WO2024045769A1 - 一种应用于卷式膜的静态混流隔网 - Google Patents

一种应用于卷式膜的静态混流隔网 Download PDF

Info

Publication number
WO2024045769A1
WO2024045769A1 PCT/CN2023/100376 CN2023100376W WO2024045769A1 WO 2024045769 A1 WO2024045769 A1 WO 2024045769A1 CN 2023100376 W CN2023100376 W CN 2023100376W WO 2024045769 A1 WO2024045769 A1 WO 2024045769A1
Authority
WO
WIPO (PCT)
Prior art keywords
baffle
mesh
baffles
unit
panel
Prior art date
Application number
PCT/CN2023/100376
Other languages
English (en)
French (fr)
Inventor
刘久清
曾凡立
白立顺
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2024045769A1 publication Critical patent/WO2024045769A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor

Definitions

  • the invention belongs to the technical field of membrane separation, and relates to a roll-type membrane separator net, and in particular to a roll-type membrane static mixed-flow separator net.
  • Membrane separation technology has the advantages of simple equipment, convenient operation, no phase change, high processing efficiency and energy saving. As a unit operation, it has attracted increasing attention and has been used in seawater desalination, brackish water desalination, electronic industry, food industry, medicine It is widely used in fields such as industry, environmental protection and bioengineering. However, during use, a major problem is that the permeation flow rate decreases with the extension of operating time.
  • Concentration polarization causes the solute on the membrane surface to diffuse into the bulk solution, thus forming resistance and reducing the permeation flow rate; 2
  • the interaction between the separated solute and the membrane or the concentration on the membrane surface is higher than the solubility, causing the solute to adsorb or deposit on the membrane surface or in the membrane pores, that is, membrane fouling, which reduces the membrane permeability flow.
  • Concentration polarization and membrane fouling have always restricted the development and application of membrane technology, which not only reduces the membrane separation efficiency, but also greatly shortens the service life of the membrane.
  • a variety of measures and control methods can be taken, such as raw material liquid pretreatment, membrane surface modification, changing membrane surface hydrodynamic conditions, additional field enhancement, membrane cleaning and changing membrane structure, etc.
  • adding a mesh to change the hydrodynamic conditions on the membrane surface is a common and effective method.
  • the feed liquid screen can help the feed liquid create a uniform fluid channel. By increasing the shear rate of the feed liquid flow channel and mixing the fluid perpendicular to the membrane surface, it can reduce the trapped substances close to the membrane surface and achieve an increase in mass transfer rate. increase, reducing the membrane fouling rate.
  • Chinese patent CN201906567U provides a technical solution to move the transverse ribs sandwiched between the longitudinal ribs from the side of the flow channel to the middle of the longitudinal ribs so that the transverse ribs are not in contact with the membrane surface;
  • Chinese patent CN202151550U and China Patent CN202155150U provides a technical solution by reducing membrane surface contact, increasing radial flow, and widening and thickening flow channels to reduce easy pollution deposition at the four corners of the mesh;
  • Chinese patent CN102600728B provides a flow channel composed of multiple layers of longitudinal ribs And the X-vortex roll-type membrane diversion screen without transverse ribs promotes the transformation of laminar flow disturbance into turbulent flow through the secondary flow promotion effect of X-vortex flow, thereby strengthening the driving force and mass transfer effect of solute diffusion.
  • the technical problem to be solved by the present invention is to provide a roll-type membrane static mixed-flow mesh that allows fluids near the membrane surface and in the center of the flow channel to migrate to each other, change the hydrodynamic conditions on the membrane surface, strengthen fluid mixing, and improve energy utilization. Rate.
  • a static mixed-flow mesh used in rolled membranes which is characterized by: consisting of several mutually parallel mesh strips, the mesh strips are perpendicular to the direction of the feed fluid, and both ends of each mesh strip are fixed on clamps On the screen bar frame of the tank; the screen bar frame is parallel to the direction of the feed fluid.
  • Each screen bar is composed of several screen units. The screen units are close to each other in pairs. The screen units are formed by the upper The upper part of the partition unit is composed of a rear panel, two front baffles, a front inclined baffle and two side panels. The two front baffles are divided into left baffles. The baffle and the right baffle are perpendicular to the direction of the feed fluid.
  • the inclined baffle forms a certain angle with the direction of the feed fluid.
  • the side plate is parallel to the direction of the feed fluid.
  • the baffle and the side plate are in accordance with the "left baffle, left side plate” , front inclined baffle, right side plate, right baffle” in a "several shape” sequence.
  • the rear panel is perpendicular to the front baffle and side plate and parallel to the direction of the feed fluid, and is closely connected to the left and right baffles.
  • the bottom of two side plates; the lower half of the screen unit consists of a front panel, two baffles, a rear inclined baffle, and two side plates.
  • the left and right baffles and the rear baffle are perpendicular to the direction of the feed fluid.
  • the inclined baffle forms a certain angle with the direction of the feed fluid
  • the side plate is parallel to the direction of the feed fluid.
  • the baffle and the side plate are in accordance with "left baffle, left side plate, rear inclined baffle, right side plate, right
  • the order of the baffles is in a "several shape" combination, with the front panel perpendicular to the baffles and side panels, and closely connected to the left and right baffles; the upper part of the partition unit and the lower part of the partition unit are inversely symmetrical about the panel;
  • the left side panel of the upper half of the network unit and the left side panel of the lower half jointly form the left side panel.
  • the right side panel of the upper half of the mesh unit and the right side panel of the lower half of the mesh unit jointly form the right side panel, and together with the upper part of the mesh unit
  • the front inclined baffle in the first half and the left and right baffles in the lower half of the screen unit jointly form a central fluid channel.
  • the static mixed flow means that there are two types of flow modes when the fluid passes through the partition unit. One is that the fluid passing through the upper surface of the front panel of the partition unit enters under the rear panel of the partition unit through the fluid channels on both sides of the partition unit. The other is that the fluid passing through the lower surface of the front panel of the partition unit enters the upper surface of the rear panel of the partition unit through the central fluid channel of the partition unit.
  • the width of the baffle is equal to the length of the side panels and the height of the panel, marked t.
  • the lengths of the left and right baffles in the upper half of the partition unit, the left and right baffles in the lower half, and the rear baffle are equal, marked A.
  • the heights of the left and right baffles in the upper half of the partition unit, the left and right baffles in the lower half and the rear baffle are equal, marked B, the distance between the left and right side panels is marked C, the front panel and the rear panel
  • the present invention has the following advantages:
  • the present invention is a static mixed-flow mesh applied to rolled membranes, which can migrate fluids near the membrane surface and in the center of the flow channel to each other, changing the hydrodynamic conditions on the membrane surface, without generating vortices and turbulence, and when the fluid flows through the mesh There are no fluid dead spots.
  • the setting of inclined baffles can greatly increase the area of the central flow channel and also reduce mass transfer resistance. Therefore, the partition net not only reduces the surface concentration of membrane intercepted substances, increases the mass transfer rate, and strengthens fluid mixing, but also effectively reduces concentration polarization and membrane fouling, while also reducing the risk of membrane operation caused by the addition of the partition net.
  • the pressure drop and pump consumption are increased at the same time, which improves the energy utilization rate.
  • Figure 1 is a schematic diagram of a static mixed flow isolation network
  • Figure 2 is a schematic diagram of the fluid flow direction in the screen unit
  • Figure 3-6 is a three-dimensional model diagram of the mesh unit
  • a static mixed-flow mesh used in rolled membranes which is characterized by: consisting of several mutually parallel mesh strips, the mesh strips are perpendicular to the direction of the feed fluid, and both ends of each mesh strip are fixed on clamps On the screen bar frame of the tank; the screen bar frame is parallel to the direction of the feed fluid.
  • Each screen bar is composed of several screen units. The screen units are close to each other in pairs. The screen units are formed by the upper The upper part of the partition unit is composed of a rear panel, two front baffles, a front inclined baffle and two side panels. The two front baffles are divided into left baffles. The baffle and the right baffle are perpendicular to the direction of the feed fluid.
  • the inclined baffle forms a certain angle with the direction of the feed fluid.
  • the side plate is parallel to the direction of the feed fluid.
  • the baffle and the side plate are in accordance with the "left baffle, left side plate” , front inclined baffle, right side plate, right baffle” in a "several shape” sequence.
  • the rear panel is perpendicular to the front baffle and side plate and parallel to the direction of the feed fluid, and is closely connected to the left and right baffles.
  • the bottom of two side plates; the lower half of the screen unit consists of a front panel, two baffles, a rear inclined baffle, and two side plates.
  • the left and right baffles and the rear baffle are perpendicular to the direction of the feed fluid.
  • the inclined baffle forms a certain angle with the direction of the feed fluid
  • the side plate is parallel to the direction of the feed fluid.
  • the baffle and the side plate are in accordance with the "left baffle, left side plate, rear inclined baffle, right side plate, right
  • the order of the baffles is in a "several shape" combination, with the front panel perpendicular to the baffles and side panels, and closely connected to the left and right baffles; the upper part of the partition unit and the lower part of the partition unit are inversely symmetrical about the panel;
  • the left side panel of the upper half of the network unit and the left side panel of the lower half jointly form the left side panel.
  • the right side panel of the upper half of the mesh unit and the right side panel of the lower half of the mesh unit jointly form the right side panel, and together with the upper part of the mesh unit
  • the front inclined baffle in the first half and the left and right baffles in the lower half of the screen unit jointly form a central fluid channel
  • the size of 13 mesh units constitutes a mesh bar, and the 13 mesh bars constitute a mesh.
  • the mesh is installed on a polyethersulfone ultrafiltration membrane with a length of 19cm and a width of 14cm.
  • the membrane testing device use Portuguese Polysaccharides (important raw materials in medicine, food, cosmetics and other industries) are tested as solutes.
  • the test pressure is 120kPa
  • the dextran concentration is 5.0kg/m 3
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 42% after using a static mixed-flow mesh.
  • the size of 13 mesh units constitutes a mesh bar, and the 13 mesh bars constitute a mesh.
  • the mesh is installed on a polyethersulfone ultrafiltration membrane with a length of 19cm and a width of 14cm.
  • the membrane testing device use Portuguese Polysaccharides (important raw materials in medicine, food, cosmetics and other industries) are tested as solutes.
  • the test pressure is 120kPa
  • the dextran concentration is 5.0kg/m 3
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 36% after using a static mixed-flow mesh.
  • the size of 13 mesh units constitutes a mesh bar, and the 13 mesh bars constitute a mesh.
  • the mesh is installed on a polyethersulfone ultrafiltration membrane with a length of 19cm and a width of 14cm.
  • the membrane testing device use Portuguese Polysaccharides (important raw materials in medicine, food, cosmetics and other industries) are tested as solutes.
  • the test pressure is 120kPa
  • the dextran concentration is 5.0kg/m 3
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 51% after using a static mixed-flow mesh.
  • 16 mesh unit sizes constitute a mesh bar, and 15 mesh bars form a mesh.
  • the mesh is installed on an aromatic polyamide composite nanofiltration membrane with a length of 21cm and a width of 18cm.
  • Heavy metal wastewater is used as feed liquid for testing.
  • the test pressure is 1.2MPa
  • the temperature is 25°C
  • the ion content in heavy metal wastewater is Cu 2+ 100mg/L, Ni 2+ 40mg/L, Pb 2+ 10mg/L, Zn 2+ 20mg/L, and separated from the conventional screen comparing.
  • Experimental results show that in the membrane process under the same pump consumption, the static mixed-flow separator has higher mass transfer performance compared with the conventional separator. In the membrane process at the lowest pump consumption, compared with the conventional separator , the mass transfer coefficient increased by nearly 58% after using a static mixed-flow mesh.
  • 16 mesh unit sizes constitute a mesh bar, and 15 mesh bars form a mesh.
  • the mesh is installed on an aromatic polyamide composite nanofiltration membrane with a length of 21cm and a width of 18cm.
  • Heavy metal wastewater is used as feed liquid for testing.
  • the test pressure is 1.2MPa
  • the temperature is 25°C
  • the ion content in heavy metal wastewater is Cu 2+ 100mg/L, Ni 2+ 40mg/L, Pb 2+ 10mg/L, Zn 2+ 20mg/L, and separated from the conventional screen comparing.
  • Experimental results show that in the membrane process under the same pump consumption, the static mixed-flow separator has higher mass transfer performance compared with the conventional separator. In the membrane process at the lowest pump consumption, compared with the conventional separator , the mass transfer coefficient increased by nearly 79% after using a static mixed-flow mesh.
  • 16 mesh unit sizes constitute a mesh bar, and 15 mesh bars form a mesh.
  • the mesh is installed on an aromatic polyamide composite nanofiltration membrane with a length of 21cm and a width of 18cm.
  • Heavy metal wastewater is used as feed liquid for testing.
  • the test pressure is 1.2MPa
  • the temperature is 25°C
  • the ion content in heavy metal wastewater is Cu 2+ 100mg/L, Ni 2+ 40mg/L, Pb 2+ 10mg/L, Zn 2+ 20mg/L, and separated from the conventional screen comparing.
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 64% after using a static mixed-flow mesh.
  • 10 mesh unit sizes constitute a mesh bar, and 11 mesh bars form a mesh.
  • the mesh is installed on a cellulose acetate reverse osmosis membrane with a length of 16cm and a width of 12cm, and is simulated on a membrane testing device. Seawater was used as the feed liquid for testing. The test pressure is 3MPa, and the simulated seawater contains NaCl 20 g/L, MgCl 2 2g/L, MgSO 4 3 g/L, CaCl 2 1 g/L, and KCl 0.8 g/L, and is compared with the conventional mesh.
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 41% after using a static mixed-flow mesh.
  • 13 mesh unit sizes constitute a mesh bar
  • 13 mesh bars constitute a mesh.
  • the mesh is installed on a polyethersulfone ultrafiltration membrane with a length of 19cm and a width of 14cm, and is simulated on a membrane testing device. Seawater was used as the feed liquid for testing. The test pressure is 3MPa, and the simulated seawater contains NaCl 20 g/L, MgCl 2 2g/L, MgSO 4 3 g/L, CaCl 2 1 g/L, and KCl 0.8 g/L, and is compared with the conventional mesh.
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 52% after using a static mixed-flow mesh.
  • 13 mesh unit sizes constitute a mesh bar
  • 13 mesh bars constitute a mesh.
  • the mesh is installed on a polyethersulfone ultrafiltration membrane with a length of 19cm and a width of 14cm, and is simulated on a membrane testing device. Seawater was used as the feed liquid for testing. The test pressure is 3MPa, and the simulated seawater contains NaCl 20 g/L, MgCl 2 2 g/L, MgSO 4 3 g/L, CaCl 2 1 g/L, and KCl 0.8 g/L, and is compared with the conventional mesh.
  • the experimental results show that in the membrane process under the same pump consumption, compared with the conventional separator, the static mixed-flow separator has similar or higher mass transfer performance. In the membrane process at the lowest pump consumption, it has better mass transfer performance than the conventional separator. In comparison, the mass transfer coefficient increased by nearly 31% after using a static mixed-flow mesh.
  • the roll-type membrane static mixed-flow mesh of the present invention can migrate fluids near the membrane surface and in the center of the flow channel to each other, changing the hydrodynamic conditions on the membrane surface without generating vortices and turbulence. This is different from various existing solutions and not only reduces The surface concentration of the membrane intercepts substances, increases the mass transfer rate, strengthens fluid mixing, and effectively reduces concentration polarization and membrane fouling, while also reducing the increased pressure drop and pump consumption during membrane operation caused by the addition of the separator. , improving energy utilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种应用于卷式膜的静态混流隔网,由若干个隔网条(1)组成,通过隔网条框架(3)进行固定,以相等的间隔沿进料方向均匀分布,每个隔网条(1)由若干个隔网单元(2)组成,隔网单元(2)具有三个垂直于进料流体方向的流体通道,流体在隔网单元(2)内进行静态混流,不产生漩涡和湍流,且流体流经隔网时不存在流体死角,不仅降低了膜截留物质的表面浓度,增加传质速率,强化了流体混合,而且在有效降低浓差极化和膜污染的同时,减小了因隔网的加入导致膜运行时增加的压降和泵耗,提高了能量利用率。

Description

一种应用于卷式膜的静态混流隔网 技术领域
本发明属于膜分离技术领域,涉及一种卷式膜隔网,特别涉及一种卷式膜静态混流隔网。
背景技术
膜分离技术具有设备简单、操作方便、无相变、处理效率高和节能等优点,作为一种单元操作日益受到人们的重视,已在海水淡化、苦咸水淡化、电子工业、食品工业、医药工业、环境保护和生物工程等领域得到广泛应用。但在使用过程中,一个主要问题是透过流量随运行时间延长而降低,其影响因素有:①浓差极化使得膜表面溶质要向本体溶液扩散,从而形成阻力,使透过流量降低;②被分离溶质与膜的相互作用或在膜表面的浓度高于溶解度,使溶质在膜表面或膜孔内产生吸附或沉积,即膜污染,使膜透过流量降低。浓差极化和膜污染一直制约着膜技术的发展和应用,不仅使膜分离效率的降低,而且还极大地缩短了膜的使用寿命。
为了减少浓差极化和膜污染的影响,可以采取多种措施和控制方法,如原料液预处理、膜表面改性、改变膜表面流体力学条件、附加场强化、膜清洗和改变膜结构等,其中加入隔网改变膜表面流体力学条件是一种常见且有效的方法。进料液隔网能够帮助进料液创造均匀的流体通道,通过增加进料液流道的剪切速率以及混合垂直于膜表面方向的流体,减少靠近膜表面的截留物质,实现传质速率的增加,降低膜污染速率。
现有国内外螺旋卷式膜元件所使用的导流隔网大多采用缠绕式或者层叠式网筋结构,网筋间呈矩形或菱形排列。在结构上都是由沿流道方向的较粗的纵向筋,与横向夹置在流道内较细的横向筋构成,所有流道平铺一层,构成导流隔网,但在网眼四角和膜面接触的位置形成死角,容易造成原料液溶质的沉积污堵,并且由于横向筋和膜面的紧密接触降低了膜元件实际使用面积。为此,中国专利 CN201906567U提供一种技术方案,将夹置于纵向筋之间的横向筋从偏向流道一边改移到纵向筋中间部位,使横向筋不与膜表面接触;中国专利 CN202151550U 和中国专利CN202155150U提供一种技术方案,通过减少膜面接触,增加径向流量,以及增宽加厚流道来减轻网眼四角易污染沉积;中国专利CN102600728B提供一种由多层纵向筋构成的流道组成且没有横向筋的X旋流卷式膜导流隔网,通过X旋流的促二次流作用,促进层流扰动转变为湍流,加强了溶质扩散的推动力和传质效应。
技术问题
但是,现有的导流隔网都在有效降低浓差极化和膜污染、提高传质的同时,增加了膜运行时的压降和泵耗。
技术解决方案
有鉴于此,本发明所要解决的技术问题是提供一种卷式膜静态混流隔网,使膜表面附近和流道中心的流体相互迁移,改变膜表面流体力学条件,强化流体混合,提高能量利用率。
本发明的目的是通过以下技术方案实现的:
一种应用于卷式膜的静态混流隔网,其特征是:由若干个相互平行的隔网条组成,隔网条垂直于进料流体方向,每个隔网条两端固定在带有卡槽的隔网条框架上;隔网条框架平行于进料流体方向,每个隔网条由若干个隔网单元组成,隔网单元与隔网单元两两相互紧贴,隔网单元由上半部分和下半部分组成,隔网单元上半部分由一块后置面板、两块正挡板、一块前置斜挡板和两块侧板组成,其中两块正挡板分为左挡板和右挡板,都垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、前置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,后置面板垂直于正挡板和侧板且平行于进料流体方向,并紧连左右挡板与两块侧板底部;隔网单元下半部分由一块前置面板、两块挡板、一块后置斜挡板、两块侧板组成,左右挡板和后置挡板垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、后置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,前置面板垂直于挡板和侧板,并紧连左右挡板;隔网单元上半部分和隔网单元下半部分关于面板反向对称; 隔网单元上半部分左侧板与下半部分左侧板是共同组成左侧板,隔网单元上半部分右侧板与下半部分右侧板共同组成右侧板,并与隔网单元上半部分的前置斜挡板、隔网单元下半部分的左右挡板共同形成中心流体通道。
所述静态混流,是指流体经过隔网单元时有两类流动方式,一种是经过隔网单元前置面板上表面的流体通过隔网单元的两侧流体通道进入隔网单元后置面板下表面,另一种是经过隔网单元前置面板下表面的流体通过隔网单元的中心流体通道进入隔网单元后置面板上表面。
所述挡板宽度与侧板长度、面板高度是相等的,标记为t,隔网单元上半部分左右挡板、下半部分左右挡板和后置挡板的长度是相等的,标记为A,隔网单元上半部分左右挡板、下半部分左右挡板和后置挡板的高度是相等的,标记为B,左右侧板之间的间距标记为C,前置面板和后置面板的间距标记为D,隔网单元的长度和宽度分别标记为E和F,满足关系:t= 0.5~1.5 mm,A=3t~5t,B=2t~4t,C=4t~7t,D=2t~5t,E=2A+C,F=2B+t。
有益效果
本发明相对于现有技术,具有以下优点:
本发明一种应用于卷式膜的静态混流隔网,能将膜表面附近和流道中心的流体相互迁移,改变膜表面流体力学条件,不会产生漩涡和湍流,且流体流经隔网时不存在流体死角。此外,斜挡板的设置可以极大地增加中心流道的面积,还可以减少传质阻力。因此,该隔网不仅降低了膜截留物质的表面浓度,增加传质速率,强化了流体混合,而且在有效降低浓差极化和膜污染的同时,减小了因隔网的加入导致膜运行时增加的压降和泵耗,提高了能量利用率。
附图说明
下面结合附图和实施例对本发明进一步说明:
 图1是静态混流隔网的示意图;
 图2是隔网单元中流体流向的示意图;
 图3-6是隔网单元三维模型图;
其中,1隔网条、2隔网单元、3隔网条框架、4隔网条框架卡槽、5隔网单元前置面板、6隔网单元后置面板、7隔网单元下半部分左右挡板、8隔网单元上半部分左右侧板、9斜挡板、10隔网单元两侧流体通道、11隔网单元中心流体通道,箭头表示流体的流动方向。
本发明的实施方式
一种应用于卷式膜的静态混流隔网,其特征是:由若干个相互平行的隔网条组成,隔网条垂直于进料流体方向,每个隔网条两端固定在带有卡槽的隔网条框架上;隔网条框架平行于进料流体方向,每个隔网条由若干个隔网单元组成,隔网单元与隔网单元两两相互紧贴,隔网单元由上半部分和下半部分组成,隔网单元上半部分由一块后置面板、两块正挡板、一块前置斜挡板和两块侧板组成,其中两块正挡板分为左挡板和右挡板,都垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、前置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,后置面板垂直于正挡板和侧板且平行于进料流体方向,并紧连左右挡板与两块侧板底部;隔网单元下半部分由一块前置面板、两块挡板、一块后置斜挡板、两块侧板组成,左右挡板和后置挡板垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、后置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,前置面板垂直于挡板和侧板,并紧连左右挡板;隔网单元上半部分和隔网单元下半部分关于面板反向对称; 隔网单元上半部分左侧板与下半部分左侧板是共同组成左侧板,隔网单元上半部分右侧板与下半部分右侧板共同组成右侧板,并与隔网单元上半部分的前置斜挡板、隔网单元下半部分的左右挡板共同形成中心流体通道;
流体经过隔网单元时有两类流动方式,一种是经过隔网单元前置面板上表面的流体通过隔网单元的两侧流体通道进入隔网单元后置面板下表面,另一种是经过隔网单元前置面板下表面的流体通过隔网单元的中心流体通道进入隔网单元后置面板上表面。流体在隔网单元内进行静态混流,不产生漩涡和湍流。
实例1
选择一种隔网单元尺寸,如表所示。
13个隔网单元尺寸构成一个隔网条,13个隔网条构成一个隔网,将隔网安装在长为19cm、宽为14cm的聚醚砜超滤膜上,在膜测试装置上以葡聚糖(医药、食品、化妆品等行业重要原料)为溶质进行测试。测试压力为120kPa,葡聚糖浓度为5.0kg/m 3,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近42%。
实例2
选择一种隔网单元尺寸,如表所示。
13个隔网单元尺寸构成一个隔网条,13个隔网条构成一个隔网,将隔网安装在长为19cm、宽为14cm的聚醚砜超滤膜上,在膜测试装置上以葡聚糖(医药、食品、化妆品等行业重要原料)为溶质进行测试。测试压力为120kPa,葡聚糖浓度为5.0kg/m 3,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近36%。
实例3
选择一种隔网单元尺寸,如表所示。
13个隔网单元尺寸构成一个隔网条,13个隔网条构成一个隔网,将隔网安装在长为19cm、宽为14cm的聚醚砜超滤膜上,在膜测试装置上以葡聚糖(医药、食品、化妆品等行业重要原料)为溶质进行测试。测试压力为120kPa,葡聚糖浓度为5.0kg/m 3,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近51%。
实例4
选择一种隔网单元尺寸,如表所示。
16个隔网单元尺寸构成一个隔网条,15个隔网条构成一个隔网,将隔网安装在长为21cm、宽为18cm的芳香聚酰胺复合纳滤膜上,在膜测试装置上以重金属废水为料液进行测试。测试压力为1.2MPa,温度为25℃、重金属废水中离子含量为Cu 2+ 100mg/L、Ni 2+ 40mg/L、Pb 2+ 10mg/L、Zn 2+ 20mg/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近58%。
实例5
选择一种隔网单元尺寸,如表所示。
16个隔网单元尺寸构成一个隔网条,15个隔网条构成一个隔网,将隔网安装在长为21cm、宽为18cm的芳香聚酰胺复合纳滤膜上,在膜测试装置上以重金属废水为料液进行测试。测试压力为1.2MPa,温度为25℃、重金属废水中离子含量为Cu 2+ 100mg/L、Ni 2+ 40mg/L、Pb 2+ 10mg/L、Zn 2+ 20mg/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近79%。
实例6
选择一种隔网单元尺寸,如表所示。
16个隔网单元尺寸构成一个隔网条,15个隔网条构成一个隔网,将隔网安装在长为21cm、宽为18cm的芳香聚酰胺复合纳滤膜上,在膜测试装置上以重金属废水为料液进行测试。测试压力为1.2MPa,温度为25℃、重金属废水中离子含量为Cu 2+ 100mg/L、Ni 2+ 40mg/L、Pb 2+ 10mg/L、Zn 2+ 20mg/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近64%。
实例7
选择一种隔网单元尺寸,如表所示。
10个隔网单元尺寸构成一个隔网条,11个隔网条构成一个隔网,将隔网安装在长为16cm、宽为12cm的醋酸纤维素反渗透膜上,在膜测试装置上以模拟海水为料液进行测试。测试压力为3MPa,模拟海水中含NaCl 20 g/L、MgCl 2g/L、MgSO 4 3 g/L、CaCl 2 1 g/L、KCl 0.8 g/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近41%。
实例8
选择一种隔网单元尺寸,如表所示。
13个隔网单元尺寸构成一个隔网条,13个隔网条构成一个隔网,将隔网安装在长为19cm、宽为14cm的聚醚砜超滤膜上,在膜测试装置上以模拟海水为料液进行测试。测试压力为3MPa,模拟海水中含NaCl 20 g/L、MgCl 2g/L、MgSO 4 3 g/L、CaCl 2 1 g/L、KCl 0.8 g/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近52%。
实例9
选择一种隔网单元尺寸,如表所示。
13个隔网单元尺寸构成一个隔网条,13个隔网条构成一个隔网,将隔网安装在长为19cm、宽为14cm的聚醚砜超滤膜上,在膜测试装置上以模拟海水为料液进行测试。测试压力为3MPa,模拟海水中含NaCl 20 g/L、MgCl 2 g/L、MgSO 4 3 g/L、CaCl 2 1 g/L、KCl 0.8 g/L,并与常规隔网进行对比。实验结果显示,在相同的泵耗下的膜过程中,与常规隔网相比,静态混流隔网具有相近或更高的传质性能,在最低泵耗下的膜过程中,与常规隔网相比,采用静态混流隔网后的传质系数提高了近31%。
本发明卷式膜静态混流隔网,能将膜表面附近和流道中心的流体相互迁移,改变膜表面流体力学条件,不会产生漩涡和湍流,这不同于现有各种方案,不仅降低了膜截留物质的表面浓度,增加传质速率,强化了流体混合,而且在有效降低浓差极化和膜污染的同时,减小了因隔网的加入导致膜运行时增加的压降和泵耗,提高了能量利用率。
上述实施例只是用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

  1. 一种应用于卷式膜的静态混流隔网,其特征是:由若干个相互平行的隔网条组成,隔网条垂直于进料流体方向,每个隔网条两端固定在带有卡槽的隔网条框架上;隔网条框架平行于进料流体方向,每个隔网条由若干个隔网单元组成,隔网单元与隔网单元两两相互紧贴,隔网单元由上半部分和下半部分组成,隔网单元上半部分由一块后置面板、两块正挡板、一块前置斜挡板和两块侧板组成,其中两块正挡板分为左挡板和右挡板,都垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、前置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,后置面板垂直于正挡板和侧板且平行于进料流体方向,并紧连左右挡板与两块侧板底部;隔网单元下半部分由一块前置面板、两块挡板、一块后置斜挡板、两块侧板组成,左右挡板和后置挡板垂直于进料流体方向,斜挡板与进料流体方向成一定夹角,侧板平行于进料流体方向,其中挡板与侧板按照“左挡板、左侧板、后置斜挡板、右侧板、右挡板”顺序呈“几字型”组合,前置面板垂直于挡板和侧板,并紧连左右挡板;隔网单元上半部分和隔网单元下半部分关于面板反向对称; 隔网单元上半部分左侧板与下半部分左侧板是共同组成左侧板,隔网单元上半部分右侧板与下半部分右侧板共同组成右侧板,并与隔网单元上半部分的前置斜挡板、隔网单元下半部分的左右挡板共同形成中心流体通道。
  2. 根据权利要求1所述的一种应用于卷式膜的静态混流隔网,其特征是:所述隔网条框架的卡槽以相等的间隔固定隔网条,隔网条沿进料方向均匀分布。
  3.  根据权利要求1所述的一种应用于卷式膜的静态混流隔网,其特征是:隔网单元上半部分的前置斜挡板与进料流体方向成135°~ 165°夹角,隔网单元下半部分的后置斜挡板与进料流体方向成15°~45°夹角。
  4.  根据权利要求1所述的一种应用于卷式膜的静态混流隔网,其特征是:所述隔网单元是对称的,隔网单元的左挡板和左侧板分别与其右挡板和右侧板具有相同的尺寸。所述前置斜挡板是斜方体,左右挡板、隔网单元下半部分侧板和面板都是长方体或正方体,隔网单元上半部分侧板是底边为直角梯形的四棱柱。
  5. 根据权利要求1所述的一种应用于卷式膜的静态混流隔网,其特征是:所述挡板宽度、侧板长度和面板高度是相等的,标记为t,隔网单元上半部分左右挡板长度、下半部分左右挡板长度和面板宽度是相等的,标记为A,隔网单元上半部分左右挡板高度、下半部分左右挡板高度和后置挡板高度是相等的,标记为B,左右侧板之间的间距标记为C,前置面板和后置面板的间距标记为D,隔网单元的长度和宽度分别标记为E和F,满足关系:t=0.5~2m,A=2.5t~4t,B=2t~3t,C=5t~6t,D=1~3t,E=2A+C,F=2A+D。
PCT/CN2023/100376 2022-08-29 2023-06-15 一种应用于卷式膜的静态混流隔网 WO2024045769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211038217.2A CN115487681A (zh) 2022-08-29 2022-08-29 一种应用于卷式膜的静态混流隔网
CN202211038217.2 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045769A1 true WO2024045769A1 (zh) 2024-03-07

Family

ID=84466108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100376 WO2024045769A1 (zh) 2022-08-29 2023-06-15 一种应用于卷式膜的静态混流隔网

Country Status (2)

Country Link
CN (1) CN115487681A (zh)
WO (1) WO2024045769A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487681A (zh) * 2022-08-29 2022-12-20 中南大学 一种应用于卷式膜的静态混流隔网

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566768A (zh) * 2013-10-22 2014-02-12 中国航天员科研训练中心 一种提高卷式膜组件耐污染能力的隔网
CN104492269A (zh) * 2015-01-11 2015-04-08 中南大学 卷式膜静态混流隔网
CN104524979A (zh) * 2015-01-11 2015-04-22 中南大学 卷式膜静态混流隔网
US20190111399A1 (en) * 2016-04-05 2019-04-18 King Abdullah University Of Science And Technology Fouling resistant membrane spacers
CN215086203U (zh) * 2020-12-16 2021-12-10 三达膜科技(厦门)有限公司 一种卷式膜浓水侧隔网
CN115487681A (zh) * 2022-08-29 2022-12-20 中南大学 一种应用于卷式膜的静态混流隔网

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566768A (zh) * 2013-10-22 2014-02-12 中国航天员科研训练中心 一种提高卷式膜组件耐污染能力的隔网
CN104492269A (zh) * 2015-01-11 2015-04-08 中南大学 卷式膜静态混流隔网
CN104524979A (zh) * 2015-01-11 2015-04-22 中南大学 卷式膜静态混流隔网
US20190111399A1 (en) * 2016-04-05 2019-04-18 King Abdullah University Of Science And Technology Fouling resistant membrane spacers
CN215086203U (zh) * 2020-12-16 2021-12-10 三达膜科技(厦门)有限公司 一种卷式膜浓水侧隔网
CN115487681A (zh) * 2022-08-29 2022-12-20 中南大学 一种应用于卷式膜的静态混流隔网

Also Published As

Publication number Publication date
CN115487681A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2024045769A1 (zh) 一种应用于卷式膜的静态混流隔网
CN202460486U (zh) 一种微管膜组件
CN102600728B (zh) X旋流卷式膜导流隔网
CN108176235A (zh) 一种新构型隔网
Mallubhotla et al. Flux enhancement during dean vortex tubular membrane nanofiltration. 10. Design, construction, and system characterization
Singh et al. Numerical simulations of the effect of spacer filament geometry and orientation on the performance of the reverse osmosis process
JP2000042378A (ja) 流体分離素子
WO2014186226A1 (en) Electrochemical separation device and method for using the same
Yeh et al. Improvement of ultrafiltration performance in tubular membranes using a twisted wire-rod assembly
CN104492269B (zh) 卷式膜静态混流隔网
CN202538650U (zh) 一种x旋流卷式膜导流隔网
Zhang et al. Effects of tannic acid on membrane fouling and membrane cleaning in forward osmosis
CN111003764A (zh) 一种再生水用电脱盐系统及其应用
Jianxin et al. Gas/liquid two-phase flow with perforated hollow filament spacer to enhance the filtration performance in spiral wound membrane module
CN109908762A (zh) 一种流向非平行式耐污式膜元件及具有该膜元件的滤芯
CN106745386B (zh) 高金属离子含量废水的处理方法及处理设备
CN104524979B (zh) 卷式膜静态混流隔网
CN106830197B (zh) 处理肝素钠生产废水的方法和设备
CN108970191B (zh) 一种进水隔网、反渗透膜元件及净水机
Abdulwahab et al. Water recovery from brine solution by forward osmosis process
CN214088110U (zh) 一种高cod废水利用膜法分盐系统
KR20160141076A (ko) 육각형의 스페이서를 포함하는 수 처리용 나권형 역삼투막 여과 유닛
CN109908763A (zh) 流向非平行式耐污式膜元件及具有该膜元件的滤芯
CN220091023U (zh) 一种用于卷式反渗透膜元件的螺旋进水流道
CN202569966U (zh) 一种膜分离系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858808

Country of ref document: EP

Kind code of ref document: A1