,S301、实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数可以包括:
通过应变传感器获取埋地管道的管道应变;
S304、根据管道参数确定埋地管道的应变变化率可以包括:
将管道应变进行微分,以得到埋地管道的应变变化率;
S305、根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备可以包括:
在埋地管道的应变变化率在第一预设范围内的情况下,发送一级报警信号;
在埋地管道的应变变化率在第二预设范围内的情况下,发送二级报警信号;
在埋地管道的应变变化率在第三预设范围内的情况下,发送三级报警信号。
具体地,管道参数包括管道应变。处理器可以通过应变传感器获取埋地管道的管道应变。埋地管道在温度影响下会产生应变。温度不同,埋地管道因温度产生的应变也不同。在本申请实施例中仅考虑长期因素对埋地管道的影响,不考虑短期因素对埋地管道的影响,即因温度而产生的管道应变,因此需要根据温度修正通过应变传感器采集的管道应变。在一个示例中,埋地管道在温度变化的情况下,埋地管道的两点之间按照管道的膨胀系数发生变形。处理器可以同时监测埋地管道上多个截面的温度、应变和位移,通过确定实际位移与理论位移的差值消除因温度影响而产生的埋地管道的管道应变,其中,实际位移就是管道多个截面上位移计测量获得的位移,理论位移就是通过算法预测的位移,算法是基于管土推力作用计算获得的值。
第一预设范围是埋地管道断裂的可能性较高的应变变化率的范围。第二预设范围是埋地管道受土体施加的作用力影响、发生严重变形的应变变化率的范围。第三预设范围是指管道发生明显变形的应变变化率的范围。在根据温度修正通过应变传感器采集的管道应变的情况下,处理器可以根据埋地管道的应变变化率发送报警信号。多个传感器包括应变传感器。通过应变传感器可以采集埋地管道的管道应变。管道应变是指埋地管道在外力作用下的局部的相对变形的程度。处理器需要根据温度修正管道应变。处理器对管道应变进行微分,可以得到埋地管道的应变速率。对应变速率进行微分,可以确定埋地管道的应变变化率。处理器根据埋地管道的应变变化率可以发送不同级别的报警信号。在一个示例中,假设第一预设范围为大于或等于0.8,第二预设范围为大于或等于0.5且小于0.8,第三预设范围为大于或等于0.2且小于0.5。在埋地管道的应变变化率大于或等于0.8的情况下,处理器发送一级报警信号。在埋地管道的应变变化率大于或等于0.5且小于0.8的情况下,处理器发送二级报警信号。在埋地管道的应变变化率大于或等于0.2且小于0.5的情况下,处理器发送三级报警信号。根据埋地管道的应变变化率发送报警信号,可以实现通过监测埋地管道本身的状态以确定不同的报警信号的目的。
在本申请实施例中,管道参数还可以包括管道位移,多个传感器还可以包括管体位移传感器,该方法还可以包括:
通过管体位移传感器获取埋地管道的多个点的管道位移;
根据多个点中的相邻两个点的管道位移的相对值确定埋地管道的宏观应变趋势;
根据埋地管道的目标点的管道应变的方向与宏观应变趋势确定重要截面的位置;
将重要截面的位置发送至显示设备。
其中,目标点是需要分析的点,通过分析目标点上下游2个点的位移方向可以确定压缩或者拉升。如果是位移绝对值变大,则为拉升,位移绝对值变小,则为压缩。
宏观应变趋势的具体解释如下:
传统的应变测量方式是采用应变片测量,测量的一般是几厘米范围内的应变。宏观应变也是利用应变的定义,给定范围内的伸长或者压缩与长度的比例作为应变量,测量2个点之间的距离,以及过一段时间的相对位移,相对位移除以原来的距离就是宏观应变量。该方法可以测量任意长度,比如100m、1km、10km管段长度的宏观应变趋势。管段的实际长度可以采用内检测数据进行确定。
具体地,处理器可以根据埋地管道的管道位移确定埋地管道的宏观应变。管道参数还包括管道位移。管道位移是埋地管道在外界因素作用下发生的位移。通过在埋地管道上设置多个管体位移传感器,处理器可以确定埋地管道上多个点的位移值。管体位移传感器包括但不限于基于微机电系统的加速度传感器、普通振动类加速度传感器、普通振动类速度传感器和位移传感器。在一个示例中,通过三轴加速度传感器监测埋地管道的管道位移。根据相邻两点之间埋地管道位移的相对值,处理器可以进一步判断埋地管道的宏观应变。在埋地管道上目标点的应变方向与宏观应变趋势一致的情况下,判断埋地管道形变均匀。目标点是指埋地管道上发生管道应变的点。在埋地管道上目标点的应变方向与宏观应变不一致,即宏观应变拉伸、局部应变压缩,或者宏观应变压缩、局部应变拉伸,则将目标点所在的截面定义为重要截面,且处理器可以确定该重要截面断裂的可能性较高,由此处理器在发送报警信号时可以将该重要截面的位置发送至显示设备。同时,在埋地管道发生侧向位移的情况下,处理器可以通过管体位移传感器确定埋地管道的形变,辅助埋地管道的管道应变监测结果判断管道的安全状况,以提高监测埋地管道安全的准确性。
在本申请实施例中,多个传感器可以包括布里渊光纤传感器,该方法还可以包括:
通过布里渊光纤传感器确定埋地管道的伴行光缆应变的位置;
在伴行光缆应变的位置的数量超过预设数量的情况下,发送二级报警信号。
具体地,处理器可以通过布里渊光纤传感器监测埋地管道的伴行光缆应变,以确定埋地管道的伴行光缆应变的位置。布里渊光纤传感器是基于光纤中的布里渊散射对应变的敏感性而进行长距离的光纤应变监测的传感器。通过布里渊光纤传感器可以确定埋地管道的伴行光缆应变的位置,从而确定土体的形变位置。由于埋地管道自身的材质,使得通过管道应变确定土体的形变位置这一过程存在误差。因此,通过布里渊光纤传感器监测伴行光缆的应变,可以提高确定土体形变位置的准确性。在一个示例中,在伴行光缆发生微应变的位置的数量超过50个的情况下,处理器可以发送二级报警信号。其中,微应变的范围需要根据实际情况确定。
此外,由于深部位移传感器和表部位移传感器的数量有限,在监测土体对埋地管道的作用范围的过程中具有局限性,因此,处理器可以通过布里渊光纤传感器确定埋地管道的伴行光缆的应变的位置,并根据伴行光缆的应变的位置确定土体的形变位置,进而确定土体对埋地管道的作用范围。通过监测埋地管道的伴行光缆应变的位置,并基于伴行光缆应变的位置的数量确定报警信号,能够提高对埋地管道监测的全面性和准确性。
在本申请实施例中,环境参数还可以包括次声波信号和震动信号,多个传感器可以包括次声波传感器和地震传感器,该方法还可以包括:
通过次声波传感器检测次声波信号;
通过地震传感器检测震动信号;
在检测到次声波信号和震动信号的情况下,发送三级报警信号。
具体地,处理器可以通过次声波传感器和地震传感器监测次声波信号和震动信号,并根据次声波信号和震动信号确定报警信号。在次声波传感器监测到次声波信号且地震传感器监测到震动信号的情况下,存在发生地质灾害的危险,因此需要发送三级报警信号,以进行预警。通过监测埋地管道周边的次声波信号和震动信号,可以降低埋地管道因地质灾害受损的概率。
图4示意性示出了根据本申请一具体实施例的一种用于监控管土耦合作用的方法的流程图。如图4所示,在一个具体实施例中,长周期诱发因素监测预测是指根据埋地管道周边环境的环境参数预测埋地管道安全的监测方式。短周期致灾因素土体参数监测预报是指根据埋地管道周边土体的土体参数预测埋地管道安全的监测方式。临灾管体监测预警是指根据埋地管道本身的状态预测埋地管道安全的监测方式。本申请实施例可以在土体上设置一个雨量测站及降雨传感器,以进行降雨量监测。雨量测站能对单位时间降雨量、降雨总量进行实时监测,并将监测数据传输至处理器。降雨量每超过10毫米,雨量测站可以自动发送一次数据。并且,还可以在土体上同时设置次声波传感器和地震传感器,以监测土体移动的信号。
本申请实施例采用三级报警信号,三级报警信号包括一级报警信号、二级报警信号和三级报警信号。通过降雨传感器和水分传感器,可以实时修正土体力学性能参数。根据降雨量可以确定土体含水量和土体力学性能参数的预测量。在预测一小时后土壤含水率将达到饱和且在现有的坡度条件可能发生到坡体失稳条件的情况下,处理器发送三级报警信号。此外,在次声传感器和地震传感器同时监测到次声波信号和震动信号的情况下,处理器通过三级报警信号提醒关注。对于通过传感器获取的土体的深部位移和表部位移,在土体上可以设置图像采集设备,实时采集土体的视频图像,并与前期采集的基准图像进行比对,以修正土体的表部位移。结合深部位移、表部位移和实时计算的土体力学性能参数,以确定土体的面积和深度。处理器根据土体的体积与土体力学性能参数可以得到土体的质量参数和力学参数,并进一步建立土体与埋地管道的力学模型,在土体移动随时间变化曲线的的斜率发生显著变化或者土体对埋地管道的作用力能够造成埋地管道移动的情况下通过二级报警信号提醒进行警戒。
其中,力学模型的建立过程是通过测量土体、管道的位移、受力的动态过程,通过曲线拟合方法获得土体与管道相互作用的数值模型。力学模型的应用是用历史监测的数据,对未来监测数据的趋势进行预测。
进一步地,通过在埋地管道上设置多个管体位移传感器,处理器可以确定埋地管道上多个点的位移值。根据相邻两点之间埋地管道位移的相对值,处理器可以进一步判断埋地管道的宏观应变。在埋地管道上目标点的应变方向与宏观应变趋势一致的情况下,判断埋地管道形变均匀。在埋地管道上目标点的应变方向与宏观应变不一致,即宏观应变拉伸、局部应变压缩,或者宏观应变压缩、局部应变拉伸,则将目标点所在的截面定义为重要截面,且处理器可以确定该重要截面断裂的可能性较高,由此处理器在发送报警信号时可以将该重要截面的位置发送至显示设备。
此外,处理器可以根据埋地管道的应变变化率进行预警。处理器可以根据温度修正埋地管道的管道参数,管道参数包括管道应变。也就是说,温度应变消除是指处理器可以通过土体的温度来修正埋地管道的管道应变。在消除因温度产生的管道应变之后,处理器可以对埋地管道的管道应变进行微分,以得到应变速率,并对应变速率再进行微分,从而得到应变变化率。当应变变化率变化超过0.2则发送三级报警信号,提醒进行地灾治理;应变变化率超过0.5则发送二级报警信号,进行紧急处置;超过0.8则判断管体发生位移,应力出现集中,处理器通过发送一级报警信号给出临灾预警。
图5示意性示出了根据本申请实施例的一种控制器的结构框图。如图5所示,本申请实施例提供一种控制器,可以包括:
存储器510,被配置成存储指令;以及
处理器520,被配置成从存储器510调用指令以及在执行指令时能够实现上述的用于监控管土耦合作用的方法。
具体地,在本申请实施例中,处理器520可以被配置成:
实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数;
通过环境参数修正土体参数,以得到修正后的土体参数;
根据修正后的土体参数确定土体对埋地管道的作用力;
根据管道参数确定埋地管道的应变变化率;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。
进一步地,处理器520还可以被配置成:
根据降雨量确定土体的含水量的预测值;
根据含水量的预测值和温度确定土体力学性能参数;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在土体力学性能参数小于第一设定值的情况下,发送三级报警信号。
进一步地,处理器520还可以被配置成:
通过降雨传感器采集埋地管道周边环境的降雨量;
通过水分传感器采集土体的含水量;
根据土体的含水量和降雨量确定土体的含水量预测值;
根据含水量的预测值和温度确定土体力学性能参数包括:
通过温度传感器采集土体的温度;
根据含水量的预测值和温度确定土体力学性能参数。
进一步地,处理器520还可以被配置成:
根据深部位移和表部位移确定土体的体积;
根据土体的体积和土体力学性能参数确定土体对埋地管道的作用力;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在土体对埋地管道的作用力大于第二设定值的情况下,发送二级报警信号。
进一步地,处理器520还可以被配置成:
通过深部位移传感器采集深部位移;
通过表部位移传感器采集表部位移;
根据深部位移和表部位移确定土体的体积。
进一步地,处理器520还可以被配置成:
通过应变传感器获取埋地管道的管道应变;
根据管道参数确定埋地管道的应变变化率包括:
将管道应变进行微分,以得到埋地管道的应变变化率;
根据修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备包括:
在埋地管道的应变变化率在第一预设范围内的情况下,发送一级报警信号;
在埋地管道的应变变化率在第二预设范围内的情况下,发送二级报警信号;
在埋地管道的应变变化率在第三预设范围内的情况下,发送三级报警信号。
进一步地,处理器520还可以被配置成:
通过管体位移传感器获取埋地管道的多个点的管道位移;
根据多个点中的相邻两个点的管道位移的相对值确定埋地管道的宏观应变趋势;
根据埋地管道的目标点的管道应变的方向与宏观应变趋势确定重要截面的位置;
将重要截面的位置发送至显示设备。
进一步地,处理器520还可以被配置成:
通过布里渊光纤传感器确定埋地管道的伴行光缆应变的位置;
在伴行光缆应变的位置的数量超过预设数量的情况下,发送二级报警信号。
进一步地,处理器520还可以被配置成:
通过次声波传感器检测次声波信号;
通过地震传感器检测震动信号;
在检测到次声波信号和震动信号的情况下,发送三级报警信号。
通过上述技术方案,实时获取多个传感器发送的埋地管道的环境参数、土体参数和管道参数,并通过环境参数修正土体参数,以得到修正后的土体参数。从而能够根据修正后的土体参数确定土体对埋地管道的作用力,根据管道参数确定埋地管道的应变变化率。并进一步结合修正后的土体参数、土体对埋地管道的作用力或埋地管道的应变变化率发送对应的报警信号至显示设备。本申请基于埋地管道的环境数据、土体数据和管道数据,能够确定土体对埋地管道的作用力及土体与埋地管道在相互作用下的演变规律,实现对埋地管道安全进行监控的目的,并提高预警预报的可靠性与准确性。
本申请实施例还提供一种用于监控管土耦合作用的装置,可以包括:
多个传感器,设置在埋地管道的周边或埋地管道上,被配置成采集埋地管道的环境参数、土体参数和管道参数;
上述的控制器,与多个传感器通信;
显示设备,与控制器通信,被配置成接收控制器发送的报警信号。
如图1所示,本申请实施例提供多个传感器110、控制器120、显示设备130。多个传感器110可以包括降雨传感器、水分传感器、温度传感器、表部位移传感器、深部位移传感器、应变传感器、布里渊光纤传感器、次声波传感器和地震传感器,用于监测环境参数、土体参数和管道参数。多个传感器110设置在埋地管道的周边或埋地管道上。控制器120可以接收多个传感器110采集的环境参数、土体参数和管道参数,从而判断埋地管道的受力状况,并进行趋势预警。显示设备130与控制器通信,可以用于接收控制器120发送的环境参数、修正后的土体参数、管道参数、土体对埋地管道的作用力、土体对埋地管道作用的范围、埋地管道的应变变化率和报警信号,其中,土体对埋地管道作用的范围根据修正后的土体参数中的深部位移和表部位移确定。通过多个传感器110、控制器120和显示设备130可以实现对埋地管道的全方位监测,并满足对埋地管道的安全进行趋势预警的需要,提高监测埋地管道安全过程中的准确性。
在本申请实施例中,多个传感器可以包括:
降雨传感器,被配置成监测埋地管道周边环境的降雨量;
水分传感器,被配置成监测土体的含水量;
温度传感器,被配置成监测土体的温度;
表部位移传感器,被配置成获取土体的表部位移;
深部位移传感器,被配置成获取土体的深部位移;
应变传感器,被配置成监测埋地管道的管道应变;
管体位移传感器,被配置成监测埋地管道的管道位移;
布里渊光纤传感器,被配置成监测埋地管道的伴行光缆的应变;
次声波传感器,被配置成监测埋地管道周边环境的次声波信号;
地震传感器,被配置成监测埋地管道周边环境的震动信号。
具体地,降雨传感器设置在埋地管道周边的土体上,用于监测埋地管道周边环境的降雨量。水分传感器设置在埋地管道周边,用于监测土体的含水量。温度传感器设置在 埋地管道周边,用于监测土体的温度。表部位移传感器连接埋地管道,用于获取土体的表部位移。深部位移传感器设置在埋地管道周边的土体深部,用于获取土体的深部位移。应变传感器设置在埋地管道上,被配置成监测管道应变。管体位移传感器设置于埋地管道上,用于监测埋地管道的管道位移。管体位移传感器包括但不限于基于微机电系统的加速度传感器、普通振动类加速度传感器、普通振动类速度传感器和位移传感器。在一个示例中,通过三轴加速度传感器监测埋地管道的管道位移。布里渊光纤传感器是基于光纤中的布里渊散射对应变的敏感性监测伴行光缆应变的传感器,可以监测埋地管道的伴行光缆的应变。次声波传感器和震动传感器设置在埋地管道周边的土体上,以监测埋地管道周边的次声波信号和震动信号。通过多个传感器,处理器可以获取环境参数、土体参数和管道参数,从而全面监测埋地管道的安全。
本申请实施例还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述的用于监控管土耦合作用的方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory  media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种用于监控管土耦合作用的方法,其特征在于,应用于控制器,所述控制器分别与多个传感器和显示设备通信,所述多个传感器设置在埋地管道的周边或所述埋地管道上,所述方法包括:
    实时获取所述多个传感器发送的所述埋地管道的环境参数、土体参数和管道参数;
    通过所述环境参数修正所述土体参数,以得到修正后的土体参数;
    根据所述修正后的土体参数确定土体对所述埋地管道的作用力;
    根据所述管道参数确定所述埋地管道的应变变化率;
    根据所述修正后的土体参数、所述土体对埋地管道的作用力或所述埋地管道的应变变化率发送对应的报警信号至所述显示设备。
  2. 根据权利要求1所述的一种用于监控管土耦合作用的方法,其特征在于,所述环境参数包括降雨量,所述土体参数包括含水量和温度,所述通过所述环境参数修正所述土体参数,以得到修正后的土体参数包括:
    根据所述降雨量确定土体的含水量的预测值;
    根据所述含水量的预测值和所述温度确定土体力学性能参数;
    所述根据所述修正后的土体参数、所述土体对埋地管道的作用力或所述埋地管道的应变变化率发送对应的报警信号至所述显示设备包括:
    在所述土体力学性能参数小于第一设定值的情况下,发送三级报警信号。
  3. 根据权利要求2所述的一种用于监控管土耦合作用的方法,其特征在于,所述多个传感器包括降雨传感器、水分传感器和温度传感器,所述根据所述降雨量确定土体的含水量的预测值包括:
    通过所述降雨传感器采集所述埋地管道周边环境的降雨量;
    通过所述水分传感器采集所述土体的含水量;
    根据所述土体的含水量和所述降雨量确定所述土体的含水量预测值;
    根据所述含水量的预测值和所述温度确定土体力学性能参数包括:
    通过所述温度传感器采集所述土体的温度;
    根据所述含水量的预测值和所述温度确定所述土体力学性能参数。
  4. 根据权利要求2所述的一种用于监控管土耦合作用的方法,其特征在于,所述修正后的土体参数还包括深部位移和表部位移,所述根据所述修正后的土体参数确定土体对埋地管道的作用力包括:
    根据所述深部位移和所述表部位移确定土体的体积;
    根据所述土体的体积和所述土体力学性能参数确定所述土体对埋地管道的作用力;
    所述根据所述修正后的土体参数、所述土体对埋地管道的作用力或所述埋地管道的应变变化率发送对应的报警信号至所述显示设备包括:
    在所述土体对埋地管道的作用力大于第二设定值的情况下,发送二级报警信号。
  5. 根据权利要求4所述的一种用于监控管土耦合作用的方法,其特征在于,所述多个传感器包括深部位移传感器和表部位移传感器,所述根据所述深部位移和所述表部位移确定土体的体积包括:
    通过深部位移传感器采集所述深部位移;
    通过表部位移传感器采集所述表部位移;
    根据所述深部位移和所述表部位移确定土体的体积。
  6. 根据权利要求1所述的一种用于监控管土耦合作用的方法,其特征在于,所述管道参数包括管道应变,所述多个传感器包括应变传感器,所述实时获取所述多个传感器发送的所述埋地管道的环境参数、土体参数和管道参数包括:
    通过所述应变传感器获取所述埋地管道的所述管道应变;
    所述根据所述管道参数确定所述埋地管道的应变变化率包括:
    将所述管道应变进行微分,以得到所述埋地管道的应变变化率;
    所述根据所述修正后的土体参数、所述土体对埋地管道的作用力或所述埋地管道的应变变化率发送对应的报警信号至所述显示设备包括:
    在所述埋地管道的应变变化率在第一预设范围内的情况下,发送一级报警信号;
    在所述埋地管道的应变变化率在第二预设范围内的情况下,发送二级报警信号;
    在所述埋地管道的应变变化率在第三预设范围内的情况下,发送三级报警信号。
  7. 根据权利要求6所述的一种用于监控管土耦合作用的方法,其特征在于,所述管道参数还包括管道位移,所述多个传感器还包括管体位移传感器,所述方法还包括:
    通过所述管体位移传感器获取所述埋地管道的多个点的所述管道位移;
    根据所述多个点中的相邻两个点的所述管道位移的相对值确定所述埋地管道的宏观应变趋势;
    根据所述埋地管道的目标点的所述管道应变的方向与所述宏观应变趋势确定重要截面的位置;
    将所述重要截面的位置发送至所述显示设备。
  8. 根据权利要求1所述的一种用于监控管土耦合作用的方法,其特征在于,所述多个传感器包括布里渊光纤传感器,所述方法还包括:
    通过布里渊光纤传感器确定所述埋地管道的伴行光缆应变的位置;
    在所述伴行光缆应变的位置的数量超过预设数量的情况下,发送二级报警信号。
  9. 根据权利要求1所述的一种用于监控管土耦合作用的方法,其特征在于,所述环境参数还包括次声波信号和震动信号,所述多个传感器包括次声波传感器和地震传感器,所述方法还包括:
    通过所述次声波传感器检测所述次声波信号;
    通过所述地震传感器检测所述震动信号;
    在检测到所述次声波信号和所述震动信号的情况下,发送三级报警信号。
  10. 一种控制器,其特征在于,包括:
    存储器,被配置成存储指令;以及
    处理器,被配置成从所述存储器调用所述指令以及在执行所述指令时能够实现根据权利要求1至9中任一项所述的一种用于监控管土耦合作用的方法。
  11. 一种用于监控管土耦合作用的装置,其特征在于,包括:
    多个传感器,设置在埋地管道的周边或所述埋地管道上,被配置成采集所述埋地管道的环境参数、土体参数和管道参数;
    根据权利要求10所述的控制器,与所述多个传感器通信;
    显示设备,与所述控制器通信,被配置成接收所述控制器发送的报警信号。
  12. 根据权利要求11所述的一种用于监控管土耦合作用的装置,其特征在于,所述多个传感器包括:
    降雨传感器,被配置成监测所述埋地管道周边环境的降雨量;
    水分传感器,被配置成监测土体的含水量;
    温度传感器,被配置成监测所述土体的温度;
    表部位移传感器,被配置成获取所述土体的表部位移;
    深部位移传感器,被配置成获取所述土体的深部位移;
    应变传感器,被配置成监测所述埋地管道的管道应变;
    管体位移传感器,被配置成监测所述埋地管道的管道位移;
    布里渊光纤传感器,被配置成监测所述埋地管道的伴行光缆的应变;
    次声波传感器,被配置成监测所述埋地管道周边环境的次声波信号;
    地震传感器,被配置成监测所述埋地管道周边环境的震动信号。
PCT/CN2023/114820 2022-09-01 2023-08-25 用于监控管土耦合作用的方法、装置及控制器 WO2024046217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211067435.9A CN115371737A (zh) 2022-09-01 2022-09-01 用于监控管土耦合作用的方法、装置及控制器
CN202211067435.9 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024046217A1 true WO2024046217A1 (zh) 2024-03-07

Family

ID=84070619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114820 WO2024046217A1 (zh) 2022-09-01 2023-08-25 用于监控管土耦合作用的方法、装置及控制器

Country Status (2)

Country Link
CN (1) CN115371737A (zh)
WO (1) WO2024046217A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115371737A (zh) * 2022-09-01 2022-11-22 国家石油天然气管网集团有限公司 用于监控管土耦合作用的方法、装置及控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080347A (ja) * 2009-09-10 2011-04-21 Toshiba Corp 不明水監視装置及び不明水監視方法
CN107655444A (zh) * 2017-09-08 2018-02-02 广西交通科学研究院有限公司 结合监测与有限元修正以确定边坡滑动面变动的方法
CN110211338A (zh) * 2019-05-23 2019-09-06 四川省地质工程勘察院 一种单体管道滑坡灾害的预警方法
CN111307031A (zh) * 2020-03-16 2020-06-19 西南石油大学 一种埋地管道安全状态监测与预警方法
CN112071028A (zh) * 2020-09-18 2020-12-11 北京中地华安地质勘查有限公司 浅层滑坡的监测预警方法及其装置
CN115371737A (zh) * 2022-09-01 2022-11-22 国家石油天然气管网集团有限公司 用于监控管土耦合作用的方法、装置及控制器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667324B (zh) * 2008-09-03 2011-10-05 中国石油天然气股份有限公司 一种管道滑坡监测预警方法和系统及系统的构建方法
CN102346012B (zh) * 2010-07-28 2013-09-04 中国石油天然气股份有限公司 一种采空塌陷区油气管道管土相对位移监测系统的构建方法
CN102345796B (zh) * 2010-07-28 2013-02-13 中国石油天然气股份有限公司 一种采空塌陷区油气管道监测方法
KR101319477B1 (ko) * 2011-10-11 2013-10-17 한국수자원공사 격자 기반의 대유역 장기 강우유출 모형
CN213748552U (zh) * 2020-11-26 2021-07-20 中国铁路设计集团有限公司 一种滑坡区管道变形监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080347A (ja) * 2009-09-10 2011-04-21 Toshiba Corp 不明水監視装置及び不明水監視方法
CN107655444A (zh) * 2017-09-08 2018-02-02 广西交通科学研究院有限公司 结合监测与有限元修正以确定边坡滑动面变动的方法
CN110211338A (zh) * 2019-05-23 2019-09-06 四川省地质工程勘察院 一种单体管道滑坡灾害的预警方法
CN111307031A (zh) * 2020-03-16 2020-06-19 西南石油大学 一种埋地管道安全状态监测与预警方法
CN112071028A (zh) * 2020-09-18 2020-12-11 北京中地华安地质勘查有限公司 浅层滑坡的监测预警方法及其装置
CN115371737A (zh) * 2022-09-01 2022-11-22 国家石油天然气管网集团有限公司 用于监控管土耦合作用的方法、装置及控制器

Also Published As

Publication number Publication date
CN115371737A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Webb et al. Categories of SHM deployments: Technologies and capabilities
Chen et al. Damage quantification of beam structures using deflection influence lines
WO2024046217A1 (zh) 用于监控管土耦合作用的方法、装置及控制器
Modares et al. Overview of structural health monitoring for steel bridges
CN204854648U (zh) 一种分布式光纤用于面板坝脱空的监测装置
Jo et al. A fiber Bragg grating-based condition monitoring and early damage detection system for the structural safety of underground coal mines using the Internet of things
Li et al. Experimental investigation on pipe-soil interaction due to ground subsidence via high-resolution fiber optic sensing
Zahid et al. An analytical procedure for modelling pipeline-landslide interaction in gas pipelines
CN103606240B (zh) 采用分布式光纤温度传感器系统进行火灾报警的方法
Li et al. Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves
JP6351279B2 (ja) 地盤状態監視システムおよび地盤状態監視方法
CN114722662A (zh) 埋地天然气管道地基沉降在线监测及安全性研究的方法
Xu et al. Surface crack detection in Prestressed concrete cylinder pipes using BOTDA strain sensors
Cheng et al. Experimental verification research of pipeline deflection deformation monitoring method based on distributed optical fiber measured strain
JP5761686B2 (ja) Pc構造物のpcケーブル破断箇所検知工法
AU2021204686A1 (en) Methods and systems for damage evaluation of structural assets
KR101458159B1 (ko) 불확실한 하중을 받는 보 부재의 변형률 분포 추정 장치 및 방법
CN104482876A (zh) 基于啁啾光纤光栅的混凝土磨蚀及空蚀深度实时监测系统
CN115752319B (zh) 一种水平位移自动监测系统及监测方法
Valinejadshoubi et al. Structural health monitoring of buildings and infrastructure
Li et al. Safety monitoring of underground steel pipeline subjected to soil deformation using wireless inclinometers
Cheng et al. A distributed fibre optic monitoring method for ground subsidence induced by water pipeline leakage
Liu et al. Probability Quantification of GSI and D in Hoek–Brown Criterion Using Bayesian Inversion and Ultrasonic Test in Rock Mass
KR20150066622A (ko) 변형률 센서에 기초한 건물의 횡방향 구조반응 모니터링 장치 및 방법
CN105572329A (zh) 混凝土裂纹标距自适应监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859250

Country of ref document: EP

Kind code of ref document: A1