WO2024046191A1 - 一种屏蔽电机转子轴向位移监测装置 - Google Patents

一种屏蔽电机转子轴向位移监测装置 Download PDF

Info

Publication number
WO2024046191A1
WO2024046191A1 PCT/CN2023/114549 CN2023114549W WO2024046191A1 WO 2024046191 A1 WO2024046191 A1 WO 2024046191A1 CN 2023114549 W CN2023114549 W CN 2023114549W WO 2024046191 A1 WO2024046191 A1 WO 2024046191A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
motor rotor
axial displacement
monitoring device
stator core
Prior art date
Application number
PCT/CN2023/114549
Other languages
English (en)
French (fr)
Inventor
林坤
孙立宾
伍俊
李少斌
杨平平
兰勇
江锋
肖柏洋
高家驹
魏彦强
吴光焱
朱金梅
Original Assignee
东方电气集团东方电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方电气集团东方电机有限公司 filed Critical 东方电气集团东方电机有限公司
Publication of WO2024046191A1 publication Critical patent/WO2024046191A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas

Definitions

  • the invention relates to an axial displacement monitoring device, in particular to an axial displacement monitoring device for a shielded motor rotor.
  • Shielded motors are a type of motor used to transport highly toxic, corrosive, radioactive, flammable, explosive, valuable liquids and liquids that may cause major harm if leaked.
  • the canned motor is directly connected to the impeller of the pump through the motor shaft to form a canned pump.
  • the canned pump is a sealless pump.
  • the pump and drive motor are sealed in a pressure vessel filled with the pumped medium. This pressure vessel only has a static seal.
  • the rotating sealing device of the centrifugal pump is eliminated, so it can be completely leak-free. For a long time, due to the imbalance of the axial force of the pump, the axial displacement of the canned motor rotor has occurred, causing the thrust bearing wear of the canned motor to cause accidents.
  • Magnetostrictive displacement sensor It uses the magnetostrictive effect to achieve non-contact displacement measurement. It is mainly composed of a movable magnetic ring, waveguide wire, protective sleeve, loop wire, magnetic strip, detection loop, etc. Its principle And the structure cannot be used in high temperature, high pressure, corrosive and other medium environments.
  • Eddy current displacement sensor a non-contact linear measurement tool that can accurately measure the static and dynamic relative displacement changes between the measured object (must be made of metal) and the probe end face.
  • the measured object requires a certain area to achieve accurate measurement, and cannot be arranged in the small space of the shielded motor; due to the limitation of its basic principle of eddy current effect, its probe cannot be used in the high-voltage environment of the shielded motor and various corrosive media environments. The application environment is very limited.
  • LVDT displacement sensor It is mainly composed of coils, iron cores, etc.
  • the iron core needs to be made of materials with high resistivity, high magnetic permeability and high saturation magnetic induction intensity.
  • the iron core is located at the center of the sensor coil. After energization, the primary coil inputs an alternating excitation current, and an electromotive force will be generated in the secondary coil.
  • Two magnetic pole coils are connected in series with reverse polarity to output a voltage signal to convert the displacement into an electrical signal.
  • This type of sensor must have a power supply to provide high-frequency excitation to realize its function, and must use precision components to form an oscillator.
  • the sensor also has high requirements for the measurement circuit, and requires precision components to form a drive and signal detection circuit to ensure the sensor measurement accuracy and Stability greatly increases the processing difficulty and manufacturing cost of the sensor, and at the same time reduces the reliability of the sensor.
  • the present invention aims to solve the above-mentioned problems existing in the prior art, and proposes a shielded motor rotor axial displacement monitoring device, which can monitor the axial displacement of the shielded motor rotor in real time and accurately through external inspection and non-contact means, and promptly detect the axial displacement of the shielded motor rotor. Shield the axial force imbalance of the motor rotor to prevent further deterioration of the accident.
  • a shielded motor rotor axial displacement monitoring device characterized in that it includes a stationary component connected to the motor stator and a rotating component connected to the motor rotor; the stationary component includes a stator core, and the stator core is equipped with an internal There is a central through hole, and identical windings one and two are arranged at intervals along the axial direction of the central through hole, and the windings one and two are fixed on the stator core body in the circumferential direction outside the central through hole;
  • the rotating component passes through the central through hole inside the stator core as a whole, and includes a measuring rod and a permanent magnet arranged inside the measuring rod.
  • the permanent magnet is located between winding one and winding two and is used to rotate with the motor rotor. Winding one and winding two generate an induced voltage, and when the motor rotor undergoes axial displacement, a voltage difference is generated between winding one and winding two that can reflect the axial displacement of the motor rotor.
  • the winding one and the second winding are fixed on the stator core body in the circumferential direction outside the central through hole.
  • the winding one and the winding two each include at least one coil.
  • the winding one includes coil a and coil b connected in series
  • the winding two includes coil c and coil d connected in series
  • winding one and winding two are connected in parallel and form a winding that can be used for detection
  • the voltage difference between one and winding two is output terminal a and terminal b.
  • stator core is made of magnetically permeable material.
  • the open end of the measuring rod is provided with a cover to seal the permanent magnet, and the measuring rod and the cover are sealed by welding.
  • the measuring rod and the cover are made of corrosion-resistant, weakly magnetic or non-magnetic materials.
  • a pressure-bearing sleeve is provided between the stationary component and the rotating component.
  • the pressure-bearing sleeve passes through the inside of the stator core and covers the outside of the entire rotating component to realize the connection between the inside of the motor and the rotating component. Sealing and isolation from the external environment.
  • stator core is fixedly mounted on the electronic stator body through fixing screws and fixing bolts.
  • the permanent magnet is fixedly embedded inside the measuring rod.
  • the present invention has the following advantages:
  • the axial displacement monitoring device of the present invention takes into account the high temperature, high pressure, corrosive and other media environments inside the shielded motor, and uses the principle of electromagnetic induction to achieve real-time measurement of the axial displacement of the shielded motor rotor;
  • the axial displacement monitoring device of the present invention adopts a passive design and can measure the axial displacement of the shielded motor rotor without the need for external power supply;
  • the measuring rod and the cover are made of corrosion-resistant, weakly magnetic or non-magnetic materials to protect the permanent magnet;
  • a pressure-bearing sleeve is provided between the stationary component and the rotating component.
  • the isolation pressure-bearing sleeve serves as a part of the shielded motor pressure boundary, realizes the sealing and isolation between the inside of the motor and the external environment, and broadens the scope of the monitoring device.
  • the application environment range can be widely used in high pressure, corrosion and other environments;
  • the structure of the two sets of coils avoids the problem of measurement errors caused by changes in the magnetic induction intensity of the permanent magnet caused by changes in medium temperature.
  • FIG. 1 is a schematic structural diagram of the monitoring device of the present invention.
  • Figures 2 and 3 show the normal position of the rotor and the two states of rotor displacement respectively.
  • orientation or positional relationship indicated by the terms “upper”, “vertical”, “inner”, “outer”, etc. is based on the orientation or positional relationship shown in the drawings, or The orientation or positional relationship in which the product of the invention is usually placed when in use, or the orientation or positional relationship commonly understood by those skilled in the art, is only for the convenience of describing the invention and simplifying the description, and does not indicate or imply the device or element referred to. Must have a specific orientation, be constructed and operate in a specific orientation and are therefore not to be construed as limitations of the invention.
  • the terms “first”, “second”, etc. are only used to differentiate descriptions and are not to be understood as indicating or implying relative importance.
  • the terms "setting”, “installation” and “connection” should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • This embodiment provides an axial displacement monitoring device of the shielded motor rotor, which can monitor the axial displacement of the shielded motor rotor in real time and accurately through external inspection and non-contact means, promptly detect the axial force imbalance of the shielded motor rotor, and prevent accidents. worsen further.
  • the device of the present invention includes a stationary component connected to the stator of the motor and a rotating component connected to the rotor of the motor.
  • the stationary component includes a stator core 2.
  • the stator core 2 is internally provided with a central through hole for accommodating the entire rotating component to pass through.
  • the same winding one and winding two are arranged at intervals inside the stator core along the axial direction of the central through hole. Winding one and winding two are fixed on the stator core body in the outer circumferential direction of the central through hole.
  • Winding one and winding two each contain at least one coil.
  • the winding can be in the form of multiple coils connected in series.
  • the coils constituting winding 1 and winding 2 should be exactly the same in structure and arrangement.
  • winding one includes a coil a3 and a coil b5.
  • the coil a3 and the coil b5 are distributed in the circumferential direction on the radially split annular surface of the stator core.
  • the coil a3, Coils b5 are connected in series.
  • winding two includes coils c4 and d6 connected in series. Coils c4 and d6 are distributed in the circumferential direction on the radially divided annular surface of the stator core. Winding one and winding two are connected in parallel and form an output terminal a13 and a terminal b14 that can be used to detect the voltage difference between winding one and winding two.
  • the stator core 2 is made of magnetically conductive material, and forms the stationary component of the monitoring device with coil a3, coil b5, coil c4, and coil d6, and is connected to the body of the stator 1 of the shielded motor through fixing screws 11 and fixing nuts 12.
  • the main function of the stator core 2 is to form a magnetic circuit for the entire monitoring device, and at the same time, it plays the role of fixing coil a3, coil b5, coil c4, and coil d6.
  • the entire rotating component passes through the central through hole inside the stator core 2, including the measuring rod 7 and the permanent magnet 8 arranged inside the measuring rod 7.
  • the permanent magnet When initially installed, the permanent magnet is located in the middle of winding one and winding two, which is the same as the effective electromagnetic induction length of winding one and two.
  • the permanent magnet 8 is used to generate an induced voltage in the windings one and two of the motor rotor as it rotates, and when the motor rotor is axially displaced, a voltage difference is generated between the terminal a13 and the terminal b14 that can reflect the axial displacement of the motor rotor.
  • the permanent magnet 8 is embedded in the measuring rod 7, and the open end of the measuring rod 7 is sealed with a cover 10.
  • the measuring rod 7 and the cover 10 are made of corrosion-resistant, weakly magnetic or non-magnetic materials.
  • the measuring rod 7 and the cover 10 are sealed by welding to avoid media contamination or corrosion of the permanent magnet 8.
  • the measuring rod 7, the permanent magnet 8 and the cover 10 form the rotating part of the monitoring device, and are connected to the shielded motor rotor through the measuring rod 7.
  • the main principle of the monitoring device is to apply the principle of electromagnetic induction.
  • the measuring rod 7 drives the permanent magnet 8 to rotate, and induces voltages in coil winding one and coil winding two respectively. Since winding one and winding two are connected in parallel, A voltage difference between winding one and winding two occurs on terminal a13 and terminal b14.
  • the design of winding one and two avoids the problem of measurement errors caused by changes in the magnetic induction intensity of the permanent magnet caused by changes in medium temperature.
  • the voltage generated on terminal a13 and terminal b14 is zero (if the voltage is not the same during initial use) is 0 and can be adjusted to zero by adjusting the fixing screw 11); when the axial displacement of the shielded motor rotor occurs, the measuring rod 7 and the permanent magnet 8 are driven to move axially. At this time, the electromagnetic induction between the permanent magnet 8 and winding 1 and winding 2 is effective.
  • the different lengths result in a potential difference between winding one and winding two, and a voltage is generated on terminal a13 and terminal b14.
  • This voltage increases as the distance of permanent magnet 8 from the middle position increases, and the two are linear within a certain range.
  • the axial displacement of the shielded motor rotor can be accurately measured, thereby realizing the monitoring of the axial displacement of the shielded motor rotor.
  • This embodiment provides a shielded motor rotor axial displacement monitoring device.
  • a pressure-bearing sleeve 9 is provided between the stationary component and the rotating component of the monitoring device.
  • the pressure-bearing sleeve 9 extends from the stator to The inside of the iron core passes through and covers the outside of the entire rotating component to achieve sealing and isolation between the inside of the motor and the external environment.
  • the main function of the pressure-bearing sleeve 9 is to form the pressure boundary here to prevent the medium inside the shielded motor from leaking into the external environment. It needs to be made of materials that are corrosion-resistant, weakly or non-magnetic and can withstand the pressure inside the shielded motor.

Abstract

本发明公开了一种屏蔽电机转子轴向位移监测装置,属于电机技术领域。包括连接在电机定子上的静止部件和连接在电机转子上的旋转部件;所述静止部件包括定子铁芯,所述定子铁芯内部设有中心通孔,沿所述中心通孔的轴线方向间隔布置有相同的绕组一和绕组二,所述绕组一和绕组二均固定在所述中心通孔外圆周向的定子铁芯本体上;所述旋转部件整体从定子铁芯内部的中心通孔穿过,包括测量杆和设置在测量杆内部的永磁体,所述永磁体位于绕组一和绕组二之间。本发明通过外部检查并且非接触的手段可以实时并精确的监测到屏蔽电机转子轴向位移,可及时发现屏蔽电机转子轴向力失衡。

Description

一种屏蔽电机转子轴向位移监测装置 技术领域
 本发明涉及一种轴向位移监测装置,具体涉及一种屏蔽电机转子轴向位移监测装置。
背景技术
 屏蔽电机是用于输送剧毒性、腐蚀性、放射性、易燃易爆、贵重液体以及泄露后会造成重大危害液体的一种电机。屏蔽电机通过电机轴与泵的叶轮直接连接组成屏蔽泵,而屏蔽泵是一种无密封泵,泵和驱动电机被密封在一个被泵送介质充满的压力容器内,此压力容器只有静密封,取消了离心泵具有的旋转密封装置,故能做到完全无泄漏。长期以来,由于泵轴向力失衡引起屏蔽电机转子发生轴向位移,导致屏蔽电机止推轴承磨损的事故时有发生。
 由于屏蔽电机的完全封闭性(从外部无法观察到旋转部件),无法通过正常的手段发现其转子的轴向位移,最终导致屏蔽电机故障进一步恶化。 
 现有的技术方案有以下几种:
1)磁致伸缩式位移传感器:利用磁致伸缩效应实现非接触式的位移测量,主要由可移动的磁环、波导丝、防护套管、回路导线、磁条、检波回路等组成,其原理和结构无法应用于高温、高压、腐蚀性等介质环境。
 2)电涡流位移传感器:一种非接触式的线性化计量工具,能准确测量被测体(必须为金属材质)与探头端面之间静态和动态的相对位移变化。被测量体需要一定的面积才能实现准确测量,在屏蔽电机狭小的空间内无法布置;由于其电涡流效应基本原理所限,其探头无法应用于屏蔽电机的高压环境和各类腐蚀性介质环境,应用环境十分受限。
 3)LVDT位移传感器:主要由线圈、铁芯等组成,铁芯需要选用电阻率大、导磁率高、饱和磁感应强度大的材料。铁芯位于传感器线圈中心位置,通电后,初级线圈输入交变激励电流,则次级线圈内将产生电动势。两个磁极线圈反极性串联,输出电压信号,实现位移量转换为电信号。该类传感器必须有电源提供高频激励才能实现功能,且必须采用精密元件组成振荡器,传感器对测量电路要求也较高,需要精密元件组成驱动和信号检出电路,用于保障传感器测量精度和稳定性,大幅增加了传感器的加工难度、制造成本,同时降低了传感器的可靠性。
 其它如振弦式、超声波、激光、磁栅式等原理的位移传感器,或由于其结构所限,或由于使用环境所限,均无法应用于屏蔽电机转子轴向位移的测量。
发明内容
 本发明旨在解决现有技术中存在的上述问题,提出一种屏蔽电机转子轴向位移监测装置,通过外部检查并且非接触的手段可以实时并精确的监测到屏蔽电机转子轴向位移,及时发现屏蔽电机转子轴向力失衡,杜绝事故进一步恶化。
 为了实现上述发明目的,本发明的技术方案如下:
一种屏蔽电机转子轴向位移监测装置,其特征在于,包括连接在电机定子上的静止部件和连接在电机转子上的旋转部件;所述静止部件包括定子铁芯,所述定子铁芯内部设有中心通孔,沿所述中心通孔的轴线方向间隔布置有相同的绕组一和绕组二,所述绕组一和绕组二均固定在所述中心通孔外圆周向的定子铁芯本体上;所述旋转部件整体从定子铁芯内部的中心通孔穿过,包括测量杆和设置在测量杆内部的永磁体,所述永磁体位于绕组一和绕组二之间,用于随电机转子旋转使绕组一和绕组二产生感应电压,并在电机转子发生轴向位移时使绕组一和绕组二之间产生可反映电机转子轴向位移量的电压差。
 在某一实施例中,所述绕组一和绕组二固定在所述中心通孔外圆周向的定子铁芯本体上。
 在某一实施例中,所述绕组一和绕组二分别包含至少一个线圈。
 在某一实施例中,所述绕组一包括串联在一起的线圈a和线圈b,绕组二包括串联在一起的线圈c和线圈d;绕组一与绕组二并联在一起,并形成可用于检测绕组一与绕组二之间电压差的输出端子a和端子b。
 在某一实施例中,所述定子铁芯采用导磁材料制成。
 在某一实施例中,所述测量杆的开口端头设置有封盖对永磁体进行封堵,测量杆与封盖之间采用焊接进行密封。
 在某一实施例中,所述测量杆与封盖均采用耐腐蚀、弱磁或无磁材料制成。
 在某一实施例中,所述静止部件与旋转部件之间设置有承压套,所述承压套从定子铁芯内部穿过,包覆在整个旋转部件的外部,用于实现电机内部与外部环境之间的密封和隔离。
 在某一实施例中,所述定子铁芯通过固定螺钉与固定螺栓配合固定安装在电子定子本体上。
 在某一实施例中,所述永磁体固定镶嵌在测量杆内部。
 综上所述,本发明具有以下优点:
1、本发明的轴向位移监测装置,考虑到屏蔽电机内部所处的高温、高压、腐蚀性等介质环境,利用电磁感应原理实现了屏蔽电机转子轴向位移的实时测量;
2、本发明的轴向位移监测装置采用无源设计,无需外部电源供电就可以实现对屏蔽电机转子轴向位移的测量;
3、本发明中,测量杆和封盖均采用耐腐蚀、弱磁或无磁材料制成,对永磁体起到防护作用;
4、本发明中,静止部件与旋转部件之间设置有承压套,该隔离承压套作为屏蔽电机压力边界的一部分,实现了电机内部与外部环境之间的密封和隔离,拓宽了监测装置的应用环境范围,可被广泛应用于高压、腐蚀等环境中;
5、本发明中,两组线圈的结构避免了由于介质温度变化引起的永磁体磁感应强度变化而导致的测量误差问题。
附图说明
 图1为本发明监测装置的结构示意图; 
图2和图3分别展示了转子正常位置和转子发生位移的两种状态。
 图中:
1、电机定子,2、定子铁芯,3、线圈a,4、线圈c,5、线圈b,6、线圈d,7、测量杆,8、永磁体,9、承压套,10、封盖,11、固定螺钉,12、固定螺母,13、端子a,14、端子b。
实施方式
 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
 因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
 应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
 在本发明的描述中,需要说明的是,术语“上”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
 在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、 “安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
 实施例1
由于屏蔽电机的完全封闭性(从外部无法观察到旋转部件),无法通过正常的手段发现其转子的轴向位移,最终导致屏蔽电机故障进一步恶化。本实施例提供了一种屏蔽电机转子轴向位移监测装置,通过外部检查并且非接触的手段可以实时并精确的监测到屏蔽电机转子轴向位移,及时发现屏蔽电机转子轴向力失衡,杜绝事故进一步恶化。
 具体的,本发明装置包括连接在电机定子上的静止部件和连接在电机转子上的旋转部件。
 静止部件包括定子铁芯2,所述定子铁芯2内部设有容纳旋转部件整体穿过的中心通孔。定子铁芯内部沿中心通孔的轴线方向间隔布置有相同的绕组一和绕组二。绕组一和绕组二固定在中心通孔的外圆周向的定子铁芯本体上。
 绕组一和绕组二分别包含至少一个线圈。优选的,为了增加绕组电压,绕组可采用多个线圈串联的形式。为了便于测量,构成绕组一和绕组二的线圈在组成结构和布置方位上应完全相同。
 如图2或图3所示,本实施例中,绕组一包括线圈a3、线圈b5,线圈a3和线圈b5在定子铁芯径向剖分后的圆环面上沿周向分布,线圈a3、线圈b5串联在一起。同样的,绕组二包括串联在一起的线圈c4、线圈d6,线圈c4和线圈d6在定子铁芯径向剖分后的圆环面上沿周向分布。绕组一与绕组二并联在一起,并形成可用于检测绕组一与绕组二之间电压差的输出端子a13和端子b14。
 定子铁芯2采用导磁材料制成,并与线圈a3、线圈b5、线圈c4、线圈d6形成监测装置的静止部件后通过固定螺钉11及固定螺母12与屏蔽电机定子1本体连接在一起。定子铁芯2的主要作用是为整个监测装置形成磁路,同时起到固定线圈a3、线圈b5、线圈c4、线圈d6的作用。
 旋转部件整体从定子铁芯2内部的中心通孔穿过,包括测量杆7和设置在测量杆7内部的永磁体8。初始安装时,永磁体位于绕组一和绕组二的中间位置,与绕组一和绕组二的电磁感应有效长度相同。永磁体8用于随电机转子旋转使绕组一和绕组二产生感应电压,并在电机转子发生轴向位移时使端子a13和端子b14之间产生可反映电机转子轴向位移的电压差。
 永磁体8镶嵌在测量杆7内,测量杆7上的开口端头用封盖10进行封堵。测量杆7与封盖10均采用耐腐蚀、弱磁或无磁材料制成,测量杆7与封盖10之间采用焊接进行密封,避免介质污染或腐蚀永磁体8。
 测量杆7、永磁体8和封盖10三者形成监测装置的旋转部件,通过测量杆7与屏蔽电机转子连接。
 本监测装置的工作原理如下:
监测装置的主要原理是应用电磁感应原理,屏蔽电机转子旋转时,测量杆7带动永磁体8旋转,并分别在线圈绕组一和线圈绕组二内产生感应电压,由于绕组一和绕组二并联连接,端子a13和端子b14上产生绕组一和绕组二的电压差。绕组一和绕组二的设计避免了由于介质温度变化引起的永磁体磁感应强度变化而导致的测量误差问题。
 当监测装置旋转部件上的永磁体8处在中间位置时,由于永磁体8与绕组一和绕组二电磁感应有效长度相同,端子a13和端子b14上产生的电压为零(若初始使用时电压不为0可通过调节固定螺钉11进行调零);当屏蔽电机转子发生轴向位移时,带动测量杆7和永磁体8轴向移动,此时由于永磁体8与绕组一和绕组二电磁感应有效长度不同,导致绕组一内与绕组二内存在电势差,及端子a13和端子b14上产生电压,此电压随着永磁体8偏离中间位置的距离增加而增加,二者之间在一定范围内成线性关系,通过永磁体8偏离中间位置的距离与端子a13和端子b14上端电压的关系,可以准确测量屏蔽电机转子的轴向位移,进而实现对屏蔽电机转子轴向位移的监测。
 实施例2
本实施例提供了一种屏蔽电机转子轴向位移监测装置,在实施例1的基础上,进一步地,监测装置的静止部件与旋转部件之间设置有承压套9,承压套9从定子铁芯的内部穿过,包覆在整个旋转部件的外部,用于实现电机内部与外部环境之间的密封和隔离。承压套9的主要作用是形成此处的压力边界,防止屏蔽电机内部的介质泄漏到外部环境中。需要采用耐腐蚀、弱磁或无磁并可以承受屏蔽电机内部压力的材料制成。
 虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可做出的各种修改和变形仍属本专利的保护范围。
 以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。 

Claims (9)

  1.  一种屏蔽电机转子轴向位移监测装置,其特征在于,包括连接在电机定子(1)上的静止部件和连接在电机转子上的旋转部件;所述静止部件包括定子铁芯(2),所述定子铁芯(2)内部设有中心通孔,沿所述中心通孔的轴线方向间隔布置有相同的绕组一和绕组二,所述绕组一和绕组二均固定在所述中心通孔外圆周向的定子铁芯本体上;所述旋转部件整体从定子铁芯(2)内部的中心通孔穿过,包括测量杆(7)和设置在测量杆(7)内部的永磁体(8),所述永磁体(8)位于绕组一和绕组二之间,用于随电机转子旋转使绕组一和绕组二产生感应电压,并在电机转子发生轴向位移时使绕组一和绕组二之间产生可反映电机转子轴向位移量的电压差。
  2.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述绕组一和绕组二分别包含至少一个线圈。
  3.  根据权利要求1或2所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述绕组一包括串联在一起的线圈a(3)和线圈b(5),绕组二包括串联在一起的线圈c(4)和线圈d(6);绕组一与绕组二并联在一起,并形成可用于检测绕组一与绕组二之间电压差的输出端子a(13)和端子b(14)。
  4.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述定子铁芯(2)采用导磁材料制成。
  5.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述定子铁芯(2)通过固定螺钉(11)与固定螺母(12)配合固定安装在电子定子(1)本体上。
  6.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述测量杆(7)的开口端头设置有封盖(10)对永磁体(8)进行封堵,测量杆(7)与封盖(10)之间采用焊接进行密封。
  7.  根据权利要求6所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述测量杆(7)与封盖(10)均采用耐腐蚀、弱磁或无磁材料制成。
  8.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述静止部件与旋转部件之间设置有承压套(9),所述承压套(9)从定子铁芯(2)内部穿过,包覆在整个旋转部件的外部,用于实现电机内部与外部环境之间的密封和隔离。
  9.  根据权利要求1所述的一种屏蔽电机转子轴向位移监测装置,其特征在于,所述永磁体(8)固定镶嵌在测量杆(7)内部。
PCT/CN2023/114549 2022-08-30 2023-08-24 一种屏蔽电机转子轴向位移监测装置 WO2024046191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211051504.7 2022-08-30
CN202211051504.7A CN115603521A (zh) 2022-08-30 2022-08-30 一种屏蔽电机转子轴向位移监测装置

Publications (1)

Publication Number Publication Date
WO2024046191A1 true WO2024046191A1 (zh) 2024-03-07

Family

ID=84843727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114549 WO2024046191A1 (zh) 2022-08-30 2023-08-24 一种屏蔽电机转子轴向位移监测装置

Country Status (2)

Country Link
CN (1) CN115603521A (zh)
WO (1) WO2024046191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603521A (zh) * 2022-08-30 2023-01-13 东方电气集团东方电机有限公司(Cn) 一种屏蔽电机转子轴向位移监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114402A (ja) * 1994-10-14 1996-05-07 Nippon Seiko Kk 変位センサ
CN1818540A (zh) * 2006-03-17 2006-08-16 清华大学 一种从径向测量转动轴轴向位移的方法及其传感器
CN102620641A (zh) * 2012-03-30 2012-08-01 刘延风 一种轴向位移传感器
CN103712547A (zh) * 2014-01-07 2014-04-09 王允学 轴承监测仪
CN212473852U (zh) * 2020-07-01 2021-02-05 上海船舶运输科学研究所 一种船体结构监测装置
CN216115844U (zh) * 2021-10-26 2022-03-22 大连赛博灵科技有限公司 一种屏蔽泵轴向位移监测仪
CN115603521A (zh) * 2022-08-30 2023-01-13 东方电气集团东方电机有限公司(Cn) 一种屏蔽电机转子轴向位移监测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114402A (ja) * 1994-10-14 1996-05-07 Nippon Seiko Kk 変位センサ
CN1818540A (zh) * 2006-03-17 2006-08-16 清华大学 一种从径向测量转动轴轴向位移的方法及其传感器
CN102620641A (zh) * 2012-03-30 2012-08-01 刘延风 一种轴向位移传感器
CN103712547A (zh) * 2014-01-07 2014-04-09 王允学 轴承监测仪
CN212473852U (zh) * 2020-07-01 2021-02-05 上海船舶运输科学研究所 一种船体结构监测装置
CN216115844U (zh) * 2021-10-26 2022-03-22 大连赛博灵科技有限公司 一种屏蔽泵轴向位移监测仪
CN115603521A (zh) * 2022-08-30 2023-01-13 东方电气集团东方电机有限公司(Cn) 一种屏蔽电机转子轴向位移监测装置

Also Published As

Publication number Publication date
CN115603521A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024046191A1 (zh) 一种屏蔽电机转子轴向位移监测装置
US4924180A (en) Apparatus for detecting bearing shaft wear utilizing rotatable magnet means
US3981621A (en) Bearing wear detection devices
JPS62249026A (ja) トルク測定装置
EP1386127A1 (en) Magnetoelastic torque sensor
EP0943082B1 (en) Sealless pump rotor position and bearing monitor
US9966812B2 (en) Static vacuum shafting device for integrated rotary transformer
Gurusamy et al. Recent trends in magnetic sensors and flux-based condition monitoring of electromagnetic devices
Lee et al. An iron core probe based inter-laminar core fault detection technique for generator stator cores
EP2431753B1 (en) Apparatus and method for testing the number of turns on a coil
US8821109B2 (en) Device for detecting the axial position of a rotary shaft and its application to a turbo-molecular pump
JP3485988B2 (ja) 制御棒駆動機構
JP2017515120A (ja) ターン間欠陥を検出するための装置及び方法並びに電気機械
Caetano et al. Capacitive and inductive sensors for diagnosing air-gap anomalies in synchronous generators
CN218239326U (zh) 一种屏蔽电机径向轴承磨损监测装置
JP3023283B2 (ja) キャンドモータの軸方向変位検出装置
JP3604276B2 (ja) 誘導電動機およびその軸受摩耗の検知方法
KR102535724B1 (ko) 발전기의 여자기용 공극감지장치
JPH01318901A (ja) 磁気誘導式センサ
RU2521716C2 (ru) Датчик скорости
Melin et al. Advanced instrumentation for extreme environments
JP2506163B2 (ja) ベアリングモニタ
CN219351458U (zh) 一种电主轴用电机
JPH0361134B2 (zh)
Barton et al. Industrial torque measurement using magneto-strictive torquemeters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859224

Country of ref document: EP

Kind code of ref document: A1