WO2024045673A1 - 一种线驱运动模块及微创手术钳 - Google Patents

一种线驱运动模块及微创手术钳 Download PDF

Info

Publication number
WO2024045673A1
WO2024045673A1 PCT/CN2023/092062 CN2023092062W WO2024045673A1 WO 2024045673 A1 WO2024045673 A1 WO 2024045673A1 CN 2023092062 W CN2023092062 W CN 2023092062W WO 2024045673 A1 WO2024045673 A1 WO 2024045673A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
motion module
joint
transfer structure
positioning
Prior art date
Application number
PCT/CN2023/092062
Other languages
English (en)
French (fr)
Inventor
徐欣良宜
李晓贞
周晓俊
王屹初
Original Assignee
精勤智造(苏州)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精勤智造(苏州)医疗科技有限公司 filed Critical 精勤智造(苏州)医疗科技有限公司
Publication of WO2024045673A1 publication Critical patent/WO2024045673A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2908Multiple segments connected by articulations

Definitions

  • This application relates to the technical field of medical devices, and specifically to a wire-driven motion module and minimally invasive surgical forceps.
  • the joint structure has good strength and the ability to flexibly adapt to spatial movements, it is widely used in the mechanical and medical fields.
  • doctors use corresponding operating mechanisms to make the minimally invasive device perform desired actions according to control actions and instructions, so as to achieve the purpose of medical treatment and diagnosis of the human body.
  • a minimally invasive device usually consists of a joint structure and a plurality of control lines.
  • the control lines are connected to the joint structure.
  • One end of the multiple control lines is connected to an external driving device, and the other end of the multiple control lines is connected to an external device.
  • the operating ends are connected.
  • the above-mentioned joint structure requires the cooperation of multiple control lines through the driving end of the driving device to pull and shrink the wires at the same time to make the joint bend.
  • the control wires will abut the joint laterally. , there will be small jump errors between adjacent joints. After the errors are accumulated and superimposed, they will form a jump in the overall joint structure, resulting in poor transmission stability of the joint structure and unstable operation execution.
  • the technical problem to be solved by this application is that the transmission stability of the joint structure in the prior art is poor, and there are defects in unstable operation execution.
  • this application provides a line drive motion module, including:
  • a first transfer structure and a second transfer structure are spaced apart, the first transfer structure is suitable for connection with the peripheral driving mechanism, and the second transfer structure is suitable for connection with the operating mechanism;
  • a positioning structure adapted to be connected to an external support ring, the positioning structure being disposed between the first transfer structure and the second transfer structure;
  • a joint assembly the joint assembly includes a plurality of interconnected joint units, the adjacent joint units are configured to be movably connected to each other, and the joint assembly is mechanically coupled between any of the transfer structures and the positioning structure. between;
  • control lines Both ends of the control lines are fixedly connected to the first transfer structure and the second transfer structure respectively.
  • the control lines are threaded through all joint units and the positioning structure. , and is movably connected with the joint unit and the positioning structure;
  • the wire-driven motion module has the first transfer structure pulling the control line under the action of external force to drive the second transfer structure and the joint assembly to bend in conjunction with the first transfer structure.
  • the positioning structure includes:
  • the extension direction of the limiting channel is parallel to the extension direction of the positioning body
  • the wire-driven motion module has the first transfer structure pulling the control line under the action of external force to drive the second transfer structure and the joint assembly to synchronously bend relative to the first transfer structure.
  • the first end surface of the first adapter body on the side connected to the joint unit is far away from the connection point of the second adapter body.
  • the second end surface on one side of the joint unit is arranged parallel to each other.
  • any of the limiting channels has a first lead port close to the side of the first transfer structure and a second lead port close to the side of the second transfer structure.
  • the first plane where the first lead opening and the axis of the positioning structure are located, and the second plane where the second lead opening and the axis of the positioning structure are located form an included angle of 90 degrees;
  • the wire-driven motion module has the first transfer structure pulling the control line under the action of external force to drive the second transfer structure and the joint assembly to synchronously bend relative to the first transfer structure.
  • the second bending state is a different-surface S-shaped motion.
  • any of the limiting channels has a third lead port close to the side of the first transfer structure and a fourth lead port close to the side of the second transfer structure.
  • the third plane where the third lead opening and the axis of the positioning structure are located, and the fourth plane where the fourth lead opening and the axis of the positioning structure are located form an included angle of 180 degrees;
  • the wire-driven motion module has the first transfer structure pulling the control line under the action of external force to drive the second transfer structure and the joint assembly to synchronously bend relative to the first transfer structure.
  • the limiting channel includes a first straight segment, a second straight segment and a curved segment; the first straight segment is provided on the positioning body close to the first adapter.
  • the second straight line segment is disposed on the side of the positioning body close to the second transfer structure; the extension direction of the first straight line segment and the extension direction of the second straight line segment are consistent with The extension direction of the positioning body is arranged in parallel; the curved section is connected between the first straight section and the second straight section.
  • the positioning structure further includes a first connection hole extending in the same direction as its extension direction;
  • Any adapter structure has a second connection hole extending in the same direction as its extending direction;
  • Any joint unit has a core hole, and all the core holes, all the second connection holes, and the first connection hole together form an intervention channel, and the intervention channel is suitable for the penetration of external pipe fittings.
  • the wire-driven motion module also has the function of rotating under the action of external force on the first switching structure to pull the control wire and drive the second switching structure and
  • the joint assembly is in a rotating state of synchronous twisting with the first switching structure.
  • the above-mentioned line drive motion module and positioning structure also include:
  • a first connecting part is provided at one end of the positioning body close to the first switching structure, and the first connecting part is movably connected to the joint unit;
  • the second connecting part is provided at one end of the positioning body close to the second adapter structure, and the second connecting part is suitable for movably connecting with the joint unit.
  • the first adapter structure includes a third connection part, and the third connection part is movably connected with the joint unit;
  • the second adapter structure includes a fourth connecting part, and the fourth connecting part is movably connected with the joint unit.
  • any of the transfer structures further includes an assembly hole and a fixing part, the control line is passed through the assembly hole, and the fixing part is arranged adjacent to the assembly hole, The fixed part is fixedly connected to one end of the control line.
  • the above-mentioned wire-driven motion module includes at least four control lines, and all the control lines are rotationally symmetrical along the axis direction of the positioning structure.
  • the joint unit includes:
  • the rotating part is provided with a limiting portion in the circumferential direction
  • the limiting support is fixedly connected to the rotating member.
  • the limiting support has at least one accommodation cavity for movable connection of the rotating members of adjacent joint units.
  • the accommodation cavity also has a limiting member.
  • the limiting member cooperates with the limiting portion of the adjacent joint unit to limit the axial rotation of the rotating member of the adjacent joint unit.
  • the rotating member is a sphere
  • the inner wall surface of the accommodation cavity is adapted to the outer wall surface of the adjacent rotating member of the joint unit.
  • two limiting parts are provided, and the two limiting parts are spaced apart to form an assembly space for limiting the limiting parts, and the limiting parts are movable. connected to the assembly space.
  • the limiting member is a cylinder, and the extension direction of the cylinder is perpendicular to the plane where the limiting part is located.
  • any connecting part has the same structure as the rotating member or the limiting support.
  • the present application provides a minimally invasive surgical forceps, including a support ring and the wire-driven movement module of the first aspect.
  • the wire-driven motion module includes a first transfer structure and a second transfer structure arranged at intervals, a positioning structure, a joint component and a control line.
  • the first transfer structure is suitable for connection with an external drive mechanism.
  • the second transfer structure is suitable for connection with the operating mechanism;
  • the positioning structure is suitable for connection with the external support ring, the positioning structure is arranged between the first transfer structure and the second transfer structure;
  • the joint assembly includes a plurality of interconnected joint units, adjacent joint units are configured to be movably connected to each other, and the joint assembly is mechanically coupled between any of the transfer structures and the positioning structure; control lines There are at least two control lines, the two ends of the control lines are fixedly connected to the first transfer structure and the second transfer structure respectively, and the control lines are passed through all joint units and the positioning structure, and is movably connected with the joint unit and the positioning structure;
  • the wire-driven motion module has the first transfer structure pulling the control line under the action of external force to drive the second transfer structure and the The bending state of the joint
  • the wire-driven motion module of this structure adjusts the movement of the first transfer structure through an external drive mechanism, so that the control line and the joint assembly cooperate to drive the second transfer structure.
  • the joint assembly is composed of multiple interconnected joint units. Adjacent joint units are configured to be movablely connected to each other. Under the traction of the movement of the first transfer structure, the control line can adjust the adjacent joint units accordingly to adapt to the movement of the first transfer structure; positioning and guidance control through the positioning structure In the movement of the line, the joint components and the transfer structure connected at both ends of the positioning structure perform bending transformations based on the positioning structure.
  • the first transfer structure and the second transfer structure surround The positioning structure moves accordingly, and the force and torque are transmitted through the connection of the control line, which can prompt the second transfer structure to link with the first transfer structure, so that the second transfer structure can achieve the desired movement and position.
  • the modular design improves the stability of the joint unit driven by the control line and ensures coherent movement, which can avoid causing small jump errors between adjacent joints.
  • the positioning structure includes a positioning body and at least two limiting channels molded and provided in the positioning body.
  • the limiting channels are used for the control wire to pass through.
  • the limit channel is used to route the control line, and the movement of the control line is limited through the limit channel.
  • Position guide, the limit channel is structurally designed so that when the control line is pulled by the first transfer structure pair, the second transfer structure and the joint component connected between the positioning structure and the second transfer structure are changed. According to the force, the joint components and the transfer structure connected at both ends of the positioning structure are bent and transformed based on the positioning structure, so that the joint components can achieve the desired action and position to meet the desired working conditions.
  • the positioning structure also includes a first connection hole extending in the same direction as its extension direction, any adapter structure has a second connection hole extending in the same direction as its extension direction, and any joint unit has The core hole, all the core holes, all the second connection holes and the first connection hole together form an intervention channel, and the intervention channel is suitable for the penetration of external pipe fittings.
  • the wire-driven motion module of this structure is equipped with matching holes on the transfer structure, joint components and positioning structure to form an interventional channel for medical purposes.
  • the operating space formed by the interventional channel can be connected within the interventional channel.
  • the flexible pipe fittings allow the pipe fittings to bend together when the line drive motion module bends and changes to meet the desired working conditions.
  • the positioning structure further includes a first connecting part and a second connecting part.
  • the first connecting part is provided at one end of the positioning body close to the first adapter structure.
  • the first connecting part The second connecting part is movably connected with the joint unit; the second connecting part is provided at one end of the positioning body close to the second transfer structure, and the second connecting part is suitable for movably connecting with the joint unit.
  • the support ring is fixedly connected to the positioning body, and the adjacent joint units are limited through the first connecting part and the second connecting part to ensure that the The coordinated activities between adjacent joint units are stable to promote the bending of the joint components;
  • the first transfer structure pulls the control wire and the adjacent joint components to rotate together, and the first connecting part receives the adjacent joint components
  • the joint unit is driven to rotate the positioning structure synchronously, and the joint unit and the second switching structure between the second transfer structure and the positioning structure are driven through the second connection part, so that the wire drive motion module rotates as a whole.
  • Figure 1 is a schematic diagram of the connection between the line drive motion module and the support ring provided in the embodiment of the present application;
  • Figure 2 is a schematic structural diagram of the line drive motion module provided in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the first switching structure in the line drive motion module provided in the embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a side view of the first switching structure in the line drive motion module provided in the embodiment of the present application;
  • Figure 5 is a schematic structural diagram of the first transfer structure in the line drive motion module provided in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of the first transfer structure in the line drive motion module provided in the embodiment of the present application, viewed from below;
  • Figure 7 is a three-dimensional structural schematic diagram of the positioning structure in the line drive motion module provided in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a side view of the positioning structure in the line drive motion module provided in the embodiment of the present application;
  • Figure 9 is a schematic structural diagram of the front view of the positioning structure in the line drive motion module provided in the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of the positioning structure of the line drive motion module provided in the embodiment of the present application, in which the limiting channel is a through channel;
  • Figure 11 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a first bending state
  • Figure 12 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a first bending state, viewed from above;
  • Figure 13 is a schematic structural diagram of the joint unit in the wire-driven motion module provided in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of the joint unit in the wire-driven motion module provided in the embodiment of the present application.
  • Figure 15 is a three-dimensional schematic view of the joint unit in the wire-driven motion module provided in the embodiment of the present application.
  • Figure 16 is a perspective view of the joint unit in the wire-driven motion module provided in the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of the positioning structure of the wire drive motion module provided in the embodiment of the present application in the first bending state;
  • Figure 18 is a schematic structural diagram of the side view of the positioning structure of the wire-driven motion module provided in the embodiment of the present application in the first bending state;
  • Figure 19 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a second bending state
  • Figure 20 is a schematic structural diagram of the wire drive motion module provided in the embodiment of the present application in a second bending state, viewed from above;
  • Figure 21 is a schematic structural diagram of the positioning structure of the wire-driven motion module provided in the embodiment of the present application in the third bending state;
  • Figure 22 is a schematic structural diagram of the side view of the positioning structure of the wire-driven motion module provided in the embodiment of the present application in the third bending state;
  • 3-Positioning structure 31-Positioning body; 311-First connection hole; 32-Limiting channel; 3201-First lead port; 3202-Second lead port; 3203-Third lead port; 3204-Fourth lead port ;321-the first straight line segment; 322-the second straight line segment; 323-the curved segment; 33-the first connecting portion; 34-the second connecting portion;
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • connection can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • the proximal end the side of the equipment that is close to the operator when in use
  • the distal end the end that is far away from the operator
  • This embodiment provides a wire-driven motion module, which can be used in the transmission structure of medical equipment. It can be used as a mechanical component for medical and diagnostic purposes, such as minimally invasive surgical instruments. It can operate in a narrow space and adapt the movement form during the operation to meet the medical needs. Environmental usage conditions; it can be used to form a transmission mechanism, and can be used in scenarios where the axis needs to be changed to transmit rotational motion and where torsion resistance and strength are required. Of course, it can also be applied to the human body's own joints, robots and robot joints, which is convenient for robots and Application environments such as the construction and manufacturing of robot joints.
  • the wire-driven motion module includes a first transfer structure 1 and a second transfer structure 2 , a positioning structure 3 , a joint component, and a control wire 6 .
  • the first adapter structure 1 is suitable for connection with the peripheral driving mechanism, and the movement of the first adapter structure 1 is adjusted through the peripheral drive mechanism, so that the first adapter structure 1 can move along the X-Y plane in Figures 1 and 2, And rotation around the Z-axis to move within the three-dimensional space provided by the outside world.
  • the second transfer structure 2 is suitable for connecting with the operating mechanism.
  • the first transfer structure 1 moves, it cooperates with the joint assembly through the control line 6 to drive the second transfer structure 2, so that the operating mechanism and the second transfer structure 2
  • the movement of the first adapter structure 1 is adjusted according to the driving mechanism to perform actions and positions that are adapted to the first adapter structure 1 .
  • the wire-driven motion module has a first switching structure 1 that pulls the control wire 6 under the action of the driving mechanism to drive the second switching structure 2 and the joint assembly relative to the first switching structure 1
  • the bending state of linked bending the wire drive motion module also has a first transfer structure 1 that pulls the control wire 6 under the action of the driving mechanism to drive the first transfer structure 1, the positioning structure 3 and the second transfer structure 2 coaxially
  • the initial state of the wire setting the wire drive motion module switches settings between the bending state and the initial state.
  • the wire-driven motion module provided by this application, as shown in Figure 1, also has the function of rotating the first switching structure 1 driven by the driving mechanism to pull the control wire 6 and drive the second switching structure 2 and
  • the joint assembly and the first adapter structure 1 are in a synchronous torsion state, and the support ring 4 is rotationally connected to the positioning body 31 .
  • first adapter structure 1 and the second adapter structure 2 can be replaced together and connected to the driving mechanism.
  • one of them can be connected to the peripheral driving mechanism, and the other can be connected to the operating mechanism. Mechanically connected, it can facilitate the convenience of modular structure connection.
  • the first switching structure 1 includes a first switching body 11
  • the second switching structure 2 includes a second switching body 21
  • the first switching body 11 and the second switching body 21 arranged at intervals;
  • the first adapter body 11 has a first end surface 111 on a side away from the connecting joint unit 5
  • the second adapter body 21 has a second end surface 211 on a side away from the connecting joint unit 5
  • the first end surface 111 is located on the line
  • the second end face 211 is located at the distal part of the wire-driven motion module.
  • the first end face 111 and the second end face 211 are arranged oppositely.
  • the first end surface 111 can be used as a reference surface for driving by the driving mechanism, and the position of the first adapter structure 1 can be adjusted by driving the driving mechanism first to make the overall wire-driven movement.
  • the first end face 111 is adjusted through the driving mechanism, so that the first end face 111 and the second end face 211 perform corresponding actions to adjust the position and orientation of the second end face 211
  • the purpose is to enable the operating mechanism on the second transfer structure 2 to perform actions at the predetermined target position and target direction.
  • the first end face 111 can be adjusted through the driving mechanism first, so that the second end face 211 performs actions corresponding to the first end face 111, and then the first adapter structure 1 can be driven by the driving mechanism to adjust the position, so that the overall line drive
  • the motion module moves in the three-dimensional space to achieve the corresponding bending action posture.
  • the first end surface 111 can be used as a mounting surface for connecting the driving mechanism, and the shape of the first end surface 111 can be a flat surface, a curved surface or a stepped surface, which is not specifically limited here.
  • first adapter body 11 and the second adapter body 21 have a rotary structure.
  • the first adapter structure 1 includes a third adapter part 12 .
  • the third adapter part 12 is movably connected to the joint unit 5 .
  • the third adapter part 12 is provided at the distal end of the first adapter body 11 .
  • the three connecting parts 12 drive the joint unit 5 adjacent to the distal end of the first adapter structure 1 .
  • the second adapter structure 2 includes a fourth adapter part 22 , which is movably connected to the joint unit 5 .
  • the fourth adapter part 22 is provided at the proximal end of the second adapter body 21 .
  • the four connecting parts 22 connect to receive the bending moment and torque transmitted by the proximally adjacent joint units 5 on the second adapter structure 2 .
  • the positioning structure 3 is adapted to be connected to the external support ring 4 , and the positioning structure 3 is disposed between the first adapter structure 1 and the second adapter structure 2 .
  • the positioning structure 3 includes a positioning body 31 .
  • the positioning body 31 can be used as a support space for the control wire 6 to promote the two ends of the control wire 6 to bend according to the movement of the first transfer structure 1 .
  • the positioning structure 3 includes a first connecting part 33 and a second connecting part 34 .
  • the first connecting part 33 is provided at an end of the positioning body 31 close to the first adapter structure 1 .
  • the first connecting part 33 33 is movably connected with the joint unit 5;
  • the second connecting part 34 is provided at one end of the positioning body 31 close to the second adapter structure 2, and the second connecting part 34 is suitable for movably connected with the joint unit 5.
  • the support ring 4 is fixed to the positioning body 31, and the adjacent joint unit 5 is limited through the first connecting part 33 and the second connecting part 34 to ensure that the positioning body 31 is in contact with the adjacent joint unit 5.
  • the coordination between the joint units is stable, so as to promote reliable bending of the joint components.
  • the first transfer structure 1 pulls the control wire 6 and the adjacent joint components to rotate together, and the first connecting portion 33 receives the transmission from the adjacent joint unit 5 so that the positioning structure 3 rotates synchronously , and transmit the joint unit 5 between the second transfer structure 2 and the positioning structure 3 and the second transfer structure 2 through the second connection part 34, so that the wire drive motion module rotates as a whole.
  • the joint assembly includes a plurality of interconnected joint units 5.
  • the adjacent joint units 5 are configured to be movably connected to each other, and the joint components are mechanically coupled at any point. Between a transfer structure and positioning structure 3.
  • the joint unit 5 includes a rotating member 51 and a limiting support 52.
  • the rotating member 51 is provided with a limiting portion 511 in the circumferential direction; the limiting support 52 and the rotating member 51 is fixedly connected, and the limit support 52 has an accommodation cavity 521 for movable connection of the rotating parts 51 of the adjacent joint units 5.
  • the accommodation cavity 521 is provided with a limiter 53, and the limiter 53 is limited to the adjacent joint unit 5.
  • the position portion 511 cooperates to limit the axial rotation of the rotating member 51 of the adjacent joint unit 5 .
  • the limiting member 53 and the limiting support 52 can be integrally formed and cooperate to form the space where the accommodation cavity 521 is located.
  • the rotating member 51 is movably adapted to the accommodating cavity 521.
  • the rotating member 51 is movably connected between the limiting member 53 and the accommodating cavity 521.
  • the rotating member 51 is jointly limited by the limiting member 53 and the accommodating cavity 521, so that the adjacent The joint unit 5 bends in the circumferential direction.
  • two limiting parts 511 are provided.
  • the two limiting parts 511 are spaced apart to form an assembly space for the limiting part 53 .
  • the limiting part 53 is movably connected to the assembly. space, the limiting member 53 rotates and abuts between the limiting parts 511 .
  • the rotating member 51 has a spherical surface, which can be formed by the outer wall surfaces of the two limiting parts 511 .
  • the accommodation cavity 521 is a spherical cavity.
  • the wall surface of the spherical cavity body is adapted and rotationally connected to the outer wall surface of the rotating member 51 of the adjacent joint unit 5.
  • the cavity 521 limits the movement of the rotating member 51 so that the rotating member 51 rotates around the axial direction of the limiting member 53 .
  • the limiting member 53 is a cylinder, and the extending direction of the cylinder intersects perpendicularly with the plane where the limiting portion 511 is located, so that the adjacent joint units 5 Orthogonally arranged, adjacent joint units 5 have two perpendicular pivots, one of which is parallel to the extension direction of the cylinder, and the other of which is parallel to the radial plane of the cylinder and the extension direction of the cylinder. of intersection lines.
  • the joint unit 5 is provided with a threading hole 523.
  • the threading hole 523 is movably connected to the control line 6.
  • the control line 6 abuts the threading hole 523 to drive the adjacent joint unit. 5.
  • the first connecting part 33 and the second connecting part 34 have the same structure as the rotating member 51.
  • the third connecting part 12 and the fourth connecting part 22 have the same structure as the limiting support 52, and the line drive motion module has good transmission adaptability.
  • the first connecting part 33 and the second connecting part 34 have the same structure as the limiting support 52, and in the first switching structure 1 and the second switching part In the connection structure 2, the third connection part 12 and the fourth connection part 22 have the same structure as the rotating member 51.
  • the structure of the connection part is selected and adapted according to the connection method of the joint components and the actual transmission.
  • the joint unit 5 connected between the first transfer structure 1 and the positioning structure 3 is named the first joint component
  • the joint unit 5 connected between the second transfer structure 2 and the positioning structure 3 is named
  • the joint unit 5 is named the second joint assembly, and the number of joint units 5 included in the first joint assembly and the number of joint units 5 included in the second joint assembly are not specifically limited.
  • the wire-driven motion module with this structure has better flexibility.
  • the angle at which the joint unit 5 needs to rotate becomes smaller. In the process of transmitting rotation, the smaller the rotation angle of the adjacent joint unit 5 is, the more conducive it is to the transmission of rotation.
  • the driving mechanism can be used to act on the first adapter structure 1 to make the first joint assembly Perform flexion and extension movements to adjust the posture of the wire-driven motion module.
  • the second joint component and the second transfer structure 2 maintain their original postures.
  • the wire-driven motion module with this structure has a gap between the first joint component and the second joint component.
  • the transmission is continuous and the movement is consistent and synchronized. Use easy to use.
  • the connection is tight, the structure is compact, and the connection has good stiffness, which is conducive to promoting the connection strength.
  • control lines 6 are provided, and all control lines 6 are arranged rotationally symmetrically along the axis direction of the positioning structure 3 .
  • control wire 6 can be made of elastic fiber rope, nickel-titanium wire or other elastic materials to achieve the purpose of the control wire 6 driving the joint component and the second transfer structure 2, thereby realizing the linkage function of the wire-driven motion module.
  • the lengths of all control lines 6 are set to the same, which is beneficial to promoting the wire-driven motion module transmission linkage bending to be consistent.
  • control lines 6 are taken as an example.
  • the four control lines 6 are respectively threaded and distributed on the line drive motion module, and the elastic coefficients of the four control lines 6 are consistent.
  • both ends of the control line 6 are fixedly connected to the first transfer structure 1 and the second transfer structure 2 respectively.
  • the control line 6 is passed through all the joint units 5 and the positioning structure 3, and is connected with the joint units. Actively connected to positioning structure 3.
  • the control wire 6 can rotate and adjust the adjacent joint unit 5 and the second switching body 21 accordingly to adapt to the first switching structure 1
  • the wire-driven motion module contacts the positioning body 31 through the middle section of the control wire 6.
  • the first transfer structure 1 pulls one end of the control wire 6 to move
  • the second switch where the other end of the control wire 6 is located
  • Structure 2 performs adapted actions to realize the linked bending process.
  • the first switching structure 1 and the second switching structure 2 are the same.
  • the first switching structure 1 As an example, as shown in Figures 3 and 4, the first switching structure 1 It also includes an assembly hole 113 and a fixing part 114.
  • the control line 6 is passed through the assembly hole 113.
  • the fixing part 114 is arranged adjacent to the assembly hole 113.
  • the fixing part 114 is fixedly connected to one end of the control line 6.
  • the connection between the fixing part 114 and the control line 6 is Connections include, but are not limited to, welding, bonding, and locking through fasteners.
  • the positioning structure 3 also includes a limiting channel 32 formed in the positioning body 31.
  • the limiting channel 32 is used for the control wire 6 to pass through.
  • the number of the limiting channels 32 is two or more, and the number of the limiting channels 32 is the same as the number of the control wires 6 .
  • the movement of the control wires 6 is limited and guided through the limiting channels 32 .
  • the wire-driven motion module provided in this embodiment has no specific limitations on the length and material of the positioning body 31.
  • the material of the positioning body 31 can be steel pipes, medical plastic pipes, etc.
  • the length and material are selected and adapted according to the actual application.
  • any transfer structure has a second connection hole 112 extending in the same direction as its extension.
  • the positioning structure 3 also has It includes a first connection hole 311 extending in the same direction as its extension direction.
  • any joint unit 5 has a core hole 522, all core holes 522, all second connection holes 112 and the first connection hole 311 Together they form an intervention channel, which is suitable for the insertion of external pipe fittings.
  • Matching holes are configured on the transfer structure, joint components and positioning structure 3 to form an interventional channel for medical purposes. Through the operating space formed by the interventional channel, flexible pipe fittings can be connected in the interventional channel for online driving. When the bending of the motion module changes, the pipe fittings are bent together to meet the desired working conditions.
  • the extension direction of the limit channel 32 is parallel to the extension direction of the positioning body 31, and the limit channel 32 is a through channel.
  • the wire-driven motion module has a first adapter structure 1 that is driven by the driving mechanism and pulls the control line 6 to drive the second adapter structure 2 and the joint assembly to be synchronously relative to the first adapter structure 1
  • the linked bending is the first bending state of S-shaped motion.
  • the first end surface 111 and the second end surface 211 are always arranged in parallel. By operating the position of the first end surface 111, the second end surface 211 can perform corresponding actions.
  • first adapter structure 1 and the second adapter structure 2 move toward each other on the X-Y plane, and the first adapter structure 1 and the second adapter structure 2 are opposite to each other.
  • Reverse bending allows the joint components to achieve the desired action posture and position during the S-shaped bending action to meet the required usage conditions.
  • the first switching structure 1 and the first joint component can bend relative to the second switching structure 2 and the second joint component, and the driving mechanism acts on the first switching structure 1
  • the displacement of the relative positioning structure 3 in the three-dimensional space is compensated by the mutual rotation of the joint units 5 adjacently connected between the first transfer structure 1 and the positioning structure 3 and the elastic expansion and contraction of the control line 6 itself, so that the first The joint component performs flexible flexion and extension movements; at this time, the first end surface 111 and the second end surface 211 maintain their original parallel position relationship in space, and the second transfer structure 2 and the second joint component maintain their original postures.
  • the driving mechanism can drive the first transfer structure 1 so that the wire-driven motion module can perform flexion and extension adjustment on the first joint component at its position during the S-shaped bending action, thereby allowing the second joint component to flex and extend.
  • a joint component can achieve the desired action posture and position during flexion and extension to meet the required usage conditions.
  • the driving mechanism can first be driven to act on the first adapter structure 1 to adjust the first joint component in flexion and extension, and then the drive mechanism can be driven to act on the first adapter structure 1 to cause the entire wire-driven motion module to undergo an S-shaped bending action. , so as to meet the required working conditions.
  • either of the first connecting portion 33 and the second connecting portion 34 on the positioning structure 3 can be formed by the joint unit 5 to transmit power and torque.
  • the fixing method can be one-piece molding, welding, threaded connection or plug connection.
  • the joint units 5 are connected in series with the joint components. Active connections.
  • either of the connecting portions can be formed by the joint unit 5, To achieve the purpose of transmitting power and torque.
  • the fixation method can be one-piece molding, welding,
  • the joint unit 5 is movably connected to the joint assembly in series by means of threaded connection or bolt connection.
  • the wire-driven motion module can set any of the action postures it can achieve as the initial action position driven by the driving mechanism.
  • the wire-driven motion module has the advantages of flexible operation and coherent and stable movement.
  • the wire-driven motion module controls the movement of the wire 6 through the positioning structure 3.
  • the joint components and transfer structures connected at both ends of the positioning structure 3 perform bending transformations based on the positioning structure 3.
  • the wire-driven motion module is in When switching the bending state and the initial state, the first transfer structure 1 and the second transfer structure 2 perform corresponding movements around the positioning structure 3, and the force and torque are transmitted through the connection of the control line 6, which can promote the second transfer structure 2 and
  • the first transfer structure 1 performs synchronous linkage to enable the second transfer structure 2 to achieve the desired motion and position.
  • the stability of the control line 6 driving the joint unit 5 is improved, and its movement is coherent. This can avoid causing small runout errors between adjacent joints.
  • This embodiment provides a wire-driven motion module.
  • the difference between the wire-driven motion module and the wire-driven motion module provided in Embodiment 1 is that the limiting channel 32 is in the shape of a non-through channel, as shown in Figure 17.
  • the limiting channel 32 is in the shape of a non-through channel.
  • the four limiting channels 32 are rotationally symmetrically distributed on the positioning body 31 to promote the stability of the connection and achieve the desired transmission action.
  • the limiting channel 32 has a first lead opening 3201 on the side close to the first transfer structure 1 and a side close to the second transfer structure 2.
  • the second lead opening 3202 forms an included angle of 90 degrees with the first plane where the first lead opening 3201 and the axis of the positioning structure 3 are located, and the second plane where the second lead opening 3202 and the axis of the positioning structure 3 are located; through the limit
  • the position channel 32 changes the movement and force of the control wire 6, so that when the control wire 6 is pulled by the first switching structure 1 pair, it automatically acts on the second switching structure 2 and is connected to the positioning structure 3 and the second switching structure.
  • the joint components between the structures 2 enable the control line 6 to cause the joint components and the transfer structure connected at both ends of the positioning structure 3 to bend and transform based on the positioning structure 3, driving the second transfer structure 2 and the joint components to synchronize with the first
  • the linkage bending of the transfer structure 1 presents a second bending state of out-of-plane S-shaped movement.
  • the limiting channel 32 includes a first straight section 321, a second straight section 322 and a curved section 323; the first straight section 321 is provided on the positioning body 31 on the side of the positioning body 31 close to the first adapter body 11 , and the second straight line segment 322 is provided on the side of the positioning body 31 close to the second adapter body 21 ; the extension direction of the first straight line segment 321 and the extension of the second straight line segment 322 The direction is parallel to the extension direction of the positioning body 31; the curved section 323 is connected between the first straight section 321 and the second straight section 322, the first lead opening 3201 is arranged at the proximal end of the first straight section 321, and the second lead The port 3202 is disposed at the far end of the first straight segment 321.
  • the first adapter structure 1 and the first joint assembly jointly move in a bending direction in the X-axis extension direction.
  • the second transfer structure 2 and the second joint component jointly move in the Y-axis extension direction shown in Figure 1, and the bending direction of the first joint component is consistent with the second joint component.
  • the projection of the bending direction on the X-Y plane is set at 90 degrees, which allows the joint components to achieve the desired action posture and the position during the action of the different-surface S-shaped curve to meet the required usage conditions.
  • the first switching structure 1 and the first joint component can bend relative to the second switching structure 2 and the second joint component, and the driving mechanism acts on the first switching structure 1
  • the displacement of the relative positioning structure 3 in the three-dimensional space is compensated by the mutual rotation of the joint units 5 adjacently connected between the first transfer structure 1 and the positioning structure 3 and the elastic expansion and contraction of the control line 6 itself, so that the first The joint component performs flexible flexion and extension movements; at this time, the first end surface 111 and the second end surface 211 maintain the original positional relationship of being parallel or extending and intersecting in space, and the second transfer structure 2 and the second joint component maintain The original posture remains unchanged.
  • the driving mechanism can drive the first transfer structure 1, so that the wire-driven motion module can perform flexion and extension adjustment on the first joint component at the position during its out-of-plane S-shaped movement, thereby making the The first joint component can achieve the desired action posture and position during the flexion and extension actions to meet the required usage conditions.
  • the driving mechanism can be driven to act on the first adapter structure 1 first, and the first joint component can be adjusted in flexion and extension, and then the driving mechanism can be driven to act on the first adapter structure 1 to form an S-shape of the entire line drive motion module. bending action to meet the required working conditions.
  • the limiting channel 32 is in the shape of a non-through channel, as shown in Figures 21 and 22.
  • the four limit channels 32 are rotationally symmetrically distributed on the positioning body 31 to promote the stability of the connection and achieve the desired transmission action.
  • the limiting channel 32 has a third lead opening 3203 close to the side of the first transfer structure 1 and a fourth lead close to the side of the second transfer structure 2.
  • port 3204, the third lead port 3203 and the third plane where the axis of the positioning structure 3 is located, and the fourth lead port 3204 and the fourth plane where the axis of the positioning structure 3 is located form an angle of 180 degrees;
  • the control line 6 causes the joint components and the transfer structure connected at both ends of the positioning structure 3 to bend and transform based on the positioning structure 3, driving the second transfer structure 2 and the joint assembly to synchronize with the first transfer structure 1
  • Linked bending is the third bending state of C-shaped motion.
  • the limiting channel 32 includes a first straight line segment 321, a second straight line segment 322 and a curved segment 323; the extension direction of the first straight line segment 321 and the second straight line segment
  • the extension direction of 322 is parallel to the extension direction of the positioning body 31;
  • the curved section 323 is connected between the first straight section 321 and the second straight section 322, and
  • the third lead opening 3203 is arranged at the proximal end of the first straight section 321.
  • the fourth lead opening 3204 is disposed at the distal end of the first linear segment 321 .
  • the first adapter structure 1 and the second adapter structure 2 are close to each other in the circumferential plane and along the radial plane of the positioning body 31, so that the joint assembly can achieve the desired action posture and C-shaped bending action. location in the process to meet the required usage conditions.
  • the first switching structure 1 and the first joint component can bend relative to the second switching structure 2 and the second joint component, and the driving mechanism acts on the first switching structure 1
  • the displacement of the relative positioning structure 3 in the three-dimensional space is compensated by the mutual rotation of the joint units 5 adjacently connected between the first transfer structure 1 and the positioning structure 3 and the elastic expansion and contraction of the control line 6 itself, so that the first The joint component performs flexible flexion and extension movements; at this time, the first end surface 111 and the second end surface 211 maintain the original positional relationship of being parallel or extending and intersecting in space, and the second transfer structure 2 and the second joint component maintain The original posture remains unchanged.
  • the driving mechanism can drive the first transfer structure 1 so that the wire-driven motion module can perform flexion and extension adjustment on the first joint component at its position during the C-shaped bending action, thereby allowing the second joint component to flex and extend.
  • a joint component can achieve the desired action posture and position during flexion and extension to meet the required usage conditions.
  • the driving mechanism can first be driven to act on the first adapter structure 1 to adjust the first joint component in flexion and extension, and then the drive mechanism can be driven to act on the first adapter structure 1 to cause the entire wire-driven motion module to undergo a C-shaped bending action. , so as to meet the required working conditions.
  • a minimally invasive surgical forceps includes a wire-driven motion module configured with Embodiment 1, Embodiment 2 or Embodiment 3. Therefore, it also has the advantages brought by Embodiment 1, Embodiment 2 and Embodiment 3.
  • the wire-driven motion module rotates, it can be rotationally connected to the positioning structure 3 through the support ring 4.
  • the support ring 4 and the positioning structure 3 can be fixed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种线驱运动模块及微创手术钳,线驱运动模块包括相间隔设置的第一转接结构(1)与第二转接结构(2)、定位结构(3)、关节组件以及控制线(6),定位结构(3)设置在第一转接结构(1)和第二转接结构(2)之间;关节组件包括多个相互连接的关节单元(5),相邻的关节单元(5)被配置为相互活动连接,且关节组件机械耦合连接在任一转接结构与定位结构(3)之间;控制线(6)设置有至少两条。此结构的线驱运动模块,可在弯曲状态与初始状态切换,第一转接结构(1)与第二转接结构(2)围绕定位结构(3)进行相应运动,可满足工况期望的运动动作以及位置,其整体模块结构具有传动连贯、运动稳定的优点。

Description

一种线驱运动模块及微创手术钳
相关申请的交叉引用
本申请要求在2022年08月31日提交中国专利局、申请号为202211053319.1、发明名称为“一种线驱运动模块及微创手术钳”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及医用器械技术领域,具体涉及一种线驱运动模块及微创手术钳。
背景技术
由于关节结构具有良好的强度与灵活适配空间运动的能力,其在机械与医疗领域等内应用十分广泛。目前,医疗器械中,例如在微创手术中,医生通过相应操作机构使微创装置根据控制动作以及指令执行期望动作,以达到对人体进行医疗与诊断目的。
现有技术中,微创装置通常由关节结构与多个控制线组成,控制线与关节结构连接在内,多个控制线的一端与外设驱动设备相连,多个控制线的另一端与外接操作端相连,在需要调节微创机器机械的关节结构弯曲时,通过外设驱动设备拉动收回控制线,使拉线端所在的相邻关节相靠近,相邻关节间的夹角减小收缩,通过外设驱动设备推送延长控制线,使送线端所在的相邻关节相远离,相邻关节间的夹角增大拓展,从而完成关节的弯曲折叠动作,以实现期望的操作过程。
但上述的关节结构,其需要通过驱动设备的驱动端对多个控制线同时进行拉线与缩线的配合,以使关节进行弯曲,在具体拉线与缩线时会由于控制线侧向抵接关节,相邻关节之间会存在的微小跳动误差,误差在累积叠加后会形成整体关节结构跳动,导致关节结构传动稳定性不佳,存在操作执行失稳的问题。
发明内容
本申请所要解决的技术问题在于现有技术中关节结构传动稳定性不佳,存在操作执行失稳的缺陷。
第一方面,本申请提供了一种线驱运动模块,包括:
相间隔设置的第一转接结构与第二转接结构,第一转接结构适于与外设驱动机构连接,第二转接结构适于与操作机构连接;
定位结构,适于与外接支撑环相连接,所述定位结构设置在所述第一转接结构和所述第二转接结构之间;
关节组件,所述关节组件包括多个相互连接的关节单元,相邻的所述关节单元被配置为相互活动连接,且所述关节组件机械耦合连接在任一所述转接结构与所述定位结构之间;
以及至少两条控制线,所述控制线的两端分别与所述第一转接结构和所述第二转接结构固定连接,所述控制线穿设于所有关节单元和所述定位结构上,且与所述关节单元和所述定位结构活动连接;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述控制线,以带动所述第二转接结构和所述关节组件相对所述第一转接结构联动弯曲的弯曲状态;以及所述第一转接结构、所述定位结构和所述第二转接结构同轴线设置的初始状态,所述线驱运动模块在所述弯曲状态与所述初始状态切换设置。
可选地,上述的线驱运动模块,所述定位结构包括:
定位本体以及成型设置在所述定位本体内的至少两个限位通道,所述限位通道用于供所述控制线穿设。
可选地,上述的线驱运动模块,
所述限位通道的延伸方向与所述定位本体的延伸方向平行设置;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述控制线,以带动所述第二转接结构和所述关节组件同步相对所述第一转接结构联动弯曲呈S形运动的第一弯曲状态。
可选地,上述的线驱运动模块,在所述第一弯曲状态下,所述第一转接本体远离连接所述关节单元一侧的第一端面与所述第二转接本体远离连接所述关节单元一侧的第二端面相平行设置。
可选地,上述的线驱运动模块,任一所述限位通道具有靠近所述第一转接结构一侧的第一引线口与靠近所述第二转接结构一侧的第二引线口,所述第一引线口与所述定位结构的轴线的所在的第一平面、与所述第二引线口与所述定位结构的轴线的所在的第二平面呈90度夹角;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述控制线,以带动所述第二转接结构和所述关节组件同步相对所述第一转接结构联动弯曲呈异面S形运动的第二弯曲状态。
可选地,上述的线驱运动模块,任一所述限位通道具有靠近所述第一转接结构一侧的第三引线口与靠近所述第二转接结构一侧的第四引线口,所述第三引线口与所述定位结构的轴线的所在的第三平面、与所述第四引线口与所述定位结构的轴线的所在的第四平面呈180度夹角;
所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述控制线,以带动所述第二转接结构和所述关节组件同步相对所述第一转接结构联动弯曲呈C形运动的第三弯曲状态。
可选地,上述的线驱运动模块,所述限位通道包括第一直线段、第二直线段以及弯曲段;所述第一直线段设置在所述定位本体上靠近所述第一转接结构的一侧,所述第二直线段设置在所述定位本体上靠近所述第二转接结构的一侧;所述第一直线段的延伸方向和所述第二直线段的延伸方向与所述定位本体的延伸方向平行设置;所述弯曲段连通设置在所述第一直线段与所述第二直线段之间。
可选地,上述的线驱运动模块,定位结构还包括与其延伸方向同向延伸的第一连接孔;
任一转接结构具有与其延伸方向同向延伸的第二连接孔;
任一关节单元具有芯孔,所有所述芯孔、所有所述第二连接孔以及所述第一连接孔共同构成介入通道,所述介入通道适于外接管件穿设。
可选地,上述的线驱运动模块,所述线驱运动模块还具有在所述第一转接结构受外力的作用下转动,以牵引所述控制线并带动所述第二转接结构和所述关节组件与第一转接结构同步扭转的回转状态。
可选地,上述的线驱运动模块,定位结构还包括:
第一衔接部,设置在所述定位本体的靠近第一转接结构的一端,所述第一衔接部与所述关节单元活动连接;
第二衔接部,设置在所述定位本体的靠近所述第二转接结构的一端,所述第二衔接部适于与所述关节单元活动连接。
可选地,上述的线驱运动模块,所述第一转接结构包括第三衔接部,所述第三衔接部与所述关节单元活动连接;
所述第二转接结构包括第四衔接部,所述第四衔接部与所述关节单元活动连接。
可选地,上述的线驱运动模块,任一所述转接结构还包括装配孔与固定部,所述装配孔内穿设所述控制线,所述固定部与所述装配孔邻接设置,所述固定部与所述控制线的一端固定连接。
可选地,上述的线驱运动模块,所述线驱运动模块包括至少四条控制线,所有所述控制线沿所述定位结构的轴线方向旋转对称。
可选地,上述的线驱运动模块,所述关节单元包括:
转动件,周向方向上设有限位部;
限位支座,与所述转动件固定连接,所述限位支座内具有至少一个供相邻关节单元的所述转动件活动连接的容纳腔,所述容纳腔内还具有限位件,所述限位件与相邻的关节单元所述限位部配合以限位所述相邻关节单元的转动件轴向转动。
可选地,上述的线驱运动模块,所述转动件为球体,所述容纳腔的内壁面与邻接的所述关节单元的转动件的外壁面相适配。
可选地,上述的线驱运动模块,所述限位部设置有两个,两个所述限位部间隔设置,以形成限位所述限位件的装配空间,所述限位件活动连接于所述装配空间。
可选地,上述的线驱运动模块,所述限位件为柱体,所述柱体的延伸方向与所述限位部所在平面垂直相交设置。
可选地,上述的线驱运动模块,任一衔接部与所述转动件或所述限位支座结构相同。
第二方面,本申请提供了一种微创手术钳,包括支撑环以及上述第一方面的线驱动运动模块。
本申请提供的技术方案,具有如下优点:
1.本申请提供的线驱运动模块,包括相间隔设置的第一转接结构与第二转接结构、定位结构、关节组件以及控制线,第一转接结构适于与外设驱动机构连接,第二转接结构适于与操作机构连接;定位结构适于与外接支撑环相连接,所述定位结构设置在所述第一转接结构和所述第二转接结构之间;所述关节组件包括多个相互连接的关节单元,相邻的所述关节单元被配置为相互活动连接,且所述关节组件机械耦合连接在任一所述转接结构与所述定位结构之间;控制线设置有至少两条,所述控制线的两端分别与所述第一转接结构和所述第二转接结构固定连接,所述控制线穿设于所有关节单元和所述定位结构上,且与所述关节单元和所述定位结构活动连接;所述线驱运动模块具有所述第一转接结构受外力的作用下牵引所述控制线,以带动所述第二转接结构和所述关节组件相对所述第一转接结构联动弯曲的弯曲状态;以及所述第一转接结构、所述定位结构和所述第二转接结构同轴线设置的初始状态,所述线驱运动模块在所述弯曲状态与所述初始状态切换设置。
此结构的线驱运动模块,通过外设驱动机构调节第一转接结构的运动,以使控制线与关节组件配合传动第二转接结构,关节组件由多个相互连接的关节单元构成,相邻的关节单元被配置为相互活动连接,控制线在第一转接结构运动牵引下,可将邻接的关节单元进行相应调整,以适配第一转接结构的运动;通过定位结构定位导向控制线的运动,定位结构两端连接的关节组件与转接结构以定位结构为基准进行弯曲变换,线驱运动模块在切换弯曲状态与初始状态时,第一转接结构与第二转接结构围绕定位结构进行相应运动,通过控制线的连接传递作用力与力矩,可促使第二转接结构与第一转接结构进行联动,以使第二转接结构达到期望的运动动作以及位置,通过整体模块设计,提高控制线带动关节单元的稳定性,运动连贯,可避免引起相邻关节之间的微小跳动误差。
2.本申请提供的线驱运动模块,所述定位结构包括定位本体以及成型设置在所述定位本体内的至少两个限位通道,所述限位通道用于供所述控制线穿设。
此结构的线驱运动模块,限位通道内用于控制线的穿设,通过限位通道对控制线的运动进行限 位导向,对限位通道进行结构设计,以使控制线在受到第一转接结构对的牵引时,改变第二转接结构以及连接在定位结构与第二转接结构之间的关节组件的受力情况,使定位结构两端连接的关节组件与转接结构以定位结构为基准进行弯曲变换,从而使关节组件与达到期望的动作与位置,以满足适配于期望工况。
3.本申请提供的线驱运动模块,定位结构还包括与其延伸方向同向延伸的第一连接孔,任一转接结构具有与其延伸方向同向延伸的第二连接孔,任一关节单元具有芯孔,所有所述芯孔、所有所述第二连接孔以及所述第一连接孔共同构成介入通道,所述介入通道适于外接管件穿设。
此结构的线驱运动模块,在转接结构、关节组件以及定位结构上配置相适配的孔,以构成用于医疗等目的介入通道,通过介入通道形成的操作空间,可在介入通道内连接柔性的管件,在线驱运动模块弯曲变化时,使管件共同弯曲,以满足期望的工况。
4.本申请提供的线驱运动模块,定位结构还包括第一衔接部与第二衔接部,第一衔接部设置在所述定位本体的靠近第一转接结构的一端,所述第一衔接部与所述关节单元活动连接;第二衔接部设置在所述定位本体的靠近所述第二转接结构的一端,所述第二衔接部适于与所述关节单元活动连接。
此结构的线驱运动模块,当线驱运动模块需要处于弯曲状态下,将支撑环与定位本体固定连接,通过第一衔接部接与第二衔接部对邻接的关节单元进行限位,保证与邻接的关节单元间配合活动稳定,以促使关节组件的弯曲;当线驱运动模块需要处于回转状态下,第一转接结构牵引控制线与以及邻接的关节组件共同转动,第一衔接部接收邻接的关节单元的传动,以使定位结构同步转动,并通过第二衔接部传动第二转接结构与定位结构之间的的关节单元以及第二转接结构,使线驱运动模块整体自转。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例中提供的线驱运动模块与支撑环的连接示意图;
图2为本申请的实施例中提供的线驱运动模块的结构示意图;
图3为本申请的实施例中提供的线驱运动模块中第一转接结构的结构示意图;
图4为本申请的实施例中提供的线驱运动模块中第一转接结构侧视的结构示意图;
图5为本申请的实施例中提供的线驱运动模块中第一转接结构俯视的结构示意图;
图6为本申请的实施例中提供的线驱运动模块中第一转接结构仰视的结构示意图;
图7为本申请的实施例中提供的线驱运动模块中定位结构立体的结构示意图;
图8为本申请的实施例中提供的线驱运动模块中定位结构侧视的结构示意图;
图9为本申请的实施例中提供的线驱运动模块中定位结构主视的结构示意图;
图10为本申请的实施例中提供的线驱运动模块中定位结构中限位通道为直通通道的结构示意图;
图11为本申请的实施例中提供的线驱运动模块处于第一弯曲状态下的结构示意图;
图12为本申请的实施例中提供的线驱运动模块处于第一弯曲状态下俯视的结构示意图;
图13为本申请的实施例中提供的线驱运动模块中关节单元的结构示意图;
图14为本申请的实施例中提供的线驱运动模块中关节单元主视的结构示意图;
图15为本申请的实施例中提供的线驱运动模块中关节单元的立体示意图;
图16为本申请的实施例中提供的线驱运动模块中关节单元的立体图;
图17为本申请的实施例中提供的线驱运动模块处于第一弯曲状态下定位结构的结构示意图;
图18为本申请的实施例中提供的线驱运动模块处于第一弯曲状态下定位结构侧视的结构示意图;
图19为本申请的实施例中提供的线驱运动模块处于第二弯曲状态下的结构示意图;
图20为本申请的实施例中提供的线驱运动模块处于第二弯曲状态下俯视的结构示意图;
图21为本申请的实施例中提供的线驱运动模块处于第三弯曲状态下定位结构的结构示意图;
图22为本申请的实施例中提供的线驱运动模块处于第三弯曲状态下定位结构侧视的结构示意图;
附图标记说明:
1-第一转接结构;11-第一转接本体;111-第一端面;112-第二连接孔;113-装配孔;114-固定部;12-第三衔接部;
2-第二转接结构;21-第二转接本体;211-第二端面;22-第四衔接部;
3-定位结构;31-定位本体;311-第一连接孔;32-限位通道;3201-第一引线口;3202-第二引线口;3203-第三引线口;3204-第四引线口;321-第一直线段;322-第二直线段;323-弯曲段;33-第一衔接部;34-第二衔接部;
4-支撑环;
5-关节单元;51-转动件;511-限位部;52-限位支座;521-容纳腔;522-芯孔;523-穿线孔;53-限位件;6-控制线。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在下述的说明中,以器材在使用时靠近操作人员一侧为近端,远离操作人员一端为远端。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供了一种线驱运动模块,可用于医疗器械的传动结构,作为医疗与诊断目的机械构件,例如微创手术器械,在手术过程中狭窄空间操作适配运动形式,以满足于医用环境的使用工况;可用于组成传动机构,在需要变轴线进行传递旋转运动以及对于抗扭和强度有需求的场景进行应用,当然也可适用于人体自身关节、机器人及机器人关节,便于机器人及机器人关节的搭建和制造等应用环境。
如图1与图2所示,线驱运动模块包括第一转接结构1与第二转接结构2、定位结构3、关节组件以及控制线6。
第一转接结构1适于与外设驱动机构连接,通过外设驱动机构调节第一转接结构1的运动,使第一转接结构1可沿图1与图2中X-Y平面的移动,以及围绕Z轴的转动,以在外界提供的三维空间内运动。
第二转接结构2适于与操作机构连接,第一转接结构1在运动时,通过控制线6与关节组件配合传动第二转接结构2,从而使操作机构与第二转接结构2根据驱动机构调节第一转接结构1的运动进行与第一转接结构1相适配动作与位置。
本实施例提供的线驱运动模块,线驱运动模块具有第一转接结构1受驱动机构的作用下牵引控制线6,以带动第二转接结构2和关节组件相对第一转接结构1联动弯曲的弯曲状态;线驱运动模块还具有第一转接结构1受驱动机构的作用下牵引控制线6,以带动第一转接结构1、定位结构3和第二转接结构2同轴线设置的初始状态;线驱运动模块在弯曲状态与初始状态切换设置。
本申请提供的线驱运动模块,如图1所示,线驱运动模块还具有在第一转接结构1受驱动机构驱动作用下转动,以牵引控制线6并带动第二转接结构2和关节组件与第一转接结构1同步扭转的回转状态,支撑环4与定位本体31转动连接。
在第一转接结构1与第二转接结构2中,两者可等共同替换与驱动机构相连接,具体装配使用时,其中之一可与外设驱动机构相连,其中另一可与操作机构相连,可促进模块结构连接的便捷性。
如图1至图6所示,第一转接结构1包括第一转接本体11,第二转接结构2包括第二转接本体21,第一转接本体11与第二转接本体21相间隔设置;第一转接本体11具有远离连接关节单元5一侧的第一端面111,第二转接本体21具有远离连接关节单元5一侧的第二端面211,第一端面111位于线驱运动模块的近端部分,第二端面211位于线驱运动模块的远端部分,在线驱运动模块的初始状态下,第一端面111与第二端面211相对设置。
需要说明的是,具体驱动线驱运动模块进行运动时,第一端面111可作为驱动机构驱动的基准面,可先通过驱动机构驱动作用第一转接结构1进行位置调整,使整体线驱运动模块在三维空间内运动实现相应的弯曲动作姿态后,再通过驱动机构调节第一端面111,使第一端面111与第二端面211进行相对应的动作,达到调整第二端面211的位置与朝向的目的,从而使第二转接结构2上的操作机构能够进行预定的目标位置与目标方向的动作。相应地,可先通过驱动机构调节第一端面111,使第二端面211进行与第一端面111相对应的动作,再通过驱动机构驱动作用第一转接结构1进行位置调整,使整体线驱运动模块在三维空间内运动以实现相应的弯曲动作姿态。其中,第一端面111可作为连接驱动机构的安装面,第一端面111的形状可为平面、曲面或阶梯面,在此不作具体限定。
在本实施例中,第一转接本体11与第二转接本体21为回转体结构。
如图3所示,第一转接结构1包括第三衔接部12,第三衔接部12与关节单元5活动连接,第三衔接部12设置在第一转接本体11的远端,通过第三衔接部12传动第一转接结构1远端邻接的关节单元5。
如图2所示,第二转接结构2包括第四衔接部22,第四衔接部22与关节单元5活动连接,第四衔接部22设置在第二转接本体21的近端,通过第四衔接部22连接接收第二转接结构2上近端邻接的关节单元5传递的弯矩与扭矩。
如图1所示,定位结构3适于与外接的支撑环4相连接,定位结构3设置在第一转接结构1和第二转接结构2之间。
如图7所示,定位结构3包括定位本体31,定位本体31可作为控制线6的支撑空间,以促使控制线6的两端根据第一转接结构1的运动进行弯曲变化。
如图7至图9所示,定位结构3包括第一衔接部33与第二衔接部34,第一衔接部33设置在定位本体31的靠近第一转接结构1的一端,第一衔接部33与关节单元5活动连接;第二衔接部34设置在定位本体31的靠近第二转接结构2的一端,第二衔接部34适于与关节单元5活动连接。
当线驱运动模块需要处于弯曲状态下,将支撑环4与定位本体31相固定,通过第一衔接部33与第二衔接部34对邻接的关节单元5进行限位,保证定位本体31与邻接的关节单元间配合活动稳定,以促使关节组件的可靠弯曲。
当线驱运动模块需要处于回转状态下,第一转接结构1牵引控制线6以及邻接的关节组件共同转动,第一衔接部33接收邻接的关节单元5的传动,以使定位结构3同步转动,并通过第二衔接部34传动第二转接结构2与定位结构3之间的的关节单元5以及第二转接结构2,使线驱运动模块整体自转。
本申请提供的线驱运动模块,如图1与图2所示,关节组件包括多个相互连接的关节单元5,相邻的关节单元5被配置为相互活动连接,且关节组件机械耦合连接在任一转接结构与定位结构3之间。
在本实施例中,如图13至图16所示,关节单元5包括转动件51与限位支座52,转动件51周向方向上设有限位部511;限位支座52与转动件51固定连接,限位支座52内具有供相邻关节单元5的转动件51活动连接的容纳腔521,容纳腔521内设有限位件53,限位件53与相邻的关节单元5限位部511配合以限位相邻关节单元5的转动件51轴向转动。限位件53与限位支座52可一体成型,并配合形成容纳腔521的所在空间。转动件51与容纳腔521活动适配,转动件51活动连接设置在限位件53与容纳腔521之间,通过限位件53与容纳腔521对转动件51共同限位,使相邻的关节单元5进行周向方向的弯曲。
在本实施例中,如图16所示,限位部511设置有两个,两个限位部511间隔设置,以形成限位限位件53的装配空间,限位件53活动连接于装配空间,限位件53转动抵接在限位部511之间。
在本实施例中,如图13与图16所示,转动件51具有球体面,可通过两个限位部511的外侧壁面形成该球体面。
在本实施例中,如图13与图15所示,容纳腔521为球缺腔体,球缺腔体的壁面与与邻接的关节单元5的转动件51的外壁面相适配转动连接,容纳腔521限制转动件51的运动,使转动件51围绕限位件53的轴向方向进行转动。
本实施例提供的线驱运动模块,如图13与图15所示,限位件53为柱体,柱体的延伸方向与限位部511所在平面垂直相交设置,使相邻的关节单元5正交设置,相邻的关节单元5具有两个垂直的枢轴,其中之一枢轴平行于柱体的延伸方向,其中另一枢轴平行于柱体的径向平面与柱体的延伸方向的相交线。
在本实施例中,如图13与图14所示,关节单元5上设有穿线孔523,穿线孔523与控制线6活动连接,控制线6通过抵接穿线孔523以传动邻接的关节单元5。
本实施例提供的线驱运动模块,在定位结构3中,第一衔接部33与第二衔接部34同转动件51的结构相同,在第一转接结构1与第二转接结构2中,第三衔接部12与第四衔接部22同限位支座52的结构相同,线驱运动模块传动适配性好。
作为本实施例一种可替换的实施方式,在定位结构3中,第一衔接部33与第二衔接部34同限位支座52的结构相同,在第一转接结构1与第二转接结构2中,第三衔接部12与第四衔接部22同转动件51的结构相同,衔接部的结构根据关节组件的连接方式以及实际传动进行选取适配。
本实施例提供的线驱运动模块,将第一转接结构1与定位结构3之间连接的关节单元5命名为第一关节组件,将第二转接结构2与定位结构3之间连接的关节单元5命名为第二关节组件,对于第一关节组件内包括的关节单元5的数量以及第二关节组件内包括的关节单元5的数量不作具体限定。
本实施例中,当第一关节组件内的关节单元5的数量大于第二关节组件内的关节单元5的数量,此结构的线驱运动模块,柔性较佳,第一关节组件内相邻的关节单元5需要转动的角度变小,其在传递自转的过程中,相邻的关节单元5转动角度越小,其更加有利于自转的传动。此时,在保持第一端面111与第二端面211在空间上原有呈平行设置或呈夹角延伸相交设置的位置关系下,可通过驱动机构作用第一转接结构1,使第一关节组件进行屈伸动作以调整线驱运动模块的姿态,此时,第二关节组件与第二转接结构2保持原有姿态不变。
本实施例中,当第一关节组件内的关节单元5的数量与第二关节组件内的关节单元5的数量相同,此结构的线驱运动模块,第一关节组件与第二关节组件之间的传动连续,运动一致同步,使用 操作简单。
本实施例中,当第一关节组件内的关节单元5的数量小于第二关节组件内的关节单元5的数量,此结构的线驱运动模块,第一关节组件内相邻的关节单元5间连接紧密,结构紧凑,其连接具有良好的刚度,有利于促进其连接强度。
本实施例提供的线驱运动模块,控制线6设置有两条或更多,所有控制线6沿定位结构3的轴线方向旋转对称设置。
本实施例中,控制线6可选用弹性纤维绳、镍钛丝等弹性材料,以达到控制线6的带动关节组件与第二转接结构2的目的,进而实现线驱运动模块联动的功能。在初始状态下,当需要将定位结构3两端的关节单元5进行同步弯曲动作时,将所有控制线6的长度设置为相同,其有利于促进线驱运动模块传动联动弯曲相对应一致。
在本实施例中,如图1所示,以四条控制线6为例,四条控制线6分别穿设分布在线驱运动模块上,四条控制线6的弹性系数一致。在本实施例中,控制线6的两端分别与第一转接结构1和第二转接结构2固定连接,控制线6穿设于所有关节单元5和定位结构3上,且与关节单元和定位结构3活动连接。
本实施例提供的线驱运动模块,控制线6在第一转接结构1运动牵引下,可将邻接的关节单元5以及第二转接本体21进行相应转动调整,以适配第一转接结构1的运动,线驱运动模块通过控制线6的中间段抵接在定位本体31上,第一转接结构1牵引控制线6一端运动时,使控制线6另一端所在的第二转接结构2执行适配的动作,从而实现联动弯曲过程。
本实施例提供的线驱运动模块,第一转接结构1与第二转接结构2相同,以第一转接结构1为例,如图3与图4所示,第一转接结构1还包括装配孔113与固定部114,装配孔113内穿设控制线6,固定部114与装配孔113邻接设置,固定部114与控制线6的一端固定连接,固定部114与控制线6之间的连接包括但不限于焊接、粘接和通过紧固连接件的锁定。
本实施例提供的线驱运动模块,如图7至图9所示,定位结构3还包括成型设置在定位本体31内的限位通道32,限位通道32用于供控制线6穿设。限位通道32的数量为两个或更多,且限位通道32的数量与控制线6的数量相同,通过限位通道32对控制线6的运动进行限位导向。
本实施例提供的线驱运动模块,对于定位本体31的长度、材料不作具体限定,定位本体31的材料可为钢管、医用塑料管等,长度与材料根据实际应用场合选取适配。
本申请提供的线驱运动模块,如图5与图6所示,任一转接结构具有与其延伸方向同向延伸的第二连接孔112,如图7与图10所示,定位结构3还包括与其延伸方向同向延伸的第一连接孔311,如图14与图15所示,任一关节单元5具有芯孔522,所有芯孔522、所有第二连接孔112以及第一连接孔311共同构成介入通道,介入通道适于外接管件穿设。在转接结构、关节组件以及定位结构3上配置相适配的孔,旨在构成用于医疗等目的介入通道,通过介入通道形成的操作空间,可在介入通道内连接柔性的管件,在线驱运动模块弯曲变化时,使管件共同弯曲,以满足期望的工况。
本实施例提供的线驱运动模块,如图10所示,限位通道32的延伸方向与定位本体31的延伸方向平行设置,限位通道32为直通通道。如图11与图12所示,线驱运动模块具有第一转接结构1受驱动机构驱动作用下牵引控制线6,以带动第二转接结构2和关节组件同步相对第一转接结构1联动弯曲呈S形运动的第一弯曲状态。第一端面111与第二端面211始终保持平行设置,可通过操作第一端面111的位置,使第二端面211执行相应的动作。
如图11与图12所示,在第一弯曲状态下,第一转接结构1与第二转接结构2在X-Y平面上相向运动,第一转接结构1与第二转接结构2相对反向弯曲,使关节组件可达到期望的动作姿态以及S形弯曲动作过程中的位置,以满足需求的使用工况。
本申请提供的线驱运动模块,线驱运动模块中第一转接结构1以及第一关节组件可相对第二转接结构2以及第二关节组件发生弯曲,驱动机构作用第一转接结构1相对定位结构3在三维空间内产生的位移,通过第一转接结构1与定位结构3之间相邻连接的关节单元5彼此间的转动以及控制线6自身弹性伸缩进行补偿实现,使第一关节组件进行柔性屈伸动作;此时,第一端面111与第二端面211保持在空间上原有呈平行设置的位置关系,第二转接结构2以及第二关节组件保持原有姿态不变。在第一关节组件柔性活动的范围内,驱动机构可驱动作用第一转接结构1,使线驱运动模块在其S形弯曲动作过程中的位置对第一关节组件进行屈伸调节,从而使第一关节组件可达到期望的动作姿态以及屈伸动作过程中的位置,以满足需求的使用工况。相应地,可先使驱动机构驱动作用第一转接结构1,将第一关节组件进行屈伸调节,再使驱动机构驱动作用第一转接结构1,将整体线驱运动模块发生S形弯曲动作,从而满足所需工况。
作为本实施例一种可替换的实施方式,在定位结构3上的第一衔接部33与第二衔接部34,任一衔接部可由关节单元5形成,以起到传递动力与扭矩的目的。通过将一个或两个关节单元5直接固定在定位结构3沿第一方向的端部,其固定方式可为一体成型、焊接、螺纹连接或插销连接等方式,该关节单元5与关节组件相串联活动连接。
作为本实施例一种可替换的实施方式,在第一转接结构1的第三衔接部12和第二转接结构2的第四衔接部22中,任一衔接部可由关节单元5形成,以起到传递动力与扭矩的目的。通过将一关节单元5直接固定在第一转接结构1的远端或第二转接结构的近端,其固定方式可为一体成型、焊接、 螺纹连接或插销连接等方式,该关节单元5与关节组件相串联活动连接。
需要说明的是,线驱运动模块可将其能达到的动作姿态中任意一个姿态为驱动机构驱动的初始动作位置,线驱运动模块具有灵活操作,运动连贯稳定的优点。
本实施例提供的线驱运动模块,通过定位结构3定位导向控制线6的运动,定位结构3两端连接的关节组件与转接结构以定位结构3为基准进行弯曲变换,线驱运动模块在切换弯曲状态与初始状态时,第一转接结构1与第二转接结构2围绕定位结构3进行相应运动,通过控制线6的连接传递作用力与力矩,可促使第二转接结构2与第一转接结构1进行同步联动,以使第二转接结构2达到期望的运动动作以及位置,通过整体模块的结构优化设计,提高控制线6带动关节单元5的稳定性,其运动连贯,可避免引起相邻关节之间的微小跳动误差。
实施例2
本实施例提供一种线驱运动模块,其与实施例1提供的线驱运动模块的区别在于:限位通道32为非直通通道的形状,如图17所示,在本实施例中,限位通道32为四个,与四条控制线6相适配活动连接,四个限位通道32旋转对称分布在定位本体31上,以促进连接的稳定性以及达到期望的传动动作。
本实施例提供的线驱运动模块,如图18至图20所示,限位通道32具有靠近第一转接结构1一侧的第一引线口3201与靠近第二转接结构2一侧的第二引线口3202,第一引线口3201与定位结构3的轴线的所在的第一平面、与第二引线口3202与定位结构3的轴线的所在的第二平面呈90度夹角;通过限位通道32改变控制线6的运动以及受力情况,使控制线6在受到第一转接结构1对的牵引时,自动作用第二转接结构2以及连接在定位结构3与第二转接结构2之间的关节组件,使控制线6使定位结构3两端连接的关节组件与转接结构以定位结构3为基准进行弯曲变换,带动第二转接结构2和关节组件同步相对第一转接结构1联动弯曲呈异面S形运动的第二弯曲状态。
以其中一个限位通道32为例,如图17与图18所示,限位通道32包括第一直线段321、第二直线段322以及弯曲段323;第一直线段321设置在定位本体31上靠近第一转接本体11的一侧,第二直线段322设置在定位本体31上靠近第二转接本体21的一侧;第一直线段321的延伸方向和第二直线段322的延伸方向与定位本体31的延伸方向平行设置;弯曲段323连通设置在第一直线段321与第二直线段322之间,第一引线口3201配置在第一直线段321的近端,第二引线口3202配置在第一直线段321的远端。
在第二弯曲状态下,例如:当外力作用第一转接结构1在图1示出的X轴延伸方向移动时,第一转接结构1以及第一关节组件共同在X轴延伸方向弯曲运动,此时,在控制线6的传动作用下,第二转接结构2以及第二关节组件共同在图1示出的Y轴延伸方向弯曲运动,第一关节组件的弯曲方向与第二关节组件的弯曲方向在X-Y平面上的投影呈90度设置,可使关节组件可达到期望的动作姿态以及异面S形曲线动作过程中的位置,以满足需求的使用工况。
本申请提供的线驱运动模块,线驱运动模块中第一转接结构1以及第一关节组件可相对第二转接结构2以及第二关节组件发生弯曲,驱动机构作用第一转接结构1相对定位结构3在三维空间内产生的位移,通过第一转接结构1与定位结构3之间相邻连接的关节单元5彼此间的转动以及控制线6自身弹性伸缩进行补偿实现,使第一关节组件进行柔性屈伸动作;此时,第一端面111与第二端面211保持在空间上原有呈平行设置或呈夹角延伸相交设置的位置关系,第二转接结构2以及第二关节组件保持原有姿态不变。在第一关节组件柔性活动的范围内,驱动机构可驱动作用第一转接结构1,使线驱运动模块在其异面S形动作过程中的位置对第一关节组件进行屈伸调节,从而使第一关节组件可达到期望的动作姿态以及屈伸动作过程中的位置,以满足需求的使用工况。相应地,可先使驱动机构驱动作用第一转接结构1,将第一关节组件进行屈伸调节,再使驱动机构驱动作用第一转接结构1,将整体线驱运动模块发生异面S形弯曲动作,从而满足所需工况。
实施例3
本实施例提供的线驱运动模块,其与实施例1提供的线驱运动模块的区别在于:限位通道32为非直通通道的形状,如图21与图22所示,在本实施例中,限位通道32为四个,与四条控制线6相适配活动连接,四个限位通道32旋转对称分布在定位本体31上,以促进连接的稳定性以及达到期望的传动动作。
本实施例提供的线驱运动模块,如图22所示,限位通道32具有靠近第一转接结构1一侧的第三引线口3203与靠近第二转接结构2一侧的第四引线口3204,第三引线口3203与定位结构3的轴线的所在的第三平面、与第四引线口3204与定位结构3的轴线的所在的第四平面呈180度夹角;通过限位通道32改变控制线6的运动以及受力情况,使控制线6在受到第一转接结构1对的牵引时,自动作用第二转接结构2以及连接在定位结构3与第二转接结构2之间的关节组件,使控制线6使定位结构3两端连接的关节组件与转接结构以定位结构3为基准进行弯曲变换,带动第二转接结构2和关节组件同步相对第一转接结构1联动弯曲呈C形运动的第三弯曲状态。
以其中一个限位通道32为例,如图22所示,限位通道32包括第一直线段321、第二直线段322以及弯曲段323;第一直线段321的延伸方向和第二直线段322的延伸方向与定位本体31的延伸方向平行设置;弯曲段323连通设置在第一直线段321与第二直线段322之间,第三引线口3203配置在第一直线段321的近端,第四引线口3204配置在第一直线段321的远端。
在第三弯曲状态下,第一转接结构1与第二转接结构2在周向平面沿定位本体31的径向平面相靠近,以使关节组件可达到期望的动作姿态以及C形弯曲动作过程中的位置,以满足需求的使用工况。
本申请提供的线驱运动模块,线驱运动模块中第一转接结构1以及第一关节组件可相对第二转接结构2以及第二关节组件发生弯曲,驱动机构作用第一转接结构1相对定位结构3在三维空间内产生的位移,通过第一转接结构1与定位结构3之间相邻连接的关节单元5彼此间的转动以及控制线6自身弹性伸缩进行补偿实现,使第一关节组件进行柔性屈伸动作;此时,第一端面111与第二端面211保持在空间上原有呈平行设置或呈夹角延伸相交设置的位置关系,第二转接结构2以及第二关节组件保持原有姿态不变。在第一关节组件柔性活动的范围内,驱动机构可驱动作用第一转接结构1,使线驱运动模块在其C形弯曲动作过程中的位置对第一关节组件进行屈伸调节,从而使第一关节组件可达到期望的动作姿态以及屈伸动作过程中的位置,以满足需求的使用工况。相应地,可先使驱动机构驱动作用第一转接结构1,将第一关节组件进行屈伸调节,再使驱动机构驱动作用第一转接结构1,将整体线驱运动模块发生C形弯曲动作,从而满足所需工况。
实施例4
一种微创手术钳,包括配置有实施例1、实施例2或实施例3的线驱运动模块,因此,其亦具有实施例1、实施例2以及实施例3所带来的优点,在具体使用过程中,当线驱运动模块进行自转时,可通过支撑环4与定位结构3转动连接,当线驱运动模块进行联动弯曲时,可将支撑环4与定位结构3固定。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (16)

  1. 一种线驱运动模块,其特征在于,包括:
    相间隔设置的第一转接结构(1)与第二转接结构(2),所述第一转接结构(1)适于与外设驱动机构连接,所述第二转接结构(2)适于与操作机构连接;
    定位结构(3),适于与外接支撑环(4)相连接,所述定位结构(3)设置在所述第一转接结构(1)和所述第二转接结构(2)之间;
    关节组件,所述关节组件包括多个相互连接的关节单元(5),相邻的所述关节单元(5)被配置为相互活动连接,且所述关节组件机械耦合连接在任一所述转接结构与所述定位结构(3)之间;
    以及至少两条控制线(6),所述控制线(6)的两端分别与所述第一转接结构(1)和所述第二转接结构(2)固定连接,所述控制线(6)穿设于所有关节单元(5)和所述定位结构(3)上,且与所述关节单元(5)和所述定位结构(3)活动连接;
    所述线驱运动模块具有所述第一转接结构(1)受外力的作用下牵引所述控制线(6),以带动所述第二转接结构(2)和所述关节组件相对所述第一转接结构(1)联动弯曲的弯曲状态以及所述第一转接结构(1)、所述定位结构(3)和所述第二转接结构(2)同轴线设置的初始状态,所述线驱运动模块在所述弯曲状态与所述初始状态切换设置。
  2. 根据权利要求1所述的线驱运动模块,其特征在于,所述定位结构(3)包括:
    定位本体(31)以及成型设置在所述定位本体(31)内的至少两个限位通道(32),所述限位通道(32)用于供所述控制线(6)穿设。
  3. 根据权利要求2所述的线驱运动模块,其特征在于,
    所述限位通道(32)的延伸方向与所述定位本体(31)的延伸方向平行设置;
    所述线驱运动模块具有所述第一转接结构(1)受外力的作用下牵引所述控制线(6),以带动所述第二转接结构(2)和所述关节组件同步相对所述第一转接结构(1)联动弯曲呈S形运动的第一弯曲状态。
  4. 根据权利要求3所述的线驱运动模块,其特征在于,在所述第一弯曲状态下,所述第一转接本体远离连接所述关节单元(5)一侧的第一端面(111)与所述第二转接本体远离连接所述关节单元(5)一侧的第二端面(211)相平行设置。
  5. 根据权利要求2所述的线驱运动模块,其特征在于,任一所述限位通道(32)具有靠近所述第一转接结构(1)一侧的第一引线口(3201)与靠近所述第二转接结构(2)一侧的第二引线口(3202),所述第一引线口(3201)与所述定位结构(3)的轴线的所在的第一平面、与所述第二引线口(3202)与所述定位结构(3)的轴线的所在的第二平面呈90度夹角;
    所述线驱运动模块具有所述第一转接结构(1)受外力的作用下牵引所述控制线(6),以带动所述第二转接结构(2)和所述关节组件同步相对所述第一转接结构(1)联动弯曲呈异面S形运动的第二弯曲状态。
  6. 根据权利要求2所述的线驱运动模块,其特征在于,任一所述限位通道(32)具有靠近所述第一转接结构(1)一侧的第三引线口(3203)与靠近所述第二转接结构(2)一侧的第四引线口(3204),所述第三引线口(3203)与所述定位结构(3)的轴线的所在的第三平面、与所述第四引线口(3204)与所述定位结构(3)的轴线的所在的第四平面呈180度夹角;
    所述线驱运动模块具有所述第一转接结构(1)受外力的作用下牵引所述控制线(6),以带动所述第二转接结构(2)和所述关节组件同步相对所述第一转接结构(1)联动弯曲呈C形运动的第三弯曲状态。
  7. 根据权利要求2所述的线驱运动模块,其特征在于,
    所述限位通道(32)包括第一直线段(321)、第二直线段(322)以及弯曲段(323);所述第一直线段(321)设置在所述定位本体(31)上靠近所述第一转接结构(1)的一侧,所述第二直线段(322)设置在所述定位本体(31)上靠近所述第二转接结构(2)的一侧;
    所述第一直线段(321)的延伸方向和所述第二直线段(322)的延伸方向与所述定位本体(31)的延伸方向平行设置;
    所述弯曲段(323)连通设置在所述第一直线段(321)与所述第二直线段(322)之间。
  8. 根据权利要求2所述的线驱运动模块,其特征在于,
    所述定位结构(3)还包括与其延伸方向同向延伸的第一连接孔(311);
    任一转接结构具有与其延伸方向同向延伸的第二连接孔(112);
    任一关节单元(5)具有芯孔(522),所有所述芯孔(522)、所有所述第二连接孔(112)以及所述第一连接孔(311)共同构成介入通道,所述介入通道适于外接管件穿设。
  9. 根据权利要求1-8中任一项所述的线驱运动模块,其特征在于,所述线驱运动模块还具有在所述第一转接结构(1)受外力的作用下转动,以牵引所述控制线(6)并带动所述第二转接结构(2)和所述关节组件与第一转接结构(1)同步扭转的回转状态。
  10. 根据权利要求1-8中任一项所述的线驱运动模块,其特征在于,所述定位结构(3)还包括:
    第一衔接部(33),设置在所述定位本体(31)的靠近第一转接结构(1)的一端,所述第一衔接部(33)与所述关节单元(5)活动连接;
    第二衔接部(34),设置在所述定位本体(31)的靠近所述第二转接结构(2)的一端,所述第二衔接部(34)适于与所述关节单元(5)活动连接;并且/或者
    所述第一转接结构(1)包括第三衔接部(12),所述第三衔接部(12)与所述关节单元(5)活动连接;
    所述第二转接结构(2)包括第四衔接部(22),所述第四衔接部(22)与所述关节单元(5)活动连接。
  11. 根据权利要求1-8中任一项所述的线驱运动模块,其特征在于,任一所述转接结构还包括装配孔(113)与固定部(114),所述装配孔(113)内穿设所述控制线(6),所述固定部(114)与所述装配孔(113)邻接设置,所述固定部(114)与所述控制线(6)的一端固定连接。
  12. 根据权利要求1-8中任一项所述的线驱运动模块,其特征在于,所述线驱运动模块包括至少四条控制线(6),所有所述控制线(6)沿所述定位结构(3)的轴线方向旋转对称。
  13. 根据权利要求1-8中任一项所述的线驱运动模块,其特征在于,所述关节单元(5)包括:
    转动件(51),周向方向上设有限位部(511);
    限位支座(52),与所述转动件(51)固定连接,所述限位支座(52)内具有至少一个供相邻关节单元(5)的所述转动件(51)活动连接的容纳腔(521),所述容纳腔(521)内还具有限位件(53),所述限位件(53)与相邻的关节单元(5)所述限位部(511)配合以限位所述相邻关节单元(5)的转动件(51)轴向转动。
  14. 根据权利要求13所述的线驱运动模块,其特征在于,所述转动件(51)为球体,所述容纳腔(521)的内壁面与邻接的所述关节单元(5)的转动件(51)的外壁面相适配;
    所述限位部(511)设置有两个,两个所述限位部(511)间隔设置,以形成限位所述限位件(53)的装配空间,所述限位件(53)活动连接于所述装配空间;
    所述限位件(53)为柱体,所述柱体的延伸方向与所述限位部(511)所在平面垂直相交设置。
  15. 根据权利要求10所述的线驱运动模块,其特征在于,任一所述衔接部与转动件(51)或限位支座(52)结构相同。
  16. 一种微创手术钳,其特征在于,包括线驱动运动模块,该线驱动运动模块为权利要求1-15中任一项所述的线驱运动模块。
PCT/CN2023/092062 2022-08-31 2023-05-04 一种线驱运动模块及微创手术钳 WO2024045673A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211053319.1A CN115414092A (zh) 2022-08-31 2022-08-31 一种线驱运动模块及微创手术钳
CN202211053319.1 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045673A1 true WO2024045673A1 (zh) 2024-03-07

Family

ID=84199510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092062 WO2024045673A1 (zh) 2022-08-31 2023-05-04 一种线驱运动模块及微创手术钳

Country Status (2)

Country Link
CN (1) CN115414092A (zh)
WO (1) WO2024045673A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115414092A (zh) * 2022-08-31 2022-12-02 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013682A1 (en) * 2000-07-24 2002-02-21 Technische Universiteit Delft Spring and endoscope equipped with such a spring
US20050096694A1 (en) * 2003-10-30 2005-05-05 Woojin Lee Surgical instrument
CN1826083A (zh) * 2003-05-23 2006-08-30 诺瓦尔外科系统公司 用于远程操纵外科手术或诊断工具的活动连接装置
EP3636163A1 (en) * 2017-05-04 2020-04-15 Ajou University Industry-Academic Cooperation Foundation Microsurgical instrument capable of joint motion and rotational motion
CN214907749U (zh) * 2020-12-29 2021-11-30 极限人工智能有限公司 一种椎骨关节结构和柔性器械钳
CN115363698A (zh) * 2022-08-31 2022-11-22 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳
CN115414092A (zh) * 2022-08-31 2022-12-02 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013682A1 (en) * 2000-07-24 2002-02-21 Technische Universiteit Delft Spring and endoscope equipped with such a spring
CN1826083A (zh) * 2003-05-23 2006-08-30 诺瓦尔外科系统公司 用于远程操纵外科手术或诊断工具的活动连接装置
US20050096694A1 (en) * 2003-10-30 2005-05-05 Woojin Lee Surgical instrument
EP3636163A1 (en) * 2017-05-04 2020-04-15 Ajou University Industry-Academic Cooperation Foundation Microsurgical instrument capable of joint motion and rotational motion
CN214907749U (zh) * 2020-12-29 2021-11-30 极限人工智能有限公司 一种椎骨关节结构和柔性器械钳
CN115363698A (zh) * 2022-08-31 2022-11-22 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳
CN115414092A (zh) * 2022-08-31 2022-12-02 精勤智造(苏州)医疗科技有限公司 一种线驱运动模块及微创手术钳

Also Published As

Publication number Publication date
CN115414092A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US11090119B2 (en) Surgical tool with a two degree of freedom wrist
US20220280250A1 (en) Wrist Articulation by Linked Tension Members
CN112370167B (zh) 机器人手术器械臂及适用于各种孔数的微创手术机器人
US11382706B2 (en) Securing an interface element rail of a robotic surgical instrument interface
US9662175B2 (en) Gimbal and levers with equalizer
CN109700537B (zh) 柔性手术器械、操作臂系统及微创手术机器人从手系统
JP6465365B2 (ja) 外科用アーム
US7691098B2 (en) Platform link wrist mechanism
WO2024045673A1 (zh) 一种线驱运动模块及微创手术钳
KR101173619B1 (ko) 내시경 수술용 로봇장치
US10813655B2 (en) Manipulator
WO2024045674A1 (zh) 一种线驱运动模块及微创手术钳
WO2022000709A1 (zh) 微创手术机器人操作工具
WO2018209518A1 (en) Systems, devices, and methods for performing surgical actions via externally driven driving assemblies
US20220125528A1 (en) Surgical instrument and operation robot
KR20140101160A (ko) 링크형 관절부를 갖는 최소 침습 수술 기구
CN117017503A (zh) 一种基于双平面远程运动中心机构的视网膜手术机器人
US20200093504A1 (en) Manipulator
CN113100947B (zh) 一种用于微创手术机器人执行机械臂位姿调整的机构
CN113303912B (zh) 一种基于齿轮齿条传动的模块化蛇形臂
KR101808279B1 (ko) 수술 도구
Liu et al. Development of a Flexible Surgical Manipulator with a Variable Curvature Bendable Joint
CN117159164A (zh) 操作臂、从操作设备及手术机器人
CN115835828A (zh) 外科手术机械臂、柔性臂以及柔性关节
CN116549060A (zh) 一种驱动结构及微创手术钳

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858713

Country of ref document: EP

Kind code of ref document: A1