WO2024045669A1 - 燃料电池及其双极板组件 - Google Patents

燃料电池及其双极板组件 Download PDF

Info

Publication number
WO2024045669A1
WO2024045669A1 PCT/CN2023/091694 CN2023091694W WO2024045669A1 WO 2024045669 A1 WO2024045669 A1 WO 2024045669A1 CN 2023091694 W CN2023091694 W CN 2023091694W WO 2024045669 A1 WO2024045669 A1 WO 2024045669A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate assembly
bipolar plate
width
flow guide
depth
Prior art date
Application number
PCT/CN2023/091694
Other languages
English (en)
French (fr)
Inventor
王仁芳
朱莹
霍森
石伟玉
侯中军
姜贵山
Original Assignee
上海捷氢科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海捷氢科技股份有限公司 filed Critical 上海捷氢科技股份有限公司
Publication of WO2024045669A1 publication Critical patent/WO2024045669A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to the technical field of fuel cell systems and supporting equipment, and specifically relates to a bipolar plate assembly.
  • the present disclosure also relates to a fuel cell using the bipolar plate assembly.
  • bipolar plates As people's research on fuel cells continues to deepen, the power density of the fuel cells themselves has increased significantly, and a large part of the contribution comes from the improvement of the performance of the bipolar plates. Therefore, the design of bipolar plates has always been one of the focuses of technology research and development in the industry.
  • the current mainstream bipolar plate assembly structures all aim to enhance oxygen mass transfer and are developing in the direction of finer and variable periodic flow field structures. Some patents further combine the membrane electrode's own characteristics for design.
  • the current bipolar plate assembly structure has a relatively simple module structure design such as channel modules and reducing modules used for flow diversion. Generally, it is only possible to measure a single aspect of the performance of the bipolar plate assembly. Moderate improvement cannot optimize the overall performance of the bipolar plate assembly, which restricts the improvement of the overall performance of the bipolar plate assembly and even the fuel cell system.
  • the purpose of this disclosure is to provide a bipolar plate assembly that has a better overall structural layout and can improve its overall performance accordingly.
  • Another object of the present disclosure is to provide a fuel cell using the above bipolar plate assembly.
  • a bipolar plate assembly which includes a reference plate body.
  • One end of the reference plate body is provided with a medium inlet, and the other end is provided with a medium outlet.
  • the main extension of the reference plate body A number of separation ridges are provided on the surface, each of the separation ridges is arranged in parallel, and a media channel is formed between two adjacent separation ridges and is connected between the medium inlet and the medium outlet for medium circulation;
  • the separation ridge is provided with a guide groove that connects two adjacent media channels, and a limited-width boss is protruding from the side wall of the separation ridge toward its adjacent media channel.
  • a limited-depth boss is protruding from the bottom of the groove;
  • the main extension surface of the reference plate body is formed with a plurality of diversion zones arranged along its length direction and/or width direction, and any one of the diversion zones is provided with the diversion groove and the width-limiting boss.
  • at least one of the depth-limiting bosses, and the flow guide grooves and/or the width-limiting bosses and/or the depth-limiting bosses located in the same flow guide zone are arranged in an array.
  • the angle between the centerline of the guide groove and the isobar of the static pressure contour of the bipolar plate assembly is 45° to 135°, and each of the guide channels located in the same guide zone
  • the guide grooves are arranged in an array along the extending direction of the separation ridge and in a direction perpendicular to the static pressure contour isobars of the bipolar plate assembly.
  • the angle between the centerline of the width-limiting boss and the isobar of the static pressure contour of the bipolar plate assembly is 45° to 135°, and each position in the same diversion zone is The width-limiting bosses are arranged in an array along the extending direction of the separation ridge and in a direction perpendicular to the static pressure contour isobars of the bipolar plate assembly.
  • every two adjacent width-limiting bosses located on the same separation ridge form a flow guide group, and each of the guides located on the same separation ridge
  • the flow groups and each of the flow guide grooves are alternately arranged along the extension direction of the separation ridge, and any of the flow guide grooves is aligned with the flow guide group located on its adjacent separation ridge.
  • the center line of at least one width-limiting boss in the flow guide group is in contact with the flow guide groove. center lines coincide.
  • the two width-limiting bosses in the same flow guide group are respectively located on two different side walls of the separation ridge, and the two width-limiting bosses in the same flow guide group are Starting direction is opposite.
  • the angle between the centerline of the depth-limiting boss and the isobar of the static pressure contour of the bipolar plate assembly is 45° to 135°, and each position in the same diversion zone is The depth-limiting bosses are arranged in an array along the extension direction of the medium channel and perpendicular to the isobars of the static pressure contour of the bipolar plate assembly.
  • the depth-limiting bosses located in two adjacent media channels are arranged in a staggered manner.
  • the protrusion height of the width-limiting boss is no greater than half of the groove width of the media channel.
  • An embodiment of the present disclosure also provides a fuel cell, including a bipolar plate assembly, the main extended surface of the bipolar plate assembly is aligned with and covered with carbon paper, and the bipolar plate assembly is as described in any one of the above. Bipolar plate assembly.
  • At least one of the guide grooves, the width-limiting boss and the depth-limiting boss is arranged in an array to form a guide zone, each of which is The diversion groove, the width-limiting boss and the depth-limiting boss work together to effectively eliminate the water accumulated at the separation ridge after the medium reaction, and use this water to humidify the gas medium to prevent the gas medium in the diversion zone from drying out.
  • the reaction effect of the medium is optimized; at the same time, different array structures of multiple diversion zones are used to form multi-angle and multi-dimensional flow around the reaction medium such as hydrogen or oxygen that enters through the medium inlet and flows through each medium channel. and diversion effect, so that the medium reaction effect can be optimized accordingly, and the overall performance of the fuel cell can be improved accordingly.
  • the angle between the center line of the guide groove and the static pressure contour isobar of the bipolar plate assembly is 45° to 135°, and they are located in the same direction as the guide groove.
  • Each of the guide grooves in the partition is arranged in an array along the extension direction of the separation ridge and a direction perpendicular to the static pressure contour isobars of the bipolar plate assembly.
  • the static pressure of the medium distributed at different positions between the medium inlet and the medium outlet is marked and organized into a static pressure cloud diagram of the bipolar plate assembly, and the static pressure in the static pressure cloud diagram is Equal positions are connected with lines to obtain the static pressure contour isobars; the center line of each guide groove is arranged correspondingly with reference to the static pressure contour isobars of the bipolar plate assembly, which can further optimize the medium at each guide groove
  • the flow diversion effect can further optimize the medium flow and reaction effect of the bipolar plate assembly, thereby further improving the overall performance of the fuel cell.
  • Figure 1 is a schematic structural diagram of a bipolar plate assembly provided by a specific embodiment of the present disclosure
  • Figure 2 is an enlarged view of the partial structure of part A of the first diversion partition in Figure 1;
  • Figure 3 is a cross-sectional view along the a-a direction in Figure 2;
  • Figure 4 is an enlarged view of the partial structure of part B of the second diversion partition in Figure 1;
  • Figure 5 is a cross-sectional view along b-b direction in Figure 4.
  • Figure 6 is an enlarged view of the partial structure of part C of the third diversion partition in Figure 1;
  • Figure 7 is a cross-sectional view along the c-c direction in Figure 6;
  • Figure 8 is an enlarged view of the partial structure of part D of the fourth diversion partition in Figure 1;
  • Figure 9 is a cross-sectional view along the d-d direction in Figure 8.
  • the core of the embodiments of the present disclosure is to provide a bipolar plate assembly with a better overall structural layout, which can improve its overall performance accordingly; and at the same time, provide a fuel cell using the above bipolar plate assembly. .
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • a first feature "on” or “below” a second feature may include the first and second features in direct contact, or may include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • the first characteristic is
  • the second features "below”, “below” and “below” include the first feature directly below and diagonally below the second feature, or simply mean that the first feature has a smaller horizontal height than the second feature.
  • the terms “upper”, “lower”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside” etc. indicate The orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, which are only for convenience of describing the present disclosure and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation or be configured in a specific orientation. and operation, and therefore cannot be construed as a limitation on the present disclosure.
  • the bipolar plate assembly provided by the embodiment of the present disclosure includes a reference plate body 11.
  • One end of the reference plate body 11 is provided with a medium inlet 111, and the other end is provided with a medium outlet 112.
  • the main body of the reference plate body 11 is A number of dividing ridges 12 are provided on the extension surface. Each dividing ridge 12 is arranged in parallel, and a medium channel 13 is formed between two adjacent dividing ridges 12 and is connected between the medium inlet 111 and the medium outlet 112 for medium circulation;
  • the separation ridge 12 is provided with a guide groove 121 that connects two adjacent media channels 13 .
  • the separation ridge 12 is provided with a limited-width boss 122 protruding toward the side wall of the adjacent media channel 13 .
  • the media channel 13 A limited-depth boss 131 is protruding from the bottom of the groove;
  • the main extension surface of the reference plate body 11 is formed with a number of diversion zones arranged along its length direction and/or width direction. Any flow diversion zone is provided with a diversion groove 121, a width-limiting boss 122, and a depth-limiting boss. At least one of 131, and the guide grooves 121 and/or the width-limiting bosses 122 and/or the depth-limiting bosses 131 located in the same guide zone are arranged in an array.
  • At least one of the guide grooves 121, the width-limiting boss 122 and the depth-limiting boss 131 is arranged in an array to form a guide zone, and each of the guide grooves 121, the width-limiting boss 122 and the depth-limiting boss 131 are arranged in an array.
  • the bosses 131 cooperate to effectively eliminate the water accumulated at the separation ridge 12 after the medium reaction, and use this water to humidify the gas medium to avoid drying of the gas medium in the diversion zone, thereby optimizing the medium reaction effect; at the same time,
  • the reaction medium such as hydrogen or oxygen that enters through the medium inlet 111 and flows through each medium channel 13, so that the medium
  • the reaction effect can be optimized accordingly, and the overall performance of the fuel cell can be improved accordingly.
  • the main extension surface of the reference plate body 11 refers to a single plane enclosed by the two pairs of opposite sides with the longest length on the outer surface of the reference plate body 11 , that is, along the length of the reference plate body 11
  • the plane where the outer wall is located is enclosed by a set of opposite sides extending in the width direction of the reference plate body 11 and a set of opposite sides extending along the width direction of the reference plate body 11 .
  • the two main extension surfaces of the reference plate body 11 are respectively arranged with diversion partitions and corresponding diversion grooves 121, width-limiting bosses 122, depth-limiting bosses 131 and other diversion unit structures to facilitate convection in the air respectively.
  • each diversion partition on the main extension surface of the reference plate body 11 can be arranged along a single direction, and the single direction
  • the arrangement direction may be the length direction of the reference plate body 11, the width direction of the reference plate body 11, the extension direction of the static pressure contour isobars of the bipolar plate assembly, and the vertical direction of the static pressure contour isobars of the bipolar plate assembly.
  • each flow diversion partition can also be arranged in an array according to the coordinated arrangement of two single directions on the main extension surface of the reference plate body 11.
  • the two matching arrangement directions in the array arrangement can be Along the length direction of the reference plate body 11 and the width direction of the reference plate body 11, it can also be along the extending direction of the static pressure contour isobars of the bipolar plate assembly and the vertical direction of the static pressure contour isobars of the bipolar plate assembly.
  • staff can also flexibly adjust and select the specific arrangement of each diversion zone according to specific working conditions and application requirements. In principle, any arrangement can be made as long as the actual application needs of the bipolar plate assembly can be guaranteed. .
  • each flow diversion partition is preferably distributed in equal areas, so as to ensure the collaborative adaptation effect of each flow diversion partition, thereby further optimizing the overall performance of the fuel cell.
  • the angle between the center line of the guide groove 121 and the isobar of the static pressure contour of the bipolar plate assembly is 45° to 135°, and each guide groove 121 located in the same guide zone is along the dividing ridge.
  • the extension direction of 12 and the direction of the isobars of the static pressure contour perpendicular to the bipolar plate assembly are arranged in an array.
  • the static pressure of the medium distributed at different positions between the medium inlet 111 and the medium outlet 112 is marked and organized into a static pressure cloud diagram of the bipolar plate assembly, and the static pressure in the static pressure cloud diagram is Equal positions are connected with lines to obtain the static pressure contour isobars; the center line of each guide groove 121 is arranged correspondingly with reference to the static pressure contour isobars of the bipolar plate assembly, which can further optimize each guide groove 121
  • the medium flow diversion effect can further optimize the medium flow and reaction effect of the bipolar plate assembly, thereby further improving the overall performance of the fuel cell.
  • the guide groove 121 can connect two adjacent media channels 13 to each other, thereby conducting the medium in the upstream media channel 13 to the downstream media channel 13 in order to optimize the flow rate in each media channel 13 .
  • the angle between the centerline of the width-limiting boss 122 and the isobar of the static pressure contour of the bipolar plate assembly is 45° to 135°.
  • the extension direction of the separation ridges 12 and the direction perpendicular to the static pressure contour isobars of the bipolar plate assembly are arranged in an array.
  • the width-limiting boss 122 can move the corresponding position
  • the width of the media channel 13 is appropriately narrowed to form a variable diameter channel structure, thereby optimizing the medium flow effect in the media channel 13 .
  • every two adjacent width-limiting bosses 122 located on the same separation ridge 12 form a flow guide group.
  • Each flow guide group and each flow guide groove 121 located on the same separation ridge 12 are formed along the separation ridge 12 .
  • the extension directions are arranged alternately, and any flow guide groove 121 is aligned with the flow guide group located on its adjacent separation ridge 12;
  • the two width-limiting bosses 122 in the same flow guide group are respectively located on two different side walls of the separation ridge 12 , and the two width-limiting bosses 122 in the same flow guide group have opposite protruding directions.
  • the guide groove 121 is aligned with the upwardly protruding width-limiting boss 122 located on the adjacent separation ridge 12 below to form the guide unit 1. ;
  • the guide groove 121 is aligned with the downwardly protruding width-limiting boss 122 on the adjacent separation ridge 12 above it to form a guide unit II; the downwardly protruding limiter on the side wall of the separation ridge 12
  • the wide boss 122 forms the flow guide unit III; the upwardly protruding width-limiting boss 122 on the side wall of the separation ridge 12 forms the flow guide unit IV.
  • the convex structures of the width-limiting bosses 122 of the diversion units I and IV need to be matched consistently, and the diversion units should be aligned along the There is no repeated pairing in the arrangement direction; the convex structures of the width-limiting bosses 122 of the flow-guiding units II and III need to be paired consistently, and each flow-guiding unit is not paired repeatedly; in the flow-guiding units I and II, the convex structures of the width-limiting bosses 122 The rising part is aligned with the guide groove 121.
  • the center point of the width-limiting boss 122 is on the extension line of the center line of the guide groove 121.
  • the center line of the guide groove 121 is isobaric with the static pressure contour of the bipolar plate assembly.
  • the line is maintained at an included angle of 90° ⁇ 5°, and the included angle between the center line of the guide groove 121 and the long side of the reference plate body 11 is 99.4°;
  • the protrusion height is not greater than 1/2 of the width of the media channel 13. Considering that the channel width of the media channel 13 is 1mm under normal working conditions, the protrusion height of the width-limiting boss 122 is selected to be 0.5mm; the guide groove The width of 121 is not greater than the width of the media channel 13. For general working conditions, the width of the guide channel 121 is selected to be 1mm; when the equipment is assembled, the two main extension surfaces of the reference plate body 11 are aligned and packaged.
  • the carbon paper will be concave toward the bottom of the media channel 13, resulting in a state where the carbon paper moderately intrudes into the media channel 13.
  • the guide groove 121 is formed along the direction perpendicular to the reference plate body.
  • the depth in the direction of the main extension surface of 11 is not less than the depth of the carbon paper intruding into the media channel 13, and it should be ensured that the distance between the bottom of the guide groove 121 and the carbon paper is not less than 0.1mm, then the guide groove 121
  • the depth is selected as 0.2mm; the flow guide units I and II are alternately arranged along the extension direction of the media channel 13, the flow guide units III and IV are alternately arranged along the extension direction of the media channel 13, and the flow guide units III and IV are alternately arranged along the extension direction of the media channel 13.
  • a single type of flow guide unit is not adjacent, that is, two types of flow guide units appear alternately along the extension direction of the medium channel 13, and the same type of flow guide unit between different media channels 13 and the separation ridge 12
  • the units are arranged on the same straight line, and the flow guide units I and IV are alternately arranged with the flow guide units II and III; along the extension direction of the medium channel 13, the arrangement interval period of the same flow guide units is twice the width of the separation ridge 12 and 30mm, considering that the width of the separation ridge 12 is 1mm under normal working conditions, the arrangement interval period of the same flow guide unit is selected to be 18mm.
  • the angle between the center line of the depth-limiting boss 131 and the static pressure contour of the bipolar plate assembly is 45° to 135°.
  • the extending direction of the grooves 13 and the direction perpendicular to the static pressure contour isobars of the bipolar plate assembly are arranged in an array.
  • the depth-limiting boss 131 can locally adjust the depth of the media channel 13, thereby optimizing the media circulation effect in the media channel 13 through the depth change of the media channel 13, thereby optimizing the structural layout of the bipolar plate assembly. , and the overall performance of the fuel cell can be correspondingly improved.
  • the depth-limiting bosses 131 located in two adjacent medium channels 13 are arranged in a staggered manner.
  • the depth-limiting boss 131 is arranged at the bottom of the medium channel 13 and is connected between the two adjacent separation ridges 12. The center line of the depth-limiting boss 131 is maintained at the isobars of the static pressure contour of the bipolar plate assembly.
  • the angle between the center line of the depth-limiting boss 131 and the long side of the reference plate 11 is 120°; the depth-limiting boss 131 is relative to the bottom of the medium channel 13
  • the height is no greater than the difference between the depth of the media channel 13 and the depth of the carbon paper intruding into the media channel 13, and the height of the depth-limiting boss 131 can be less than 10% of the depth of the media channel 13, considering that The depth of the media channel 13 under general working conditions is 0.4mm, so the height of the depth-limiting boss 131 is selected to be 0.03mm.
  • the distance between the top surface of the depth-limiting boss 131 and the top notch end of the media channel 13 is 0.37mm; the layout period of the depth-limiting boss 131 is designed based on the flow resistance requirements of each medium slot 13 of the bipolar plate assembly and the resistance coefficient at each bump. Generally, the layout of the depth-limiting boss 131 The period is 37 mm, and the depth-limiting bosses 131 between adjacent media channels 13 are arranged in a staggered manner.
  • the depth-limiting boss 131 is arranged at the bottom of the medium channel 13 and is connected between the two adjacent separation ridges 12.
  • the center line of the depth-limiting boss 131 is maintained at the isobars of the static pressure contour of the bipolar plate assembly.
  • the angle between the center line of the depth-limiting boss 131 and the long side of the reference plate 11 is 105°; the depth-limiting boss 131 is relative to the bottom of the medium channel 13
  • the height of the media channel 13 is not greater than the difference between the depth of the media channel 13 and the depth of the carbon paper invading the media channel 13.
  • the depth limit boss 131 The height is selected as 0.15mm.
  • the distance between the top surface of the depth-limiting boss 131 and the top notch end of the medium channel 13 is 0.25mm; the layout period of the depth-limiting boss 131 relies on each medium of the bipolar plate assembly.
  • the flow resistance requirements of the channel 13 and the resistance coefficient at each bump are designed.
  • the arrangement period of the depth-limiting bosses 131 is 18mm, and the depth-limiting bosses 131 between adjacent media channels 13 are cross-dislocated. arrangement.
  • the depth-limiting boss 131 is arranged at the bottom of the medium channel 13 and is connected between the two adjacent separation ridges 12.
  • the center line of the depth-limiting boss 131 is maintained at the isobars of the static pressure contour of the bipolar plate assembly.
  • the angle between the center line of the depth-limiting boss 131 and the long side of the reference plate 11 is 90°; the depth-limiting boss 131 is relative to the bottom of the medium channel 13
  • the height of the media channel 13 is not greater than the difference between the depth of the media channel 13 and the depth of the carbon paper invading the media channel 13.
  • the depth limit boss 131 The height is selected as 0.25mm.
  • the distance between the top surface of the depth-limiting boss 131 and the top notch end of the medium channel 13 is 0.15mm; the layout period of the depth-limiting boss 131 relies on each medium of the bipolar plate assembly.
  • the flow resistance requirements of the channel 13 and the resistance coefficient at each bump are designed.
  • the arrangement period of the depth-limiting bosses 131 is 12.5mm, and the depth-limiting bosses 131 between adjacent media channels 13 intersect. Misplaced arrangement.
  • each guide zone is not limited to the guide groove 121, the width-limiting boss 122, and the depth-limiting boss 131 as shown in the figure. , it can also be combined with various existing conventional channel modules and variable diameter modules to form zonal flow field structures such as DC field, meandering flow field, and three-dimensional flow field.
  • the staff can customize it according to actual working conditions and application needs. Flexible adjustment and selection are possible, in principle, as long as they can meet the structural layout requirements of the bipolar plate assembly and ensure the actual application needs of the fuel cell.
  • the fuel cell provided by the embodiments of the present disclosure includes a bipolar plate assembly.
  • the main extended surface of the bipolar plate assembly is aligned with and covered with carbon paper.
  • the bipolar plate assembly is as in the above embodiment.
  • Bipolar plate assembly in .
  • the overall structural layout of the bipolar plate assembly of the fuel cell is better, which can correspondingly improve the overall performance of the fuel cell.
  • the guide grooves, the width-limiting boss and the depth-limiting boss is arranged in an array to form a guide partition, and each guide is arranged in an array.
  • the flow channel, the width-limiting boss and the depth-limiting boss work together to effectively eliminate the water accumulated at the separation ridge after the medium reaction, and use this water to humidify the gas medium to prevent the gas medium in the diversion zone from drying out.
  • the diversion effect enables the medium reaction effect to be optimized accordingly, and the overall performance of the fuel cell to be improved accordingly.
  • the fuel cell using the above-mentioned bipolar plate assembly provided by the embodiment of the present disclosure has a better overall structural layout of the bipolar plate assembly, which can correspondingly improve the overall performance of the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

提供了一种双极板组件和应用上述双极板组件的燃料电池。双极板组件将导流槽、限宽凸台以及限深凸台中的至少一种阵列布置,形成导流分区,各导流槽、限宽凸台以及限深凸台协同配合。

Description

燃料电池及其双极板组件
相关申请的交叉引用
本申请要求在2022年08月30日在中国提交的中国专利申请号202211048138.X的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及燃料电池系统及其配套器材技术领域,具体涉及一种双极板组件。本公开还涉及一种应用该双极板组件的燃料电池。
背景技术
随着人们对燃料电池研究的不断深入,燃料电池自身功率密度大幅提升,其中很大一部分贡献来源于双极板性能的提升。因此,双极板的设计一直是业内的技术研发重点之一。
目前主流的双极板组件结构,均以强化氧气传质为目标,朝着细密化及可变周期流场结构方向发展,部分专利进一步结合了膜电极自身特性进行设计。但受其自身结构所限,现阶段的双极板组件结构中用于导流的通道模块和变径模块等模块结构设计较为单一,一般仅能够对双极板组件的单一方面的性能进行适度提高,无法对双极板组件的综合性能进行整体优化,制约了双极板组件乃至燃料电池系统的整体性能提升。
因此,如何优化双极板组件的结构布局,提高其整体性能是本领域技术人员目前需要解决的重要技术问题。
发明内容
本公开的目的是提供一种双极板组件,该双极板组件的整体结构布局较好,能够使其整体性能得以相应提高。本公开的另一目的是提供一种应用上述双极板组件的燃料电池。
为解决上述技术问题,本公开实施例提供一种双极板组件,包括基准板体,所述基准板体的一端设置有介质入口,另一端设置有介质出口,所述基准板体的主延展面上设置有若干分隔脊,各所述分隔脊平行布置,且相邻两所述分隔脊之间形成连通于所述介质入口与所述介质出口之间供介质流通的介质通槽;
所述分隔脊上设置有连通相邻两所述介质通槽的导流槽,所述分隔脊上朝向其相邻的介质通槽的侧壁上凸出设置有限宽凸台,所述介质通槽的槽底凸出设置有限深凸台;
所述基准板体的主延展面上形成若干沿其长度方向和/或宽度方向排布的导流分区,任一所述导流分区内设置有所述导流槽、所述限宽凸台、所述限深凸台中的至少一种,且位于同一所述导流分区内的所述导流槽和/或所述限宽凸台和/或所述限深凸台阵列排布。
在一些实施例中,所述导流槽的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述导流槽沿所述分隔脊的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
在一些实施例中,所述限宽凸台的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述限宽凸台沿所述分隔脊的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
在一些实施例中,同一所述导流分区内,位于同一所述分隔脊上的每两个相邻所述限宽凸台组成导流组,位于同一所述分隔脊上的各所述导流组与各所述导流槽沿所述分隔脊的延伸方向交替布置,任一所述导流槽与位于其相邻的分隔脊上的所述导流组对位配合。
在一些实施例中,任意一对对位配合的所述导流槽与所述导流组中,所述导流组中的至多一个所述限宽凸台的中心线与所述导流槽的中心线重合。
在一些实施例中,同一所述导流组中的两个限宽凸台分别位于分隔脊的两个不同的侧壁上,且同一所述导流组中的两个限宽凸台的凸起方向相反。
在一些实施例中,所述限深凸台的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述限深凸台沿所述介质通槽的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
在一些实施例中,同一所述导流分区内,位于相邻的两个所述介质通槽内的各所述限深凸台错位布置。
在一些实施例中,所述限宽凸台的凸起高度不大于所述介质通槽的槽宽的一半。
本公开实施例还提供一种燃料电池,包括双极板组件,所述双极板组件的主延展面上对位覆盖有碳纸,所述双极板组件为如上述任一项所述的双极板组件。
相对上述背景技术,本公开实施例所提供的双极板组件,其工作运行过程中,将导流槽、限宽凸台以及限深凸台中的至少一种阵列布置,形成导流分区,各导流槽、限宽凸台以及限深凸台协同配合,有效排除介质反应后积聚于分隔脊处的水,并利用这些水对气体介质进行增湿,避免导流分区内的气体介质干燥,以此优化介质反应效果;同时,利用多个导流分区的不同阵列结构,对经由介质入口通入并流经各介质通槽内的氢气或氧气等反应介质形成多角度、多维度的绕流和导流作用,使得介质反应效果得以相应优化,燃料电池的整体性能得以相应提高。
在本公开实施例的另一优选方案中,所述导流槽的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述导流槽沿所述分隔脊的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。在具体工况应用中,将分布于介质入口与介质出口间不同位置处的介质的静压测定标出并整理为所述双极板组件的静压云图,将该静压云图中的静压相等的位置用线相连,即可得到静压云图等压线;将各导流槽的中心线参照双极板组件的静压云图等压线对应布置,能够进一步优化各导流槽处的介质导流效果,以此进一步优化所述双极板组件的介质流动和反应效果,进而使得所述燃料电池的整体性能得以进一步提高。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种具体实施方式所提供的双极板组件的结构示意图;
图2为图1中第一个导流分区的A部分的局部结构放大图;
图3为图2中a-a向的剖视图;
图4为图1中第二个导流分区的B部分的局部结构放大图;
图5为图4中b-b向的剖视图;
图6为图1中第三个导流分区的C部分的局部结构放大图;
图7为图6中c-c向的剖视图;
图8为图1中第四个导流分区的D部分的局部结构放大图;
图9为图8中d-d向的剖视图。
其中:
11-基准板体;111-介质入口;112-介质出口;12-分隔脊;121-导流槽;122-限宽凸台;
13-介质通槽;131-限深凸台。
具体实施方式
本公开实施例的核心是提供一种双极板组件,该双极板组件的整体结构布局较好,能够使其整体性能得以相应提高;同时,提供一种应用上述双极板组件的燃料电池。
为了使本技术领域的人员更好地理解本公开方案,下面结合附图和具体实施方式对本公开作进一步的详细说明。
需要提前说明的是,在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
此外,在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在
第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
请参考图1,并结合参考图2至图9。
在具体实施方式中,本公开实施例所提供的双极板组件,包括基准板体11,基准板体11的一端设置有介质入口111,另一端设置有介质出口112,基准板体11的主延展面上设置有若干分隔脊12,各分隔脊12平行布置,且相邻两分隔脊12之间形成连通于介质入口111与介质出口112之间供介质流通的介质通槽13;
分隔脊12上设置有连通相邻两介质通槽13的导流槽121,分隔脊12上朝向其相邻的介质通槽13的侧壁上凸出设置有限宽凸台122,介质通槽13的槽底凸出设置有限深凸台131;
基准板体11的主延展面上形成若干沿其长度方向和/或宽度方向排布的导流分区,任一导流分区内设置有导流槽121、限宽凸台122、限深凸台131中的至少一种,且位于同一导流分区内的导流槽121和/或限宽凸台122和/或限深凸台131阵列排布。
其工作运行过程中,将导流槽121、限宽凸台122以及限深凸台131中的至少一种阵列布置,形成导流分区,各导流槽121、限宽凸台122以及限深凸台131协同配合,有效排除介质反应后积聚于分隔脊12处的水,并利用这些水对气体介质进行增湿,避免导流分区内的气体介质干燥,以此优化介质反应效果;同时,利用多个导流分区的不同阵列结构,对经由介质入口111通入并流经各介质通槽13内的氢气或氧气等反应介质形成多角度、多维度的绕流和导流作用,使得介质反应效果得以相应优化,燃料电池的整体性能得以相应提高。
应当理解的是,基准板体11的主延展面,是指基准板体11的外表面上由长度最大的两组对边围合而成的单一平面,也即,沿基准板体11的长度方向延伸的一组对边与沿基准板体11的宽度方向延伸的一组对边所围合而成的外壁所在的平面。实际应用中,基准板体11的两个主延展面上分别布置导流分区及相应的导流槽121、限宽凸台122、限深凸台131等导流单元结构,以便分别对流通于基准板体11的两侧主延展面上的燃料和氧化剂等介质进行对应的导流效果优化,提升所述双极板组件乃至所述燃料电池的整体性能。本文中其余部分涉及基准板体11的主延展面的表述均可参照此处对应理解,不再赘述。
应当说明的是,考虑到实际应用中具体工况条件和设备作业需求的不同,各导流分区在基准板体11的主延展面上的排布方式,可以是沿单一方向排布,该单一排布方向可以是基准板体11的长度方向、基准板体11的宽度方向、双极板组件的静压云图等压线的延伸方向、双极板组件的静压云图等压线的垂直方向中的任一种;各导流分区在基准板体11的主延展面上也可以按照两个单一方向的协同布置形成阵列排布,阵列排布时的两个相配合的排布方向可以是沿基准板体11的长度方向及基准板体11的宽度方向,亦可是沿双极板组件的静压云图等压线的延伸方向及双极板组件的静压云图等压线的垂直方向。实际设计应用时,工作人员也可以依据具体工况条件和应用需求灵活调整和选择各导流分区的具体排布形式,原则上,只要是能够保证所述双极板组件的实际应用需要均可。
此外需要指出的是,各导流分区的面积优选为等面积分布,以此保证各导流分区的协同适配效果,从而进一步优化所述燃料电池的整体性能。
在一些实施例中,导流槽121的中心线与双极板组件的静压云图等压线的夹角为45°~135°,位于同一导流分区内的各导流槽121沿分隔脊12的延伸方向以及垂直于双极板组件的静压云图等压线的方向阵列排布。在具体工况应用中,将分布于介质入口111与介质出口112间不同位置处的介质的静压测定标出并整理为双极板组件的静压云图,将该静压云图中的静压相等的位置用线相连,即可得到静压云图等压线;将各导流槽121的中心线参照双极板组件的静压云图等压线对应布置,能够进一步优化各导流槽121处的介质导流效果,以此进一步优化双极板组件的介质流动和反应效果,进而使得燃料电池的整体性能得以进一步提高。
导流槽121能够将相邻的两条介质通槽13相互连通,从而将位于上游的介质通槽13内的介质导通至下游的介质通槽13内,以便优化各介质通槽13内的介质流通效果。
在一些实施例中,限宽凸台122的中心线与双极板组件的静压云图等压线的夹角为45°~135°,位于同一导流分区内的各限宽凸台122沿分隔脊12的延伸方向以及垂直于双极板组件的静压云图等压线的方向阵列排布。设备运行过程中,限宽凸台122能够将对应位 置处的介质通槽13的宽度适度收窄,以此形成变径通道结构,从而优化介质通槽13内的介质流动效果。
请着重参考图2和图3。
以图1中所示的第一个导流分区的A部分的组件局部结构为例。同一导流分区内,位于同一分隔脊12上的每两个相邻限宽凸台122组成导流组,位于同一分隔脊12上的各导流组与各导流槽121沿分隔脊12的延伸方向交替布置,任一导流槽121与位于其相邻的分隔脊12上的导流组对位配合;
在此基础上,任意一对对位配合的导流槽121与导流组中,导流组中的至多一个限宽凸台122的中心线与导流槽121的中心线重合;
此外,同一导流组中的两个限宽凸台122分别位于分隔脊12的两个不同的侧壁上,且同一导流组中的两个限宽凸台122的凸起方向相反。
具体到如图2和图3所示的实际应用结构中,导流槽121与位于其下方的邻位分隔脊12上且向上凸起的限宽凸台122对位配合,形成导流单元I;导流槽121与位于其上方的邻位分隔脊12上且向下凸起的限宽凸台122对位配合,形成导流单元II;分隔脊12的侧壁上向下凸起的限宽凸台122形成导流单元III;分隔脊12的侧壁上向上凸起的限宽凸台122形成导流单元IV。
以如图2和图3所示的第一个导流分区的结构为基础,具体来说,导流单元I、IV的限宽凸台122的凸起结构需配对一致,导流单元沿其排布方向不重复配对;导流单元II、III的限宽凸台122的凸起结构需配对一致,各导流单元不重复配对;导流单元I、II中,限宽凸台122的凸起部分与导流槽121对位配合,限宽凸台122的中心点在导流槽121的中心线的延长线上,导流槽121的中心线与双极板组件的静压云图等压线保持在90°±5°的夹角,且该导流槽121的中心线与基准板体11的长边的夹角为99.4°;限宽凸台122相对于分隔脊12的侧壁的凸起高度不大于介质通槽13宽度的1/2,考虑到一般工况下介质通槽13的槽宽为1mm,则该限宽凸台122的凸起高度选取为0.5mm;导流槽121的宽度不大于介质通槽13的宽度,对于一般工况条件而言,该导流槽121的宽度选取为1mm;设备组装时,基准板体11的两个主延展面上会对位包覆碳纸,设备运行过程中,碳纸会向介质通槽13的槽底方向内凹,从而形成碳纸适度侵入介质通槽13的状态,相应地,导流槽121沿垂直于基准板体11的主延展面的方向上的深度不小于碳纸向介质通槽13内侵入的深度,并应保证导流槽121的槽底与碳纸的间距不小于0.1mm,则该导流槽121的深度选取为0.2mm;导流单元I、II沿介质通槽13的延伸方向交替布置,导流单元III、IV沿介质通槽13的延伸方向交替布置,沿介质通槽13的延伸方向上,单种导流单元不相邻,即,两种导流单元沿介质通槽13的延伸方向交替出现,不同介质通槽13和分隔脊12间的同种导流 单元布置在同一条直线上,导流单元I、IV与导流单元II、III交替布置;沿介质通槽13的延伸方向,相同的导流单元的布置间隔周期在分隔脊12宽度的2倍与30mm之间,考虑到一般工况下分隔脊12的宽度为1mm,则相同的导流单元的布置间隔周期选取为18mm。
另一方面,限深凸台131的中心线与双极板组件的静压云图等压线的夹角为45°~135°,位于同一导流分区内的各限深凸台131沿介质通槽13的延伸方向以及垂直于双极板组件的静压云图等压线的方向阵列排布。限深凸台131能够对介质通槽13的深度进行局部调整,以此通过介质通槽13的深度变化,优化介质通槽13内的介质流通效果,进而优化所述双极板组件的结构布局,并使所述燃料电池的整体性能得以相应提高。
在此基础上,同一导流分区内,位于相邻的两个介质通槽13内的各限深凸台131错位布置。
请着重参考图4和图5。
以图1中所示的第二个导流分区的B部分的组件局部结构为例。限深凸台131布置于介质通槽13的底部,并连通于相邻的两个分隔脊12之间,限深凸台131的中心线与双极板组件的静压云图等压线保持在90°±10°之间的夹角,且该限深凸台131的中心线与基准板体11的长边的夹角为120°;限深凸台131相对于介质通槽13的槽底的高度不大于介质通槽13的深度与碳纸侵入介质通槽13的深度之间的差值,且该限深凸台131的高度可低于介质通槽13的深度的10%,考虑到一般工况下的介质通槽13深度为0.4mm,则该限深凸台131的高度选取为0.03mm,相应地,限深凸台131的顶面与介质通槽13的顶部槽口端的间距为0.37mm;限深凸台131的布置周期依托所述双极板组件的各介质通槽13的流阻要求以及各凸点处的阻力系数进行设计,一般地,限深凸台131的布置周期为37mm,且相邻的介质通槽13之间的限深凸台131交叉错位排布。
请着重参考图6和图7。
以图1中所示的第三个导流分区的C部分的组件局部结构为例。限深凸台131布置于介质通槽13的底部,并连通于相邻的两个分隔脊12之间,限深凸台131的中心线与双极板组件的静压云图等压线保持在90°±10°之间的夹角,且该限深凸台131的中心线与基准板体11的长边的夹角为105°;限深凸台131相对于介质通槽13的槽底的高度不大于介质通槽13的深度与碳纸侵入介质通槽13的深度之间的差值,考虑到一般工况下的介质通槽13深度为0.4mm,则该限深凸台131的高度选取为0.15mm,相应地,限深凸台131的顶面与介质通槽13的顶部槽口端的间距为0.25mm;限深凸台131的布置周期依托所述双极板组件的各介质通槽13的流阻要求以及各凸点处的阻力系数进行设计,一般地,限深凸台131的布置周期为18mm,且相邻的介质通槽13之间的限深凸台131交叉错位排布。
请着重参考图8和图9。
以图1中所示的第四个导流分区的D部分的组件局部结构为例。限深凸台131布置于介质通槽13的底部,并连通于相邻的两个分隔脊12之间,限深凸台131的中心线与双极板组件的静压云图等压线保持在90°±10°之间的夹角,且该限深凸台131的中心线与基准板体11的长边的夹角为90°;限深凸台131相对于介质通槽13的槽底的高度不大于介质通槽13的深度与碳纸侵入介质通槽13的深度之间的差值,考虑到一般工况下的介质通槽13深度为0.4mm,则该限深凸台131的高度选取为0.25mm,相应地,限深凸台131的顶面与介质通槽13的顶部槽口端的间距为0.15mm;限深凸台131的布置周期依托所述双极板组件的各介质通槽13的流阻要求以及各凸点处的阻力系数进行设计,一般地,限深凸台131的布置周期为12.5mm,且相邻的介质通槽13之间的限深凸台131交叉错位排布。
需要说明的是,在实际设计和组件装配应用中,各导流分区中的具体导流单元结构并不局限于如图所示的导流槽121、限宽凸台122、限深凸台131,还可以为结合现有的各种常规通道模块和变径模块协同配合形成的直流场、蜿蜒流场、三维流场等分区流场结构,工作人员可以依据实际工况条件下和应用需求灵活调整和选择,原则上,只要是能够满足所述双极板组件的结构布局需求,并保证所述燃料电池的实际应用需要均可。
在具体实施方式中,本公开实施例所提供的燃料电池,包括双极板组件,所述双极板组件的主延展面上对位覆盖有碳纸,该双极板组件为如上文实施例中的双极板组件。该燃料电池的双极板组件的整体结构布局较好,能够使所述燃料电池的整体性能得以相应提高。
综上可知,本公开实施例中提供的双极板组件,其工作运行过程中,将导流槽、限宽凸台以及限深凸台中的至少一种阵列布置,形成导流分区,各导流槽、限宽凸台以及限深凸台协同配合,有效排除介质反应后积聚于分隔脊处的水,并利用这些水对气体介质进行增湿,避免导流分区内的气体介质干燥,以此优化介质反应效果;同时,利用多个导流分区的不同阵列结构,对经由介质入口通入并流经各介质通槽内的氢气或氧气等反应介质形成多角度、多维度的绕流和导流作用,使得介质反应效果得以相应优化,燃料电池的整体性能得以相应提高。
此外,本公开实施例所提供的应用上述双极板组件的燃料电池,其双极板组件的整体结构布局较好,能够使所述燃料电池的整体性能得以相应提高。
以上对本公开所提供的双极板组件以及应用该双极板组件的燃料电池进行了详细介绍。本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (10)

  1. 一种双极板组件,包括基准板体,其特征在于,所述基准板体的一端设置有介质入口,另一端设置有介质出口,所述基准板体的主延展面上设置有若干分隔脊,各所述分隔脊平行布置,且相邻两所述分隔脊之间形成连通于所述介质入口与所述介质出口之间供介质流通的介质通槽;
    所述分隔脊上设置有连通相邻两所述介质通槽的导流槽,所述分隔脊上朝向其相邻的介质通槽的侧壁上凸出设置有限宽凸台,所述介质通槽的槽底凸出设置有限深凸台;
    所述基准板体的主延展面上形成若干沿其长度方向和/或宽度方向排布的导流分区,任一所述导流分区内设置有所述导流槽、所述限宽凸台、所述限深凸台中的至少一种,且位于同一所述导流分区内的所述导流槽和/或所述限宽凸台和/或所述限深凸台阵列排布。
  2. 如权利要求1所述的双极板组件,其特征在于,所述导流槽的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述导流槽沿所述分隔脊的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
  3. 如权利要求1或2所述的双极板组件,其特征在于,所述限宽凸台的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述限宽凸台沿所述分隔脊的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
  4. 如权利要求1至3中任一项所述的双极板组件,其特征在于,同一所述导流分区内,位于同一所述分隔脊上的每两个相邻所述限宽凸台组成导流组,位于同一所述分隔脊上的各所述导流组与各所述导流槽沿所述分隔脊的延伸方向交替布置,任一所述导流槽与位于其相邻的分隔脊上的所述导流组对位配合。
  5. 如权利要求4所述的双极板组件,其特征在于,任意一对对位配合的所述导流槽与所述导流组中,所述导流组中的至多一个所述限宽凸台的中心线与所述导流槽的中心线重合。
  6. 如权利要求4或5所述的双极板组件,其特征在于,同一所述导流组中的两个限宽凸台分别位于分隔脊的两个不同的侧壁上,且同一所述导流组中的两个限宽凸台的凸起方向相反。
  7. 如权利要求1至6中任一项所述的双极板组件,其特征在于,所述限深凸台的中心线与所述双极板组件的静压云图等压线的夹角为45°~135°,位于同一所述导流分区内的各所述限深凸台沿所述介质通槽的延伸方向以及垂直于所述双极板组件的静压云图等压线的方向阵列排布。
  8. 如权利要求1至7中任一项所述的双极板组件,其特征在于,同一所述导流分区内,位于相邻的两个所述介质通槽内的各所述限深凸台错位布置。
  9. 如权利要求1至8中任一项所述的双极板组件,其特征在于,所述限宽凸台的凸起高度不大于所述介质通槽的槽宽的一半。
  10. 一种燃料电池,包括双极板组件,所述双极板组件的主延展面上对位覆盖有碳纸,其特征在于,所述双极板组件为如权利要求1至9中任一项所述的双极板组件。
PCT/CN2023/091694 2022-08-30 2023-04-28 燃料电池及其双极板组件 WO2024045669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048138.XA CN115275248A (zh) 2022-08-30 2022-08-30 燃料电池及其双极板组件
CN202211048138.X 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045669A1 true WO2024045669A1 (zh) 2024-03-07

Family

ID=83755264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091694 WO2024045669A1 (zh) 2022-08-30 2023-04-28 燃料电池及其双极板组件

Country Status (2)

Country Link
CN (1) CN115275248A (zh)
WO (1) WO2024045669A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275248A (zh) * 2022-08-30 2022-11-01 上海捷氢科技股份有限公司 燃料电池及其双极板组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344040A1 (en) * 2015-05-20 2016-11-24 Hyundai Motor Company Bipolar plate structure for fuel cell
CN111446464A (zh) * 2020-05-22 2020-07-24 上海捷氢科技有限公司 一种燃料电池双极板
CN112133938A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种燃料电池流场板及燃料电池
CN113299942A (zh) * 2021-07-14 2021-08-24 江苏大学 一种具有阶梯排列导气凸台的双极板及燃料电池
CN214280024U (zh) * 2021-03-10 2021-09-24 上海电气集团股份有限公司 一种燃料电池双极板及燃料电池
CN115275248A (zh) * 2022-08-30 2022-11-01 上海捷氢科技股份有限公司 燃料电池及其双极板组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160344040A1 (en) * 2015-05-20 2016-11-24 Hyundai Motor Company Bipolar plate structure for fuel cell
CN111446464A (zh) * 2020-05-22 2020-07-24 上海捷氢科技有限公司 一种燃料电池双极板
CN112133938A (zh) * 2020-09-17 2020-12-25 上海交通大学 一种燃料电池流场板及燃料电池
CN214280024U (zh) * 2021-03-10 2021-09-24 上海电气集团股份有限公司 一种燃料电池双极板及燃料电池
CN113299942A (zh) * 2021-07-14 2021-08-24 江苏大学 一种具有阶梯排列导气凸台的双极板及燃料电池
CN115275248A (zh) * 2022-08-30 2022-11-01 上海捷氢科技股份有限公司 燃料电池及其双极板组件

Also Published As

Publication number Publication date
CN115275248A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Lim et al. Effects of flow field design on water management and reactant distribution in PEMFC: a review
WO2024045669A1 (zh) 燃料电池及其双极板组件
JP2006508496A (ja) 燃料電池の流れ場プレート
CN103413956A (zh) 一种质子交换膜燃料电池流道
CN114695912B (zh) 一种流场流道、双极板、质子交换膜燃料电池
CN107968211A (zh) 一种用于质子交换膜燃料电池的流场板结构
CN110121807A (zh) 用于燃料电池的具有经改进的流动分布的双极板
TWI474548B (zh) 極板與使用該極板的極板組
JP2016015222A (ja) 燃料電池用セパレータ
KR102416327B1 (ko) 연료 전지 유닛과 구성 요소를 포함하는 장치 및 그러한 장치에서 사용하기 위한 구성 요소 유닛과 스택 구성 요소
CN100470899C (zh) 堆体及具有该堆体的燃料电池系统
CN112909284A (zh) 具有等腰三角形区域的用于燃料电池的双极板及燃料电池
CN218731068U (zh) 燃料电池双极板
JP2008021518A (ja) 燃料電池のセパレータ構造
CN217719673U (zh) 极板及具有其的电堆
CN214505549U (zh) 用于燃料电池的单电池及燃料电池
CN113809350B (zh) 燃料电池和电池单体
CN217933868U (zh) 一种流线型过渡区结构及极板
CN220796808U (zh) 一种燃料电池极板流道结构
CN113161567B (zh) 用于燃料电池的单电池及燃料电池
CN214657635U (zh) 一种核电站泵房前池及配水装置及核电厂配水系统
KR102673750B1 (ko) 반응가스 전달기능이 강화된 연료전지의 분리판
CN219393516U (zh) 电池包
CN208674269U (zh) 质子交换膜燃料电池双极板及质子交换膜燃料电池
CN219371138U (zh) 电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858709

Country of ref document: EP

Kind code of ref document: A1