WO2024045587A1 - 发光组件 - Google Patents

发光组件 Download PDF

Info

Publication number
WO2024045587A1
WO2024045587A1 PCT/CN2023/084275 CN2023084275W WO2024045587A1 WO 2024045587 A1 WO2024045587 A1 WO 2024045587A1 CN 2023084275 W CN2023084275 W CN 2023084275W WO 2024045587 A1 WO2024045587 A1 WO 2024045587A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting
organic
emitting unit
Prior art date
Application number
PCT/CN2023/084275
Other languages
English (en)
French (fr)
Inventor
魏丽真
陈慧修
徐国城
Original Assignee
台州观宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台州观宇科技有限公司 filed Critical 台州观宇科技有限公司
Publication of WO2024045587A1 publication Critical patent/WO2024045587A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present disclosure relates to a light-emitting element, in particular to an organic light-emitting element.
  • Organic light-emitting displays have been widely used in the most high-end electronic devices.
  • the luminescent effect of the luminescent materials in the organic light-emitting display cannot be effectively controlled, which easily causes problems such as halo and optical crosstalk, resulting in the optical effects of the organic light-emitting display not being as good as expected.
  • additional polarizers are sometimes added to improve the above problems, but still cannot effectively eliminate halos, and additional polarizers have the disadvantages of increasing the thickness of the display and making the cost higher.
  • the present disclosure provides a means to resolve the above dilemma.
  • a light-emitting element in the present invention, includes a substrate, a first protective layer, a conductive layer, a plurality of bumps, a second protective layer and a patterned light shielding layer.
  • the first protective layer is above the substrate.
  • the conductive layer is above the first protective layer.
  • a plurality of bumps are arranged on the substrate. Each of the plurality of bumps has an organic light-emitting unit containing an organic material between two adjacent bumps.
  • the organic light-emitting unit has an organic light-emitting stack layer containing an organic material.
  • the second protective layer covers the organic light-emitting stack layer and has an upper surface.
  • the patterned light-shielding layer is disposed on the upper surface of the second protective layer, wherein an edge of the patterned light-shielding layer is not aligned with an edge of one of the plurality of bumps.
  • the organic light emitting material includes a molecular structure having a resonance structure and may be selected from the group consisting of spiro-triarylamine, bis-triarylamine, and combinations thereof.
  • the organic light-emitting unit has an effective light-emitting area, the size of which is defined by an anode located below the organic light-emitting unit.
  • the organic light-emitting unit has a black area and a bright area when emitting light, wherein the The total area of the black area is less than 50% of the effective light-emitting area.
  • the organic light-emitting stack layer includes: a carrier injection layer, a carrier transmission layer, an organic emission layer and an organic carrier transmission layer.
  • the plurality of bumps include photosensitive material.
  • the substrate includes a transparent material.
  • a distance between edges of two adjacent bumps of the organic light-emitting unit is greater than a distance between two of the plurality of light-blocking layers.
  • the patterned light-blocking layer includes openings with a cross-shaped profile that may expose light emitted by a single organic light-emitting unit.
  • the patterned light-blocking layer includes openings with a cross-shaped profile that can expose light emitted by a plurality of organic light-emitting units.
  • the light-emitting element includes a substrate, a first protective layer, a conductive layer, a plurality of bumps, a second protective layer and a plurality of light-shielding layers.
  • the first protective layer is above the substrate.
  • a plurality of bumps are arranged on a part of the conductive layer.
  • the organic light-emitting units include a first light-emitting unit and a second light-emitting unit. unit and a third lighting unit.
  • the second protective layer is above the organic light-emitting unit and covers the organic light-emitting unit.
  • the plurality of light-shielding layers is above the second protective layer, wherein in the longitudinal direction, the plurality of bumps each have an edge that is offset from an edge of one of the plurality of light-shielding layers.
  • the area of the light-blocking layer in the lateral direction is greater than the area of each of the plurality of bumps.
  • the conductive layer includes a transparent conductive film including ITO (indium tin oxide), IZO (indium zinc oxide), or IGZO (indium gallium zinc oxide).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGZO indium gallium zinc oxide
  • the conductive layer includes an anode electrode.
  • a distance between edges of two adjacent bumps of the organic light-emitting unit is greater than a distance between two of the plurality of light-blocking layers.
  • one of the plurality of light-blocking layers may include recesses with a cross-shaped profile that may expose light emitted by a single organic light-emitting unit.
  • one of the plurality of light-blocking layers may include recesses with a cross-shaped profile that may expose light emitted by the plurality of organic light-emitting units.
  • FIG. 1 is a top view illustrating an intermediate product of a light-emitting element.
  • FIG. 2 is an illustrative cross-sectional view along line AA in FIG. 1 .
  • 3A to 3L illustrate a process of manufacturing a light-emitting element according to an embodiment.
  • 4A and 4B illustrate a top view of a light blocking layer according to an embodiment.
  • FIG. 1 is a top view illustrating an intermediate product of the light emitting element 10 .
  • the light-emitting element 10 has a light-emitting layer 20 and a cover layer 40 located above the light-emitting layer 20 .
  • the spacers 21 may be designed to provide an array of recesses for accommodating the array of light-emitting pixels.
  • spacers 21 may include light-sensitive materials.
  • FIG. 2 is an illustration of a cross-sectional view along line AA in FIG. 1 and illustrates only the light emitting area. For simplicity, the covering layer 40 is omitted here.
  • the spacer 21 has a plurality of bumps 103 to define a light-emitting pixel pattern. The recessed portion is between two adjacent bumps 103 and provides a space for accommodating the light-emitting pixels. Those skilled in the art will understand that the bumps 103 are shown disconnected when viewed in cross-section, but they may be connected to each other through other parts of the spacer 21 when viewed from the top view of FIG. 1 .
  • the light-emitting element 10 includes a light-emitting array, and the light-emitting array includes a first organic light-emitting unit 10a, a second organic light-emitting unit 10b, and a third organic light-emitting unit 10c.
  • the organic light-emitting unit may also be referred to as a light-emitting pixel in this application.
  • the light-emitting unit 10a includes a first electrode 102, a carrier injection layer 104L1 above the bump 103 and the first electrode 102, a carrier transmission layer 104L2 above the carrier injection layer 104L1, and a carrier transmission layer 104L2 above the carrier injection layer 104L2.
  • the carrier injection layer 104L1, the carrier transmission layer 104L2, the organic emission layer 104L3, and the organic carrier transmission layer 104L4 may be collectively referred to as organic light-emitting stack layers.
  • the carrier injection layer 104L1 is disposed between the first electrode 102 and the carrier transport layer 104L2.
  • the light-emitting unit 10a includes an organic material, and the organic material can be placed in any layer of the carrier transmission layer, carrier injection layer or organic emission layer in the light-emitting unit 10a according to different embodiments.
  • the absorption rate of this organic material for a specific wavelength is greater than or equal to 50%.
  • the absorption rate for a specific wavelength is greater than or equal to 60%.
  • for a The absorption rate for a specific wavelength is greater than or equal to 70%.
  • the absorption rate for a specific wavelength is greater than or equal to 80%.
  • the absorption rate for a specific wavelength is greater than or equal to 90%.
  • the absorbance for a specific wavelength is greater than or equal to 95%.
  • the specific wavelength is no greater than 400 nm, in some embodiments, the specific wavelength is no greater than 350 nm, in some embodiments, the specific wavelength is no greater than 300 nm, in some embodiments, the specific wavelength is no greater than 250 nm, in some In embodiments, the specific wavelength is no greater than 200 nm, in some embodiments, the specific wavelength is no greater than 150 nm, and in some embodiments, the specific wavelength is no greater than 100 nm.
  • the substrate 100 is located below the light emitting layer 20 .
  • substrate 100 may include a thin film transistor (TFT) array.
  • the substrate 100 includes a substrate (not shown), a dielectric layer (not shown), and one or more circuits (not shown) disposed on or in the substrate.
  • the substrate is a transparent substrate, or at least a portion is transparent.
  • the substrate is a non-flexible substrate, and the material of the substrate may include glass, quartz, low-temperature Polycrystalline silicon (low temperature poly-silicon, LTPS) or other appropriate materials.
  • the substrate is a flexible substrate, and the material of the substrate may include transparent epoxy resin, polyimide, polyvinyl chloride, methyl methacrylate, or other suitable materials.
  • the dielectric layer can be provided on the substrate if necessary.
  • the dielectric layer may include silicon oxide, silicon nitride, silicon oxynitride, or other suitable materials.
  • the circuit may include a complementary metal-oxide-semiconductor (CMOS) circuit, or may include a plurality of transistors and a plurality of capacitors adjacent to the transistors, where the transistors and capacitors are formed in a dielectric layer superior.
  • the transistor is a thin-film transistor (TFT).
  • TFT thin-film transistor
  • Each transistor includes a source/drain region (including at least one source region and a drain region), a channel region between the source/drain region, a gate electrode disposed above the channel region, and Gate insulator between the channel area and the gate electrode.
  • the channel region of the transistor may be made of a semiconductor material, such as silicon or other elements selected from Group IV or Group III and Group V.
  • the protective layer 101 is formed on the substrate 100 .
  • the protective layer 101 is formed on the upper surface 100a of the substrate 100.
  • the protective layer 101 contacts the surface 100a of the substrate 100.
  • a plurality of first electrodes 102 are formed above the first protective layer 101 .
  • a plurality of first electrodes 102 contact the first protective layer 101 .
  • the plurality of first electrodes 102 are spaced apart from each other.
  • the plurality of first electrodes 102 are electrically connected to the substrate 100 .
  • a plurality of bumps 103 are arranged on the substrate 100 .
  • a plurality of bumps 103 are arranged above the first protective layer 101 .
  • the plurality of bumps 103 cover a part of the first electrode 102 .
  • the surrounding area of the first electrode 102 is covered by the bumps 103 .
  • the edge corners of the first electrode 102 are completely surrounded by the bumps 103 .
  • the sidewalls of the first electrode 102 are in complete contact with the bumps 103 .
  • the two bumps 103 between the two first electrodes 102 are spaced apart from each other.
  • the first electrode 102 may be an anode. In this application, the first electrode 102 may be a conductive layer.
  • the first electrode 102 of the light-emitting unit 10a may define the size of the effective light-emitting area. In some examples, the light-emitting unit 10a has black areas and bright areas when emitting light. The total area of the black area is less than 50% of the effective luminous area. The effective luminous area can also be called the effective lighting area.
  • the effective illumination zone has a width of at least less than 10 microns. In some embodiments, the effective illumination zone has a width of about 3 microns to 6 microns. In some embodiments, the effective illumination zone has a width of about 4 microns to 6 microns.
  • the effective illumination area determines the pixel size of the light-emitting element 10 in FIG. 1 . Since the size of the effective illumination area can be controlled below 10 microns, the pixel density of the light-emitting element 10 can exceed 1000 or 2000ppi.
  • the first electrode 102 may have approximately to date the total thickness. In some embodiments, first electrode 102 has approximately to date the total thickness. In some embodiments, first electrode 102 has approximately the total thickness.
  • the first electrode 102 may be a conductive layer.
  • the first electrode 102 may include ITO, IZO, IGZO, AlCu alloy, AgMo alloy, approx. to ITO (or IZO or IGZO) vs. to Metal films (Ag, Al, Mg, Au) and approx. to ITO (or IZO or IGZO).
  • electrode 102 is a composite structure.
  • the electrode 102 may have a conductive film and a transparent conductive film positioned thereon.
  • the conductive film is located between the transparent conductive film and the substrate 100 .
  • the conductive film includes aluminum, gold, silver, copper, etc.
  • the transparent conductive film includes indium, tin, graphene, zinc, oxygen, etc.
  • electrode 102 includes a transparent conductive film.
  • electrode 102 includes ITO (indium tin oxide).
  • electrode 102 includes IZO (indium zinc oxide).
  • electrode 102 includes IGZO (Indium Gallium Zinc Oxide).
  • the roughness of the transparent conductive film The thickness of the conductive film can be approximately to date between. The thickness of the transparent conductive film can be approximately to date between.
  • first electrode 102 has at least three different films.
  • a conductive film (such as Al, Cu, Ag, Au, etc.) is sandwiched between two transparent conductive films.
  • one of the two transparent conductive films is ITO, one side of which is in contact with the substrate 100 and the other side of which is in contact with the conductive film.
  • one of the two transparent conductive films is ITO, one side of which is in contact with the conductive film and the other side of which is in contact with the bump 103 or the luminescent material.
  • each bump 103 has a curved surface that protrudes away from the substrate 100 and covers a peripheral area of the first electrode 102 .
  • the bumps 103 can be of different shapes. In some embodiments, bump 103 has a curved surface. In some embodiments, the bump 103 may be trapezoidal in shape. In some embodiments, the bump 103 may be rectangular in shape.
  • the pattern of the bumps 103 is designed according to the pixel arrangement, and the patterned bumps 103 may be called a pixel defined layer (PDL).
  • the bumps 103 are arranged on the substrate 100 . Each bump 103 fills the gap between two adjacent first electrodes 102 . Each first electrode 102 is partially covered by a bump 103 .
  • Bump 103 may include photosensitive material.
  • the absorption rate of the bump 103 for a specific wavelength is greater than or equal to 50%. In some embodiments, the absorption rate of the bump 103 for a specific wavelength is greater than or equal to 60%. In some embodiments, The absorption rate of the bump 103 for a specific wavelength is greater than or equal to 70%. In some embodiments, the absorption rate of the bump 103 for a specific wavelength is greater than or equal to 80%. In some embodiments, the absorption rate of the bump 103 for a specific wavelength is greater than or equal to 80%. The absorption rate of a wavelength is greater than or equal to 90%. In some embodiments, the absorption rate of the bump 103 for a specific wavelength is greater than or equal to 95%.
  • the specific wavelength is no greater than 400 nm, in some embodiments, the specific wavelength is no greater than 350 nm, in some embodiments, the specific wavelength is no greater than 300 nm, in some embodiments, the specific wavelength is no greater than 250 nm, in some In embodiments, the specific wavelength is no greater than 200 nm, in some embodiments, the specific wavelength is no greater than 150 nm, and in some embodiments, the specific wavelength is no greater than 100 nm.
  • the carrier injection layer 104L1 is disposed on the protective layer 101 , the first electrode 102 and the exposed surfaces of the bumps 103 .
  • the carrier injection layer 104L1 continuously covers the exposed surfaces of the bump 103 and the first electrode 102 .
  • the exposed surface of each first electrode 102 is configured as an effective light emitting area for one light emitting unit 10a.
  • Carrier injection layer 104L1 can Selective contact with bump 103.
  • carrier injection layer 104L1 is in contact with first electrode 102 .
  • carrier injection layer 104L1 is organic.
  • carrier injection layer 104L1 is configured to perform hole injection.
  • carrier injection layer 104L1 is a hole injection layer.
  • carrier injection layer 104L1 may have approximately to date thickness of.
  • the carrier transmission layer 104L2 is provided on the protective layer 101, the first electrode 102 and the bump 103.
  • the carrier transport layer 104L2 is disposed above the carrier injection layer 104L1 and completely covers the carrier injection layer 104L1.
  • the carrier injection layer 104L1 is disposed under the carrier transmission layer 104L2.
  • the carrier transport layer 104L2 continuously covers the carrier injection layer 104L1.
  • the carrier transmission layer 104L2 covers the plurality of first electrodes 102 and the plurality of bumps 103 .
  • the carrier transport layer 104L2 can selectively contact the carrier injection layer 104L1.
  • carrier transport layer 104L2 is organic.
  • carrier transport layer 104L2 is configured to perform hole transport.
  • carrier transport layer 104L2 is a first hole transport layer.
  • carrier injection layer 104L1 may have approximately to date thickness of.
  • the organic emission layer 104L3 is provided on the protective layer 101, the first electrode 102 and the bump 103.
  • the organic emission layer 104L3 is disposed above the carrier transmission layer 104L2 and completely covers the carrier transmission layer 104L2.
  • the carrier transmission layer 104L2 is disposed under the organic emission layer 104L3.
  • the organic emission layer 104L3 continuously covers the carrier transmission layer 104L2.
  • the organic emission layer 104L3 covers the plurality of first electrodes 102 and the plurality of bumps 103.
  • the organic emission layer 104L3 can selectively contact the carrier transmission layer 104L2.
  • Organic emissive layer 104L3 is configured to emit a first color.
  • the absorption rate of the organic emission layer 104L3 for a specific wavelength is greater than or equal to 50%. In some embodiments, the absorption rate of the organic emission layer 104L3 for a specific wavelength is greater than or equal to 60%. In some embodiments, , the absorption rate of the organic emission layer 104L3 for a specific wavelength is greater than or equal to 70%. In some embodiments, the absorption rate of the organic emission layer 104L3 for a specific wavelength is greater than or equal to 80%. In some embodiments, the organic emission layer 104L3 has an absorption rate of greater than or equal to 80% for a specific wavelength. The absorption rate of the layer 104L3 for a specific wavelength is greater than or equal to 90%.
  • the absorption rate of the organic emission layer 104L3 for a specific wavelength is greater than or equal to 95%.
  • the specific wavelength is no greater than 400 nm, in some embodiments, the specific wavelength is no greater than 350 nm, in some embodiments, the specific wavelength is no greater than 300 nm, in some embodiments, the specific wavelength is no greater than 250 nm, in some In embodiments, the specific wavelength is no greater than 200 nm, in some embodiments, the specific wavelength is no greater than 150 nm, and in some embodiments, the specific wavelength is no greater than 100 nm.
  • At least one of carrier transport layer 104L2 and organic emission layer 104L3 includes an organic material.
  • the organic material may include a molecular structure having a resonance structure.
  • the organic material may be selected from the group consisting of spiro-triarylamine, bis-triarylamine and combinations thereof.
  • at least one of carrier transport layer 104L2 and organic emissive layer 104L3 includes spiro-triarylamine.
  • at least one of carrier transport layer 104L2 and organic emissive layer 104L3 includes bis-triarylamine.
  • carrier transport layer 104L2 and organic emission layer 104L3 Includes that same material.
  • carrier transport layer 104L2 includes And the organic emission layer 104L3 includes
  • carrier transport layer 104L2 includes And the organic emission layer 104L3 includes
  • the organic carrier transport layer 104L4 is provided on the protective layer 101, the first electrode 102 and the bump 103.
  • the organic carrier transmission layer 104L4 is disposed above the organic emission layer 104L3 and completely covers the organic emission layer 104L3.
  • the organic emission layer 104L3 is disposed under the organic carrier transmission layer 104L4.
  • the organic carrier transmission layer 104L4 continuously covers the organic emission layer 104L3.
  • the organic carrier transport layer 104L4 covers the plurality of first electrodes 102 and the plurality of bumps 103 .
  • the organic carrier transport layer 104L4 is in contact with the organic emission layer 104L3.
  • the second electrode 104D is provided on the protective layer 101, the first electrode 102 and the bump 103.
  • the second electrode 104D is located above the organic carrier transmission layer 104L4 and completely covers the organic carrier transmission layer 104L4.
  • the second electrode 104D is patterned to cover only the effective light emitting area of each light emitting pixel.
  • second electrode 104D is in contact with organic carrier transport layer 104L4.
  • the second electrode 104D may have approximately to date thickness of. In some embodiments, the second electrode 104D may have approximately to date thickness of. In some embodiments, the second electrode 104D may have approximately to date thickness of. In some embodiments, the second electrode 104D may have approximately to date thickness of. In some embodiments, the second electrode 104D may have approximately to date thickness of. In some embodiments, the second electrode 104D may have approximately to date thickness of.
  • the second electrode 104D may be a cathode.
  • the second electrode 104D may be a metal material, such as Ag, Mg, etc.
  • the second electrode 104D includes ITO (indium tin oxide) or IZO (indium zinc oxide).
  • the second electrode 104D is a composite structure.
  • the second electrode 104D has a conductive film and a transparent conductive film thereon.
  • the conductive film is located between the transparent conductive film and the organic carrier transmission layer 104L4.
  • the conductive film includes aluminum, gold, silver, copper, magnesium, molybdenum, etc.
  • the transparent conductive film includes indium, tin, graphene, zinc, oxygen, etc.
  • the transparent conductive film is ITO (indium tin oxide).
  • the transparent conductive film is IZO (indium zinc oxide).
  • the transparent conductive film is located between the conductive film and the organic carrier transport layer 104L4.
  • the second electrode 104D may be a patterned conductive layer, or a patterned conductive layer with a patterned insulating layer.
  • the light-emitting element 10 includes a substrate 100 , a plurality of bumps 103 on the substrate 100 , and a plurality of light-emitting units separated by the bumps 103 .
  • These light-emitting units include a first light-emitting unit 10a, a second light-emitting unit 10b and a third light-emitting unit 10c.
  • the first light-emitting unit 10a, the second light-emitting unit 10b and the third light-emitting unit 10c are adjacent to each other.
  • the second light-emitting unit 10b and the third light-emitting unit 10c have similar structures to the first light-emitting unit 10a.
  • first light-emitting unit 10a, the second light-emitting unit 10b, and the third light-emitting unit 10c are illustrated as having similar features, this is only illustrative and is not intended to limit these embodiments.
  • the first light-emitting unit 10a, the second light-emitting unit 10b and the third light-emitting unit 10c may have similar structures or different structures to meet desired functional requirements.
  • the first, second, and third light emitting units 10a, 10b, and 10c may be different from each other at least in the thickness of the organic light emitting stack layer.
  • the first light-emitting unit 10a, the second light-emitting unit 10b and the third light-emitting unit 10c may be configured to emit visible light of different colors.
  • the first light-emitting unit 10a emits green light
  • the second light-emitting unit 10b emits red light
  • the third light-emitting unit 10c emits blue light.
  • the light emitting units 10a, 10b, 10c are configured to be divided into at least three different groups, where each group emits a different color than the other groups.
  • the thickness of each organic light-emitting stack layer may be related to the color displayed by the corresponding light-emitting unit 10a, 10b, 10c.
  • the first light-emitting unit 10a emits green light compared to other light-emitting units configured to emit different colors, and the organic light-emitting stack layer of the first light-emitting unit 10a may have a minimum thickness.
  • the second light-emitting unit 10b emits red light compared to other light-emitting units configured to emit different colors, and the thickness of the organic light-emitting stack layer within the second light-emitting unit 10b may be between that of the first light-emitting unit 10a Between the thickness of the organic light-emitting stack layer and the thickness of the organic light-emitting stack layer in the third light-emitting unit 10c.
  • the third light-emitting unit 10c emits blue light compared to other light-emitting units configured to emit different colors, and the organic light-emitting stack layer of the third light-emitting unit 10c may have a maximum thickness.
  • the organic light-emitting stack layers of the first, second, and third light-emitting units 10a, 10b, and 10c may be formed through various processes such as vapor deposition, liquid jetting, or inkjet printing.
  • the first, second and third light emitting units 10a, 10b, 10c may differ from each other in at least a thickness difference of the carrier transmission layer of the first, second and third light emitting units 10a, 10b, 10c.
  • the light emitting units 10a, 10b, 10c are configured to be divided into at least three different groups, where each group emits a different color than the other groups.
  • the thickness of the carrier transmission layer can be correlated to the corresponding luminescence The color displayed by unit 10a.
  • the first light-emitting unit 10a emits green light compared to other light-emitting units configured to emit different colors, and the carrier transmission layer of the first light-emitting unit 10a may have a minimum thickness.
  • the second light-emitting unit 10b emits red light compared to other light-emitting units configured to emit different colors, and the thickness of the carrier transmission layer in the second light-emitting unit 10b may be between that of the carrier in the first light-emitting unit 10a. Between the thickness of the transmission layer and the thickness of the carrier transmission layer in the third light-emitting unit 10c. In some embodiments, the third light-emitting unit 10c emits blue light compared to other light-emitting units configured to emit different colors, and the carrier transmission layer of the third light-emitting unit 10c may have a maximum thickness.
  • the protective layer 105 is formed on the first, second and third light emitting units 10a, 10b, 10c.
  • the protective layer 105 contacts the first, second and third light emitting units 10a, 10b, 10c.
  • the protective layer 101 covers the first, second and third light emitting units 10a, 10b, 10c.
  • the protective layer 105 covers the organic light emitting stack layer and has an upper surface 105s.
  • protective layer 105 includes inorganic materials.
  • protective layer 105 includes organic materials.
  • a plurality of light shielding layers 106 are formed on the protective layer 105 .
  • a plurality of light shielding layers 106 are formed on the upper surface 105s of the protective layer 105.
  • a plurality of light shielding layers 106 are spaced apart from the substrate 100 .
  • the plurality of light shielding layers 106 may also be collectively referred to as patterned light shielding layers 106 .
  • the plurality of light-blocking layers 106 are separated from each other by a distance W1.
  • the portions of the plurality of light shielding layers 106 that are separated from each other may be called openings, and the openings have a width W1.
  • the portions of the plurality of light shielding layers 106 that are separated from each other may be called recesses, and the recesses have a width W1.
  • the plurality of light-blocking layers 106 can absorb more than 90% of visible light.
  • light-blocking layer 106 may include a blackbody material.
  • light-blocking layer 106 includes a single layer of material.
  • light-blocking layer 106 includes a composite layer of multiple materials.
  • light-blocking layer 106 includes organic materials.
  • light-blocking layer 106 includes inorganic materials.
  • light-blocking layer 106 includes a composite layer of organic or inorganic materials.
  • light blocking layer 106 has a thickness 106T.
  • the first electrode 102 has a thickness 102T.
  • the thickness 106T of the light-blocking layer 106 is greater than the thickness 102T of the first electrode 102 .
  • the thickness 106T of the light-blocking layer 106 is equal to the thickness 102T of the first electrode 102 .
  • the thickness 106T of the light-blocking layer 106 is less than the thickness 102T of the first electrode 102 .
  • One of the bumps 103 has an edge 103 a on the upper surface covering the first electrode 102 .
  • the light-blocking layer 106 has an edge 106a near the center of the first electrode 102 .
  • the edge 106a of the light-blocking layer 106 is not aligned with the edge 103a of the bump 103.
  • the edge 103a of the bump 103 and the edge 106a of the light shielding layer are offset d in the longitudinal direction.
  • the offset d may be greater than or equal to 1% as a percentage of the width of the light blocking layer 106 .
  • the offset d may be greater than or equal to 5% as a percentage of the width of the light blocking layer 106 .
  • the offset d may be greater than or equal to 10% as a percentage of the width of the light blocking layer 106 .
  • the offset d may be greater than or equal to 15% as a percentage of the width of the light blocking layer 106 .
  • One of the bumps 103' has an edge 103'a on the upper surface covering the first electrode 102.
  • the light-shielding layer 106' has an edge 106'a near the center of the first electrode 102.
  • the edge 106'a of the light blocking layer 106' is not aligned with the edge 103'a of the bump 103'.
  • offset d' is less than or equal to 100 nm.
  • the offset d' may be greater than or equal to 1% as a percentage of the width of the light blocking layer 106'.
  • the offset d' may be greater than or equal to 5% as a percentage of the width of the light blocking layer 106'.
  • the offset d' may be greater than or equal to 10% as a percentage of the width of the light blocking layer 106'.
  • the offset d' may be greater than or equal to 15% as a percentage of the width of the light blocking layer 106'.
  • offset d is equal to offset d'.
  • offset d is greater than offset d'.
  • offset d is less than offset d'.
  • the area of each of the plurality of light shielding layers 106 is larger than the area of each of the bumps 103 in the lateral direction.
  • the distance between the plurality of light shielding layers 106 and 106' is W1
  • the distance W2 between the edges 103a and 103'a of two adjacent bumps 103 and 103' can be the distance W1 between the two light shielding layers 106 and 106', and The sum of offset d and offset d'.
  • the distance W2 between the edges 103a and 103'a of two adjacent bumps 103 and 103' can define the area of the effective light-emitting area. Because the distance W1 between the light shielding layers 106 and 106' is smaller than W2, the light shielding layers 106 and 106' can control the light emitted by the first electrode 102, thereby improving the imaging effect of the pattern.
  • 3A to 3K illustrate a method of manufacturing a light-emitting element according to an embodiment.
  • a substrate 100 is provided.
  • a protective layer 101 is provided on the first surface 100 a of the substrate 100 .
  • a plurality of first electrodes 102 are provided on the protective layer 101 .
  • Each first electrode 102 is configured to be electrically connected to the substrate 100 .
  • the array pattern of the first electrode 102 is designed taking into account the arrangement of pixels.
  • a photosensitive layer 103L is provided on the protective layer 101 and the first electrode 102 .
  • the photosensitive layer 103L is coated on the protective layer 101 and the first electrode 102 .
  • the photosensitive layer 103L is filled in the gap between adjacent first electrodes 102 .
  • the photosensitive layer 103L is heated to a predetermined temperature and then exposed to a specified wavelength.
  • the photosensitive layer 103L can absorb more than 90% of visible light. After exposure, the photosensitive layer 103L is wetted in a solution for development.
  • each bump 103 is formed on part of the upper surface of the first electrode 102 and covers one side surface of the first electrode 102.
  • the bumps 103 partially cover each first electrode 102 .
  • Bumps 103 may be formed into different shapes.
  • bump 103 has a curved surface.
  • the bump 103 is trapezoidal in shape.
  • a cleaning operation is performed to clean the first electrode 102 and the exposed surfaces of the bumps 103 .
  • the deionized water is heated to a temperature between 30°C and 80°C. After the temperature of the deionized water rises to a predetermined temperature, the deionized water is guided to the exposed surfaces of the first electrode 102 and the bump 103 .
  • ultrasonic waves are used during cleaning operations. Introduce ultrasonic waves into the cleaning agent (such as water or isopropyl alcohol (IPA), etc.). In some embodiments, carbon dioxide is introduced into the cleaning agent. After the cleaning operation, the cleaning agent is removed from the exposed surface via a heating operation. During the heating operation, the substrate 100 and the bumps 103 may be heated to a temperature between 80°C and 110°C. In some examples, compressed air is directed to the exposed surface to help remove cleaning agent residue while heating it.
  • the cleaning agent such as water or isopropyl alcohol (IPA), etc.
  • carbon dioxide is introduced into the cleaning agent.
  • the cleaning agent is removed from the exposed surface via a heating operation. During the heating operation, the substrate 100 and the bumps 103 may be heated to a temperature between 80°C and 110°C.
  • compressed air is directed to the exposed surface to help remove cleaning agent residue while heating it.
  • O2, N2, or Ar plasma can be used to treat the exposed surface.
  • Plasma is used to roughen exposed surfaces.
  • ozone is used to condition the surface of the exposed surface.
  • a carrier injection layer 104L1 is provided on the exposed surfaces of the protective layer 101 , the bumps 103 and the first electrode 102 .
  • the carrier injection layer 104L1 is continuously lined along the exposed surface. More specifically, the exposed surface of each first electrode 102 is configured as an effective light-emitting area of a light-emitting unit (ie, a pixel). In this embodiment, all light-emitting units use carrier injection layer 104L1.
  • carrier injection layer 104L1 is used for hole injection.
  • carrier injection layer 104L1 is used for electron injection.
  • the carrier injection layer 104L1 continuously covers the exposed surfaces of the first electrode 102 and the plurality of bumps 103 .
  • the carrier injection layer 104L1 is in contact with the bump 103 .
  • the carrier injection layer 104L1 is in contact with the first electrode 102 .
  • carrier injection layer 104L1 is organic.
  • a carrier transmission layer 104L2 is provided on the partially exposed surfaces of the protective layer 101 , the bumps 103 and the first electrode 102 .
  • the carrier injection layer 104L1 is disposed under the carrier transmission layer 104L2.
  • Carrier transport layer 104L2 is continuously lined along carrier injection layer 104L1. In this embodiment, all light-emitting units use the carrier transmission layer 104L2.
  • carrier transport layer 104L2 is used for hole injection.
  • carrier transport layer 104L2 is used for electron injection.
  • the carrier transmission layer 104L2 continuously covers the plurality of bumps 103 and the first electrode 102 .
  • carrier transport layer 104L2 is in contact with carrier injection layer 104L1.
  • carrier transport layer 104L2 is organic.
  • the organic emission layer 104L3 is disposed on the protective layer 101 , the bumps 103 and the partially exposed surfaces of the first electrode 102 .
  • the organic emission layer 104L3 covers the carrier transmission layer 104L2.
  • the organic emission layer 104L3 completely covers the exposed carrier transmission layer 104L2.
  • Organic emissive layer 104L3 is configured to emit a first color.
  • organic carrier transmission layer 104L4 is provided on the organic emission layer 104L3.
  • organic carrier transport layer 104L4 can be an electric hole or an electron transport layer.
  • the organic carrier transport layer 104L4 and the carrier transport layer 104L2 are each configured in opposite valence states.
  • a second electrode 104D is provided on the organic carrier transport layer 104L4.
  • the second electrode 104D covers the organic carrier transport layer 104L4.
  • the second electrode 104D may be a metal material, such as Ag, Mg, etc.
  • the second electrode 104D includes ITO (indium tin oxide) or IZO (indium zinc oxide).
  • each light-emitting unit ie, pixel
  • the protective layer 105 is disposed on the protective layer 101 and the second electrode 104D.
  • the protective layer 105 covers the second electrode 104D.
  • a plurality of light shielding layers 106 are provided on the protective layer 105 .
  • Each light-blocking layer 106 is configured on the same side of the protective layer 105 .
  • Each light blocking layer 106 is separated from each other.
  • FIGS. 3A-3L can be repeatedly performed to form light-emitting units of different colors.
  • the light L1 generated by the light-emitting unit may be emitted outward toward the light-shielding layer 106 , while the external light L2 has a component traveling toward the light-emitting unit.
  • the reflected lights L2r will be generated due to various components in the light-emitting unit.
  • the reflected light L2r may interfere with the light L1 generated by the light-emitting unit, thus causing problems such as halo and optical crosstalk, causing the optical effect of the organic light-emitting display to be unsatisfactory as expected.
  • interference from non-L1 direction or lateral light in the light-emitting unit may also cause problems such as halo and optical crosstalk.
  • the light shielding layer 106 of the present disclosure through appropriate configuration (for example, by blocking ambient light as discussed above), the interference caused by the external light L2 and the reflected light L2r to the light L1 can be greatly reduced, thereby solving halos and optical crosstalk. and improve the contrast of the light-emitting unit.
  • the light-blocking layer 106 may have a depression 400 exhibiting a cross-shaped profile from a top view (which may correspond to portion W1 labeled in FIG. 2 ).
  • the cross-shaped profile 400 allows light emitted by the light emitting unit (eg 10a, 10b or 10c) to shine through.
  • the cross-shaped profile 400 allows light from a single light-emitting unit to pass through.
  • the cross-shaped profile 400 allows light emitted by multiple light-emitting units to pass through.
  • the recess 400 of FIG. 4A may also be referred to as an opening 400.
  • the light-blocking layer 106 may have an opening 400 exhibiting a cross-shaped profile from a top view (which may correspond to portion W1 labeled in FIG. 2 ).
  • the cross-shaped opening 400 can allow the light emitted by the light emitting unit (eg 10a, 10b or 10c) to pass through.
  • the cross-shaped opening 400 allows light emitted by a single light-emitting unit to pass through.
  • the cross-shaped opening 400 can allow light emitted by multiple light-emitting units to pass through.
  • the light-blocking layer 106 may include first recesses 402 and second recesses 404, 406, 408, and 410.
  • the first recess 402 has a cross-shaped profile; the second recesses 404, 406, 408, and 410 are located on the four sides of the first recess 402 and have an L-shaped profile, so that the first recess 402 and the second recesses 404, 406, 408, 410 formed together A precise pattern.
  • the pattern of the center can allow the light emitted by the light-emitting unit (eg 10a, 10b or 10c) to shine through.
  • the first recess 402 can overlap with the effective light-emitting area of a single light-emitting unit, allowing the light emitted by the single light-emitting unit to transmit. In some embodiments, the first recess 402 can overlap with the effective light-emitting areas of the plurality of light-emitting units, allowing the light emitted by the plurality of light-emitting units to transmit. In some embodiments, each of the second recesses 404, 406, 408, and 410 may overlap with the effective light-emitting area of a single light-emitting unit, each allowing light emitted by the single light-emitting unit to transmit.
  • each of the second recesses 404, 406, 408, and 410 may overlap with the effective light-emitting areas of the plurality of light-emitting units, allowing light emitted by the plurality of light-emitting units to be transmitted.
  • the first recess 402 and the second recess 404, 406, 408, 410 can overlap with the effective light-emitting area of a single light-emitting unit, allowing the light emitted by the single light-emitting unit to transmit. In some embodiments, the first recess 402 and the second recess 404, 406, 408, 410 can overlap with the effective light-emitting areas of the plurality of light-emitting units, allowing the light emitted by the plurality of light-emitting units to transmit.
  • the first depression 402 in FIG. 4B may also be referred to as the first opening 402
  • the second depressions 404, 406, 408, and 410 in FIG. 4B may also be referred to as the second openings 404, 406, 408, and 410.
  • the light blocking layer 106 may include a first opening 402 and a second opening 404, 406, 408, 410.
  • the first opening 402 has a cross-shaped outline; the second openings 404, 406, 408, and 410 are located on four sides of the first opening 402 and have an L-shaped outline, so that the first opening 402 and the second openings 404, 406, 408, 410 together form a quasi-center pattern.
  • the pattern of the center can allow the light emitted by the light-emitting unit (eg 10a, 10b or 10c) to shine through.
  • the first opening 402 can overlap the effective light-emitting area of a single light-emitting unit to allow the light emitted by the single light-emitting unit to pass through.
  • the first opening 402 can overlap with the effective light-emitting areas of the plurality of light-emitting units to allow the light emitted by the plurality of light-emitting units to pass through.
  • each of the second openings 404, 406, 408, and 410 may overlap with the effective light-emitting area of a single light-emitting unit, each allowing light emitted by the single light-emitting unit to pass through. In some embodiments, each of the second openings 404, 406, 408, and 410 may overlap with the effective light-emitting areas of the plurality of light-emitting units to allow light emitted by the plurality of light-emitting units to pass through.
  • the first opening 402 and the second openings 404, 406, 408, and 410 can overlap with the effective light-emitting area of a single light-emitting unit to allow the light emitted by the single light-emitting unit to pass through. In some embodiments, the first opening 402 and the second openings 404, 406, 408, and 410 may overlap with the effective light-emitting areas of the plurality of light-emitting units to allow the light emitted by the plurality of light-emitting units to pass through.
  • This application can adjust the patterning into the desired shape according to actual needs.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光元件,发光元件包括基板、第一保护层、导电层、复数个凸块、第二保护层和图案化光遮挡层。第一保护层在基板上方。导电层在第一保护层上方。复数个凸块配置于基板之上,复数个凸块中两相邻凸块间各具有包含有机材料的有机发光单元,其中有机发光单元具有包含有机材料的有机发光堆栈层。第二保护层覆盖有机发光堆栈层且具有上表面。图案化光遮挡层设置于第二保护层的上表面,其中图案化光遮挡层的边缘与复数个凸块中一者的边缘不对齐。

Description

发光组件 技术领域
本揭露是关于一种发光元件,特别是关于一种有机发光元件。
背景技术
有机发光显示器已经广泛使用于最高端的电子装置中。然而,由于现有技术的限制,有机发光显示器中的发光材料的发光效果无法有效地被控制,导致容易产生光晕及光学串扰等问题,造成有机发光显示器的光学效果不如预期。现有技术中有时候会额外增加偏光片来改善上述问题,但还是无法有效地消除光晕,而且额外增加的偏光片有使显示器厚度增加且成本偏高等缺点。本揭露内容提供了一种可解决上述困境的装置。
发明内容
在本发明中,提供一种发光元件,发光元件包括基板、第一保护层、导电层、复数个凸块、第二保护层和图案化光遮挡层。第一保护层在基板上方。导电层在第一保护层上方。复数个凸块配置于基板之上,复数个凸块中两相邻凸块间各具有包含有机材料的有机发光单元,其中有机发光单元具有包含有机材料的有机发光堆栈层。第二保护层覆盖有机发光堆栈层且具有上表面。图案化光遮挡层设置于第二保护层的上表面,其中图案化光遮挡层的边缘与复数个凸块中一者的边缘不对齐。
在某些实施方式中,所述有机发光材料包括具有共振结构的分子结构,且可选自于由螺-三芳基胺、双-三芳基胺及其组合组成的群组。
在某些实施方式中,所述有机发光单元具有有效发光区,其大小由位于所述有机发光单元下方的阳极所界定,所述有机发光单元于发光时具有黑区与亮区,其中所述黑区的总面积小于所述有效发光区的50%。
在某些实施方式中,其中所述有机发光堆栈层包括:载体注入层、载体传输层、有机发射层及有机载体传输层。
在某些实施方式中,所述复数个凸块包含光敏材料。
在某些实施方式中,所述所述基板包含透明材料。
在某些实施方式中,所述有机发光单元之所述两相邻凸块之各一边缘之间的距离大于所述复数个光遮挡层中两者之间的距离。
在某些实施方式中,所述图案化光遮挡层包含具有十字形轮廓的开口,所述具有十字形轮廓的开口可曝露由单一有机发光单元发出的光。
在某些实施方式中,所述图案化光遮挡层包含具有十字形轮廓的开口,所述具有十字形轮廓的开口可曝露由复数个有机发光单元发出的光。
在本发明中,具有一种发光元件,发光元件包括基板、第一保护层、导电层、复数个凸块、第二保护层和复数个光遮挡层。第一保护层在基板上方。复数个凸块配置于所述导电层之一部份之上,复数个凸块中两相邻凸块间具有包含有机材料的有机发光单元,其中有机发光单元包括第一发光单元、第二发光单元和第三发光单元。第二保护层在有机发光单元上方且覆盖有机发光单元。复数个光遮挡层在第二保护层上方,其中,在纵向方向上,复数凸块各具有边缘,其与复数个光遮挡层中一者的边缘彼此偏移。
在某些实施方式中,在横向方向上所述光遮挡层之面积大于所述复数个凸块中各者的面积。
在某些实施方式中,所述导电层包括透明导电膜,所述透明导电膜包括ITO(氧化铟锡)、IZO(氧化铟锌)或IGZO(氧化銦鎵鋅)。
在某些实施方式中,所述导电层包括阳极电极。
在某些实施方式中,所述有机发光单元之所述两相邻凸块之各一边缘之间的距离大于所述复数个光遮挡层中两者之间的距离。
在某些实施方式中,所述复数个光遮挡层中的一者可包含具有十字形轮廓的凹陷,所述具有十字形轮廓的凹陷可曝露由单一有机发光单元发出的光。
在某些实施方式中,所述复数个光遮挡层中的一者可包含具有十字形轮廓的凹陷,所述具有十字形轮廓的凹陷可曝露由复数个有机发光单元发出的光。
附图说明
图1为俯视图,例示发光元件的中间产物。
图2为例示沿着图1中的线AA的剖面图。
图3A至图3L绘示根据一实施例的制造发光元件的流程。
图4A与4B绘示根据一实施例的光遮挡层的俯视图。
附图符号说明
10           发光元件
10a          发光单元
10b          发光单元
10c          发光单元
100          基板
101          第一保护层
102          第一电极
102T         厚度
103          凸块
103'         凸块
103a         边缘
103'a        边缘
104L1        载体注入层
104L2        载体传输层
104L3        有机发射层
104L4        有机载体传输层
104D         第二电极
105          第二保护层
105s         上表面
106          光遮挡层/图案化光遮挡层
106'         光遮挡层/图案化光遮挡层
106a         边缘
106'a        边缘
106T         厚度
d            偏移
d'           偏移
W1           距离
W2           距离
具体实施方式
图1为俯视图,例示发光元件10的中间产物。发光元件10具有发光层20以及位于该发光层20上方的覆盖层40。对于发光层20,可设计间隔物21以提供用于容纳发光像素阵列的凹部阵列。在一些实施例中,间隔物21可包含光敏感材料。
图2为例示沿着图1中的线AA的剖面图并且仅说明发光区域。为求简洁,此处省略覆盖层40。间隔物21具有复数个凸块103,以定义发光像素图案。凹部位在两个相邻凸块103之间并且提供容纳发光像素的空间。技艺之人士应理解从剖面图观察,凸块103以断开的方式绘示,但从图1的俯视示意图观察,它们可经由间隔物21的其他部分而彼此连接。
发光元件10包括发光阵列,发光阵列包括第一有机发光单元10a、第二有机发光单元10b以及第三有机发光单元10c。有机发光单元在本申请中亦可称为发光像素。在一些实施例中,发光单元10a包括一第一电极102、在凸块103和第一电极102上方的载体注入层104L1、在载体注入层104L1上方的载体传输层104L2、在载体传输层104L2的一部分上方的有机发射层104L3,以及在有机发射层104L3上方的有机载体传输层104L4。载体注入层104L1、载体传输层104L2、有机发射层104L3,以及有机载体传输层104L4可以统称为有机发光堆栈层。
在一些实施例中,载体注入层104L1配置于第一电极102与载体传输层104L2之间。发光单元10a包含一有机材料,此有机材料可依不同的实施方式置于发光单元10a中的载体传输层、载体注入层或机发射层中的任一层中。且此有机材料在一些实施例中,对于一特定波长之吸收率大于或等于50%,在一些实施例中,对于一特定波长之吸收率大于或等于60%,在一些实施例中,对于一特定波长之吸收率大于或等于70%,在一些实施例中,对于一特定波长之吸收率大于或等于80%,在一些实施例中,对于一特定波长之吸收率大于或等于90%,在一些实施例中,对于一特定波长之吸收率大于或等于95%。
在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
基板100位在发光层20下方。在一些实施例中,基板100可包括薄膜晶体管(TFT)阵列。在一些实施例中,基板100包含基材(未绘示)、介电层(未绘示),及设于基材上或基材内的一或多个电路(未绘示)。在一些实施例中,基材为透明基材,或至少一部分是透明的。在一些实施例中,基材为非可挠式基材,且基材的材料可包括玻璃、石英、低温 多晶硅(low temperature poly-silicon,LTPS)或其他适当材料。在一些实施例中,基材为可挠式基材,且基材的材料可包括透明环氧树脂、聚酰亚胺、聚氯乙烯、甲基丙烯酸甲酯或其他适当材料。介电层可视需要而设于基材上。在一些实施例中,介电层可包括氧化硅、硅氮化物、硅氧氮化物或其他适当材料。
在一些实施例中,电路可包含互补式金属氧化物半导体(Complementary metal–oxide–semiconductor,CMOS)电路,或是包含数个晶体管及邻近晶体管的数个电容器,其中晶体管及电容器形成于介电层上。在一些实施例中,晶体管为薄膜晶体管(thin-film transistor,TFT)。每一晶体管包括源极/汲极区域(包含至少一源极区域及一汲极区域)、介于源极/汲极区域间的通道(channel)区域、设于通道区域上方的闸极电极以及介于通道区域与闸极电极间的闸极绝缘体。晶体管的通道区域可由半导体材料制成,譬如硅或选自第IV族或第III族及第V族的其他元素。
保护层101形成于基板100之上。保护层101形成于基板100之上表面100a上。保护层101接触基板100的表面100a。
复数个第一电极102形成于所述第一保护层101上方。复数个第一电极102接触所述第一保护层101。复数个第一电极102彼此分隔开。复数个第一电极102与基板100电连接。
如图2所示,复数个凸块103配置于基板100之上。复数个凸块103配置于所述第一保护层101上方。复数个凸块103覆蓋第一电极102的一部份。第一电极102的周围区域由凸块103覆盖。在一些实施例中,第一电极102的边缘角落完全被凸块103包围。在一些实施例中,第一电极102的侧壁完全与凸块103接触。在一些实施例中,在两个第一电极102之间的两个凸块103彼此分隔开。
在本申请中,第一电极102可为阳极。在本申请中,第一电极102可为导电层。发光单元10a的第一电极102可界定有效发光区的大小。在一些实例中,发光单元10a于发光时具有黑区与亮区。黑区的总面积小于有效发光区的50%。有效发光区也可称为有效照明区。
在一些实施例中,有效照明区具有至少小于10微米的宽度。在一些实施例中,有效照明区具有约3微米至6微米的宽度。在一些实施例中,有效照明区具有约4微米至6微米的宽度。有效照明区决定图1中的发光元件10的像素大小。由于可将有效照明区的大小控制在10微米以下,因而发光元件10的像素密度可超过1000或2000ppi。
第一电极102可具有约至约的总厚度。在一些实施例中,第一电极102具有约至约的总厚度。在一些实施例中,第一电极102具有约的总厚度。第一电极102可为导电层。第一电极102可包含ITO、IZO、IGZO、AlCu合金、AgMo 合金,约ITO(或IZO或IGZO)与金属膜(Ag、Al、Mg、Au)以及约ITO(或IZO或IGZO)。
在一些实施例中,电极102为复合结构。例如,电极102可具有导电膜与位在其上的透明导电膜。导电膜位于透明导电膜与基板100之间。在一些实施例中,导电膜包含铝、金、银、铜等。在一些实施例中,透明导电膜包含铟、锡、石墨烯、锌、氧等。在一些实施例中,电极102包括透明导电薄膜。在一些实施例中,电极102包括ITO(铟锡氧化物)。在一些实施例中,电极102包括IZO(铟锌氧化物)。在一些实施例中,电极102包括IGZO(氧化銦鎵鋅)。在一些实施例中,透明导电膜的粗糙度导电膜的厚度可为约 至约之间。透明导电膜的厚度可为约至约之间。
在一些实施例中,第一电极102具有至少三个不同的膜。导电膜(例如Al、Cu、Ag、Au等)夹置在两个透明导电膜之间。在一些情况下,两个透明导电膜其中之一为ITO,其一侧与基板100接触且另一侧与导电膜接触。在一些情况下,两个透明导电膜其中之一为ITO,其一侧与导电膜接触且另一侧与凸块103或发光材料接触。
在一些实施例中,每个凸块103都具有弯曲表面,其远离基板100突出并且覆盖第一电极102的外围区域。凸块103可为不同的形状。在一些实施例中,凸块103具有弯曲的表面。在一些实施例中,凸块103的形状可以为梯型。在一些实施例中,凸块103的形状可以为矩型。凸块103的图案根据像素布置来设计,并且图案化的凸块103可称为像素定义层(pixel defined layer,PDL)。凸块103配置于基板100之上。每个凸块103填入两相邻第一电极102之间的间隙。每个第一电极102由凸块103部分覆盖。凸块103可包含光敏材料。
在一些实施例中,凸块103对于一特定波长之吸收率大于或等于50%,在一些实施例中,凸块103对于一特定波长之吸收率大于或等于60%,在一些实施例中,凸块103对于一特定波长之吸收率大于或等于70%,在一些实施例中,凸块103对于一特定波长之吸收率大于或等于80%,在一些实施例中,凸块103对于一特定波长之吸收率大于或等于90%,在一些实施例中,凸块103对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
载体注入层104L1设置在保护层101、第一电极102和凸块103的暴露表面上。载体注入层104L1连续覆盖凸块103和第一电极102的暴露表面。在一些实施例中,每个第一电极102的暴露表面经配置为用于一个发光单元10a的有效发光区域。载体注入层104L1可 选择性与凸块103接触。在一些实施例中,载体注入层104L1与第一电极102接触。在一些实施例中,载体注入层104L1为有机体。在一些实施例中,载体注入层104L1是经配置为执行空穴注入。在一些实施例中,载体注入层104L1为一空穴注入层。在一些实施例中,载体注入层104L1可具有约至约的厚度。
载体传输层104L2设置在保护层101、第一电极102和凸块103上。载体传输层104L2设置在载体注入层104L1上方并完全覆盖载体注入层104L1。载体注入层104L1设置在载体传输层104L2底下。载体传输层104L2连续覆盖载体注入层104L1。载体传输层104L2覆盖多个第一电极102和多个凸块103。载体传输层104L2可选择性与载体注入层104L1接触。在一些实施例中,载体传输层104L2为有机体。在一些实施例中,载体传输层104L2是经配置为执行空穴传输。在一些实施例中,载体传输层104L2为一第一空穴传输层。在一些实施例中,载体注入层104L1可具有约至约的厚度。
有机发射层104L3设置在保护层101、第一电极102和凸块103上。有机发射层104L3设置在载体传输层104L2上方并完全覆盖载体传输层104L2。载体传输层104L2设置在有机发射层104L3底下。有机发射层104L3连续覆盖载体传输层104L2。有机发射层104L3覆盖多个第一电极102和多个凸块103。有机发射层104L3可选择性与载体传输层104L2接触。有机发射层104L3是经配置为发出第一颜色。
在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于50%,在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于60%,在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于70%,在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于80%,在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于90%,在一些实施例中,有机发射层104L3对于一特定波长之吸收率大于或等于95%。在一些实施例中,特定波长不大于400nm,在一些实施例中,特定波长不大于350nm,在一些实施例中,特定波长不大于300nm,在一些实施例中,特定波长不大于250nm,在一些实施例中,特定波长不大于200nm,在一些实施例中,特定波长不大于150nm,在一些实施例中,特定波长不大于100nm。
在一些实施例中,载体传输层104L2和有机发射层104L3中至少一者包括有机材料。该有机材料可包括具有共振结构的分子结构。该有机材料可选自于由螺-三芳基胺、双-三芳基胺及其组合组成的群组。在一些实施例中,载体传输层104L2和有机发射层104L3中至少一者包括螺-三芳基胺。在一些实施例中,载体传输层104L2和有机发射层104L3中至少一者包括双-三芳基胺。在一些实施例中,载体传输层104L2和有机发射层104L3 包括该相同材料。在一些实施例中,载体传输层104L2包括并且有机发射层104L3包括在一些实施例中,载体传输层104L2包括并且有机发射层104L3包括
有机载体传输层104L4设置在保护层101、第一电极102和凸块103上。有机载体传输层104L4设置在有机发射层104L3上方并完全覆盖有机发射层104L3。有机发射层104L3设置在有机载体传输层104L4底下。有机载体传输层104L4连续覆盖有机发射层104L3。有机载体传输层104L4覆盖多个第一电极102和多个凸块103。选择性,有机载体传输层104L4与有机发射层104L3接触。
第二电极104D设置在保护层101、第一电极102和凸块103上。第二电极104D位在有机载体传输层104L4上方并完全覆盖有机载体传输层104L4。在一些情况下,第二电极104D经图案化以仅覆盖各个发光像素的有效发光区域。在一些情况下,第二电极104D与有机载体传输层104L4接触。
第二电极104D可具有约至约的厚度。在一些实施例中,第二电极104D可具有约至约的厚度。在一些实施例中,第二电极104D可具有约至约 的厚度。在一些实施例中,第二电极104D可具有约至约的厚度。在一些实施例中,第二电极104D可具有约至约的厚度。在一些实施例中,第二电极104D可具有约至约的厚度。
在本申请中,第二电极104D可为阴极。第二电极104D可为金属材料,例如Ag、Mg等。在一些实施例中,第二电极104D包括ITO(氧化铟锡)或IZO(氧化铟锌)。
在一些实施例中,第二电极104D为复合结构。例如,第二电极104D具有导电膜以及在其上的透明导电膜。导电膜位在透明导电膜与有机载体传输层104L4之间。在一些实 施例中,导电膜包含铝、金、银、铜、镁、钼等。在一些实施例中,透明导电膜包含铟、锡、石墨烯、锌、氧等。在一些实施例中,透明导电膜为ITO(铟锡氧化物)。在一些实施例中,透明导电膜为IZO(铟锌氧化物)。在一些实施例中,透明导电膜位在导电膜与有机载体传输层104L4之间。在一些实施例中,第二电极104D可为图形化导电层,或带有图形化绝缘层的图形化导电层。
在图2中发光元件10包括基板100、在基板100上的多个凸块103以及由凸块103隔开的多个发光单元。这些发光单元包括第一发光单元10a、第二发光单元10b及第三发光单元10c。在一些实施例中,第一发光单元10a、第二发光单元10b及第三发光单元10c彼此相邻。在一些实施例中,第二发光单元10b及第三发光单元10c具有与第一发光单元10a类似的构造。此外,尽管第一发光单元10a、第二发光单元10b及第三发光单元10c例示为具有相似的特征,但这仅为例示性,无意于限制这些实施例。第一发光单元10a、第二发光单元10b及第三发光单元10c可具有相似的结构或不同的结构,以满足期望的功能要求。
第一发光单元10a、第二发光单元10b及第三发光单元10c可至少在有机发光堆栈层的厚度上彼此不同。第一发光单元10a、第二发光单元10b及第三发光单元10c可配置为发射不同颜色的可见光。在一些实施例中,第一发光单元10a发射绿光、第二发光单元10b发射红光并且第三发光单元10c发射蓝光。
在一些实施例中,发光单元10a、10b、10c是经配置为分成至少三个不同群组,其中每一群组发出与其他群组不同的颜色。每一有机发光堆栈层的厚度可与由相应发光单元10a、10b、10c显示的颜色有关。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第一发光单元10a发出绿光,并且第一发光单元10a的有机发光堆栈层可具有最小厚度。在一些实施例中,与配置为发射不同颜色的其他发光单元相比,第二发光单元10b发射红光,并且第二发光单元10b内有机发光堆栈层的厚度可介于第一发光单元10a内有机发光堆栈层的厚度与第三发光单元10c内有机发光堆栈层的厚度之间。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第三发光单元10c发出蓝光,并且第三发光单元10c的有机发光堆栈层可具有最大厚度。第一发光单元10a、第二发光单元10b及第三发光单元10c的有机发光堆栈层可通过诸如气相沉积、液体喷射或喷墨印刷的各种处理来形成。
在一些实施例中,第一、第二和第三发光单元10a、10b、10c可至少在第一、第二和第三发光单元10a、10b、10c的载体传输层的厚度差异上彼此不同。
在一些实施例中,发光单元10a、10b、10c是经配置为分成至少三个不同群组,其中每一群组发出与其他群组所发出颜色不同的颜色。载体传输层的厚度可关联于相应发光 单元10a所显示的颜色。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第一发光单元10a发出绿光,并且第一发光单元10a的载体传输层可具有最小厚度。在一些实施例中,与配置为发射不同颜色的其他发光单元相比,第二发光单元10b发射红光,并且第二发光单元10b内载体传输层的厚度可介于第一发光单元10a内载体传输层的厚度与第三发光单元10c内载体传输层的厚度之间。在一些实施例中,与配置为发出不同颜色的其他发光单元相比,第三发光单元10c发出蓝光,并且第三发光单元10c的载体传输层可具有最大厚度。
保护层105形成于第一、第二和第三发光单元10a、10b、10c之上。保护层105接触第一、第二和第三发光单元10a、10b、10c。在一些实施例中,保护层101覆盖第一、第二和第三发光单元10a、10b、10c。在一些实施例中,保护层105覆盖有机发光堆栈层且具有上表面105s。在一些实施例中,保护层105包括无机材料。在一些实施例中,保护层105包括有机材料。
复数个光遮挡层106形成保护层105之上。复数个光遮挡层106形成于保护层105的上表面105s。复数个光遮挡层106与基板100分隔开。复数个光遮挡层106也可以统称为图案化光遮挡层106。复数个光遮挡层106彼此分开达一距离W1。复数个光遮挡层106彼此分开的部分可以称为开口,开口具有宽度W1。复数个光遮挡层106彼此分开的部分可以称为凹陷,凹陷具有宽度W1。复数个光遮挡层106可吸收90%以上的可见光。在一些实施例中,光遮挡层106可以包含黑体材料。在一些实施例中,光遮挡层106包括一层单一材料。在一些实施例中,光遮挡层106包括多个材料形成的复合层。在一些实施例中,光遮挡层106包括有机材料。在一些实施例中,光遮挡层106包括无机材料。在一些实施例中,光遮挡层106包括有机或无机材料的複合层。
在图2中,光遮挡层106具有厚度106T。第一电极102具有厚度102T。在一些实施例中,光遮挡层106的厚度106T大于第一电极102的厚度102T。在一些实施例中,光遮挡层106的厚度106T等于第一电极102的厚度102T。在一些实施例中,光遮挡层106的厚度106T小于第一电极102的厚度102T。
凸块103中一者在覆盖第一电极102的上表面上有边缘103a。光遮挡层106在其接近第一电极102中心处有边缘106a。光遮挡层106的边缘106a与凸块103的边缘103a不对齐。凸块103的边缘103a与光遮挡层的边缘106a在纵向方向上有偏移d。偏移d占光遮挡层106之宽度的百分比可大于或等于1%。偏移d占光遮挡层106之宽度的百分比可大于或等于5%。偏移d占光遮挡层106之宽度的百分比可大于或等于10%。偏移d占光遮挡层106之宽度的百分比可大于或等于15%。
凸块103'中一者在覆盖第一电极102的上表面上有边缘103'a。光遮挡层106'在其接近第一电极102中心处有边缘106'a。光遮挡层106'的边缘106'a与凸块103'的边缘103'a不对齐。凸块103'的边缘103'a与光遮挡层106的边缘106'a之间有偏移d'。在一些实施例中,偏移d'小於或等於100nm。偏移d'占光遮挡层106'之宽度的百分比可大于或等于1%。偏移d'占光遮挡层106'之宽度的百分比可大于或等于5%。偏移d'占光遮挡层106'之宽度的百分比可大于或等于10%。偏移d'占光遮挡层106'之宽度的百分比可大于或等于15%。在一些实施例中,偏移d等于偏移d'。在一些实施例中,偏移d大于偏移d'。在一些实施例中,偏移d小于偏移d'。上述比例的偏移有助于有效地消除光晕及光学串扰,将于后续段落根据图3L进一步说明。
在图2中,在横向方向上复数个光遮挡层106各者之面积大于凸块103中各者的面积。在图2中,复数个光遮挡层106及106'之间的距离为W1,两相邻凸块103及103'之各一边缘103a及103'a之间的距离为W2。由于有偏移d及d',两相邻凸块103及103'之各一边缘103a及103'a之间的距离W2大于复数个光遮挡层中两相邻光遮挡层106及106'的各一边缘106a及106'a之间的距离W1。在图2中,两相邻凸块103及103'之各一边缘103a及103'a之间的距离W2可为复数个光遮挡层106中两者106及106'之间的距离W1、以及偏移d与偏移d'之和。两相邻凸块103及103'之各一边缘103a及103'a之间的距离W2可定义有效发光区之面积。因为复数个光遮挡层106及106'之间的距离W1小于W2,复数个光遮挡层106及106'可控制第一电极102发出的光,从而改善图案的成像效果。
图3A至图3K绘示根据一实施例的制造发光元件的一方法。
在图3A中,提供基板100。
在图3B中,在基板100之第一表面100a上设置保护层101。
在图3C中,在保护层101之上设置复数个第一电极102。各个第一电极102经配置以电连接至基板100。考虑像素的安排而设计第一电极102之阵列图案。
在图3D中,在保护层101及第一电极102上设置光敏层103L。在一些实施例中,涂布光敏层103L于保护层101及第一电极102上。光敏层103L填入相邻的第一电极102之间的间隙中。将光敏层103L加热至一预定的温度,然后将之暴露在指定的波长之下。光敏层103L可吸收90%以上的可见光。在暴露之后,在一溶液中润湿光敏层103L以进行显影。
如图3E所示,光敏层103L之一部分被移除,而留下的部分局部覆盖相邻的第一电极102之间的间隙。在此剖面图中,留下的光敏层103L形成复数凸块103,各个凸块103形成于第一电极102之部分上表面上且包覆第一电极102之一侧表面。凸块103局部地覆盖各个第一电极102。
凸块103可经形成为不同的形状。在图3E中,凸块103具有弯曲的表面。在一些实施例中,凸块103的形状为梯型。在形成凸块103后,执行清洁操作以清洁第一电极102及凸块103之暴露表面。在一实施例中,在清洁操作期间,将去离子水加热至介于30℃及80℃之间的一温度。在去离子水的温度升高至一预定温度后,将去离子水引导至第一电极102及凸块103之暴露表面。
在一些实施例中,在清洁操作期间使用超声波。将超声波导入清洁剂(例如水或异丙醇(IPA)等)中。在一些实施例中,将二氧化碳导入清洁剂中。在清洁操作之后,经由加热操作将清洁剂从暴露表面移除。在加热操作期间,可将基板100及凸块103加热至介于80℃及110℃之间的一温度。在一些例子中,将压缩空气引导至暴露表面,以在加热的同时帮助移除清洁剂之残余物。
在加热操作之后,可使用O2、N2、或Ar电浆来处理暴露表面。电浆系用以使暴露表面粗糙化。在一些实施例中,使用臭氧以调节暴露表面之表面状态。
如图3F所示,在保护层101、凸块103及第一电极102之暴露表面上设置载体注入层104L1。载体注入层104L1沿着暴露表面连续地加衬(lining)。更具体而言,各个第一电极102之暴露表面经配置作为一发光单元(亦即,一像素)的有效发光面积。在此实施例中,所有发光单元使用载体注入层104L1。在一些实施例中,载体注入层104L1系用于电洞注入。在一些实施例中,载体注入层104L1系用于电子注入。载体注入层104L1连续地覆盖在第一电极102及复数个凸块103之暴露表面之上。可选地,载体注入层104L1与凸块103接触。在一实施例中,载体注入层104L1与第一电极102接触。在一些实施例中,载体注入层104L1为有机的。
如图3G所示,在保护层101、凸块103及第一电极102之部分暴露表面上设置载体传输层104L2。载体注入层104L1设置在载体传输层104L2之下。载体传输层104L2沿着载体注入层104L1连续地加衬。在此实施例中,所有的发光单元使用载体传输层104L2。在一些实施例中,载体传输层104L2系用于电洞注入。在一些实施例中,载体传输层104L2系用于电子注入。载体传输层104L2连续地覆盖在复数个凸块103及第一电极102之上。可选地,载体传输层104L2与载体注入层104L1接触。在一些实施例中,载体传输层104L2为有机的。
在图3H中,有机发射层104L3设置在保护层101、凸块103及第一电极102之部分暴露表面上。有机发射层104L3覆盖载体传输层104L2。有机发射层104L3完全地覆盖暴露的载体传输层104L2。有机发射层104L3经配置以发射第一颜色。
如图3I所示,在有机发射层104L3上设置有机载体传输层104L4。有机载体传输层 104L4可为电洞或电子传输层。在一些实施例中,有机载体传输层104L4及载体传输层104L2各自配置成相反的价态。
在图3J中,在有机载体传输层104L4上设置第二电极104D。第二电极104D覆盖有机载体传输层104L4。第二电极104D可为金属材料,例如Ag、Mg等。在一些实施例中,第二电极104D包括ITO(氧化铟锡)或IZO(氧化铟锌)。在一些实施例中,从剖视图观看,各个发光单元(亦即,像素)具有独立的第二电极104D。
在图3K中,保护层105设置在保护层101及第二电极104D之上。保护层105覆盖第二电极104D。
在图3L中,在保护层105上设置复数个光遮挡层106。各个光遮挡层106经配置成保护层105之同一侧上。各个光遮挡层106彼此分开。
可重复执行如图3A-3L中所示之操作以形成不同颜色的发光单元。
如图3L所示,发光单元所产生的光L1可以朝向光遮挡层106的方向向外发出,而外界的光L2具有朝向发光单元行进的分量。外界的光L2进入发光单元内后,会因发光单元内的各种不同组件产生不同的反射光L2r。反射光L2r可能对发光单元所产生的光L1产生干扰,因此产生光晕及光学串扰等问题,造成有机发光显示器的光学效果不如预期。在一些实施例中,发光单元中非L1方向或是侧向光的干扰也会产生光晕及光学串扰等问题。根据本揭露的光遮挡层106,经过适当配置(例如,采用如上述讨论可遮挡环境光),可大大降低外界的光L2以及反射光L2r对光L1产生的干扰,进而解决光晕及光学串扰等问题,并提高发光单元的对比度。
参见图4A,在一些实施例中,光遮挡层106从俯视角度可具有呈现十字形轮廓的凹陷400(可对应于图2中标示的W1部分)。十字形轮廓400可以让发光单元(例如10a、10b或10c)发出的光透出。在一些实施例中,十字形轮廓400可让单一发光单元发出的光透出。在一些实施例中,十字形轮廓400可让多个发光单元发出的光透出。
在一些实施例中,图4A的凹陷400也可称为开口400。参见图4A,在一些实施例中,光遮挡层106从俯视角度可具有呈现十字形轮廓的开口400(可对应于图2中标示的W1部分)。十字形轮廓的开口400可以让发光单元(例如10a、10b或10c)发出的光透出。在一些实施例中,十字形轮廓的开口400可让单一发光单元发出的光透出。在一些实施例中,十字形轮廓的开口400可让多个发光单元发出的光透出。
参见图4B,在一些实施例中,光遮挡层106可包含第一凹陷402与第二凹陷404、406、408、410。第一凹陷402具有十字形轮廓;第二凹陷404、406、408、410,位于第一凹陷402的四侧,且具有L形轮廓,从而第一凹陷402与第二凹陷404、406、408、410共同形成 一个准心的图案。准心的图案可以让发光单元(例如10a、10b或10c)发出的光透出。在一些实施例中,第一凹陷402可与单一发光单元的有效发光面积重迭,让单一发光单元发出的光透出。在一些实施例中,第一凹陷402可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。在一些实施例中,第二凹陷404、406、408、410的每一者可与单一发光单元的有效发光面积重迭,各自让单一发光单元发出的光透出。在一些实施例中,第二凹陷404、406、408、410的每一者可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。
在一些实施例中,第一凹陷402以及第二凹陷404、406、408、410可与单一发光单元的有效发光面积重迭,让单一发光单元发出的光透出。在一些实施例中,第一凹陷402以及第二凹陷404、406、408、410可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。
在一些实施例中,图4B的第一凹陷402也可称为第一开口402,图4B的第二凹陷404、406、408、410也可称为第二开口404、406、408、410。参见图4B,在一些实施例中,光遮挡层106可包含第一开口402与第二开口404、406、408、410。第一开口402具有十字形轮廓;第二开口404、406、408、410,位于第一开口402的四侧,且具有L形轮廓,从而第一开口402与第二开口404、406、408、410共同形成一个准心的图案。准心的图案可以让发光单元(例如10a、10b或10c)发出的光透出。在一些实施例中,第一开口402可与单一发光单元的有效发光面积重迭,让单一发光单元发出的光透出。在一些实施例中,第一开口402可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。在一些实施例中,第二开口404、406、408、410的每一者可与单一发光单元的有效发光面积重迭,各自让单一发光单元发出的光透出。在一些实施例中,第二开口404、406、408、410的每一者可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。
在一些实施例中,第一开口402以及第二开口404、406、408、410可与单一发光单元的有效发光面积重迭,让单一发光单元发出的光透出。在一些实施例中,第一开口402以及第二开口404、406、408、410可与多个发光单元的有效发光面积重迭,让多个发光单元发出的光透出。
本申请可以根据实际需求将图案化调成成所期望的形状。
前述内容概述一些实施方式的特征,因而熟知此技艺的人士可更加理解本揭露的各方面。熟知此技艺的人士应理解可轻易使用本揭露作为基础,用于设计或修饰其他制程与结构而实现与本申请案所述的实施例具有相同目的与/或达到相同优点。熟知此技艺的 人士亦应理解此均等架构并不脱离本揭露揭示内容的精神与范围,并且熟知此技艺的人士可进行各种变化、取代与替换,而不脱离本揭露的精神与范围。

Claims (16)

  1. 一种发光元件,包括:
    基板;
    第一保护层,其在所述基板上方;
    导电层,其在所述第一保护层上方;
    复数个凸块配置于所述基板之上,所述复数个凸块中两相邻凸块间各具有包含有机材料的有机发光单元,其中所述有机发光单元具有包含有机材料的有机发光堆栈层;
    第二保护层,其覆盖所述有机发光堆栈层且具有上表面;
    图案化光遮挡层,其设置于所述第二保护层的所述上表面,其中所述图案化光遮挡层的边缘与所述复数个凸块中一者的边缘不对齐。
  2. 如权利要求1中所述的发光元件,其中所述有机发光材料包括具有共振结构的分子结构,且可选自于由螺-三芳基胺、双-三芳基胺及其组合组成的群组。
  3. 如权利要求1中所述的发光元件,其中所述有机发光单元具有有效发光区,其大小由位于所述有机发光单元下方的阳极所界定,所述有机发光单元于发光时具有黑区与亮区,其中所述黑区的总面积小于所述有效发光区的50%。
  4. 如权利要求1中所述的发光元件,其中所述有机发光堆栈层包括:
    载体注入层;
    载体传输层;
    有机发射层;及
    有机载体传输层。
  5. 如权利要求1项中所述的发光元件,其中所述复数个凸块包含光敏材料。
  6. 如权利要求1项中所述的发光元件,其中所述基板包含透明材料。
  7. 如权利要求1中所述的发光元件,其中所述有机发光单元之所述两相邻凸块之各一边缘之间的距离大于所述复数个光遮挡层中两者之间的距离。
  8. 如权利要求1中所述的发光元件,其中所述图案化光遮挡层包含具有十字形轮廓的开口,所述具有十字形轮廓的开口可曝露由单一有机发光单元发出的光。
  9. 如权利要求1中所述的发光元件,其中所述图案化光遮挡层包含具有十字形轮廓的开口,所述具有十字形轮廓的开口可曝露由复数个有机发光单元发出的光。
  10. 一种发光元件,包括:
    基板;
    第一保护层,其在所述基板上方;
    导电层,其在所述第一保护层上方;
    复数个凸块,其中所述复数个凸块配置于所述导电层之一部份之上,所述复数个凸块中两相邻凸块间具有包含有机材料的有机发光单元,其中所述有机发光单元包括第一发光单元、第二发光单元和第三发光单元,
    第二保护层,其在所述有机发光单元上方且覆盖所述有机发光单元;
    复数个光遮挡层,其在所述第二保护层上方,其中,在纵向方向上,所述复数凸块各具有边缘,其与所述复数个光遮挡层中一者的边缘彼此偏移。
  11. 如权利要求10中所述的发光元件,其中在横向方向上所述光遮挡层之面积大于所述复数个凸块中各者的面积。
  12. 如权利要求10中所述的发光元件,其中所述导电层包括透明导电膜,所述透明导电膜包括氧化铟锡、氧化铟锌或氧化銦鎵鋅。
  13. 如权利要求10中所述的发光元件,其中所述导电层包括阳极电极。
  14. 如权利要求10中所述的发光元件,其中所述有机发光单元之所述两相邻凸块之各 一边缘之间的距离大于所述复数个光遮挡层中两者之间的距离。
  15. 如权利要求10所述的发光元件,其中所述复数个光遮挡层中的一者可包含具有十字形轮廓的凹陷,所述具有十字形轮廓的凹陷可曝露由单一有机发光单元发出的光。
  16. 如权利要求10所述的发光元件,其中所述复数个光遮挡层中的一者可包含具有十字形轮廓的凹陷,所述具有十字形轮廓的凹陷可曝露由复数个有机发光单元发出的光。
PCT/CN2023/084275 2022-09-02 2023-03-28 发光组件 WO2024045587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211073182.6A CN117693231A (zh) 2022-09-02 2022-09-02 发光组件
CN202211073182.6 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045587A1 true WO2024045587A1 (zh) 2024-03-07

Family

ID=90100269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084275 WO2024045587A1 (zh) 2022-09-02 2023-03-28 发光组件

Country Status (2)

Country Link
CN (1) CN117693231A (zh)
WO (1) WO2024045587A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133676A1 (en) * 2014-11-10 2016-05-12 Samsung Display Co., Ltd. Organic light-emitting display panel and method of fabricating the same
CN106298845A (zh) * 2015-06-29 2017-01-04 三星显示有限公司 发光显示装置及其制造方法
CN109427600A (zh) * 2017-09-05 2019-03-05 创王光电股份有限公司 发光元件的制造方法及其装置
CN111009560A (zh) * 2018-10-05 2020-04-14 三星显示有限公司 显示装置
US20200235178A1 (en) * 2019-01-17 2020-07-23 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20220231099A1 (en) * 2021-01-15 2022-07-21 Samsung Display Co., Ltd. Display device and method of providing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133676A1 (en) * 2014-11-10 2016-05-12 Samsung Display Co., Ltd. Organic light-emitting display panel and method of fabricating the same
CN106298845A (zh) * 2015-06-29 2017-01-04 三星显示有限公司 发光显示装置及其制造方法
CN109427600A (zh) * 2017-09-05 2019-03-05 创王光电股份有限公司 发光元件的制造方法及其装置
CN111009560A (zh) * 2018-10-05 2020-04-14 三星显示有限公司 显示装置
US20200235178A1 (en) * 2019-01-17 2020-07-23 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
US20220231099A1 (en) * 2021-01-15 2022-07-21 Samsung Display Co., Ltd. Display device and method of providing the same

Also Published As

Publication number Publication date
CN117693231A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
US11563198B2 (en) Display unit with organic layer disposed on metal layer and insulation layer
US10224383B2 (en) Organic light-emitting display apparatus including pixel defining layer having first and second inclination portions and method of manufacturing the same
JP7058724B2 (ja) Tft基板とその製造方法、及びoledパネルの製造方法
US9252268B2 (en) Array substrate for display device
US9941338B2 (en) Organic light-emitting diode display and method of manufacturing the same
US9281322B2 (en) Thin film transistor array panel and method for manufacturing the same
US11024699B2 (en) Display device and method of manufacturing display device
EP2945201B1 (en) Organic light emitting display device
WO2024045587A1 (zh) 发光组件
JP6905421B2 (ja) 表示装置
EP4307867A1 (en) Light-emitting element
US11171191B2 (en) Display apparatus having a light-emitting device on an over-coat layer, and method of forming the same
CN218499518U (zh) 发光元件
TWI842528B (zh) 發光元件
US20240023386A1 (en) Light-emitting element
CN219421504U (zh) 发光元件
CN218160440U (zh) 发光组件
KR20210004795A (ko) 디스플레이 장치
CN218735824U (zh) 发光元件
JP2024025670A (ja) 発光素子
CN220123372U (zh) 发光元件
CN219146070U (zh) 发光元件
KR20220075611A (ko) 발광 소자 및 뱅크 절연막을 포함하는 디스플레이 장치
KR20210028462A (ko) 발광 소자 및 컬러 필터를 포함하는 디스플레이 장치 및 그의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858629

Country of ref document: EP

Kind code of ref document: A1