WO2024045934A1 - 充电机、充电机控制方法及车辆 - Google Patents

充电机、充电机控制方法及车辆 Download PDF

Info

Publication number
WO2024045934A1
WO2024045934A1 PCT/CN2023/108245 CN2023108245W WO2024045934A1 WO 2024045934 A1 WO2024045934 A1 WO 2024045934A1 CN 2023108245 W CN2023108245 W CN 2023108245W WO 2024045934 A1 WO2024045934 A1 WO 2024045934A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge arm
voltage
capacitor
frequency bridge
factor correction
Prior art date
Application number
PCT/CN2023/108245
Other languages
English (en)
French (fr)
Inventor
刘伟冬
王超
王兴辉
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024045934A1 publication Critical patent/WO2024045934A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present disclosure relates to the field of power electronics technology, and specifically, to a charger, a charger control method and a vehicle.
  • the charger is a power supply system that converts alternating current into direct current. It generally includes a power factor correction circuit (Power Factor Correction, PFC) in the front stage and a DC-DC converter in the rear stage. There is a balance between the two to balance the AC power.
  • the charger will have a common mode leakage current problem during operation. For this reason, a bus capacitor and an AC side capacitor are added to the charger.
  • the midpoint of the bus capacitor is shorted to the midpoint of the AC side virtual capacitor. , to improve the common mode leakage current problem of three-phase charging.
  • shorting the midpoint of the bus capacitor to the midpoint of the AC side virtual capacitor will introduce new problems.
  • the input current when the charger is in single-phase AC charging mode, the input current will be distorted when the input voltage crosses zero. That is, when the input voltage crosses zero, the current either has a large positive pulse spike or a large negative pulse spike, or the current waveform is severely distorted and cannot follow the input voltage well.
  • the present disclosure provides a charger, a charger control method and a vehicle.
  • the present disclosure provides a charger, including:
  • AC side capacitor component one end of the AC side capacitor component is suitable for connecting to AC power
  • a power factor correction circuit the first end of the power factor correction circuit is used to connect to the alternating current and the one end of the AC side capacitor component;
  • Bus capacitor component the bus capacitor component includes:
  • one end of the first capacitor is connected to the second end of the power factor correction circuit and one end of the DC-DC converter, and
  • a second capacitor wherein one end of the second capacitor is connected to the other end of the first capacitor, and the other end of the second capacitor is connected to the third end of the power factor correction circuit and the DC-DC conversion both ends of the device;
  • a controller the controller is connected to both the power factor correction circuit and the DC-DC converter, and is used to dynamically adjust the charging voltage according to the voltage of the alternating current when the charger is in the single-phase alternating current charging mode.
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is to discharge the voltage of the AC side capacitor component and perform power factor correction on the AC power, and input the DC power output by the power factor correction circuit to the DC-DC converter, so that the DC-DC converter performs voltage conversion on the direct current and outputs it to the device to be charged;
  • the other end of the first capacitor and the one end of the second capacitor are both connected to the other end of the AC side capacitor component.
  • the power factor correction circuit includes:
  • the first bus terminal of the M-phase high-frequency bridge arm is connected to the first capacitor, and the second bus terminal of the M-phase high-frequency bridge arm is connected to the second capacitor;
  • the first ends of the M coils are connected to the midpoint of the M-phase high-frequency bridge arm in one-to-one correspondence, and the second ends of the M coils are connected to the live wire of the alternating current;
  • Power frequency bridge arm one end of the power frequency bridge arm is connected to the first bus terminal and the first capacitor, and the other end of the power frequency bridge arm is connected to the second bus terminal and the second bus terminal.
  • the capacitors are all connected, and the midpoint of the power frequency bridge arm is used to connect to the neutral line of the alternating current;
  • the AC side capacitor component includes M third capacitors, the first ends of the M third capacitors are connected to the second ends of the M coils in one-to-one correspondence, and the M third capacitors are The second end of the third capacitor is commonly connected to form a neutral point, and the neutral point is connected to both the first capacitor and the second capacitor through a resistor.
  • the controller is connected to the M-phase high-frequency bridge arm for:
  • the target high-frequency bridge arm is controlled to be disconnected, wherein the target high-frequency bridge arm includes one or more used in the single-phase alternating current charging mode.
  • the upper arm of the target high-frequency bridge arm is controlled to be disconnected.
  • the lower arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component. If the voltage is greater than the second preset voltage, the lower arm is controlled to be with the second duty cycle. ratio conduction to perform power factor correction on the alternating current, wherein the first preset voltage is smaller than the second preset voltage;
  • the target high-frequency bridge arm is controlled.
  • the lower bridge arm is turned off and the upper bridge arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component. If the absolute value of the voltage is greater than the second preset voltage, then control The upper bridge arm of the target high-frequency bridge arm is turned on at the second duty cycle to perform power factor correction on the alternating current.
  • controller is also used to:
  • the upper and lower bridge arms of the target high-frequency bridge arm are controlled to be turned on alternately.
  • the target high-frequency bridge arm includes a plurality of the high-frequency bridge arms
  • the controller is used to control the upper bridge arm of the target high-frequency bridge arm to be disconnected, the lower bridge arm to be staggeredly conducted at a preset angle and a first duty cycle, and to control the lower bridge arm of the target high-frequency bridge arm.
  • the bridge arms are disconnected and the upper bridge arms are staggeredly conducted at the preset angle and the first duty cycle.
  • the controller is connected to the power frequency bridge arm, and is used to control the lower bridge arm of the power frequency bridge arm to conduct, and the upper arm of the power frequency bridge arm to conduct when the input voltage of the charger is in the positive half cycle.
  • the bridge arm is disconnected.
  • the upper bridge arm of the power frequency bridge arm is controlled to be turned on and the lower bridge arm is turned off.
  • the present disclosure provides a charger control method, including:
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is dynamically adjusted according to the voltage of the AC to discharge the voltage of the AC side capacitor component and perform power factor correction on the AC.
  • the charger includes the AC side capacitor component, the power factor correction circuit, the bus capacitor component and the DC-DC converter;
  • the power factor correction circuit has a first end used to connect to the AC power ;
  • the bus capacitor component includes a first capacitor and a second capacitor, wherein one end of the first capacitor is connected to both the second end of the power factor correction circuit and one end of the DC-DC converter, and the The other end of the first capacitor is connected to one end of the second capacitor, and the other end of the second capacitor is connected to both the third end of the power factor correction circuit and the other end of the DC-DC converter;
  • One end of the AC side capacitor component is connected to both the AC power and the first end of the power factor correction circuit, and the other end is connected to both the first capacitor and the second capacitor.
  • the power factor correction circuit includes M-phase high-frequency bridge arms, M coils and power frequency bridge arms, M ⁇ 1;
  • the first bus terminal of the M-phase high-frequency bridge arm is connected to the first capacitor, and the second bus terminal of the M-phase high-frequency bridge arm is connected to the second capacitor;
  • the first end is connected to the midpoint of the M-phase high-frequency bridge arm in one-to-one correspondence, and the second end of the M coils is connected to the live wire of the alternating current;
  • one end of the power frequency bridge arm is connected to the first confluence
  • One end is connected to the first capacitor, the other end is connected to the second bus end and the second capacitor, and the midpoint of the power frequency bridge arm is used to connect to the neutral line of the alternating current;
  • the AC side capacitor component includes M third capacitors.
  • the first ends of the M third capacitors are connected to the second ends of the M coils in one-to-one correspondence.
  • the second ends of the M third capacitors are connected in common. shape Become a neutral point, the neutral point is connected to both the first capacitor and the second capacitor through a resistor;
  • the method of dynamically adjusting the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit according to the voltage of the alternating current to discharge the voltage of the AC side capacitor component and perform power factor correction on the alternating current includes:
  • the target high-frequency bridge arm is controlled to be disconnected, wherein the target high-frequency bridge arm includes one or more used in the single-phase alternating current charging mode.
  • the upper arm of the target high-frequency bridge arm is controlled to be disconnected.
  • the lower arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component. If the voltage is greater than the second preset voltage, the lower arm is controlled to be with the second duty cycle. ratio conduction to perform power factor correction on the alternating current, wherein the first preset voltage is smaller than the second preset voltage;
  • the target high-frequency bridge arm is controlled.
  • the lower bridge arm is turned off and the upper bridge arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component. If the absolute value of the voltage is greater than the second preset voltage, then control The upper arm is turned on at the second duty cycle to perform power factor correction on the alternating current.
  • the method also includes:
  • the upper and lower bridge arms of the target high-frequency bridge arm are controlled to be turned on alternately.
  • the disclosure provides a vehicle, including the charger provided in the first aspect of the disclosure.
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is dynamically adjusted according to the voltage of the AC power to discharge the voltage of the AC side capacitor component and Power factor correction is performed on the alternating current, and the direct current output from the power factor correction circuit is input to the DC-DC converter, so that the DC-DC converter performs voltage conversion on the direct current and outputs it to the device to be charged.
  • the conduction duty cycle of the high-frequency bridge arm of the rate factor correction circuit can discharge the voltage of the AC side capacitor component, thereby avoiding current distortion when the AC zero crosses, and at the same time ensuring the original power factor correction function.
  • Figure 1 is a structural block diagram of a charger according to an exemplary embodiment.
  • FIG. 2 is a circuit topology diagram of a charger according to an exemplary embodiment.
  • FIG. 3 is a simplified circuit topology diagram of a charger in a single-phase AC charging mode according to an exemplary embodiment.
  • FIG. 4 is a flow chart of a charger control method according to an exemplary embodiment.
  • FIG. 1 is a structural block diagram of a charger according to an exemplary embodiment. As shown in Figure 1, the charger includes a controller 1, an AC side capacitor component 2, a power factor correction circuit 3, a bus capacitor component 4 and a DC-DC converter 5.
  • the charger includes a controller 1, an AC side capacitor component 2, a power factor correction circuit 3, a bus capacitor component 4 and a DC-DC converter 5.
  • One end of the AC side capacitor component 2 is suitable for connecting to the AC power 6; the first end of the power factor correction circuit 3 is used to connect with the AC power 6 and one end of the AC side capacitor component 2.
  • the bus capacitor component 4 includes: a first capacitor C1 and a second capacitor C2. Among them, one end of the first capacitor C1 is connected to the second end of the power factor correction circuit 3 and one end of the DC-DC converter 5; one end of the second capacitor C2 is connected to the other end of the first capacitor C1; the second capacitor C2 The other end of the first capacitor C1 is connected to the third end of the power factor correction circuit 3 and the other end of the DC-DC converter 5. terminal and one end of the second capacitor C2 are both connected to the other end of the AC side capacitor component 2 .
  • the controller 1 is connected to both the power factor correction circuit 3 and the DC-DC converter 5, and is used to dynamically adjust the high-frequency bridge arm of the power factor correction circuit 3 according to the voltage of the alternating current when the charger is in the single-phase AC charging mode.
  • the conduction duty cycle is to discharge the voltage of the AC side capacitor component 2 and perform power factor correction on the AC power, and input the DC power output by the power factor correction circuit 3 to the DC-DC converter 5 for conversion from DC-DC.
  • the converter 5 performs voltage conversion on the DC power and outputs it to the device to be charged.
  • the device to be charged may be, for example, a power battery, a load, etc.; the alternating current may be sinusoidal alternating current or cosine alternating current.
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is dynamically adjusted according to the voltage of the AC power to discharge the voltage of the AC side capacitor component and Power factor correction is performed on the alternating current, and the direct current output from the power factor correction circuit is input to the DC-DC converter, so that the DC-DC converter performs voltage conversion on the direct current and outputs it to the device to be charged.
  • the charger is in single-phase AC charging mode, by dynamically adjusting the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit, the voltage of the AC side capacitor component can be discharged, thereby preventing the AC side from crossing zero. Produce current distortion while ensuring the original power factor correction function.
  • the above-mentioned power factor correction circuit 3 may include M-phase high-frequency bridge arm B1, M coils KM and power frequency bridge arm B2, M ⁇ 1.
  • the first bus terminal of the M-phase high-frequency bridge arm B1 is connected to the first capacitor C1
  • the second bus terminal of the M-phase high-frequency bridge arm B1 is connected to the second capacitor C2; the first terminals of the M coils KM are connected one by one.
  • the second end of the M coils KM is connected to the live wire of the alternating current 6 (as shown in Figure 2, the M coils KM are coil km1, coil km2 and coil km3 respectively, where , the second end of the coil km1 is connected to the live wire A of the alternating current 6, the second end of the coil km2 is connected to the live wire B of the alternating current 6, the second end of the coil km3 is connected to the live wire C of the alternating current 6); the power frequency bridge arm B2, one end is connected to the live wire B of the alternating current 6. One bus terminal is connected to the first capacitor C1, the other terminal is connected to the second bus terminal and the second capacitor C2, and the midpoint of the power frequency bridge arm B2 is used to connect to the neutral line N of the alternating current 6.
  • the above-mentioned AC side capacitor component 2 includes M third capacitors C3, and M third capacitors C3.
  • the first end of the capacitor C3 is connected to the second end of the M coils KM in one-to-one correspondence.
  • the second ends of the M third capacitors C3 are commonly connected to form a neutral point.
  • the neutral point is connected to the first capacitor C1 and the third capacitor C1 through the resistor R. Both capacitors C2 are connected.
  • the above-mentioned DC-DC converter 5 includes a transformer 51, a first phase arm 52, a second phase arm 53, a third phase arm 54, a fourth phase arm 55 and a fourth capacitor C4.
  • the midpoint of the first phase arm 52 is connected to the first end of the primary side of the transformer 51
  • the midpoint of the second phase arm 53 is connected to the second end of the primary side of the transformer 51
  • the midpoint of the third phase arm 54 is connected to the transformer 51
  • the first end of the secondary side and the midpoint of the fourth phase arm 55 are connected to the second end of the secondary side of the transformer.
  • the first bus terminals of the first phase arm 52 and the second phase arm 53 are connected to the first capacitor C1 connection
  • the second common terminal of the first phase bridge arm 52 and the second phase bridge arm 53 is connected to the second capacitor C2
  • the first common terminal of the third phase bridge arm 54 and the fourth phase bridge arm 55 is connected to the fourth capacitor C4
  • One end of the capacitor C4 is connected to the positive electrode of the device to be charged
  • the second bus terminals of the third phase bridge arm 54 and the fourth phase bridge arm 55 are connected to the other end of the fourth capacitor C4 and the negative pole of the device to be charged.
  • the above-mentioned charger may also include a first switch K1, a second switch K2, a third switch K3 and a fourth switch K4, wherein the fourth switch K4 includes a movable end K41, a first fixed end K42 and The second fixed end K43 and the movable end K41 are used to selectively access the first fixed end K42 or the second fixed end K43.
  • the charger is in the three-phase AC charging mode.
  • Controller 1 (not shown in Figure 2), connected to the M-phase high-frequency bridge arm B1, is used for:
  • the target high-frequency bridge arm When the charger is in single-phase AC charging mode: if the absolute value of the AC voltage is less than or equal to the first preset voltage, the target high-frequency bridge arm is controlled to be disconnected; when the input voltage of the charger (i.e., the output of AC voltage (correspondingly, the voltage of the alternating current is the input voltage value of the charger) is in the positive half cycle, and the voltage of the alternating current is greater than zero. At this time, if the voltage is greater than the first preset voltage and less than the two preset voltages, the upper bridge arm of the target high-frequency bridge arm is controlled to be disconnected and the lower bridge arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component 2.
  • the lower bridge arm of the target high-frequency bridge arm is controlled to be turned on with the second duty cycle to perform power factor correction on the alternating current; when the input voltage of the charger is in the negative half cycle, the voltage of the alternating current is less than zero.
  • the lower arm of the target high-frequency bridge arm is controlled to be disconnected and the upper arm is turned on with the first duty cycle to discharge the AC side.
  • the upper bridge arm of the target high-frequency bridge arm is controlled to be turned on with the second duty cycle to perform power factor correction on the alternating current.
  • the target high-frequency bridge arm includes one or more high-frequency bridge arms used in the single-phase alternating current charging mode. Specifically, when the first switch K1 is closed and the second switch K2 and the third switch K3 are both open, the target high-frequency bridge arm includes the high-frequency bridge arm on the left side of the M-phase high-frequency bridge arm B1, that is, The target high-frequency bridge arm is one.
  • the target high-frequency bridge arm includes the M-phase high
  • the frequency bridge arm B1 There are two high-frequency bridge arms in the frequency bridge arm B1: the left high-frequency bridge arm and the middle high-frequency bridge arm, that is, the target high-frequency bridge arms, as shown in Figure 3.
  • the first preset voltage is less than the second preset voltage, wherein the first preset voltage is greater than zero and close to zero, and the second preset voltage is less than the maximum voltage of the alternating current.
  • the first duty cycle may be less than the second duty cycle, or may be greater than or equal to the second duty cycle, which is not specifically limited in this disclosure.
  • the first duty cycle is smaller than the second duty cycle, and the second duty cycle is approximately equal to the ratio of the output voltage of the power factor correction circuit 3 to the input voltage.
  • the target high-frequency bridge arm is first controlled to be disconnected; then, when the input voltage of the charger is in the positive half cycle, if the voltage is greater than the first preset voltage and less than the second preset voltage, Then the lower arm of the target high-frequency bridge arm is controlled to conduct with a relatively small duty cycle (i.e., the first duty cycle, which is smaller than the second duty cycle).
  • the upper bridge arm of the target high-frequency bridge arm is turned on. is always disconnected, so that the AC side can be connected at a relatively slow speed
  • the voltage of the capacitor component is discharged to the second capacitor C2 through the coil connected to the target high-frequency bridge arm and the lower arm of the target high-frequency bridge arm, thereby making the zero-crossing leakage current smoothly transition and avoiding current distortion; in the charger
  • the input voltage is in the negative half cycle
  • the upper arm of the target high-frequency bridge arm is controlled to conduct with a relatively small duty cycle.
  • the lower arm of the target high-frequency bridge arm is always disconnected.
  • the voltage of the AC side capacitor component can be passed through the coil connected to the target high-frequency bridge arm and the target high-frequency bridge arm at a relatively slow speed.
  • the upper arm discharges to the first capacitor C1, which can smoothly transition the zero-crossing leakage current and avoid current distortion.
  • the lower bridge arm of the target high-frequency bridge arm is controlled to use the second duty cycle. is turned on to perform power factor correction on the alternating current.
  • the upper bridge arm of the target high-frequency bridge arm is controlled to operate in the second duty cycle. ratio conduction to perform power factor correction on the alternating current.
  • the upper bridge arm and the lower bridge arm of the power frequency bridge arm B2 can always be in a disconnected state.
  • the upper bridge arm of the power frequency bridge arm B2 When the lower bridge arm is always disconnected, its body diode can be used to automatically freewheel.
  • the lower bridge arm of the power frequency bridge arm B2 can be made conductive
  • the upper bridge arm of the power frequency bridge arm B2 is turned on and the lower bridge arm is disconnected.
  • the above-mentioned controller 1 is connected to the power frequency bridge arm B2, and is also used to control the lower arm of the power frequency bridge arm B2 to turn on and the upper arm to turn off when the input voltage of the charger is in the positive half cycle.
  • the upper bridge arm of the power frequency bridge arm B2 is controlled to be turned on and the lower bridge arm is turned off.
  • the multiple high-frequency bridge arms in the target high-frequency bridge arm can be Staggered conduction.
  • controller 1 is used to control the upper bridge arm of the target high-frequency bridge arm to be disconnected, the lower bridge arm to The preset angle and the first duty cycle are staggered in conduction, and the lower bridge arm of the target high-frequency bridge arm is controlled to be disconnected, and the upper bridge arm is staggered in conduction at the preset angle and the first duty cycle.
  • the target high-frequency bridge arm includes the left high-frequency bridge arm and the middle high-frequency bridge arm of the M-phase high-frequency bridge arm B1.
  • the preset angle may be 90 degrees.
  • the above-mentioned controller 1 is also used to switch the lower arm of the target high-frequency bridge arm to the second occupied position. After the air ratio is continuously turned on for a preset time, the upper and lower bridge arms of the target high-frequency bridge arm are controlled to be turned on alternately.
  • the above-mentioned controller 1 is also used to control the upper arm of the target high-frequency bridge arm with the second After the duty cycle is continuously turned on for a preset period of time, the upper and lower bridge arms of the target high-frequency bridge arm are controlled to be turned on alternately.
  • FIG. 4 is a flow chart of a charger control method according to an exemplary embodiment. As shown in Figure 4, the above method may include the following S401 and S402.
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is dynamically adjusted according to the voltage of the AC power to discharge the voltage of the AC side capacitor component and reduce the voltage of the AC side. Perform power factor correction.
  • the DC power output by the power factor correction circuit is input to the DC-DC converter, so that the DC-DC converter performs voltage conversion on the DC power and outputs it to the device to be charged.
  • the charger includes the AC side capacitor component, the power factor correction circuit, the bus capacitor component and the DC-DC converter;
  • the power factor correction circuit has a first end used to connect to the AC power ;
  • the bus capacitor component includes a first capacitor and a second capacitor, wherein one end of the first capacitor is connected to both the second end of the power factor correction circuit and one end of the DC-DC converter, and the The other end of the first capacitor is connected to one end of the second capacitor, and the other end of the second capacitor is connected to both the third end of the power factor correction circuit and the other end of the DC-DC converter;
  • One end of the AC side capacitor component is connected to both the AC power and the first end of the power factor correction circuit, and the other end is connected to both the first capacitor and the second capacitor.
  • the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit is dynamically adjusted according to the voltage of the AC power to discharge the AC side power.
  • the DC power outputted by the power factor correction circuit is input to the DC-DC converter, so that the DC-DC converter converts the DC power into voltage and outputs it to the device to be charged.
  • the charger is in single-phase AC charging mode, by dynamically adjusting the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit, the voltage of the AC side capacitor component can be discharged, thereby preventing the AC side from crossing zero. Produce current distortion while ensuring the original power factor correction function.
  • the power factor correction circuit includes M-phase high-frequency bridge arms, M coils and power frequency bridge arms, M ⁇ 1;
  • the first bus terminal of the M-phase high-frequency bridge arm is connected to the first capacitor, and the second bus terminal of the M-phase high-frequency bridge arm is connected to the second capacitor;
  • the first end is connected to the midpoint of the M-phase high-frequency bridge arm in one-to-one correspondence, and the second end of the M coils is connected to the live wire of the alternating current;
  • one end of the power frequency bridge arm is connected to the first confluence
  • One end is connected to the first capacitor, the other end is connected to the second bus end and the second capacitor, and the midpoint of the power frequency bridge arm is used to connect to the neutral line of the alternating current;
  • the capacitor component includes M third capacitors, the first ends of the M third capacitors are connected to the second ends of the M coils in one-to-one correspondence, and the second ends of the M third capacitors are commonly connected to form a central A neutral point, the neutral point is connected to both the first capacitor and the second capacitor through a resistor;
  • the method of dynamically adjusting the conduction duty cycle of the high-frequency bridge arm of the power factor correction circuit according to the voltage of the alternating current to discharge the voltage of the AC side capacitor component and perform power factor correction on the alternating current includes:
  • the target high-frequency bridge arm is controlled to be disconnected, wherein the target high-frequency bridge arm includes one or more used in the single-phase alternating current charging mode.
  • the upper arm of the target high-frequency bridge arm is controlled to be disconnected.
  • the lower arm is turned on with the first duty cycle to discharge the voltage of the AC side capacitor component. If the voltage is greater than the second preset voltage, the lower arm is controlled to be with the second duty cycle. ratio conduction to perform power factor correction on the alternating current, wherein the first preset voltage is smaller than the second preset voltage;
  • the lower bridge arm of the target high-frequency bridge arm is controlled to be turned off and the upper bridge arm is turned on with the first duty cycle to discharge the If the absolute value of the voltage of the AC side capacitor component is greater than the second preset voltage, the upper arm is controlled to conduct with the second duty cycle to perform power factor analysis on the AC power. Correction.
  • the method further includes the following steps:
  • the upper and lower bridge arms of the target high-frequency bridge arm are controlled to be turned on alternately.
  • the target high-frequency bridge arm includes a plurality of the high-frequency bridge arms
  • the control of the upper bridge arm of the target high-frequency bridge arm to be turned off and the lower bridge arm to be turned on with a first duty cycle includes:
  • the upper bridge arm of the target high-frequency bridge arm is disconnected, and the lower bridge arm is staggeredly connected at a preset angle and the first duty cycle;
  • the control of the lower bridge arm of the target high-frequency bridge arm to be turned off and the upper bridge arm to be turned on with the first duty cycle includes:
  • the lower bridge arm of the target high-frequency bridge arm is controlled to be disconnected and the upper bridge arm is staggeredly conducted at the preset angle and the first duty cycle.
  • the method further includes the following steps:
  • the upper bridge arm of the power frequency bridge arm is controlled to be turned on and the lower bridge arm is turned off.
  • the present disclosure also provides a vehicle, including the above charger provided according to the present disclosure.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电机,包括控制器(1)、交流侧电容组件(2)、功率因数校正电路(3)、母线电容组件(4)及DC-DC转换器(5);母线电容组件(4)包括第一电容(C1)和第二电容(C2);交流侧电容组件(4)与第一电容(C1)和第二电容(C2)均连接;控制器(1)用于在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路(3)的高频桥臂的导通占空比,以泄放交流侧电容组件(4)的电压并对交流电进行功率因数校正,并将功率因数校正电路输出的直流电输入至DC-DC转换器(5)。还提供了一种充电机控制方法及车辆。

Description

充电机、充电机控制方法及车辆
相关申请的交叉引用
本公开要求2022年08月30日提交中国专利局、申请号为202211050020.0、名称为“充电机、充电机控制方法及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电力电子技术领域,具体地,涉及一种充电机、充电机控制方法及车辆。
背景技术
充电机是一种将交流电转换成直流电的电源系统,其一般包括前级的功率因数校正电路(Power Factor Correction,PFC),后级的DC-DC转换器,二者之间设置有用于平衡交流侧和直流侧的瞬时功率差的母线电容。其中,该充电机在工作过程中会出现共模漏电流问题,为此,在充电机中增加了一个母线电容和交流侧电容,其中,将母线电容中点短接到交流侧虚拟电容中点,以改善三相充电共模漏电流问题。但将母线电容中点短接到交流侧虚拟电容中点会引入新的问题,比如,当充电机处于单相交流电充电模式时,在输入电压过零点时,输入电流会发生畸变。即在输入电压过零点时电流要么有很大的正向脉冲尖峰,要么有很大的负向脉冲尖峰,要么电流波形畸变严重不能很好的跟随输入电压。
发明内容
为了克服相关技术中存在的问题,本公开提供一种充电机、充电机控制方法及车辆。
为了实现上述目的,第一方面,本公开提供一种充电机,包括:
交流侧电容组件,所述交流侧电容组件的一端适于接入交流电;
功率因数校正电路,所述功率因数校正电路的第一端用于与交流电和所述交流侧电容组件的所述一端连接;
DC-DC转换器;
母线电容组件,所述母线电容组件包括:
第一电容,所述第一电容的一端与所述功率因数校正电路的第二端、所述DC-DC转换器的一端均连接,以及
第二电容,其中,所述第二电容的一端与所述第一电容的另一端连接,所述第二电容的另一端与所述功率因数校正电路的第三端、所述DC-DC转换器的另一端均连接;以及
控制器,所述控制器与所述功率因数校正电路和所述DC-DC转换器均连接,用于在所述充电机处于单相交流电充电模式时,根据所述交流电的电压,动态调整所述功率因数校正电路的高频桥臂的导通占空比,以泄放所述交流侧电容组件的电压并对所述交流电进行功率因数校正,并将所述功率因数校正电路输出的直流电输入至所述DC-DC转换器,以由所述DC-DC转换器对所述直流电进行电压转换并输出至待充电设备;
其中,所述第一电容的所述另一端和所述第二电容的所述一端均与所述交流侧电容组件的另一端连接。
可选地,所述功率因数校正电路包括:
M相高频桥臂,所述M相高频桥臂的第一汇流端与所述第一电容连接,所述M相高频桥臂的第二汇流端与所述第二电容连接;
M个线圈,所述M个线圈的第一端一一对应连接至所述M相高频桥臂的中点,所述M个线圈的第二端连接所述交流电的火线;以及
工频桥臂,所述工频桥臂的一端与所述第一汇流端和所述第一电容均连接,所述工频桥臂的另一端与所述第二汇流端和所述第二电容均连接,所述工频桥臂的中点用于与所述交流电的零线连接;
其中,M≥1,且所述交流侧电容组件包括M个第三电容,所述M个第三电容的第一端一一对应连接至所述M个线圈的第二端,所述M个第三电容的第二端共接形成中性点,所述中性点通过电阻与所述第一电容和所述第二电容均连接。
可选地,所述控制器,与所述M相高频桥臂连接,用于:
若所述交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开,其中,所述目标高频桥臂包括所述单相交流电充电模式所用到的一个或者多个所述高频桥臂;
在所述充电机的输入电压处于正半周期时,若所述电压大于所述第一预设电压、且小于第二预设电压,则控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压大于所述第二预设电压,则控制所述下桥臂以第二占空比导通,以对所述交流电进行功率因数校正,其中,所述第一预设电压小于所述第二预设电压;
在所述充电机的输入电压处于负半周期时,若所述电压的绝对值大于所述第一预设电压、且小于所述第二预设电压,则控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压的绝对值大于所述第二预设电压,则控制所述目标高频桥臂的上桥臂以所述第二占空比导通,以对所述交流电进行功率因数校正。
可选地,所述控制器还用于:
在所述目标高频桥臂的下桥臂以所述第二占空比连续导通预设时长后,控制所述目标高频桥臂的上下桥臂交替导通;
在所述目标高频桥臂的上桥臂以所述第二占空比连续导通所述预设时长后,控制所述目标高频桥臂的上下桥臂交替导通。
可选地,所述目标高频桥臂包括多个所述高频桥臂;
所述控制器,用于控制所述目标高频桥臂的上桥臂断开、下桥臂以预设角度和第一占空比交错导通,以及控制所述目标高频桥臂的下桥臂断开、上桥臂以所述预设角度和所述第一占空比交错导通。
可选地,所述控制器与所述工频桥臂连接,用于在所述充电机的输入电压处于所述正半周期时,控制所述工频桥臂的下桥臂导通、上桥臂断开,在所述充电机的输入电压处于所述负半周期时,控制所述工频桥臂的上桥臂导通、下桥臂断开。
第二方面,本公开提供一种充电机控制方法,包括:
在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正;
将所述功率因数校正电路输出的直流电输入至DC-DC转换器,以由所述DC-DC转换器对所述直流电进行电压转换并输出至待充电设备;
其中,所述充电机包括所述交流侧电容组件、所述功率因数校正电路、母线电容组件以及所述DC-DC转换器;所述功率因数校正电路,第一端用于与所述交流电连接;所述母线电容组件包括第一电容和第二电容,其中,所述第一电容的一端与所述功率因数校正电路的第二端和所述DC-DC转换器的一端均连接,所述第一电容的另一端与所述第二电容的一端连接,所述第二电容的另一端与所述功率因数校正电路的第三端和所述DC-DC转换器的另一端均连接;所述交流侧电容组件,一端与所述交流电和所述功率因数校正电路的第一端均连接,另一端与所述第一电容和所述第二电容均连接。
可选地,所述功率因数校正电路包括M相高频桥臂、M个线圈以及工频桥臂,M≥1;
其中,所述M相高频桥臂的第一汇流端与所述第一电容连接,所述M相高频桥臂的第二汇流端与所述第二电容连接;所述M个线圈的第一端一一对应连接至所述M相高频桥臂的中点,所述M个线圈的第二端连接所述交流电的火线;所述工频桥臂,一端与所述第一汇流端和所述第一电容均连接,另一端与所述第二汇流端和所述第二电容均连接,所述工频桥臂的中点用于与所述交流电的零线连接;所述交流侧电容组件包括M个第三电容,所述M个第三电容的第一端一一对应连接至所述M个线圈的第二端,所述M个第三电容的第二端共接形 成中性点,所述中性点通过电阻与所述第一电容和所述第二电容均连接;
所述根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正,包括:
若所述交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开,其中,所述目标高频桥臂包括所述单相交流电充电模式所用到的一个或者多个所述高频桥臂;
在所述充电机的输入电压处于正半周期时,若所述电压大于所述第一预设电压、且小于第二预设电压,则控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压大于所述第二预设电压,则控制所述下桥臂以第二占空比导通,以对所述交流电进行功率因数校正,其中,所述第一预设电压小于所述第二预设电压;
在所述充电机的输入电压处于负半周期时,若所述电压的绝对值大于所述第一预设电压、且小于所述第二预设电压,则控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压的绝对值大于所述第二预设电压,则控制所述上桥臂以所述第二占空比导通,以对所述交流电进行功率因数校正。
可选地,所述方法还包括:
在所述目标高频桥臂的下桥臂以所述第二占空比连续导通预设时长后,控制所述目标高频桥臂的上下桥臂交替导通;
在所述目标高频桥臂的上桥臂以所述第二占空比连续导通所述预设时长后,控制所述目标高频桥臂的上下桥臂交替导通。
第三方面,本公开提供一种车辆,包括本公开第一方面提供的所述充电机。
在上述技术方案中,在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正,并将功率因数校正电路输出的直流电输入至DC-DC转换器,以由DC-DC转换器对直流电进行电压转换并输出至待充电设备。这样,在充电机处于单相交流电充电模式时,通过动态调整功 率因数校正电路的高频桥臂的导通占空比,可以对交流侧电容组件的电压进行泄放,从而避免交流电过零点时产生电流畸变,同时能够保证原有的功率因数校正功能。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据一示例性实施例示出的一种充电机的结构框图。
图2是根据一示例性实施例示出的一种充电机的电路拓扑图。
图3是根据一示例性实施例示出的一种充电机处于单相交流电充电模式的简化电路拓扑图。
图4是根据一示例性实施例示出的一种充电机控制方法的流程图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是根据一示例性实施例示出的一种充电机的结构框图。如图1所示,该充电机包括控制器1、交流侧电容组件2、功率因数校正电路3、母线电容组件4以及DC-DC转换器5。
其中,交流侧电容组件2的一端适于接入交流电6;功率因数校正电路3的第一端用于与交流电6和交流侧电容组件2的一端连接。
母线电容组件4包括:第一电容C1和第二电容C2。其中,第一电容C1的一端与功率因数校正电路3的第二端、DC-DC转换器5的一端均连接;第二电容C2的一端与第一电容C1的另一端连接;第二电容C2的另一端与功率因数校正电路3的第三端、DC-DC转换器5的另一端均连接,第一电容C1的另一 端和第二电容C2的一端均与交流侧电容组件2的另一端连接。
控制器1,与功率因数校正电路3和DC-DC转换器5均连接,用于在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路3的高频桥臂的导通占空比,以泄放交流侧电容组件2的电压并对交流电进行功率因数校正,并将功率因数校正电路3输出的直流电输入至DC-DC转换器5,以由DC-DC转换器5对直流电进行电压转换并输出至待充电设备。其中,待充电设备可以例如是动力电池、负载等;交流电可以为正弦交流电或者余弦交流电。
在上述技术方案中,在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正,并将功率因数校正电路输出的直流电输入至DC-DC转换器,以由DC-DC转换器对直流电进行电压转换并输出至待充电设备。这样,在充电机处于单相交流电充电模式时,通过动态调整功率因数校正电路的高频桥臂的导通占空比,可以对交流侧电容组件的电压进行泄放,从而避免交流电过零点时产生电流畸变,同时能够保证原有的功率因数校正功能。
如图2所示,上述功率因数校正电路3可以包括M相高频桥臂B1、M个线圈KM以及工频桥臂B2,M≥1。
其中,M相高频桥臂B1的第一汇流端与第一电容C1连接,M相高频桥臂B1的第二汇流端与第二电容C2连接;M个线圈KM的第一端一一对应连接至M相高频桥臂B1的中点,M个线圈KM的第二端连接交流电6的火线(如图2所示,M个线圈KM分别为线圈km1、线圈km2以及线圈km3,其中,线圈km1的第二端连接交流电6的火线A,线圈km2的第二端连接交流电6的火线B,线圈km3的第二端连接交流电6的火线C);工频桥臂B2,一端与第一汇流端和第一电容C1均连接,另一端与第二汇流端和第二电容C2均连接,工频桥臂B2的中点用于与交流电6的零线N连接。
如图2所示,上述交流侧电容组件2包括M个第三电容C3,M个第三电 容C3的第一端一一对应连接至M个线圈KM的第二端,M个第三电容C3的第二端共接形成中性点,中性点通过电阻R与第一电容C1和第二电容C2均连接。
如图2所示,上述DC-DC转换器5包括变压器51、第一相桥臂52、第二相桥臂53、第三相桥臂54、第四相桥臂55以及第四电容C4,第一相桥臂52的中点连接变压器51初级侧的第一端,第二相桥臂53的中点连接变压器51初级侧的第二端,第三相桥臂54的中点连接变压器51次级侧的第一端,第四相桥臂55的中点连接变压器次级侧的第二端,第一相桥臂52和第二相桥臂53的第一汇流端与第一电容C1连接,第一相桥臂52和第二相桥臂53的第二汇流端与第二电容C2连接,第三相桥臂54和第四相桥臂55的第一汇流端与第四电容C4的一端、待充电设备的正极均连接,第三相桥臂54和第四相桥臂55的第二汇流端与第四电容C4的另一端、待充电设备的负极均连接。
如图2所示,上述充电机还可以包括第一开关K1、第二开关K2、第三开关K3以及第四开关K4,其中,第四开关K4包括活动端K41、第一不动端K42以及第二不动端K43,活动端K41用于选择性接入第一不动端K42或第二不动端K43。
在第一开关K1、第二开关K2、第三开关K3均闭合、且第四开关K4的活动端K41接入第二不动端K43的情况下,充电机处于三相交流电充电模式。
在第一开关K1闭合、第二开关K2和第三开关K3均断开,或者第一开关K1和第二开关K2均闭合、第三开关K3断开、且第四开关K4的活动端K41接入第一不动端K42的情况下,充电机处于单相交流电充电模式(如图3中所示)。
控制器1(在图2中未示出),与M相高频桥臂B1连接,用于:
在充电机处于单相交流电充电模式的情况下:若交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开;在充电机的输入电压(即交流电的输出电压,相应地,交流电的电压即为充电机的输入电压值)处于正半周期时,交流电的电压大于零,此时,若电压大于第一预设电压、且小于第 二预设电压,则控制目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放交流侧电容组件2的电压,若电压大于第二预设电压,则控制目标高频桥臂下桥臂以第二占空比导通,以对交流电进行功率因数校正;在充电机的输入电压处于负半周期时,交流电的电压小于零,此时,若电压的绝对值大于第一预设电压、且小于第二预设电压,则控制目标高频桥臂的下桥臂断开、上桥臂以第一占空比导通,以泄放交流侧电容组件2的电压,若电压的绝对值大于第二预设电压,则控制目标高频桥臂上桥臂以第二占空比导通,以对交流电进行功率因数校正。
在本公开中,目标高频桥臂包括单相交流电充电模式所用到的一个或者多个高频桥臂。具体来说,在第一开关K1闭合、第二开关K2和第三开关K3均断开的情况下,目标高频桥臂包括M相高频桥臂B1中左侧的高频桥臂,即目标高频桥臂为一个。在第一开关K1和第二开关K2均闭合、第三开关K3断开、且第四开关K4的活动端K41接入第一不动端K42的情况下,目标高频桥臂包括M相高频桥臂B1中左侧的高频桥臂和中间的高频桥臂,即目标高频桥臂为两个,如图3所示。
另外,第一预设电压小于第二预设电压,其中,第一预设电压大于零、且接近于零,第二预设电压小于交流电的最大电压。
第一占空比可以小于第二占空比,也可以大于或等于第二占空比,本公开不作具体限定。在一种实施方式中,第一占空比小于第二占空比,第二占空比约等于功率因数校正电路3的输出电压与输入电压之比。
在该种实施方式中,充电机的输入电压(即充电机的输入电压)无论是处于正半周期,还是处于负半周期,只要交流电的电压的绝对值小于或等于第一预设电压,就认为是充电机的输入电压过零点。此时,为了避免发生电流畸变,先控制目标高频桥臂断开;之后,在充电机的输入电压处于正半周期时,若电压大于第一预设电压、且小于第二预设电压,则控制目标高频桥臂的下桥臂以相对较小的占空比(即第一占空比,其比第二占空比小)进行导通,期间目标高频桥臂的上桥臂一直处于断开状态,这样,可以以相对较慢的速度将交流侧 电容组件的电压通过与目标高频桥臂连接的线圈、目标高频桥臂的下桥臂泄放至第二电容C2,从而可以使得过零点漏电流平滑过渡,避免电流畸变;在充电机的输入电压处于负半周期时,若电压的绝对值大于第一预设电压、且小于第二预设电压,则控制目标高频桥臂的上桥臂以相对较小的占空比进行导通,期间目标高频桥臂的下桥臂一直处于断开状态,这样,可以以相对较慢的速度将交流侧电容组件的电压通过与目标高频桥臂连接的线圈、目标高频桥臂的上桥臂泄放至第一电容C1,从而可以使得过零点漏电流平滑过渡,避免电流畸变。
接下来,为了保证原有的功率因数校正功能,在充电机的输入电压处于正半周期时,若电压大于第二预设电压,则控制目标高频桥臂下桥臂以第二占空比导通,以对交流电进行功率因数校正,在充电机的输入电压处于负半周期时,若电压的绝对值大于第二预设电压,则控制目标高频桥臂上桥臂以第二占空比导通,以对交流电进行功率因数校正。
虽然图2是以M=3为例进行图示的,但是本领域技术人员应当理解的是,图2的桥臂数量、线圈数量以及第三电容数量仅是示例。
另外,在充电机的输入电压处于正半周期或者负半周期时,工频桥臂B2的上桥臂和下桥臂可以始终处于断开状态,其中,当工频桥臂B2的上桥臂和下桥臂始终处于断开状态时,可以利用其体二极管自动续流。
由于桥臂导通损耗小于体二极管续流损耗,因此,为了减少工频桥臂的桥臂损耗,可以在充电机的输入电压处于正半周期时,使得工频桥臂B2的下桥臂导通、上桥臂断开,在充电机的输入电压处于负半周期时,使得工频桥臂B2的上桥臂导通、下桥臂断开。具体来说,上述控制器1,与工频桥臂B2连接,还用于在充电机的输入电压处于正半周期时,控制工频桥臂B2的下桥臂导通、上桥臂断开,在充电机的输入电压处于负半周期时,控制工频桥臂B2的上桥臂导通、下桥臂断开。
另外,在目标高频桥臂包括多个高频桥臂时,为了使得输入电流纹波抵消减小,以降低充电机的电磁干扰,可以使得目标高频桥臂中的多个高频桥臂交错导通。具体来说,控制器1,用于控制目标高频桥臂的上桥臂断开、下桥臂以 预设角度和第一占空比交错导通,以及控制目标高频桥臂的下桥臂断开、上桥臂以预设角度和第一占空比交错导通。
示例地,如图3所示,目标高频桥臂包括M相高频桥臂B1中左侧的高频桥臂和中间的高频桥臂,此时,预设角度可以为90度。
此外,在充电机的输入电压处于正半周期时,为了降低目标高频桥臂的上桥臂的开关损耗,上述控制器1还用于在目标高频桥臂的下桥臂以第二占空比连续导通预设时长后,控制目标高频桥臂的上下桥臂交替导通。
相应地,在充电机的输入电压处于负半周期时,为了降低目标高频桥臂的下桥臂的开关损耗,上述控制器1还用于在目标高频桥臂的上桥臂以第二占空比连续导通预设时长后,控制目标高频桥臂的上下桥臂交替导通。
图4是根据一示例性实施例示出的一种充电机控制方法的流程图。如图4所示,上述方法可以包括以下S401和S402。
在S401中,在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正。
在S402中,将功率因数校正电路输出的直流电输入至DC-DC转换器,以由DC-DC转换器对直流电进行电压转换并输出至待充电设备。
其中,所述充电机包括所述交流侧电容组件、所述功率因数校正电路、母线电容组件以及所述DC-DC转换器;所述功率因数校正电路,第一端用于与所述交流电连接;所述母线电容组件包括第一电容和第二电容,其中,所述第一电容的一端与所述功率因数校正电路的第二端和所述DC-DC转换器的一端均连接,所述第一电容的另一端与所述第二电容的一端连接,所述第二电容的另一端与所述功率因数校正电路的第三端和所述DC-DC转换器的另一端均连接;所述交流侧电容组件,一端与所述交流电和所述功率因数校正电路的第一端均连接,另一端与所述第一电容和所述第二电容均连接。
在上述技术方案中,在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电 容组件的电压并对交流电进行功率因数校正,并将功率因数校正电路输出的直流电输入至DC-DC转换器,以由DC-DC转换器对直流电进行电压转换并输出至待充电设备。这样,在充电机处于单相交流电充电模式时,通过动态调整功率因数校正电路的高频桥臂的导通占空比,可以对交流侧电容组件的电压进行泄放,从而避免交流电过零点时产生电流畸变,同时能够保证原有的功率因数校正功能。
可选地,所述功率因数校正电路包括M相高频桥臂、M个线圈以及工频桥臂,M≥1;
其中,所述M相高频桥臂的第一汇流端与所述第一电容连接,所述M相高频桥臂的第二汇流端与所述第二电容连接;所述M个线圈的第一端一一对应连接至所述M相高频桥臂的中点,所述M个线圈的第二端连接所述交流电的火线;所述工频桥臂,一端与所述第一汇流端、所述第一电容连接,另一端与所述第二汇流端、所述第二电容连接,所述工频桥臂的中点用于与所述交流电的零线连接;所述交流侧电容组件包括M个第三电容,所述M个第三电容的第一端一一对应连接至所述M个线圈的第二端,所述M个第三电容的第二端共接形成中性点,所述中性点通过电阻与所述第一电容和所述第二电容均连接;
所述根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正,包括:
若所述交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开,其中,所述目标高频桥臂包括所述单相交流电充电模式所用到的一个或者多个所述高频桥臂;
在所述充电机的输入电压处于正半周期时,若所述电压大于所述第一预设电压、且小于第二预设电压,则控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压大于所述第二预设电压,则控制所述下桥臂以第二占空比导通,以对所述交流电进行功率因数校正,其中,所述第一预设电压小于所述第二预设电压;
在所述充电机的输入电压处于负半周期时,若所述电压的绝对值大于所述 第一预设电压、且小于所述第二预设电压,则控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压的绝对值大于所述第二预设电压,则控制所述上桥臂以所述第二占空比导通,以对所述交流电进行功率因数校正。
可选地,所述方法还包括以下步骤:
在所述目标高频桥臂的下桥臂以所述第二占空比连续导通预设时长后,控制所述目标高频桥臂的上下桥臂交替导通;
在所述目标高频桥臂的上桥臂以所述第二占空比连续导通所述预设时长后,控制所述目标高频桥臂的上下桥臂交替导通。
可选地,所述目标高频桥臂包括多个所述高频桥臂;
所述控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,包括:
所述目标高频桥臂的上桥臂断开、下桥臂以预设角度和第一占空比交错导通;
所述控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,包括:
控制所述目标高频桥臂的下桥臂断开、上桥臂以所述预设角度和所述第一占空比交错导通。
可选地,所述方法还包括以下步骤:
在所述充电机的输入电压处于所述正半周期时,控制所述工频桥臂的下桥臂导通、上桥臂断开;
在所述充电机的输入电压处于所述负半周期时,控制所述工频桥臂的上桥臂导通、下桥臂断开。
关于本公开实施例中的充电机控制方法,其中各个步骤的具体实现方式已经在有关充电机的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种车辆,包括根据本公开提供的上述充电机。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于 上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种充电机,其特征在于,包括:
    交流侧电容组件(2),所述交流侧电容组件(2)的一端适于接入交流电(6);
    功率因数校正电路(3),所述功率因数校正电路(3)的第一端用于与交流电(6)和所述交流侧电容组件(2)的所述一端连接;
    DC-DC转换器(5);
    母线电容组件(4),所述母线电容组件(4)包括:
    第一电容(C1),所述第一电容(C1)的一端与所述功率因数校正电路(3)的第二端、所述DC-DC转换器(5)的一端均连接,以及
    第二电容(C2),其中,所述第二电容(C2)的一端与所述第一电容(C1)的另一端连接,所述第二电容(C2)的另一端与所述功率因数校正电路(3)的第三端、所述DC-DC转换器(5)的另一端均连接;以及
    控制器(1),所述控制器(1)与所述功率因数校正电路(3)和所述DC-DC转换器(5)均连接,用于在所述充电机处于单相交流电充电模式时,根据所述交流电(6)的电压,动态调整所述功率因数校正电路(3)的高频桥臂的导通占空比,以泄放所述交流侧电容组件(2)的电压并对所述交流电(6)进行功率因数校正,并将所述功率因数校正电路(3)输出的直流电输入至所述DC-DC转换器(5),以由所述DC-DC转换器(5)对所述直流电进行电压转换并输出至待充电设备;
    其中,所述第一电容(C1)的所述另一端和所述第二电容(C2)的所述一端均与所述交流侧电容组件(2)的另一端连接。
  2. 根据权利要求1所述的充电机,其特征在于,所述功率因数校正电路(3)包括:
    M相高频桥臂(B1),所述M相高频桥臂(B1)的第一汇流端与所述第一 电容(C1)连接,所述M相高频桥臂(B1)的第二汇流端与所述第二电容(C2)连接;
    M个线圈(KM),所述M个线圈(KM)的第一端一一对应连接至所述M相高频桥臂(B1)的中点,所述M个线圈(KM)的第二端连接所述交流电(6)的火线;以及
    工频桥臂(B2),所述工频桥臂(B2)的一端与所述第一汇流端和所述第一电容(C1)均连接,所述工频桥臂(B2)的另一端与所述第二汇流端和所述第二电容(C2)均连接,所述工频桥臂(B2)的中点用于与所述交流电(6)的零线(N)连接;
    其中,M≥1,且所述交流侧电容组件(2)包括M个第三电容(C3),所述M个第三电容(C3)的第一端一一对应连接至所述M个线圈(KM)的第二端,所述M个第三电容(C3)的第二端共接形成中性点,所述中性点通过电阻与所述第一电容(C1)和所述第二电容(C2)均连接。
  3. 根据权利要求2所述的充电机,其特征在于,所述控制器(1)与所述M相高频桥臂(B1)连接,用于:
    若所述交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开,其中,所述目标高频桥臂包括所述单相交流电充电模式所用到的一个或者多个所述高频桥臂;
    在所述充电机的输入电压处于正半周期时,若所述电压大于所述第一预设电压、且小于第二预设电压,则控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放所述交流侧电容组件(2)的电压,若所述电压大于所述第二预设电压,则控制所述下桥臂以第二占空比导通,以对所述交流电进行功率因数校正,其中,所述第一预设电压小于所述第二预设电压;
    在所述充电机的输入电压处于负半周期时,若所述电压的绝对值大于所述第一预设电压、且小于所述第二预设电压,则控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,以泄放所述交流侧电容组件(2)的电压, 若所述电压的绝对值大于所述第二预设电压,则控制所述目标高频桥臂的上桥臂以所述第二占空比导通,以对所述交流电进行功率因数校正。
  4. 根据权利要求3所述的充电机,其特征在于,所述控制器(1)还用于:
    在所述目标高频桥臂的下桥臂以所述第二占空比连续导通预设时长后,控制所述目标高频桥臂的上下桥臂交替导通;
    在所述目标高频桥臂的上桥臂以所述第二占空比连续导通所述预设时长后,控制所述目标高频桥臂的上下桥臂交替导通。
  5. 根据权利要求3或4所述的充电机,其特征在于,所述目标高频桥臂包括多个所述高频桥臂;
    所述控制器(1),用于控制所述目标高频桥臂的上桥臂断开、下桥臂以预设角度和第一占空比交错导通,以及控制所述目标高频桥臂的下桥臂断开、上桥臂以所述预设角度和所述第一占空比交错导通。
  6. 根据权利要求3-5任一项所述的充电机,其特征在于,所述控制器(1)与所述工频桥臂(B2)连接,用于在所述充电机的输入电压处于所述正半周期时,控制所述工频桥臂(B2)的下桥臂导通、上桥臂断开,在所述充电机的输入电压处于所述负半周期时,控制所述工频桥臂(B2)的上桥臂导通、下桥臂断开。
  7. 一种充电机控制方法,其特征在于,包括:
    在充电机处于单相交流电充电模式时,根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正;
    将所述功率因数校正电路输出的直流电输入至DC-DC转换器,以由所述DC-DC转换器对所述直流电进行电压转换并输出至待充电设备;
    其中,所述充电机包括所述交流侧电容组件、所述功率因数校正电路、母线电容组件以及所述DC-DC转换器;所述功率因数校正电路,第一端用于与所述交流电连接;所述母线电容组件包括第一电容和第二电容,其中,所述第一电容的一端与所述功率因数校正电路的第二端和所述DC-DC转换器的一端均连接,所述第一电容的另一端与所述第二电容的一端连接,所述第二电容的另一端与所述功率因数校正电路的第三端和所述DC-DC转换器的另一端均连接;所述交流侧电容组件,一端与所述交流电和所述功率因数校正电路的第一端均连接,另一端与所述第一电容和所述第二电容均连接。
  8. 根据权利要求7所述的方法,其特征在于,所述功率因数校正电路包括M相高频桥臂、M个线圈以及工频桥臂,M≥1;
    其中,所述M相高频桥臂的第一汇流端与所述第一电容连接,所述M相高频桥臂的第二汇流端与所述第二电容连接;所述M个线圈的第一端一一对应连接至所述M相高频桥臂的中点,所述M个线圈的第二端连接所述交流电的火线;所述工频桥臂,一端与所述第一汇流端、所述第一电容连接,另一端与所述第二汇流端、所述第二电容连接,所述工频桥臂的中点用于与所述交流电的零线连接;所述交流侧电容组件包括M个第三电容,所述M个第三电容的第一端一一对应连接至所述M个线圈的第二端,所述M个第三电容的第二端共接形成中性点,所述中性点通过电阻与所述第一电容和所述第二电容均连接;
    所述根据交流电的电压,动态调整功率因数校正电路的高频桥臂的导通占空比,以泄放交流侧电容组件的电压并对交流电进行功率因数校正,包括:
    若所述交流电的电压的绝对值小于或等于第一预设电压,则控制目标高频桥臂断开,其中,所述目标高频桥臂包括所述单相交流电充电模式所用到的一个或者多个所述高频桥臂;
    在所述充电机的输入电压处于正半周期时,若所述电压大于所述第一预设电压、且小于第二预设电压,则控制所述目标高频桥臂的上桥臂断开、下桥臂以第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压大于所述 第二预设电压,则控制所述下桥臂以第二占空比导通,以对所述交流电进行功率因数校正,其中,所述第一预设电压小于所述第二预设电压;
    在所述充电机的输入电压处于负半周期时,若所述电压的绝对值大于所述第一预设电压、且小于所述第二预设电压,则控制所述目标高频桥臂的下桥臂断开、上桥臂以所述第一占空比导通,以泄放所述交流侧电容组件的电压,若所述电压的绝对值大于所述第二预设电压,则控制所述上桥臂以所述第二占空比导通,以对所述交流电进行功率因数校正。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在所述目标高频桥臂的下桥臂以所述第二占空比连续导通预设时长后,控制所述目标高频桥臂的上下桥臂交替导通;
    在所述目标高频桥臂的上桥臂以所述第二占空比连续导通所述预设时长后,控制所述目标高频桥臂的上下桥臂交替导通。
  10. 一种车辆,其特征在于,包括根据权利要求1-6中任一项所述的充电机。
PCT/CN2023/108245 2022-08-30 2023-07-19 充电机、充电机控制方法及车辆 WO2024045934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211050020.0A CN117656894A (zh) 2022-08-30 2022-08-30 充电机、充电机控制方法及车辆
CN202211050020.0 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045934A1 true WO2024045934A1 (zh) 2024-03-07

Family

ID=90073829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108245 WO2024045934A1 (zh) 2022-08-30 2023-07-19 充电机、充电机控制方法及车辆

Country Status (2)

Country Link
CN (1) CN117656894A (zh)
WO (1) WO2024045934A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
CN109861357A (zh) * 2018-09-07 2019-06-07 台达电子工业股份有限公司 充放电方法与装置
DE102018208264A1 (de) * 2018-05-25 2019-11-28 Continental Automotive Gmbh Konfigurierbare Wechselstrom-Ladevorrichtung
CN111355287A (zh) * 2020-03-23 2020-06-30 台达电子企业管理(上海)有限公司 车载充电机
EP3790156A1 (en) * 2019-09-03 2021-03-10 Santak Electronic (Shenzhen) Co., Ltd. A multi-input power converter, a controlling method thereof and an uninterrupted power supply including the same
CN112803385A (zh) * 2021-01-22 2021-05-14 深圳市汇川技术股份有限公司 车载充电电路的放电控制方法、车载充电电路、车载充电机及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1801588A (zh) * 2004-12-31 2006-07-12 海尔集团公司 变频空调电源功率因数校正装置
DE102018208264A1 (de) * 2018-05-25 2019-11-28 Continental Automotive Gmbh Konfigurierbare Wechselstrom-Ladevorrichtung
CN109861357A (zh) * 2018-09-07 2019-06-07 台达电子工业股份有限公司 充放电方法与装置
EP3790156A1 (en) * 2019-09-03 2021-03-10 Santak Electronic (Shenzhen) Co., Ltd. A multi-input power converter, a controlling method thereof and an uninterrupted power supply including the same
CN111355287A (zh) * 2020-03-23 2020-06-30 台达电子企业管理(上海)有限公司 车载充电机
CN112803385A (zh) * 2021-01-22 2021-05-14 深圳市汇川技术股份有限公司 车载充电电路的放电控制方法、车载充电电路、车载充电机及存储介质

Also Published As

Publication number Publication date
CN117656894A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10651669B2 (en) Phase shift control method for charging circuit
US8531854B2 (en) Power factor correction converter and power factor correction conversion device
CN103219877B (zh) 一种电容放电电路及变换器
AU2015100179A4 (en) A battery charger with power factor correction
CN110277904B (zh) 一种功率因数校正电路及车载充电机
CN107276443B (zh) 基于控制型软开关的改进式定频滞环电流控制方法和电路
CN210075077U (zh) 一种功率因数校正电路及车载充电机
US11909308B2 (en) Power conversion circuit, method for controlling power conversion circuit, and transformer
CN102299649A (zh) 电源变换器
CN107493017A (zh) 一种基于cllc的多端口双向dcdc变换器拓扑
EP4231493A1 (en) Charging device and vehicle
CN111555605B (zh) 一种减小临界模式三电平变换器开关频率范围的控制方法
WO2024045934A1 (zh) 充电机、充电机控制方法及车辆
CN113193743A (zh) 一种宽恒功率范围充放电系统
CN208094445U (zh) 矢量合360°相位和幅值可控交流变换器
CN116961399A (zh) 基于输出反向的反激与降压单元的无桥降压型pfc变换器
CN112993970B (zh) 一种具有抑制直流电压不平衡功能的双极性双向升-降压型dc-dc变流器
CN109687743B (zh) 一种电源变换电路
CN209134309U (zh) 一种三相交直流升降压变换电路
Rodríguez et al. Single-phase controlled rectifiers
CN109525137B (zh) 一种直流交流变换电路
CN109639168B (zh) 一种直流交流电源变换装置
CN109412449B (zh) 一种直流交流电源变换装置
CN213461552U (zh) 一种ac-ac混合升压开关电容变换器
CN109687751B (zh) 一种直流交流电源变换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858970

Country of ref document: EP

Kind code of ref document: A1