WO2024045674A1 - 一种线驱运动模块及微创手术钳 - Google Patents

一种线驱运动模块及微创手术钳 Download PDF

Info

Publication number
WO2024045674A1
WO2024045674A1 PCT/CN2023/092074 CN2023092074W WO2024045674A1 WO 2024045674 A1 WO2024045674 A1 WO 2024045674A1 CN 2023092074 W CN2023092074 W CN 2023092074W WO 2024045674 A1 WO2024045674 A1 WO 2024045674A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning member
positioning
motion module
wire
joint
Prior art date
Application number
PCT/CN2023/092074
Other languages
English (en)
French (fr)
Inventor
王屹初
李晓贞
戴竞耀
徐欣良宜
Original Assignee
精勤智造(苏州)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精勤智造(苏州)医疗科技有限公司 filed Critical 精勤智造(苏州)医疗科技有限公司
Publication of WO2024045674A1 publication Critical patent/WO2024045674A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2908Multiple segments connected by articulations

Definitions

  • This application relates to the technical field of medical devices, and specifically to a wire-driven motion module and minimally invasive surgical forceps.
  • the joint structure has good strength and the ability to flexibly adapt to spatial movements, it is widely used in the mechanical and medical fields.
  • doctors use corresponding operating mechanisms to make the minimally invasive device perform desired actions according to control actions and instructions, so as to achieve the purpose of medical treatment and diagnosis of the human body.
  • a minimally invasive device usually consists of a joint structure and a plurality of connecting wires.
  • the connecting wires are connected to the joint structure.
  • One end of the multiple connecting wires is connected to an external driving device, and the other end of the multiple connecting wires is connected to an external device.
  • the operating ends are connected.
  • the motion trajectory of the distal node of the joint structure always remains on the spherical surface with the fixed point as the center of the sphere, and the distal node of the joint structure can only move on this spherical surface. It limits the movement trajectory of the joint structure.
  • the doctor performs operations such as clamping and suturing from the proximal end to the distal length direction, the distal node of the joint structure needs to be displaced along the length direction.
  • the above structure is difficult to To adapt to the displacement in the length direction, its range of motion is insufficient, which limits the flexible operation performance of the minimally invasive device.
  • the technical problem to be solved by this application is that in the prior art, the movement trajectory of the joint structure is limited, the range of movement is insufficient, and the flexible operation of the minimally invasive device is limited.
  • this application provides a line drive motion module, including:
  • a joint structure one end of the joint structure is suitable for connection with an external driving mechanism, and the other end of the joint structure is suitable for connection with an external operating mechanism.
  • the joint structure includes a plurality of connected joint units;
  • a positioning structure is provided between two adjacent joint units.
  • the positioning structure includes a first positioning member and a second positioning member.
  • the first positioning member and the second positioning member are movably connected and can approaching or moving away from each other relative to the first direction;
  • connection lines are passed through all the joint units and the positioning structure, and any connection line is passed through both ends of the positioning structure.
  • the first positioning member and the The second positioning member limits the connection line within the positioning structure;
  • the connecting line when the first positioning member and the second positioning member are close to each other along the first direction, the connecting line is limited and received in the joint enclosed by the first positioning member and the second positioning member. in the wire-containing cavity; when the first positioning member and the second positioning member move away from each other along the first direction, the connecting line is straightened in the wire-containing cavity.
  • the positioning structure further includes at least two positioning sleeves, the positioning sleeves are provided corresponding to the connecting wires and are configured to limit and accommodate the connecting wires, and the The positioning pipe sleeve is arranged in the line-containing cavity, and the two ends of the positioning pipe sleeve are respectively connected to the same connecting line at the first connection port of the first positioning member and the second connection port of the second positioning member. Mouth connected.
  • the positioning tube sleeve is a flexible tube
  • the above-mentioned wire-driven motion module further includes a first transfer structure and a second transfer structure arranged at intervals, and the first transfer structure and the second transfer structure are arranged on the joint structure.
  • the first adapter structure is suitable for connection with the peripheral driving mechanism
  • the second adapter structure is suitable for connection with the operating mechanism
  • the wire-driven motion module has the first transfer structure pulling the connecting wire under the action of external force to drive the second transfer structure and the joint structure to synchronously bend relative to the first transfer structure.
  • the first positioning member has a first connection part
  • the second positioning member has a second connection part
  • the first connecting part and the second connecting part have a spiral structure that cooperates with each other.
  • the first connecting part and the second connecting part are rotated, the first positioning member and the second positioning part
  • the pieces are relatively close or relatively far away along a first direction, and the first direction is the axis direction of the spiral structure.
  • the first positioning member and the second positioning member are cylindrical structures that are nested with each other, and the first connection part is formed on the inner wall surface of the first positioning member. ;
  • the second connecting portion is formed on the outer wall surface of the second positioning member;
  • the line-containing cavity is a cavity within the cylinder structure.
  • the same connecting line is passed through the first wiring port of the first positioning member and the second wiring port of the second positioning member; wherein, the first When the positioning member is rotated at the first rotation position of the second positioning member, the connecting direction of the first wiring port and the second wiring port is set in the same direction as the first direction; the wire drive motion module has The first transfer structure pulls the connecting line under the action of external force to drive the second transfer structure and the joint structure to synchronously bend and move in an S-shape relative to the first transfer structure. bending state.
  • the first end surface of the first adapter structure is away from the side connecting the joint structure and the second adapter structure is away from the side connecting the joint.
  • the second end faces on one side of the structure are arranged parallel to each other.
  • the same connecting line is passed through the first wiring port of the first positioning member and the second wiring port of the second positioning member; wherein, the first When the positioning member is rotated at the second rotation position of the second positioning member, the first plane between the first connection port and the first direction is different from the position between the second connection port and the first direction.
  • the second plane is located at an angle of 90 degrees; the wire drive motion module has the first transfer structure pulling the connecting wire under the action of external force to drive the second transfer structure and the joint structure
  • the second bending state is a second bending state of out-of-plane S-shaped movement synchronously with respect to the first transfer structure.
  • the same connecting line is passed through the first wiring port of the first positioning member and the second wiring port of the second positioning member; wherein, the first When the positioning member is rotated at the third rotation position of the second positioning member, the first plane between the first connection port and the first direction is different from the position between the second connection port and the first direction.
  • the second plane is located at an included angle of 180 degrees;
  • the wire-driven motion module has the first transfer structure pulling the connecting wire under the action of external force to drive the second transfer structure and the joint structure to synchronously bend relative to the first transfer structure.
  • the first positioning part has a third connection part
  • the second positioning part has a fourth connection part
  • the third connection part and the fourth connection part are mutually connected.
  • the wire-driven motion module also has the first transfer structure rotating under the action of external force to pull the connecting wire and drive the second transfer structure and the The joint structure and the first transfer structure are in a rotational state in which they are synchronously twisted.
  • the joint unit includes:
  • the rotating part is provided with a limiting portion in the circumferential direction
  • the limiting support is fixedly connected to the rotating member.
  • the limiting support has at least one accommodation cavity for movable connection of the rotating members of adjacent joint units.
  • the accommodation cavity also has a limiting member.
  • the limiting member cooperates with the limiting portion of the adjacent joint unit to limit the axial rotation of the rotating member of the adjacent joint unit.
  • the rotating member is a sphere, and the inner wall surface of the accommodation cavity matches the outer wall surface of the rotating member of the adjacent joint unit;
  • Two of the limiting parts are provided, and the two limiting parts cooperate to form the sphere;
  • the two limiting parts are spaced apart to form an assembly space for limiting the limiting member, and the limiting member is movably connected to the assembly space.
  • the first positioning member includes a first connection hole extending in the same direction as its extension direction;
  • the second positioning member includes a second connection hole extending in the same direction as the second positioning member
  • Each transfer structure has a third connection hole extending in the same direction as its extending direction;
  • Any joint unit has a core hole, and all the core holes, all the second connection holes, and the first connection hole together form an intervention channel, and the intervention channel is suitable for the penetration of external pipe fittings.
  • the first positioning member further includes a first connecting portion, the first connecting portion is provided on a side of the first positioning member near the proximal end, and the first connecting portion The part is movably connected to the distal end of the first joint structure;
  • the second positioning member further includes a second connecting portion, the second connecting portion is disposed on a side of the second positioning member away from the proximal end, and the second connecting portion is movably connected to the proximal end of the joint structure. ;
  • the first connecting part and the second connecting part have the same structure as the rotating member or the same structure as the limiting support.
  • the first adapter structure includes a third connection part, and the third connection part The part is movably connected to the joint unit;
  • the second transition structure includes a fourth connecting portion, the fourth connecting portion is movably connected to the joint unit;
  • the third connecting part and the fourth connecting part have the same structure as the rotating member or the same structure as the limiting support.
  • this application provides a minimally invasive surgical forceps, including the wire-driven motion module of the first aspect.
  • the wire-driven motion module provided by this application includes a joint structure, a positioning structure and two connecting lines.
  • One end of the joint structure is suitable for connection with an external driving mechanism, and the other end of the joint structure is suitable for connection with an external operating mechanism.
  • the joint structure It includes several connected joint units; the positioning structure is arranged between two adjacent joint units.
  • the positioning structure includes a first positioning member and a second positioning member. The first positioning member and the second positioning member are movably connected and can be relative to each other.
  • the first direction is to approach or move away from each other; the connecting lines are passed through all the joint units and the positioning structure, and any connecting line is passed through the two ends of the positioning structure, respectively, the first positioning member and the second positioning member
  • the connection line is limited and constrained in the positioning structure; wherein, when the first positioning member and the second positioning member are close to each other along the first direction, the connection line is limited and contained in the joint enclosed by the first positioning member and the second positioning member. in the wire-containing cavity; when the first positioning member and the second positioning member move away from each other along the first direction, the connecting wire is straightened in the wire-containing cavity.
  • the wire-driven motion module of this structure is movably connected through the first positioning member and the second positioning member, moving closer or farther away from each other in the first direction, so that the joint structure connected to the first positioning member is connected to the second positioning member.
  • the joint structure performs corresponding displacement movement closer or farther away in the first direction, thereby adjusting the movement position of the joint structure through the movement of the first positioning member and the second positioning member, thereby achieving adjustment of the joint structure in the first direction through the positioning structure.
  • the purpose of the motion trajectory is to position and coordinate the connection line within the positioning structure through the first positioning member and the second positioning member.
  • the joint structure performs a retracting and closing movement; when the first positioning member and the second positioning member move away from each other along the first direction, the connecting line is released in the line-containing cavity.
  • the joint structure performs an extension movement; the first positioning member and the second positioning member limit and constrain the distance between the two ends of the connection line in the positioning structure, so that the length of the connection line in the positioning structure It is always constant and is not changed by the sliding of the first positioning member and the second positioning member along the first direction.
  • the changing movement of the connecting line in the positioning structure is adapted to the relative movement of the first positioning member and the second positioning member and
  • the motion trajectory position of the joint structures at both ends of the positioning structure optimizes the motion trajectory of the joint structure and improves the range of motion of the joint structure to achieve the purpose of enhancing the flexible operation performance of the minimally invasive device.
  • the positioning structure of the wire-driven motion module also includes two positioning sleeves.
  • the positioning sleeves are set corresponding to the connecting wires and are configured to limit and accommodate the connecting wires.
  • the positioning sleeves are set in the wire-containing cavity.
  • the two ends of the pipe sleeve are respectively connected with the same connecting line at the first connection port of the first positioning member and the second connection port of the second positioning member; the positioning pipe sleeve is a flexible pipe; along the first positioning member and the second positioning member, When approaching each other in the first direction, the flexible tube and the connecting wire are folded, coiled or curled synchronously in the line-containing cavity; when the first positioning member and the second positioning member are moved away from each other along the first direction, the flexible tube and the connecting wire are synchronously folded Expand or stretch.
  • the wire-driven motion module of this structure cooperates with the movement of the limiting connection line through the first positioning member, the second positioning member and the positioning sleeve.
  • the two ends of the positioning sleeve are fixedly connected to the first positioning member and the second positioning member respectively.
  • the connection is installed in the positioning pipe sleeve, and the axial displacement of the connecting line is limited by the positioning pipe sleeve.
  • the positioning pipe sleeve uses a flexible member, so that when the first positioning member and the second positioning member are close to each other along the first direction, the first positioning member
  • the two positioning parts and the second positioning part respectively drive the two ends of the positioning sleeve to be closer to the middle.
  • the positioning sleeve is limited and squeezes the connecting line inside it, so that the connecting line and the positioning sleeve are folded simultaneously in the line cavity. Or coiling or curling movement; when the first positioning member and the second positioning member move away from each other along the first direction, the first positioning member and the second positioning member respectively drive the two ends of the positioning tube sleeve to move away from the middle, and at the same time, the positioning tube
  • the two ends of the sleeve are limited and stretched to act on the connecting wire inside, so that the connecting wire and the positioning pipe sleeve can unfold or stretch simultaneously.
  • the displacement of the connecting wire matches the distance between the first positioning piece and the second positioning piece. Promotes range of motion of joint structures.
  • the line drive motion module provided by this application also includes a first transfer structure and a second transfer structure arranged at intervals.
  • the first transfer structure and the second transfer structure are arranged at both ends of the joint structure.
  • the first transfer structure The connecting structure is suitable for connecting with the peripheral driving mechanism, and the second transferring structure is suitable for connecting with the operating mechanism; all connecting wires are of the same length, and the line drive motion module has a first transferring structure that pulls the connecting wires under the action of external force to pull the connecting wires.
  • the bending state that drives the second transfer structure and the joint structure to synchronously bend relative to the first transfer structure; and the initial state of the coaxial setting of the first transfer structure, the positioning structure and the second transfer structure, and the line drive motion module is in Switching settings between bending state and initial state.
  • the wire-driven motion module of this structure drives and adjusts the motion position of the first transfer structure through the peripheral drive mechanism, and drives the second transfer structure through the connecting wire and the joint structure.
  • the wire-driven motion module switches between the bending state and the initial state.
  • the first switching structure and the second switching structure perform corresponding movements around the positioning structure, and the lengths of the connecting lines are set to be the same, the second switching structure and the first switching structure can be synchronously linked, so that the second switching structure
  • the joint structure achieves the desired motion and position.
  • the tight connection is conducive to improving the connection strength of the joint structure, and the overall motion performance of the wire-driven motion module is balanced.
  • Figure 1 is a schematic structural diagram of a line drive motion module provided in an embodiment of the present application.
  • Figure 2 is a schematic connection diagram of the positioning structure in the line drive motion module provided in the embodiment of the present application;
  • Figure 3 is a schematic three-dimensional structural diagram of the first positioning member in the line drive motion module provided in the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of a side view of the first positioning member in the line drive motion module provided in the embodiment of the present application;
  • Figure 5 is a schematic structural diagram of the first positioning member in the line drive motion module provided in the embodiment of the present application.
  • Figure 6 is a schematic three-dimensional structural diagram of the second positioning member in the line drive motion module provided in the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the second positioning member in the line drive motion module provided in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a side view of the second positioning member in the line drive motion module provided in the embodiment of the present application;
  • Figure 9 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a first bending state
  • Figure 10 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a second bending state
  • Figure 11 is a schematic structural diagram of the joint unit in the wire-driven motion module provided in the embodiment of the present application.
  • Figure 12 is a three-dimensional schematic view of the joint unit in the wire-driven motion module provided in the embodiment of the present application;
  • Figure 13 is a schematic structural diagram of the first switching structure in the line drive motion module provided in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the first switching structure located on the distal side of the wire-driven motion module provided in the embodiment of the present application.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • connection can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • the proximal end the side of the equipment that is close to the operator when in use
  • the distal end the end that is far away from the operator
  • the wire-driven motion module provides a wire-driven motion module, which can be used as a mechanical component for medical and diagnostic purposes. Of course, it can also be applied to the application environment of the human body's own motion joints.
  • the wire-driven motion module It includes a joint structure, a positioning structure and two connecting lines 4. One end of the joint structure is suitable for connection with an external driving mechanism, and the other end of the joint structure is suitable for connection with an external operating mechanism.
  • the joint structure includes several connected joint units 1; positioning The structure is arranged between two adjacent joint units 1.
  • the connecting line 4 runs through all joint units 1 and the positioning structure.
  • the connecting line 4 is used to respond to the movement of the external drive mechanism to adjust the movement of the adjacent joint unit 1.
  • the positioning structure includes a first positioning member 2 and a second positioning member 3.
  • the first positioning member 2 and the second positioning member 3 are movably connected and can move closer or farther away from each other relative to the first direction.
  • the positioning structure actively adjusts the connection in the first direction.
  • the position of the joint structure on it; any connecting line 4 is passed through both ends of the positioning structure, and the first positioning member 2 and the second positioning member 3 limit and constrain the connecting line 4 in the positioning structure.
  • the connecting wire 4 when the first positioning member 2 and the second positioning member 3 approach each other along the first direction, the connecting wire 4 is limited and accommodated in the space commonly surrounded by the first positioning member 2 and the second positioning member 3. in the combined line cavity; through the The relative movement position of the first positioning member 2 and the second positioning member 3 can control the displacement of the connecting wire 4 in the first direction and adapt to the position of the joint structure, thereby avoiding interference with the initial tightness of the connecting wire 4.
  • the structure cooperates with the connecting line 4 to realize the retraction and closing movement and the extension and expansion movement of the joint structure, optimizing the motion trajectory of the joint structure and increasing the freedom of the wire-driven motion module to move in the first direction and the freedom to rotate around the first direction. degree, thereby improving the range of motion of the joint structure and achieving the purpose of enhancing the flexible operating performance of the minimally invasive device.
  • the first positioning member 2 also includes a first connecting portion 24.
  • the first connecting portion 24 is provided on the proximal side of the first positioning member 2.
  • the first connecting portion 24 is connected to the adjacent side.
  • the joint units 1 are movably connected;
  • the second positioning member 3 also includes a second connecting portion 34, which is provided on the side of the second positioning member 3 away from the proximal end.
  • the second connecting portion 34 is connected to the adjacent joint unit 1 Active connections.
  • the adjacent joint units 1 are driven to move through the first connecting portion 24 and the second connecting portion, so that the entire joint structure performs retraction and closing movements and extension and expansion movements.
  • the first connecting part 24 and the second connecting part can limit the position of the adjacent joint unit 1 to ensure stable cooperation between the positioning structure and the adjacent joint unit 1 to promote flexible bending of the joint structure.
  • the positioning structure also includes positioning sleeves 5.
  • the positioning sleeves 5 are configured to limit and accommodate the connecting wires 4.
  • the number of the positioning sleeves 5 is consistent with the number of the connecting wires 4.
  • the positioning sleeves 5 are arranged in the positioning position.
  • the two ends of the positioning sleeve 5 are connected to the same connecting wire 4 at the first connection port 21 of the first positioning member 2 and the second connection port 31 of the second positioning member 3 respectively.
  • the positioning sleeve 5 is used to limit the axial displacement of the connecting wire 4 .
  • the positioning pipe sleeve 5 is a flexible pipe.
  • the first positioning member 2 and the second positioning member 3 approach each other along the first direction, the first positioning member 2 and the second positioning member 3 respectively drive the two ends of the positioning pipe sleeve 5 to approach the middle thereof.
  • the positioning pipe sleeve 5 is moved closer to the middle thereof.
  • the sleeve 5 limits and squeezes the connecting wire 4 inside, and the positioning tube sleeve 5 and the connecting wire 4 are coiled or curled synchronously in the wire-containing cavity; when the first positioning member 2 and the second positioning member 3 move away from each other along the first direction , the first positioning member 2 and the second positioning member 3 respectively drive the two ends of the positioning sleeve 5 away from the middle thereof.
  • the two ends of the positioning sleeve 5 limit and stretch the connecting wire 4 inside, so that the connecting wire 4 and the positioning sleeve 5 perform unfolding or stretching movements simultaneously, and the displacement of the connecting line 4 matches the distance between the first positioning member 2 and the second positioning member 3, which can promote the range of motion of the joint structure.
  • the wire-driven motion module is in the bending state and the initial state, the overall length of the connecting wire 4 limited within the positioning sleeve 5 remains unchanged.
  • the joint unit 1 is provided with a mounting hole 123 , which is movably connected to the connecting wire 4 .
  • the connecting wire 4 abuts the mounting hole 123 to drive the adjacent joint unit 1 .
  • the first wiring port and the second wiring port are respectively connected to the mounting holes on adjacent joint units through connecting wires.
  • the first positioning part 2 has a first connection part 22, and the second positioning part 3 has a second connection part 32.
  • the first connecting part 22 and the second connecting part have a spiral structure that cooperates with each other.
  • the first positioning part 2 and the second positioning part 3 Relatively close or relatively far away along the first direction, which is the axis direction of the spiral structure (Z-axis direction as shown in Figure 1).
  • the first positioning member 2 and the second positioning member 3 are cylindrical structures that are sleeved with each other.
  • the first positioning member 2 is rotatably sleeved on the second positioning member 3, and the first connecting portion 22 is formed on the second positioning member 3.
  • the inner wall surface of a positioning member 2; the second connecting portion 32 is formed on the outer wall surface of the second positioning member 3; the line-containing cavity is a cavity within the cylinder structure.
  • the first positioning member 2 can be fixed and the second positioning member 3 can be rotated so that the wire-driven motion module is displaced in the first direction and adjacent to the second positioning member.
  • the joint structure on the member 3 rotates around the first direction; by fixing the second positioning member 3 and rotating the first positioning member 2, the line drive motion module is displaced in the first direction and adjacent to the first positioning member 2
  • the joint structure rotates around the first direction; the first positioning member 2 and the second positioning member 3 can be rotated simultaneously, so that the wire-driven motion module is displaced in the first direction and adjacent to the first positioning member 2 and the second positioning member respectively.
  • the joint structure on piece 3 rotates around the first direction. For these three operating modes, selection and adaptation are made according to actual demand conditions.
  • the rotation angle between the first positioning member 2 and the second positioning member 3 is related to the number of turns.
  • the relative rotation angle between the first positioning member 2 and the second positioning member 3 is here No specific limitation is made.
  • the number of rotations of the first positioning member 2 and the second positioning member 3 is set to three, and the first positioning member 2 and the second positioning member 3 can be rotated at any angle from 0 to 1080 degrees. , the first positioning member 2 and the second positioning member 3 can be fixed through external fixed connectors.
  • the first positioning member 2 can also be fixed to an external connecting member, and a toothing member is externally connected to the second positioning member 3, and the external driving member drives the action toothing member, so that the toothing member drives the second positioning member 3 relative to the third positioning member.
  • a positioning member 2 rotates so that the relative rotation angle between the first positioning member 2 and the second positioning member 3 changes from 0 degrees to 1080 degrees.
  • the second positioning member 3 can be fixed with an external connecting member, a gear member is externally connected to the first positioning member 2, and the external driving member drives the action gear member, so that the gear member drives the first positioning member 2 relative to each other.
  • the rotation of the second positioning member 3 can cause the relative rotation angle between the first positioning member 2 and the second positioning member 3 to change from 0 degrees to 1080 degrees.
  • the spiral structure adopts an equal-pitch thread.
  • the extension or retraction length of the connecting wire 4 is equal to the relative displacement between the first positioning member 2 and the second positioning member 3.
  • the number of rotations is equal to the number of rotations of the spiral structure.
  • the pitch is linearly proportional to the change in length of the connecting line 4.
  • the pitch is configured according to the change in length of the connecting line 4 required in the usage conditions.
  • the length and material of the entire positioning structure are not specifically limited.
  • the materials of the first positioning part 2 and the second positioning part 3 can be steel, medical plastic, etc., and their length and material are selected and adapted according to the actual application.
  • the line drive motion module provided by this embodiment, as shown in Figure 1, also includes a first switching structure 6 and a second switching structure 7 arranged at intervals.
  • the first switching structure 6 and the second switching structure 7 are arranged on At both ends of the joint structure, the first transfer structure 6 is suitable for connecting with the peripheral driving mechanism, and the second transfer structure 7 is suitable for connecting with the operating mechanism; the positioning structure is installed on the first transfer structure 6 and the second transfer structure between 7.
  • the wire-driven motion module has a first transfer structure 6 that pulls the connecting wire 4 under the action of an external force to drive the second transfer structure 7 and the joint structure to bend in synchronization with the first transfer structure 6 . state.
  • the wire-driven motion module has a first transfer structure 6 that pulls the connection wire 4 under the action of external force to drive the first transfer structure 6, the positioning structure and the second transfer structure 7 that are coaxially arranged. initial state.
  • the movement of the first adapter structure 6 is driven and adjusted by the peripheral driving mechanism, and the second adapter structure 7 is driven by the connecting wire 4 in cooperation with the joint structure, so that the wire-driven motion module can switch between the bending state and the initial state.
  • the first adapter structure 6 and the second adapter structure 7 perform corresponding movements around the positioning structure.
  • the lengths of all connecting lines 4 can be set to the same, which can promote the second The transfer structure 7 and the first transfer structure 6 are synchronously linked to enable the second transfer structure 7 to achieve the desired motion and position.
  • the connecting wire 4 can be made of elastic fiber rope, nickel-titanium wire or other elastic materials to achieve the purpose of the connecting wire 4 driving the joint component and the second transfer structure 7, thereby realizing the linkage function of the wire-driven motion module.
  • connection lines 4 are taken as an example.
  • the four connection lines 4 are respectively threaded and distributed on the line drive motion module.
  • both ends of the connecting wire 4 are fixedly connected to the first switching structure 6 and the second switching structure 7 respectively.
  • the connecting wire 4 is passed through all the joint units 1 and the positioning structure, and is connected to the joint unit 1 Actively connected to the positioning structure.
  • the wire-driven motion module in the initial state, all connecting wires 4 have the same length, so that the connecting wires 4 can move the adjacent joint units 1 and the second
  • the adapter structure 7 is adjusted accordingly to adapt to the movement of the first adapter structure 6.
  • the wire drive motion module contacts the positioning structure through the connecting wire 4.
  • the first adapter structure 6 pulls one end of the connecting wire 4 to move
  • the The second adapter structure 7 where the other end of the connecting wire 4 is located performs an adapting action, thereby realizing a linked bending process.
  • the connecting wire 4 is tightly and fixedly connected between the first transfer structure 6 and the second transfer structure 7, and the overall wire-driven motion module has good joint strength.
  • the first switching structure 6 includes a first switching body 62.
  • the second switching structure 7 includes a second switching body 72.
  • the first switching body 62 and the second switching body 72 are connected to each other.
  • the connecting bodies 72 are arranged at intervals; the first connecting body 62 has a first end surface 623 on a side away from the connecting joint unit 1, and the second connecting body 72 has a second end surface 723 on a side away from the connecting joint unit 1, as shown in Figure 1
  • the first end face 623 is located at the proximal part of the wire drive motion module.
  • the second end face 721 is located at the distal part of the wire drive motion module. In the initial state of the wire drive motion module, the first end face 623 It is arranged opposite to the second end surface 721 .
  • the first end surface 623 can be used as a reference surface for driving by the driving mechanism, and the position of the first adapter structure 6 can be adjusted by driving the driving mechanism first to make the overall wire-driven movement.
  • the first end face 623 is adjusted through the driving mechanism, so that the first end face 623 and the second end face 721 perform corresponding actions to adjust the position and orientation of the second end face 721
  • the purpose is to enable the operating mechanism on the second transfer structure 7 to perform actions at the predetermined target position and target direction.
  • the first end face 623 can be adjusted through the driving mechanism first, so that the second end face 721 moves corresponding to the first end face 623, and then the position of the first adapter structure 6 can be adjusted through the driving mechanism, so that the overall line drive can
  • the motion module moves in the three-dimensional space to achieve the corresponding bending action posture.
  • the first end surface 623 can be used as a mounting surface for connecting the driving mechanism, and the shape of the first end surface 623 can be a flat surface, a curved surface, or a stepped surface, which is not specifically limited here.
  • the first adapter structure 6 is the same as the second adapter structure 7. Taking the first adapter structure 6 as an example, as shown in Figures 13 and 14, the first adapter structure 6 also includes an assembly hole. 622. Pass through and fix the connection wire 4 in the assembly hole 622.
  • the connection between the assembly hole 622 and the connection wire 4 includes but is not limited to welding, bonding and locking through fastening connectors.
  • the first adapter structure 6 includes a third adapter portion 61, which is movably connected to the joint unit 1; the second adapter structure 7 includes a fourth adapter portion 71, The fourth connecting part 71 is movably connected with the joint unit 1 .
  • the third connecting part 61 cooperates with the connecting wire 4 to transmit the power and torque of the first switching structure 6 to the joint structure; the fourth connecting part 71 cooperates with the connecting wire 4 to receive the power and torque and transmits it to the second switching structure 7, so as to
  • the second adapter structure 7 is caused to perform linked changes according to the movement position of the first adapter structure 6 .
  • the joint structure between the first transfer structure 6 and the positioning structure is named the first joint component
  • the joint structure between the second transfer structure 7 and the positioning structure is named the second joint component.
  • the driving mechanism acts on the relative positioning structure of the first adapter structure 6 at The displacement generated in the three-dimensional space is compensated by the mutual rotation of the adjacent joint units 1 between the first transfer structure 6 and the positioning structure and the elastic expansion and contraction of the connecting line 4 itself, so that the first joint component can perform flexible flexion and extension movements.
  • the driving mechanism can drive the first transfer structure 6 so that the wire-driven motion module can adjust the flexion and extension of the first joint component at its position during the bending action, thereby making the first joint
  • the components can achieve the desired action posture and position during the flexion and extension movements to meet the required usage conditions.
  • the driving mechanism can first be driven to act on the first adapter structure 6 to adjust the first joint component in flexion and extension, and then the drive mechanism can be driven to act on the first adapter structure 6 to cause the overall wire-driven motion module to undergo a bending action. Meet the required working conditions.
  • the wire-driven motion module can set any of the action postures it can achieve as the initial position of the driving mechanism.
  • the wire-driven motion module has the advantages of flexible operation and coherent and stable movement.
  • the same connection line 4 is passed through the first connection port 21 of the first positioning member 2 and the second connection port 31 of the second positioning member 3; wherein, the first positioning member 2 When the second positioning member 3 is rotated to the first rotation position, the connection direction of the first wiring port 21 and the second wiring port 31 is set in the same direction as the first direction; as shown in Figure 9, the line drive motion module has a third An adapter structure 6 pulls the connecting wire 4 under the action of an external force, so as to drive the second adapter structure 7 and the joint structure to synchronously bend relative to the first adapter structure 6 to form a first bending state of S-shaped movement.
  • the first switching structure 6 and the second switching structure 7 can move toward each other on the X-Y plane.
  • the first switching structure 6 and the second switching structure 7 Relatively reverse bend.
  • the first end surface 623 and the second end surface 721 are arranged in parallel.
  • the second end surface 721 can perform corresponding actions synchronously.
  • the wire drive motion module has a first transfer structure 6 that pulls the connection wire 4 under the action of external force to drive
  • the second transfer structure 7 and the joint structure are synchronously bent relative to the first transfer structure 6 to present a second bending state of out-of-plane S-shaped movement.
  • the external driving mechanism drives the first adapter structure 6 to move in the X-axis extension direction shown in Figure 1
  • the first adapter structure 6 and the first joint assembly jointly move in a bending direction in the X-axis extension direction.
  • the second transfer structure 7 and the second joint component jointly move in a bending direction in the Y-axis extension direction shown in Figure 1.
  • the bending direction of the first joint component and the bending direction of the second joint component are in The projection on the X-Y plane is set at 90 degrees, which allows the joint components to achieve the desired action posture and the position during the different-surface S-shaped curve action to meet the required usage conditions.
  • the first wiring port 21 is in contact with the first plane in the first direction and the first plane in the first direction.
  • the second connection port 31 forms an included angle of 180 degrees with the second plane in the first direction;
  • the wire drive motion module has a first transfer structure 6 that pulls the connection wire 4 under the action of external force to drive the second transfer structure 7
  • the third bending state is a C-shaped movement in synchronization with the joint structure relative to the first transfer structure 6 .
  • the first adapter structure 6 and the second adapter structure 7 can move closer together in the circumferential plane along the radial plane of the positioning body, so that the joint assembly and Achieve desired actions and positions to satisfy expected working conditions.
  • the wire-driven motion module also has a first switching structure 6 that rotates under the action of external force to pull the connecting wire 4 and drive the second switching structure 7 and the joint structure to connect with the first switching structure.
  • Structure 6 is in a synchronous torsion state.
  • the first positioning member 2 and the second positioning member 3 are fixed, and the positioning structure is rotationally connected to the external support ring, so that the wire-driven motion module moves around the axis of the positioning structure. The purpose of rotation.
  • the rotation limit position of the first positioning member 2 and the second positioning member 3 is the third rotation position. Therefore, during the rotation of the first positioning member 2 and the second positioning member 3, the first positioning member 2 and the second positioning member 3 rotate.
  • the wiring port 21 and the second wiring port 31 can pass through positions corresponding to the first rotation position and the second rotation position multiple times, so that one positioning structure can satisfy a variety of rotation positions of the first positioning member 2 and the second positioning member 3 , such as the first rotation position, the second rotation position, and the third rotation position, thereby meeting the user's needs.
  • the first rotation position can also be used as the limit position of rotation of the first positioning member 2 and the second positioning member 3.
  • the second rotation position and the third rotation position can be process positions.
  • the second rotation position may be the limit position of rotation of the first positioning member 2 and the second positioning member 3.
  • the first rotation position and the third rotation position may both be process positions.
  • the wire-driven motion module provided by this embodiment is shown in Figures 11 and 12.
  • the joint unit 1 includes a rotating member 11 and a limiting support 12.
  • the rotating member 11 is provided with a limiting portion 111 in the circumferential direction; the limiting support 12 and The rotating parts 11 are fixedly connected, and the limiting support 12 has an accommodating cavity 121 for the movable connection of the rotating parts 11 of adjacent joint units 1.
  • the accommodating cavity 121 There is also a limiting member 13 inside.
  • the limiting member 13 cooperates with the limiting portion 111 of the adjacent joint unit 1 to limit the axial rotation of the rotating member 11 of the adjacent joint unit 1.
  • the adjacent joint unit 1 has two vertical pivots, one of which is parallel to the extension direction of the limiting member 13 , and the other pivot is parallel to the radial plane of the limiting member 13 and the direction of the limiting member 13 . Intersecting lines of extension directions.
  • the rotating member 11 is a sphere, and the inner wall surface of the accommodation cavity 121 matches the outer wall surface of the rotating member 11 of the adjacent joint unit 1; there are two limiting parts 111, and the two limiting parts 111 cooperate with each other. Forming a sphere; wherein, two limiting parts 111 are spaced apart to form an assembly space for the limiting member 13, and the limiting member 13 is movably connected to the assembly space.
  • the first positioning member 2 includes a first connection hole 23 extending in the same direction as its extension direction; as shown in Figure 7, the second positioning member 3 includes The second connection hole 33 extends in the same direction as its extension direction; as shown in Figures 13 and 14, any adapter structure has a third connection hole 621 that extends in the same direction as its extension direction; as shown in Figures 11 and 12,
  • Any joint unit 1 has a core hole 122, and all the core holes 122, all the second connection holes 33, and the first connection hole 23 together form an intervention channel, and the intervention channel is suitable for the penetration of external pipe fittings.
  • Matching holes are configured on the transfer structure, joint structure and positioning structure, aiming to form an interventional channel for medical purposes. Through the operating space formed by the interventional channel, flexible pipe fittings can be connected in the interventional channel for online drive movement. As the module bend changes, the fittings are bent together to meet the desired operating conditions.
  • the first connecting part 24 and the second connecting part 34 have the same structure as the rotating member 11
  • the third connecting part 61 and the fourth connecting part 71 have the same structure as the limiting support 12 .
  • the connecting part plays the role of transmitting power and torque, and uses the transmission connection line 4 to link the joint structure and the transfer structure; at the same time, the connecting part is used to limit the rotational connection of the joint structure.
  • first connecting part 24 and the second connecting part 34 have the same structure as the limiting support 12
  • third connecting part 61 and the fourth connecting part 71 have the same structure as the rotating member 11 .
  • the first positioning part 2 has a third connection part
  • the second positioning part 3 has a fourth connection part
  • the third connection part and the fourth connection part are sliding structures that cooperate with each other.
  • the third connecting part and the fourth connecting part slide relative to each other, the first positioning part 2 and the second positioning part 3 are relatively close to or relatively far away from each other along the first direction, and the first direction is the sliding direction of the sliding structure.
  • the third connecting part and the fourth connecting part can cooperate and slide, so that the first positioning part 2 and the second positioning part 3 move closer or farther away, so that the joint structure connected to the first positioning part 2 and the joint structure connected to the second positioning part 2 can slide together.
  • the joint structure on the member 3 performs retraction and closing movements or extension and expansion movements, wherein the positioning sleeve 5 can bend and move in the accommodation cavity formed by the first positioning member 2 and the second positioning member 3.
  • the positioning sleeve 5 and the connecting line 4 are bent and folded together. 5 and connecting line 4 are stretched and unfolded together.
  • the first connecting part 22 and the second connecting part 32 are a spiral structure that cooperates with each other.
  • the spiral structure has a variable pitch thread and is penetrated between the first wiring port 21 and the second wiring port 31
  • the inner direct connection line 4 when the first positioning member 2 and the second positioning member 3 approach each other along the first direction, the spiral structure is in the screw-in action, and the relative elongation of the connection line 4 is limited by the spiral structure with variable pitch threads.
  • the position is accommodated in the line-containing cavity, and the joint structures at both ends of the positioning structure are driven by the first positioning member 2 and the second positioning member 3 to approach each other and retract and close; when the first positioning member 2 and the second positioning member 3 move along the When moving away from each other in one direction, the spiral structure is in the unscrewing action, and the connecting wire 4 is limited and contained in the wire containing cavity.
  • the joint structures at both ends of the positioning structure are driven by the first positioning member 2 and the second positioning member 3 to move away and extend. ; Among them, the change in the length of the connecting wire 4 is the same as the pitch of the variable-pitch thread.
  • the spiral structure limits the position of the connecting wire 4.
  • the influence of the length of the connecting wire 4 on the line drive motion module is eliminated by using the variable-pitch thread. It should be noted that at this time, the maximum relative rotation angle of the first connecting part 22 and the second connecting part 32 is 180 degrees.
  • the first connecting part 24 and the second connecting part 34 may be formed by the joint unit 1 for the purpose of transmitting power and torque.
  • the fixing method can be one-piece molding, welding, threaded connection or plug connection, etc., the joint unit 1 moves in series with the joint structure connect.
  • either coupling portion may be formed by the joint unit 1, To achieve the purpose of transmitting power and torque.
  • the fixation method can be one-piece molding, welding, threaded connection or plug connection, etc., the joint unit 1. Actively connected in series with the joint structure.
  • the wire-driven motion module taken the first positioning member 2 and the second positioning member 3 moving close together to adjust the movement position of the joint structure as an example.
  • the usage process is as follows: fix the first positioning member 2 with the outside world. By rotating the second positioning member 3, the first positioning member 2 and the second positioning member 3 move relatively close to each other. The two ends of the positioning sleeve 5 follow the driving action of the first positioning member 2 and the second positioning member 3 to move toward the positioning member. The middle section of the pipe sleeve 5 is close. At the same time, the positioning pipe sleeve 5 undergoes a curling movement.
  • the positioning pipe sleeve 5 limits the position and squeezes the connecting wire 4, causing the connecting wire 4 to curl together, and the connecting wire 4 connected to the first positioning member 2
  • the joint structure is in its original position and posture.
  • the joint structure connected to the second positioning member 3 rotates with the rotation of the second positioning member 3 and moves closer to the first positioning member 2. At this time, the overall joint structure is relative to the original position.
  • the joint structure is in a shortened and closed posture, and the overall wire-driven motion module retracts in the first direction.
  • the wire-driven motion module provided in this embodiment is movably connected through the first positioning member 2 and the second positioning member 3 to move closer or farther away from each other in the first direction, so that the joint structure connected to the first positioning member 2 is connected to the
  • the joint structure on the second positioning member 3 performs corresponding displacement movements toward or away from each other in the first direction, thereby adjusting the movement position of the joint structure through the movement of the first positioning member 2 and the second positioning member 3 to achieve the purpose of passing the positioning structure
  • the purpose of adjusting the motion trajectory of the joint structure in the first direction is to limit the length of the connecting line 4 connected to the positioning structure to be constant through the positioning and cooperation of the first positioning member 2 and the second positioning member 3. Specifically, when the first positioning member 2 and the second positioning member 3 approach each other along the first direction.
  • the limiting connection line 4 is in the line containing cavity, and the joint structure performs a retracting and closing movement; when the first positioning member 2 and the second positioning member 3 When moving away from each other along the first direction, the connecting wire 4 is released in the wire-containing cavity.
  • the connecting wire 4 is extended and straightened, and the joint structure performs an extending movement; when the first positioning member 2 and the second positioning member 3 define
  • the length of the connecting wire 4 in the positioning structure is always constant and is not affected by the sliding of the first positioning member 2 and the second positioning member 3 along the first direction.
  • This embodiment provides a minimally invasive surgical forceps, which includes the wire-driven motion module of Embodiment 1. Therefore, it has the advantages brought by the wire-driven motion module.
  • the wire-driven motion module can move the joint structure along the axis through the rotation of the positioning structure.
  • the function of moving in the first direction and the function of driving the joint structures on the first positioning member 2 and the second positioning member 3 to rotate effectively increase the range of movement of the joint structures, thereby enabling the minimally invasive surgical forceps to have corresponding movement and rotation capabilities. function to promote flexible operation of minimally invasive surgical forceps.
  • the integrated modular structure has compact overall connections and high connection strength, which can facilitate the assembly process of minimally invasive surgical forceps and enhance the stability during use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本申请公开了一种线驱运动模块及微创手术钳,线驱运动模块包括关节结构、定位结构以及两条连接线,关节结构包括若干相连接的关节单元;定位结构设置在相邻的两个关节单元之间,定位结构包括活动连接且可相对第一方向相互靠近或远离的第一定位件和第二定位件;连接线在所有关节单元和定位结构内穿设,且任一连接线穿设在定位结构内的两端分别与第一定位件和第二定位件定位连接以限定连接于所述定位结构内的连接线长度恒定。该线驱运动模块可调整关节结构运动轨迹,提高关节结构的运动范围,加强微创装置灵活操作性能。

Description

一种线驱运动模块及微创手术钳
相关申请的交叉引用
本申请要求在2022年08月31日提交中国专利局、申请号为202211062457.6、发明名称为“一种线驱运动模块及微创手术钳”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及医用器械技术领域,具体涉及一种线驱运动模块及微创手术钳。
背景技术
由于关节结构具有良好的强度与灵活适配空间运动的能力,其在机械与医疗领域等内应用十分广泛。目前,医疗器械中,例如在微创手术中,医生通过相应操作机构使微创装置根据控制动作以及指令执行期望动作,以达到对人体进行医疗与诊断目的。
现有技术中,微创装置通常由关节结构与多个连接线组成,连接线与关节结构连接在内,多个连接线的一端与外设驱动设备相连,多个连接线的另一端与外接操作端相连,在需要调节微创机器机械的关节结构弯曲时,通过外设驱动设备拉动收回连接线,使拉线端所在的相邻关节相靠近,相邻关节间的夹角减小收缩,通过外设驱动设备推送延长连接线,使送线端所在的相邻关节相远离,相邻关节间的夹角增大拓展,从而完成关节的弯曲折叠动作,以实现期望的操作过程。
但采用上述的结构,驱动设备控制关节结构进行动作时,关节结构远端节点的运动轨迹始终保持在以固定点为球心的球面上,关节结构的远端节点仅能在该球面上运动,其局限了关节结构的运动轨迹,当医生进行从近端至远端长度延伸方向的夹持、缝合等操作时,此时需要将关节结构远端节点沿该长度方向进行位移,上述的结构难以适配该长度方向的位移,其运动范围不足,存在限制微创装置灵活操作性能的问题。
发明内容
本申请所要解决的技术问题在于现有技术中关节结构运动轨迹受限,运动范围不足,限制微创装置灵活操作的缺陷。
第一方面,本申请提供了一种线驱运动模块,包括:
关节结构,所述关节结构的一端适于与外接驱动机构连接,所述关节结构的另一端适于与外接操作机构连接,所述关节结构包括若干相连接的关节单元;
定位结构,设置在相邻的两个所述关节单元之间,所述定位结构包括第一定位件和第二定位件,所述第一定位件和所述第二定位件活动连接,且可相对第一方向相互靠近或远离;
至少两条连接线,所述连接线在所有所述关节单元和所述定位结构内穿设,且任一连接线穿设在所述定位结构内的两端,所述第一定位件和所述第二定位件限位约束所述定位结构内的连接线;
其中,在所述第一定位件和所述第二定位件沿所述第一方向相互靠近时,所述连接线限位收容在所述第一定位件和所述第二定位件共同围合的容线腔内;在所述第一定位件和所述第二定位件沿所述第一方向相互远离时,所述连接线在所述容线腔内拉直。
可选地,上述的线驱运动模块,所述定位结构还包括至少两个定位管套,所述定位管套与所述连接线对应设置且被配置为限位容纳所述连接线,所述定位管套设置在所述容线腔内,所述定位管套的两端分别与同一所述连接线在所述第一定位件的第一接线口和所述第二定位件的第二接线口相连。
可选地,上述的线驱运动模块,所述定位管套为柔性管;
在所述第一定位件和所述第二定位件沿所述第一方向相互靠近时,所述柔性管与所述连接线在所述容线腔内同步进行折叠或盘绕或卷曲;
在所述第一定位件和所述第二定位件沿所述第一方向相互远离时,所述柔性管与所述连接线同步进行展开或拉伸。
可选地,上述的线驱运动模块,还包括相间隔设置第一转接结构与第二转接结构,所述第一转接结构和所述第二转接结构设置在所述关节结构的两端,所述第一转接结构适于与外设驱动机构连接,所述第二转接结构适于与操作机构连接;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述连接线,以带动所述第二转接结构和所述关节结构同步相对所述第一转接结构联动弯曲的弯曲状态;以及所述第一转接结构、所述定位结构和所述第二转接结构同轴线设置的初始状态,所述线驱运动模块在所述弯曲状态与所述初始状态切换设置。
可选地,上述的线驱运动模块,所述第一定位件具有第一连接部,所述第二定位件具有第二连接部;
所述第一连接部与所述第二连接部为相互配合的螺旋结构,在所述第一连接部和所述第二连接部旋接时,所述第一定位件与所述第二定位件沿第一方向相对靠近或相对远离,所述第一方向为螺旋结构的轴线方向。
可选地,上述的线驱运动模块,第一定位件和所述第二定位件为相互套接的筒体结构,所述第一连接部为成型在所述第一定位件的内壁面上;所述第二连接部成型在所述第二定位件的外壁面上;容线腔为筒体结构内的腔体。
可选地,上述的线驱运动模块,同一条所述连接线穿设在所述第一定位件的第一接线口和所述第二定位件的第二接线口内;其中,所述第一定位件旋设在所述第二定位件的第一旋转位置时,所述第一接线口和所述第二接线口的连线方向与第一方向同向设置;所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述连接线,以带动所述第二转接结构和所述关节结构同步相对所述第一转接结构联动弯曲呈S形运动的第一弯曲状态。
可选地,上述的线驱运动模块,在所述弯曲状态下,所述第一转接结构远离连接所述关节结构一侧的第一端面与所述第二转接结构远离连接所述关节结构一侧的第二端面相平行设置。
可选地,上述的线驱运动模块,同一条所述连接线穿设在所述第一定位件的第一接线口和所述第二定位件的第二接线口内;其中,所述第一定位件旋设在所述第二定位件的第二旋转位置时,所述第一接线口与所述第一方向所在的第一平面、与所述第二接线口与所述第一方向的所在的第二平面呈90度夹角;所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述连接线,以带动所述第二转接结构和所述关节结构同步相对所述第一转接结构联动弯曲呈异面S形运动的第二弯曲状态。
可选地,上述的线驱运动模块,同一条所述连接线穿设在所述第一定位件的第一接线口和所述第二定位件的第二接线口内;其中,所述第一定位件旋设在所述第二定位件的第三旋转位置时,所述第一接线口与所述第一方向所在的第一平面、与所述第二接线口与所述第一方向的所在的第二平面呈180度夹角;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述连接线,以带动所述第二转接结构和所述关节结构同步相对所述第一转接结构联动弯曲呈C形运动的第三弯曲状态。
可选地,上述的线驱运动模块,所述第一定位件具有第三连接部,所述第二定位件具有第四连接部;所述第三连接部与所述第四连接部为相互配合的滑动结构,在所述第三连接部和所述第四连接部相对滑动时,所述第一定位件与所述第二定位件沿第一方向相对靠近或相对远离,所述第一方向为滑动结构的滑动方向。
可选地,上述的线驱运动模块,所述线驱运动模块还具有所述第一转接结构受外力的作用下转动,以牵引所述连接线并带动所述第二转接结构和所述关节结构与第一转接结构同步扭转的回转状态。
可选地,上述的线驱运动模块,所述关节单元包括:
转动件,周向方向上设有限位部;
限位支座,与所述转动件固定连接,所述限位支座内具有至少一个供相邻关节单元的所述转动件活动连接的容纳腔,所述容纳腔内还具有限位件,所述限位件与相邻的关节单元的所述限位部配合以限位所述相邻关节单元的转动件轴向转动。
可选地,上述的线驱运动模块,所述转动件为球体,所述容纳腔的内壁面与邻接的所述关节单元的转动件的外壁面相适配;
所述限位部设置有两个,两个所述限位部配合形成所述球体;
两个所述限位部间隔设置,以形成限位所述限位件的装配空间,所述限位件活动连接于所述装配空间。
可选地,上述的线驱运动模块,所述第一定位件包括与其延伸方向同向延伸的第一连接孔;
所述第二定位件包括与其延伸方向同向延伸的第二连接孔;
任一转接结构具有与其延伸方向同向延伸的第三连接孔;
任一关节单元具有芯孔,所有所述芯孔、所有所述第二连接孔以及所述第一连接孔共同构成介入通道,所述介入通道适于外接管件穿设。
可选地,上述的线驱运动模块,所述第一定位件还包括第一衔接部,所述第一衔接部设置在所述第一定位件靠近近端的一侧,所述第一衔接部与所述第一关节结构的远端活动连接;
所述第二定位件还包括第二衔接部,所述第二衔接部设置在所述第二定位件远离近端的一侧,所述第二衔接部与所述关节结构的近端活动连接;
所述第一衔接部与所述第二衔接部为与所述转动件结构相同,或与所述限位支座结构相同。
可选地,上述的线驱运动模块,所述第一转接结构包括第三衔接部,所述第三衔接 部与所述关节单元活动连接;
所述第二转接结构包括第四衔接部,所述第四衔接部与所述关节单元活动连接;
所述第三衔接部与所述第四衔接部为与所述转动件结构相同,或与所述限位支座结构相同。
第二方面,本申请提供一种微创手术钳,包括上述第一方面的线驱运动模块。
本申请提供的技术方案,具有如下优点:
1.本申请提供的线驱运动模块,包括关节结构、定位结构以及两条连接线,关节结构的一端适于与外接驱动机构连接,关节结构的另一端适于与外接操作机构连接,关节结构包括若干相连接的关节单元;定位结构设置在相邻的两个关节单元之间,定位结构包括第一定位件和第二定位件,第一定位件和第二定位件活动连接,且可相对第一方向相互靠近或远离;连接线在所有关节单元和定位结构内穿设,且任一连接线穿设在定位结构内的两端分别,所述第一定位件和所述第二定位件限位约束所述定位结构内的连接线;其中,在第一定位件和第二定位件沿第一方向相互靠近时,连接线限位收容在第一定位件和第二定位件共同围合的容线腔内;在第一定位件和第二定位件沿第一方向相互远离时,连接线在容线腔内拉直。
此结构的线驱运动模块,通过第一定位件和第二定位件活动连接,以相对第一方向相互靠近或远离,使连接于第一定位件上的关节结构与连接于第二定位件上的关节结构在第一方向上进行相应的位移靠近或位移远离运动,从而通过第一定位件和第二定位件的运动调整关节结构的运动位置,达到通过定位结构在第一方向上调整关节结构的运动轨迹的目的;通过第一定位件和第二定位件定位配合限位约束定位结构内的连接线,具体来说,当第一定位件和第二定位件沿第一方向相互靠近时,此时,限位连接线于容线腔内,关节结构进行回缩拢合运动;当第一定位件和第二定位件沿第一方向相互远离时,在容线腔内释放连接线,此时,以使连接线延长拉直,关节结构进行延伸扩展运动;第一定位件与第二定位件限位约束连接线处于定位结构内的两端距离长度,使连接线在定位结构内的长度始终恒定且其不受第一定位件和第二定位件沿第一方向的滑移而发生变化,连接线在定位结构内的变化运动适配于第一定位件与第二定位件相对运动以及位于定位结构两端关节结构的运动轨迹位置,优化了关节结构的运动轨迹,提高关节结构的运动范围,以达到加强微创装置灵活操作性能的目的。
2.本申请提供的线驱运动模块,定位结构还包括两个定位管套,定位管套与连接线对应设置且被配置为限位容纳连接线,定位管套设置在容线腔内,定位管套的两端分别与同一连接线在第一定位件的第一接线口和第二定位件的第二接线口相连;定位管套为柔性管;在第一定位件和第二定位件沿第一方向相互靠近时,柔性管与连接线在容线腔内同步进行折叠或盘绕或卷曲;在第一定位件和第二定位件沿第一方向相互远离时,柔性管与连接线同步进行展开或拉伸。
此结构的线驱运动模块,通过第一定位件、第二定位件以及定位管套共同配合限位连接线的运动,定位管套两端分别与第一定位件和第二定位件固定连接,连接穿设于定位管套内,通过定位管套限位连接线的轴向位移,定位管套采用柔性件,从而当第一定位件和第二定位件沿第一方向相互靠近,第一定位件和第二定位件分别带动定位管套的两端相对其中间靠近,与此同时定位管套限位挤压其内的连接线,使连接线和定位管套在容线腔内同步进行折叠或盘绕或卷曲运动;当第一定位件和第二定位件沿第一方向相互远离,第一定位件和第二定位件分别带动定位管套的两端相对其中间远离,与此同时定位管套两端限位拉伸作用其内的连接线,使连接线和定位管套同步进行展开或拉伸运动,连接线的位移与第一定位件和第二定位件之间的距离相匹配,可促进关节结构的运动范围。
3.本申请提供的线驱运动模块,还包括相间隔设置第一转接结构与第二转接结构,第一转接结构和第二转接结构设置在关节结构的两端,第一转接结构适于与外设驱动机构连接,第二转接结构适于与操作机构连接;所有连接线的长度相同,线驱运动模块具有第一转接结构受外力的作用下牵引连接线,以带动第二转接结构和关节结构同步相对第一转接结构联动弯曲的弯曲状态;以及第一转接结构、定位结构和第二转接结构同轴线设置的初始状态,线驱运动模块在弯曲状态与初始状态切换设置。
此结构的线驱运动模块,通过外设驱动机构驱动调整第一转接结构的运动位置,并通过连接线与关节结构配合传动第二转接结构,线驱运动模块在弯曲状态与初始状态切换时,第一转接结构与第二转接结构围绕定位结构进行相应运动,连接线的长度设置为相同,可促使第二转接结构与第一转接结构进行同步联动,以使第二转接结构达到期望的运动动作以及位置,通过整体模块设计,提高连接线带动关节单元的稳定性,连接紧密,有利于提高关节结构的连接强度,线驱运动模块整体运动性能均衡。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的 附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例中提供的线驱运动模块的结构示意图;
图2为本申请的实施例中提供的线驱运动模块中定位结构的连接示意图;
图3为本申请的实施例中提供的线驱运动模块中第一定位件的立体结构示意图;
图4为本申请的实施例中提供的线驱运动模块中第一定位件侧视的结构示意图;
图5为本申请的实施例中提供的线驱运动模块中第一定位件主视的结构示意图;
图6为本申请的实施例中提供的线驱运动模块中第二定位件的立体结构示意图;
图7为本申请的实施例中提供的线驱运动模块中第二定位件主视的结构示意图;
图8为本申请的实施例中提供的线驱运动模块中第二定位件侧视的结构示意图;
图9为本申请的实施例中提供的线驱运动模块处于第一弯曲状态下的结构示意图;
图10为本申请的实施例中提供的线驱运动模块处于第二弯曲状态下的结构示意图;
图11为本申请的实施例中提供的线驱运动模块中关节单元的结构示意图;
图12为本申请的实施例中提供的线驱运动模块中关节单元的立体示意图;
图13为本申请的实施例中提供的线驱运动模块中第一转接结构的结构示意图;
图14为本申请的实施例中提供的线驱运动模块中第一转接结构位于远端侧的结构示意图。
附图标记说明:
1-关节单元;11-转动件;111-限位部;12-限位支座;121-容纳腔;122-芯孔;123-
安装孔;13-限位件;
2-第一定位件;21-第一接线口;22-第一连接部;23-第一连接孔;24-第一衔接部;
3-第二定位件;31-第二接线口;32-第一连接部;33-第二连接孔;34-第二衔接部;
4-连接线;5-定位管套;
6-第一转接结构;61-第三衔接部;62-第一转接本体;621-第三连接孔;622-装配
孔;623-第一端面;
7-第二转接结构;71-第四衔接部;72-第二转接本体;721-第二端面。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在下述的说明中,以器材在使用时靠近操作人员一侧为近端,远离操作人员一端为远端。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供了一种线驱运动模块,可用于作为医疗与诊断目的机械构件进行使用,当然也可适用于人体自身运动关节的应用环境,如图1与图2所示,线驱运动模块包括关节结构、定位结构以及两条连接线4,关节结构的一端适于与外接驱动机构连接,关节结构的另一端适于与外接操作机构连接,关节结构包括若干相连接的关节单元1;定位结构设置在相邻的两个关节单元1之间,连接线4在所有关节单元1和定位结构内穿设,连接线4用于响应外接驱动机构的运动以调节相邻关节单元1的运动。
定位结构包括第一定位件2和第二定位件3,第一定位件2和第二定位件3活动连接,且可相对第一方向相互靠近或远离,定位结构在第一方向上主动调整连接其上的关节结构的位置;任一连接线4穿设在定位结构内的两端,第一定位件2和第二定位件3限位约束定位结构内的连接线4。
本实施例提供的线驱运动模块,在第一定位件2和第二定位件3沿第一方向相互靠近时,连接线4限位收容在第一定位件2和第二定位件3共同围合的容线腔内;通过第 一定位件2与第二定位件3的相对运动位置,可控制连接线4在第一方向上的位移,并适配于关节结构的位置,可避免干扰连接线4初始的松紧程度,通过定位结构与连接线4配合实现关节结构的回缩拢合运动以及延伸扩展运动,优化了关节结构的运动轨迹,增加线驱运动模块的沿第一方向移动的自由度以及围绕第一方向转动的自由度,进而提高关节结构的运动范围,达到加强微创装置灵活操作性能的目的。
如图3至图8所示,第一定位件2还包括第一衔接部24,第一衔接部24设置在第一定位件2靠近近端的一侧,第一衔接部24与相邻的关节单元1活动连接;第二定位件3还包括第二衔接部34,第二衔接部34设置在第二定位件3远离近端的一侧,第二衔接部34与相邻的关节单元1活动连接。通过第一衔接部24与第二衔接部带动相邻的关节单元1进行运动,以使整体关节结构进行回缩拢合运动以及延伸扩展运动。第一衔接部24与第二衔接部可对邻接的关节单元1进行限位,保证定位结构与邻接的关节单元1间配合活动稳定,以促使关节结构的灵活弯曲。
如图2所示,定位结构还包括定位管套5,定位管套5被配置为限位容纳连接线4,定位管套5的数量与连接线4的数量一致,定位管套5设置在定位结构的线腔内,定位管套5的两端分别与同一连接线4在第一定位件2的第一接线口21和第二定位件3的第二接线口31相连。通过第一定位件2、第二定位件3以及定位管套5共同配合限位连接线4的运动,定位管套5用于限位连接线4的轴向位移。
在本实施例中,定位管套5为柔性管。当第一定位件2和第二定位件3沿第一方向相互靠近时,第一定位件2和第二定位件3分别带动定位管套5的两端相对其中间靠近,与此同时定位管套5限位挤压其内的连接线4,定位管套5与连接线4在容线腔内同步进行盘绕或卷曲;当第一定位件2和第二定位件3沿第一方向相互远离,第一定位件2和第二定位件3分别带动定位管套5的两端相对其中间远离,与此同时定位管套5两端限位拉伸作用其内的连接线4,使连接线4和定位管套5同步进行展开或拉伸运动,连接线4的位移与第一定位件2和第二定位件3之间的距离相匹配,可促进关节结构的运动范围。线驱运动模块处于弯曲状态与初始状态下,连接线4限位在定位管套5内的总体长度不变。
在本实施例中,如图11所示,关节单元1上设有安装孔123,与连接线4活动连接,连接线4通过抵接安装孔123以传动邻接的关节单元1。第一接线口和第二接线口分别与相靠近的关节单元上的安装孔通过连接线相互连接。
本申请提供的线驱运动模块,如图2至图8所示,第一定位件2具有第一连接部22,第二定位件3具有第二连接部32。
在本实施例中,第一连接部22与第二连接部为相互配合的螺旋结构,在第一连接部22和第二连接部32旋接时,第一定位件2与第二定位件3沿第一方向相对靠近或相对远离,第一方向为螺旋结构的轴线方向(如图1所示的Z轴方向)。
在本实施例中,第一定位件2和第二定位件3为相互套接的筒体结构,第一定位件2转动套设在第二定位件3上,第一连接部22成型在第一定位件2的内壁面上;第二连接部32成型在第二定位件3的外壁面上;容线腔为筒体结构内的腔体。
在对线驱运动模块的运动范围进行调整时,具体操作时,可固定第一定位件2,转动第二定位件3,使线驱运动模块在第一方向上发生位移并且邻接于第二定位件3上的关节结构围绕第一方向发生旋转;可通过固定第二定位件3,转动第一定位件2,使线驱运动模块在第一方向上发生位移并且邻接于第一定位件2上的关节结构围绕第一方向发生旋转;可同时旋转第一定位件2与第二定位件3,使线驱运动模块在第一方向上发生位移并且分别邻接于第一定位件2和第二定位件3上的关节结构围绕第一方向发生旋转,对于这三种操作方式,根据实际需求工况进行选取适配。
本实施例提供的线驱运动模块,第一定位件2与第二定位件3之间的转动角度与圈数相关,第一定位件2与第二定位件3之间的相对旋转角度在此不作具体限定。在本实施例中,第一定位件2与第二定位件3可旋转的圈数设置为三圈,第一定位件2与第二定位件3可在0度至1080度任意角度相旋接,可通过外接的固定连接件使第一定位件2与第二定位件3相固定。当然也可将第一定位件2与外界连接件相固定,在第二定位件3上外接套设安置齿件,通过外接驱动件驱动作用齿件,使齿件带动第二定位件3相对第一定位件2旋转,以使第一定位件2与第二定位件3间相对旋转角度在0度至1080度内变化。相应地,可将第二定位件3与外界连接件相固定,在第一定位件2上外接套设安置齿轮件,通过外接驱动件驱动作用齿轮件,使齿轮件带动第一定位件2相对第二定位件3旋转,可使第一定位件2与第二定位件3间相对旋转角度在0度至1080度内变化。
本实施例提供的线驱运动模块,螺旋结构采用等螺距螺纹,连接线4延伸或回缩的长度与第一定位件2与第二定位件3间相对位移相等,旋转圈数与螺旋结构的螺距同连接线4长度变化量成正比例的线性关系。螺距根据使用工况中需求的连接线4长度变化量进行配置。
对于定位结构整体的长度、材料不作具体限定,第一定位件2与第二定位件3的材料可为钢材、医用塑料等,其长度与材料根据实际应用场合选取适配。
本实施例提供的线驱运动模块,如图1所示,还包括相间隔设置第一转接结构6与第二转接结构7,第一转接结构6和第二转接结构7设置在关节结构的两端,第一转接结构6适于与外设驱动机构连接,第二转接结构7适于与操作机构连接;定位结构安装在第一转接结构6和第二转接结构7之间。
在本实施例中,线驱运动模块具有第一转接结构6受外力的作用下牵引连接线4,以带动第二转接结构7和关节结构同步相对第一转接结构6联动弯曲的弯曲状态。
在本实施例中,线驱运动模块具有第一转接结构6受外力的作用下牵引连接线4,以带动第一转接结构6、定位结构和第二转接结构7同轴线设置的初始状态。
通过外设驱动机构驱动调整第一转接结构6的运动,并通过连接线4与关节结构配合传动第二转接结构7,使线驱运动模块可在弯曲状态与初始状态切换。在弯曲状态与初始状态下,第一转接结构6与第二转接结构7围绕定位结构进行相应运动,其中,在初始状态下,所有连接线4的长度可设置为相同,可促使第二转接结构7与第一转接结构6进行同步联动,以使第二转接结构7达到期望的运动动作以及位置,通过整体模块设计,提高连接线4带动关节单元1的稳定性,有利于提高关节结构的连接强度,线驱运动模块整体运动性能均衡。
本实施例提供的线驱运动模块,如图1所示,连接线4设置有两条或更多,所有连接线4沿定位结构的轴线方向旋转对称设置。连接线4用于带动关节结构的转动,使邻接的关节单元1进行活动配合。本实施例中,连接线4可选用弹性纤维绳、镍钛丝等弹性材料,以达到连接线4带动关节组件与第二转接结构7的目的,进而实现线驱运动模块联动的功能。
在本实施例中,如图1所示,以四条连接线4为例,四条连接线4分别穿设分布在线驱运动模块上。在本实施例中,连接线4的两端分别与第一转接结构6和第二转接结构7固定连接,连接线4穿设于所有关节单元1和定位结构上,且与关节单元1和定位结构活动连接。
本实施例提供的线驱运动模块,在所述初始状态下,所有连接线4的长度相同,从而连接线4在第一转接结构6运动牵引下,可将邻接的关节单元1以及第二转接结构7进行相应调整,以适配第一转接结构6的运动,线驱运动模块通过连接线4抵接在定位结构上,第一转接结构6牵引连接线4一端运动时,使连接线4另一端所在的第二转接结构7执行适配的动作,从而实现联动弯曲过程。连接线4紧密固定连接在第一转接结构6和第二转接结构7之间,整体线驱运动模块具有良好的关节强度。
如图13所示,第一转接结构6包括第一转接本体62,如图1所示,第二转接结构7包括第二转接本体72,第一转接本体62与第二转接本体72相间隔设置;第一转接本体62具有远离连接关节单元1一侧的第一端面623,第二转接本体72具有远离连接关节单元1一侧的第二端面723,如图1所示,第一端面623位于线驱运动模块的近端部分,如图9所示,第二端面721位于线驱运动模块的远端部分,在线驱运动模块的初始状态下,第一端面623与第二端面721相对设置。
需要说明的是,具体驱动线驱运动模块进行运动时,第一端面623可作为驱动机构驱动的基准面,可先通过驱动机构驱动作用第一转接结构6进行位置调整,使整体线驱运动模块在三维空间内运动实现相应的弯曲动作姿态后,再通过驱动机构调节第一端面623,使第一端面623与第二端面721进行相对应的动作,达到调整第二端面721的位置与朝向的目的,从而使第二转接结构7上的操作机构能够进行预定的目标位置与目标方向的动作。相应地,可先通过驱动机构调节第一端面623,使第二端面721进行与第一端面623相对应的动作,再通过驱动机构驱动作用第一转接结构6进行位置调整,使整体线驱运动模块在三维空间内运动以实现相应的弯曲动作姿态。其中,第一端面623可作为连接驱动机构的安装面,第一端面623的形状可为平面、曲面或阶梯面,在此不作具体限定。
在本实施例中,第一转接结构6与第二转接结构7相同,以第一转接结构6为例,如图13与图14所示,第一转接结构6还包括装配孔622,在装配孔622内穿设并固定连接线4,装配孔622与连接线4之间的连接包括但不限于焊接、粘接和通过紧固连接件的锁定。
如图1、图13与图14所示,第一转接结构6包括第三衔接部61,第三衔接部61与关节单元1活动连接;第二转接结构7包括第四衔接部71,第四衔接部71与关节单元1活动连接。通过第三衔接部61配合连接线4传递第一转接结构6的动力与扭矩至关节结构;通过第四衔接部71配合连接线4接收动力与扭矩并传递至第二转接结构7,以使第二转接结构7根据第一转接结构6的运动位置进行联动变化。
在本实施例中,对于定位结构与第一转接结构6之间的关节单体的数量以及对于定位结构与第二转接结构7之间的关节单体的数量不作具体限定。图1所示为本实施例中, 定位结构两端的关节单元1数量相同的使用情况。
将第一转接结构6与定位结构之间的关节结构命名为第一关节组件,第二转接结构7与定位结构之间的关节结构命名为第二关节组件。需要说明的是,线驱运动模块中第一转接结构6以及第一关节组件可相对第二转接结构7以及第二关节组件发生弯曲,驱动机构作用第一转接结构6相对定位结构在三维空间内产生的位移,通过第一转接结构6与定位结构之间相邻连接的关节单元1彼此间的转动以及连接线4自身弹性伸缩进行补偿实现,使第一关节组件进行柔性屈伸动作;此时,第一端面623与第二端面721保持在空间上原有呈平行设置的位置关系,第二转接结构7以及第二关节组件保持原有姿态不变。在第一关节组件柔性活动的范围内,驱动机构可驱动作用第一转接结构6,使线驱运动模块在其弯曲动作过程中的位置对第一关节组件进行屈伸调节,从而使第一关节组件可达到期望的动作姿态以及屈伸动作过程中的位置,以满足需求的使用工况。相应地,可先使驱动机构驱动作用第一转接结构6,将第一关节组件进行屈伸调节,再使驱动机构驱动作用第一转接结构6,使整体线驱运动模块发生弯曲动作,从而满足所需工况。
需要说明的是,线驱运动模块可将其能达到的动作姿态中任意一个姿态为驱动机构驱动的初始位置,线驱运动模块具有灵活操作,运动连贯稳定的优点。
本实施例提供的线驱运动模块,同一条连接线4穿设在第一定位件2的第一接线口21和第二定位件3的第二接线口31内;其中,第一定位件2旋设在第二定位件3的第一旋转位置时,第一接线口21和第二接线口31的连线方向与第一方向同向设置;如图9所示,线驱运动模块具有第一转接结构6受外力的作用下牵引连接线4,以带动第二转接结构7和关节结构同步相对第一转接结构6联动弯曲呈S形运动的第一弯曲状态。通过外设的驱动机构驱动作用第一转接结构6,可使第一转接结构6与第二转接结构7在X-Y平面上相向运动,第一转接结构6与第二转接结构7相对反向弯曲。如图9所示,第一端面623与第二端面721相平行设置,可通过操作第一端面623,使第二端面721同步执行相应的动作。
第一定位件2相对第二定位件3转动时,第一定位件2旋设在第二定位件3的第二旋转位置时,第一接线口21与第一方向所在的第一平面、与第二接线口31与第一方向的所在的第二平面呈90度夹角;如图10所示,线驱运动模块具有第一转接结构6受外力的作用下牵引连接线4,以带动第二转接结构7和关节结构同步相对第一转接结构6联动弯曲呈异面S形运动的第二弯曲状态。通过外设的驱动机构驱动作用第一转接结构6在图1示出的X轴延伸方向运动时,第一转接结构6以及第一关节组件共同在X轴延伸方向弯曲运动,此时,在连接线4的传动作用下,第二转接结构7以及第二关节组件共同在图1示出的Y轴延伸方向弯曲运动,第一关节组件的弯曲方向与第二关节组件的弯曲方向在X-Y平面上的投影呈90度设置,可使关节组件可达到期望的动作姿态以及异面S形曲线动作过程中的位置,以满足需求的使用工况。
第一定位件2相对第二定位件3转动时,第一定位件2旋设在第二定位件3的第三旋转位置时,第一接线口21与第一方向所在的第一平面、与第二接线口31与第一方向的所在的第二平面呈180度夹角;线驱运动模块具有第一转接结构6受外力的作用下牵引连接线4,以带动第二转接结构7和关节结构同步相对第一转接结构6联动弯曲呈C形运动的第三弯曲状态。通过外设的驱动机构驱动作用第一转接结构6,可使第一转接结构6与第二转接结构7在周向平面沿定位本体的径向平面相靠近运动,以使关节组件与达到期望的动作与位置,以满足于期望工况。
本实施例提供的线驱运动模块,线驱运动模块还具有第一转接结构6受外力的作用下转动,以牵引连接线4并带动第二转接结构7和关节结构与第一转接结构6同步扭转的回转状态。在本实施例中,整体回转旋转时,第一定位件2与第二定位件3相固定,定位结构与外接的支撑环相转动连接,以达到线驱运动模块围绕定位结构的轴心线进行旋转的目的。
以一种实施方式为例,第一定位件2和第二定位件3的转动极限位置为第三旋转位置,因此,在第一定位件2和第二定位件3的转动过程中,第一接线口21与第二接线口31可以经过多次第一旋转位置和第二旋转位置对应的位置,从而采用一个定位结构即可满足多种第一定位件2和第二定位件3的转动位置,诸如第一旋转位置、第二旋转位置、第三旋转位置的形式,进而满足使用者的需求。
在其他可以变形的实施方式中,也可以将第一旋转位置作为第一定位件2和第二定位件3转动的极限位置,相应地,第二旋转位置、第三旋转位置可以为过程位置。类似地,第二旋转位置可为第一定位件2和第二定位件3转动的极限位置,相应地,第一旋转位置、第三旋转位置均可以为过程位置。
本实施例提供的线驱运动模块,如图11与图12,关节单元1包括转动件11与限位支座12,转动件11周向方向上设有限位部111;限位支座12与转动件11固定连接,限位支座12内具有供相邻关节单元1的转动件11活动连接的容纳腔121,容纳腔121 内还具有限位件13,限位件13与相邻的关节单元1的限位部111配合以限位相邻关节单元1的转动件11轴向转动。相邻的关节单元1具有两个垂直的枢轴,其中之一枢轴平行于限位件13的延伸方向,其中另一枢轴平行于限位件13的径向平面与限位件13的延伸方向的相交线。
在本实施例中,转动件11为球体,容纳腔121的内壁面与邻接的关节单元1的转动件11的外壁面相适配;限位部111设置有两个,两个限位部111配合形成球体;其中,两个限位部111间隔设置,以形成限位件13的装配空间,限位件13活动连接于装配空间。
本实施例提供的线驱运动模块,如图3与图5所示,第一定位件2包括与其延伸方向同向延伸的第一连接孔23;如图7所示,第二定位件3包括与其延伸方向同向延伸的第二连接孔33;如图13与图14所示,任一转接结构具有与其延伸方向同向延伸的第三连接孔621;如图11与图12所示,任一关节单元1具有芯孔122,所有芯孔122、所有第二连接孔33以及第一连接孔23共同构成介入通道,介入通道适于外接管件穿设。在转接结构、关节结构以及定位结构上配置相适配的孔,旨在构成用于医疗等目的介入通道,通过介入通道形成的操作空间,可在介入通道内连接柔性的管件,在线驱运动模块弯曲变化时,使管件共同弯曲,以满足期望的工况。
本实施例提供的线驱运动模块,第一衔接部24与第二衔接部34与转动件11结构相同,第三衔接部61与第四衔接部71与限位支座12结构相同。衔接部起到传递动力与扭矩的作用,以传动连接线4对关节结构与转接结构的联动;同时衔接部用于对关节结构进行限位的转动连接。
在本实施例一种替换的实施方式中,第一衔接部24与第二衔接部34为与限位支座12结构相同,第三衔接部61与第四衔接部71与转动件11结构相同。
作为本实施例一种替换的实施方式,第一定位件2具有第三连接部,第二定位件3具有第四连接部;第三连接部与第四连接部为相互配合的滑动结构,在第三连接部和第四连接部相对滑动时,第一定位件2与第二定位件3沿第一方向相对靠近或相对远离,第一方向为滑动结构的滑动方向。第三连接部与第四连接部可相配合滑动,使第一定位件2和第二定位件3靠近或远离运动,从而使连接于第一定位件2上的关节结构和连接于第二定位件3上的关节结构进行回缩拢合运动或延伸扩展运动,其中,定位套管5可在第一定位件2与第二定位件3围合形成容纳腔中弯曲运动,在第一定位件2与第二定位件3沿第一方向相对靠近时,定位套管5与连接线4共同弯曲折叠,在第一定位件2与第二定位件3沿第一方向相对远离时,定位套管5与连接线4共同拉伸展开。
作为本实施例一种替换的实施方式,第一连接部22与第二连接部32为相互配合的螺旋结构,螺旋结构具有变距螺纹,在第一接线口21与第二接线口31穿设内直接连接线4,在第一定位件2和第二定位件3沿第一方向相互靠近时,螺旋结构处于旋入动作,连接线4的相对伸长量随具有变距螺纹的螺旋结构限位收容在容线腔内,定位结构两端的关节结构在第一定位件2和第二定位件3带动下相靠近进行回缩拢合;在第一定位件2和第二定位件3沿第一方向相远离时,螺旋结构处于旋出动作,连接线4限位收容在容线腔内,定位结构两端的关节结构在第一定位件2和第二定位件3带动下相远离进行延伸扩展;其中,连接线4长度的变化量与变距螺纹的螺距相同,螺旋结构对进行连接线4限位,通过采用变距螺纹消除连接线4自身长度对线驱运动模块的影响。需要说明的是,此时,第一连接部22与第二连接部32相对转动的最大角度为180度。
在本实施例一种替换的实施方式中,在定位结构中,第一衔接部24和第二衔接部34可由关节单元1形成,以起到传递动力与扭矩的目的。通过将一个或两个关节单元1直接固定在定位结构沿第一方向的端部,其固定方式可为一体成型、焊接、螺纹连接或插销连接等方式,该关节单元1与关节结构相串联活动连接。
在本实施例一种替换的实施方式中,在第一转接结构6的第三衔接部61和第二转接结构7的第四衔接部71中,任一衔接部可由关节单元1形成,以起到传递动力与扭矩的目的。通过将一关节单元1直接固定在第一转接结构6的远端或第二转接结构7的近端,其固定方式可为一体成型、焊接、螺纹连接或插销连接等方式,该关节单元1与关节结构相串联活动连接。
本实施例提供的线驱运动模块,以第一定位件2与第二定位件3相靠近运动调整关节结构的运动位置为例,其使用过程如下:将第一定位件2与外界相固定,通过转动第二定位件3,使第一定位件2和第二定位件3相对靠近运动,定位管套5的两端随在第一定位件2和第二定位件3的带动作用,向定位管套5的中间段靠近,与此同时,定位管套5发生卷曲运动,定位管套5限位挤压连接线4,使连接线4共同发生卷曲运动,连接于第一定位件2上的关节结构处于原始位置以及姿态,连接于第二定位件3上的关节结构随第二定位件3的转动进行旋转,并向第一定位件2靠近运动,此时,整体的关节结构相对于原始的关节结构处于缩短拢合姿态,整体的线驱运动模块在第一方向上发生回缩运动。
本实施例提供的线驱运动模块,通过第一定位件2和第二定位件3活动连接,以相对第一方向相互靠近或远离,使连接于第一定位件2上的关节结构与连接于第二定位件3上的关节结构在第一方向上进行相应的位移靠近或位移远离运动,从而通过第一定位件2和第二定位件3的运动调整关节结构的运动位置,达到通过定位结构在第一方向上调整关节结构的运动轨迹的目的;通过第一定位件2和第二定位件3定位配合限定连接于定位结构内的连接线4长度恒定,具体来说,当第一定位件2和第二定位件3沿第一方向相互靠近时,此时,限位连接线4于容线腔内,关节结构进行回缩拢合运动;当第一定位件2和第二定位件3沿第一方向相互远离时,在容线腔内释放连接线4,此时,以使连接线4延长拉直,关节结构进行延伸扩展运动;当第一定位件2与第二定位件3限定连接线4处于定位结构内的两端距离长度不变时,连接线4在定位结构内的长度始终恒定且其不受第一定位件2和第二定位件3沿第一方向的滑移而发生变化,连接线4在定位结构内的变化运动适配于第一定位件2与第二定位件3相对运动以及位于定位结构两端关节结构的运动轨迹位置,其优化了关节结构的运动轨迹,提高关节结构的运动范围,可达到加强微创装置灵活操作性能的目的。
实施例2
本实施例提供了一种微创手术钳,包括实施例1的线驱运动模块,因此具有线驱运动模块所带来的优点,可通过定位结构的转动使线驱运动模块具有使关节结构沿第一方向移动的功能,以及带动第一定位件2、第二定位件3上关节结构转动的功能,有效提高关节结构的运动范围,从而使微创手术钳能具有相对应的移动与转动的功能,促进微创手术钳操作灵活。同时整体化的模块结构,整体连接紧凑,连接强度高,可促进微创手术钳的装配过程以及增强使用过程中的稳定能力。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (18)

  1. 一种线驱运动模块,其特征在于,包括:
    关节结构,所述关节结构的一端适于与外接驱动机构连接,所述关节结构的另一端适于与外接操作机构连接,所述关节结构包括若干相连接的关节单元(1);
    定位结构,设置在相邻的两个所述关节单元(1)之间,所述定位结构包括第一定位件(2)和第二定位件(3),所述第一定位件(2)和所述第二定位件(3)活动连接,且可相对第一方向相互靠近或远离;
    至少两条连接线(4),所述连接线(4)在所有所述关节单元(1)和所述定位结构内穿设,且任一连接线(4)穿设在所述定位结构内的两端,所述第一定位件(2)和所述第二定位件(3)限位约束所述定位结构内的连接线(4);
    其中,在所述第一定位件(2)和所述第二定位件(3)沿所述第一方向相互靠近时,所述连接线(4)限位收容在所述第一定位件(2)和所述第二定位件(3)共同围合的容线腔内;在所述第一定位件(2)和所述第二定位件(3)沿所述第一方向相互远离时,所述连接线(4)在所述容线腔内拉直。
  2. 根据权利要求1所述的线驱运动模块,其特征在于,所述定位结构还包括至少两个定位管套(5),所述定位管套(5)与所述连接线(4)对应设置且被配置为限位容纳所述连接线(4),所述定位管套(5)设置在所述容线腔内,所述定位管套(5)的两端分别与同一所述连接线(4)在所述第一定位件(2)的第一接线口(21)和所述第二定位件(3)的第二接线口(31)相连。
  3. 根据权利要求2所述的线驱运动模块,其特征在于:
    所述定位管套(5)为柔性管;
    在所述第一定位件(2)和所述第二定位件(3)沿所述第一方向相互靠近时,所述柔性管与所述连接线(4)在所述容线腔内同步进行折叠或盘绕或卷曲;
    在所述第一定位件(2)和所述第二定位件(3)沿所述第一方向相互远离时,所述柔性管与所述连接线(4)同步进行展开或拉伸。
  4. 根据权利要求1-3中任一项所述的线驱运动模块,其特征在于,还包括:
    相间隔设置第一转接结构(6)与第二转接结构(7),所述第一转接结构(6)和所述第二转接结构(7)设置在所述关节结构的两端,所述第一转接结构(6)适于与外设驱动机构连接,所述第二转接结构(7)适于与操作机构连接;
    所述线驱运动模块具有所述第一转接结构(6)受外力的作用下牵引所述连接线(4), 以带动所述第二转接结构(7)和所述关节结构同步相对所述第一转接结构(6)联动弯曲的弯曲状态;以及所述第一转接结构(6)、所述定位结构和所述第二转接结构(7)同轴线设置的初始状态,所述线驱运动模块在所述弯曲状态与所述初始状态切换设置。
  5. 根据权利要求4所述的线驱运动模块,其特征在于:
    所述第一定位件(2)具有第一连接部(22),所述第二定位件(3)具有第二连接部(32);
    所述第一连接部(22)与所述第二连接部(32)为相互配合的螺旋结构,在所述第一连接部(22)和所述第二连接部(32)旋接时,所述第一定位件(2)与所述第二定位件(3)沿第一方向相对靠近或相对远离,所述第一方向为螺旋结构的轴线方向。
  6. 根据权利要求5所述的线驱运动模块,其特征在于,第一定位件(2)和所述第二定位件(3)为相互套接的筒体结构,所述第一连接部(22)为成型在所述第一定位件(2)的内壁面上;所述第二连接部成型在所述第二定位件(3)的外壁面上;容线腔为筒体结构内的腔体。
  7. 根据权利要求4所述的线驱运动模块,其特征在于:
    同一条所述连接线(4)穿设在所述第一定位件(2)的第一接线口(21)和所述第二定位件(3)的第二接线口(31)内;其中,所述第一定位件(2)旋设在所述第二定位件(3)的第一旋转位置时,所述第一接线口(21)和所述第二接线口(31)的连线方向与第一方向同向设置;所述线驱运动模块具有所述第一转接结构(6)受外力的作用下牵引所述连接线(4),以带动所述第二转接结构(7)和所述关节结构同步相对所述第一转接结构(6)联动弯曲呈S形运动的第一弯曲状态。
  8. 根据权利要求7所述的线驱运动模块,其特征在于,在所述弯曲状态下,所述第一转接结构(6)远离连接所述关节结构一侧的第一端面与所述第二转接结构(7)远离连接所述关节结构一侧的第二端面相平行设置。
  9. 根据权利要求5所述的线驱运动模块,其特征在于:
    同一条所述连接线(4)穿设在所述第一定位件(2)的第一接线口(21)和所述第二定位件(3)的第二接线口(31)内;
    其中,所述第一定位件(2)旋设在所述第二定位件(3)的第二旋转位置时,所述第一接线口(21)与所述第一方向所在的第一平面、与所述第二接线口(31)与所述第一方向所在的第二平面呈90度夹角;所述线驱运动模块具有所述第一转接结构(6)受外力的作用下牵引所述连接线(4),以带动所述第二转接结构(7)和所述关节结构同步相对所述第一 转接结构(6)联动弯曲呈异面S形运动的第二弯曲状态。
  10. 根据权利要求5所述的线驱运动模块,其特征在于:
    同一条所述连接线(4)穿设在所述第一定位件(2)的第一接线口(21)和所述第二定位件(3)的第二接线口(31)内;其中,所述第一定位件(2)旋设在所述第二定位件(3)的第三旋转位置时,所述第一接线口(21)与所述第一方向所在的第一平面、与所述第二接线口(31)与所述第一方向的所在的第二平面呈180度夹角;
    所述线驱运动模块具有所述第一转接结构(6)受外力的作用下牵引所述连接线(4),以带动所述第二转接结构(7)和所述关节结构同步相对所述第一转接结构(6)联动弯曲呈C形运动的第三弯曲状态。
  11. 根据权利要求4所述的线驱运动模块,其特征在于:
    所述第一定位件(2)具有第三连接部,所述第二定位件(3)具有第四连接部;
    所述第三连接部与所述第四连接部为相互配合的滑动结构,在所述第三连接部和所述第四连接部相对滑动时,所述第一定位件(2)与所述第二定位件(3)沿第一方向相对靠近或相对远离,所述第一方向为滑动结构的滑动方向。
  12. 根据权利要求8所述的线驱运动模块,其特征在于,所述线驱运动模块还具有所述第一转接结构(6)受外力的作用下转动,以牵引所述连接线(4)并带动所述第二转接结构(7)和所述关节结构与第一转接结构(6)同步扭转的回转状态。
  13. 根据权利要求12所述的线驱运动模块,其特征在于,所述关节单元(1)包括:
    转动件(11),周向方向上设有限位部(111);
    限位支座(12),与所述转动件(11)固定连接,所述限位支座(12)内具有至少一个供相邻关节单元(1)的所述转动件(11)活动连接的容纳腔(121),所述容纳腔(121)内还具有限位件(13),所述限位件(13)与相邻的关节单元(1)的所述限位部(111)配合以限位所述相邻关节单元(1)的转动件(11)轴向转动。
  14. 根据权利要求13所述的线驱运动模块,其特征在于,所述转动件(11)为球体,所述容纳腔(121)的内壁面与邻接的所述关节单元(1)的转动件(11)的外壁面相适配;
    所述限位部(111)设置有两个,两个所述限位部(111)配合形成所述球体;
    两个所述限位部(111)间隔设置,以形成限位所述限位件(13)的装配空间,所述限位件(13)活动连接于所述装配空间。
  15. 根据权利要求13所述的线驱运动模块,其特征在于,
    所述第一定位件(2)包括与其延伸方向同向延伸的第一连接孔(23);
    所述第二定位件(3)包括与其延伸方向同向延伸的第二连接孔(33);
    任一转接结构具有与其延伸方向同向延伸的第三连接孔(621);
    任一关节单元(1)具有芯孔(122),所有所述芯孔(122)、所有所述第二连接孔(33)以及所述第一连接孔(23)共同构成介入通道,所述介入通道适于外接管件穿设。
  16. 根据权利要求15所述的线驱运动模块,其特征在于:
    所述第一定位件(2)还包括第一衔接部(24),所述第一衔接部(24)设置在所述第一定位件(2)靠近近端的一侧,所述第一衔接部(24)与所述关节结构活动连接;
    所述第二定位件(3)还包括第二衔接部(34),所述第二衔接部(34)设置在所述第二定位件(3)远离近端的一侧,所述第二衔接部(34)与所述关节结构活动连接;
    在所述第一衔接部(24)与所述第二衔接部(34)为与所述转动件(11)结构相同,或与所述限位支座(12)结构相同。
  17. 根据权利要求16所述的线驱运动模块,其特征在于:
    所述第一转接结构(6)包括第三衔接部(61),所述第三衔接部(61)与所述关节单元(1)活动连接;
    所述第二转接结构(7)包括第四衔接部(71),所述第四衔接部(71)与所述关节单元(1)活动连接;
    所述第三衔接部(61)与所述第四衔接部(71)为与所述转动件(11)结构相同,或与所述限位支座(12)结构相同。
  18. 一种微创手术钳,其特征在于,包括权利要求1-17任一项所述的线驱运动模块。
PCT/CN2023/092074 2022-08-31 2023-05-04 一种线驱运动模块及微创手术钳 WO2024045674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211062457.6A CN115363698B (zh) 2022-08-31 2022-08-31 一种线驱运动模块及微创手术钳
CN202211062457.6 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045674A1 true WO2024045674A1 (zh) 2024-03-07

Family

ID=84068808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092074 WO2024045674A1 (zh) 2022-08-31 2023-05-04 一种线驱运动模块及微创手术钳

Country Status (2)

Country Link
CN (1) CN115363698B (zh)
WO (1) WO2024045674A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414092A (zh) * 2022-08-31 2022-12-02 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳
CN115363698B (zh) * 2022-08-31 2024-03-22 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167437A1 (en) * 2003-02-26 2004-08-26 Sharrow James S. Articulating intracorporal medical device
US8347754B1 (en) * 2008-07-02 2013-01-08 Titan Medical Inc. Multi articulating robatic instrument
CN109984806A (zh) * 2017-12-29 2019-07-09 江苏木偶医疗科技有限公司 关节结构、柔性关节及微创手术钳
US20210330174A1 (en) * 2018-08-02 2021-10-28 Ip2Ipo Innovations Limited A joint
CN115363698A (zh) * 2022-08-31 2022-11-22 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167437A1 (en) * 2003-02-26 2004-08-26 Sharrow James S. Articulating intracorporal medical device
US8347754B1 (en) * 2008-07-02 2013-01-08 Titan Medical Inc. Multi articulating robatic instrument
CN109984806A (zh) * 2017-12-29 2019-07-09 江苏木偶医疗科技有限公司 关节结构、柔性关节及微创手术钳
US20210330174A1 (en) * 2018-08-02 2021-10-28 Ip2Ipo Innovations Limited A joint
CN115363698A (zh) * 2022-08-31 2022-11-22 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Also Published As

Publication number Publication date
CN115363698B (zh) 2024-03-22
CN115363698A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024045674A1 (zh) 一种线驱运动模块及微创手术钳
RU2636853C2 (ru) Концевой эффектор с шарнирным узлом и привод эндоскопического хирургического аппарата
CN111888012B (zh) 手术器械平台
JP5567115B2 (ja) 手術器具
EP2413819B1 (en) Surgical instrument
US7717904B2 (en) Manipulator
US8523844B2 (en) Surgical instrument with tendon preload-and-locking device
US20150282876A1 (en) Jaw roll joint
JP2020522341A (ja) ロボット外科用器具
CN111658152A (zh) 一种手术机械臂及内窥镜系统
KR101455510B1 (ko) 링크형 관절부를 갖는 최소 침습 수술 기구
CN111700654A (zh) 单孔手术器械平台
CN108567489B (zh) 操作臂、从操作设备及手术机器人
WO2024045673A1 (zh) 一种线驱运动模块及微创手术钳
CN111012504B (zh) 一种绳驱动关节解耦机构
CN116636905A (zh) 一种微创手术钳
CN115605139A (zh) 连续体器械及手术机器人
Wang et al. A cable-driven distal end-effector mechanism for single-port robotic surgery
CN108814713A (zh) 微创手术操作臂、从操作设备及手术机器人
WO2022001187A1 (zh) 连续体器械及手术机器人
CN108567487A (zh) 具有可调节连杆的从操作设备及手术机器人
CN108567490B (zh) 微创手术从操作设备及手术机器人
WO2023103982A1 (zh) 手术器械及手术机器人
CN115551434A (zh) 连续体器械及手术机器人
Liu et al. Development of a Flexible Surgical Manipulator with a Variable Curvature Bendable Joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858714

Country of ref document: EP

Kind code of ref document: A1