WO2024045456A1 - 一种防爆阀及电池 - Google Patents

一种防爆阀及电池 Download PDF

Info

Publication number
WO2024045456A1
WO2024045456A1 PCT/CN2022/143655 CN2022143655W WO2024045456A1 WO 2024045456 A1 WO2024045456 A1 WO 2024045456A1 CN 2022143655 W CN2022143655 W CN 2022143655W WO 2024045456 A1 WO2024045456 A1 WO 2024045456A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosion
section
proof valve
buffer
notch
Prior art date
Application number
PCT/CN2022/143655
Other languages
English (en)
French (fr)
Inventor
张猛
杨伟
Original Assignee
欣旺达动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达动力科技股份有限公司 filed Critical 欣旺达动力科技股份有限公司
Publication of WO2024045456A1 publication Critical patent/WO2024045456A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the field of battery technology, and specifically relates to an explosion-proof valve and a battery.
  • This application provides an explosion-proof valve and battery, aiming to solve the stress concentration problem caused by the blasting weak area of the explosion-proof valve.
  • an explosion-proof valve including:
  • the main body part, the mounting part is arranged around the main body part; a notch is provided on the main body part;
  • the main body part includes a first buffer part and a first connection part, the first buffer part is connected to the first connection part, the first connection part is connected to the mounting part, and the first buffer part is connected to the installation part.
  • the first buffer portion is located on a side of the first connecting portion away from the mounting portion, the first buffer portion is protruding relative to the first connecting portion, and a notch is provided on the first connecting portion.
  • the first buffer part includes a first section and a second section, the first section is connected to the second section, and the second section is connected to the first connecting part;
  • the first section is located on a side of the second section away from the first connecting part and parallel to the first connecting part.
  • the first buffer part is a flexible deformable structure and provides a certain amount of flexible deformation for the explosion-proof valve; the shape of the first buffer part is not limited to
  • the connection shape between the first section and the second section can also be a continuous arc structure or a multi-section convex structure.
  • the thickness of the first section is D 1
  • the thickness of the second section increases along the direction extending toward the first connecting portion.
  • the minimum value of the thickness of the second section is D 2min
  • the maximum value of the thickness of the second section is D 2max , which satisfies:
  • the thickness value of the first section is D 1
  • the thickness value of the second section is D 2
  • the thickness value of the first connecting part is D 3 , when D 1 ⁇ D 2 , the D 1 , the D 2 and the D 3 further satisfy:
  • H 1 represents the height of the protrusion of the first buffer part relative to the first connecting part
  • a represents the angle formed between the first section and the second section, and 120° ⁇ a ⁇ 175°.
  • the first section and the second section are connected through an arc transition.
  • the arc radius of the arc transition connection is 0.1 ⁇ 2mm, preferably 0.2 ⁇ 1mm, which can further reduce local concentrated stress.
  • At least one set of convex hulls is provided on the first section, and the convex hulls are convex relative to the first section; the direction of the convex hulls is consistent with the convexity of the first buffer portion.
  • the starting directions are the same or opposite.
  • a convex hull structure is further provided on the first section, and the formed convex hull can also be flexibly deformed, thereby producing multiple buffering effects, further ensuring the application reliability of the explosion-proof valve.
  • the convex hull includes a third segment and a fourth segment, the third segment is connected to the fourth segment, the fourth segment is connected to the first segment, and the third segment It is located on the side of the fourth section away from the first section and parallel to the first section.
  • the notch is provided on the first connecting part, and at least part of the notch is provided around the first buffer part; or
  • the score is provided on the first buffer part.
  • the notch is located between the first buffer part and the mounting part, and the notch is the position on the explosion-proof valve with the smallest burst pressure value, which is used to open the explosion-proof valve; the first buffer
  • the internal pressure can be evenly dispersed, providing a buffer for the notch, reducing the stress concentration that is easily formed at the notch, and avoiding abnormal failure due to fatigue and other factors.
  • the scores may be arranged continuously or non-continuously.
  • Continuous setting means that the score forms a complete circle structure around the first buffer part.
  • Discontinuous setting means that the score is cut off when surrounding the first buffer part. The cut-off setting can improve the strength of the score.
  • the specific setting method of the score is Subject to actual needs.
  • the main body part includes a second buffering part, the first connecting part is connected to the second buffering part, and the second buffering part Connected to the mounting part; the first connecting part is located on the side of the second buffering part away from the mounting part; the second buffering part is raised relative to the first connecting part, and the second The protruding direction of the buffer portion is the same as or opposite to the protruding direction of the first buffer portion.
  • this application also provides a battery, including:
  • a top cover assembly includes: a top cover, the top cover is provided with an explosion-proof hole, the explosion-proof valve is connected to the top cover and covers the explosion-proof hole.
  • the first buffer part of the present application is raised relative to the first connection part, so that the first buffer part has a convex hull structure that can be flexibly deformed.
  • the explosion-proof valve When the explosion-proof valve is in the preparation process or application scenario
  • the first buffer part When affected by external factors that easily cause stress concentration in the notch, the first buffer part can produce flexible deformation, provide a certain amount of flexible deformation, and play a buffering role in the notch, thereby preventing the explosion-proof valve from excessive stress in the notch. Weaken the impact on the explosion-proof valve, ensure the application reliability of the explosion-proof valve, prevent it from rapid fatigue, and achieve the purpose of extending the service life of the explosion-proof valve.
  • the second buffer part and the first buffer part can jointly produce flexible deformation when the explosion-proof valve is affected by external factors that easily cause stress concentration in the notch, providing A certain amount of flexible deformation.
  • Both the second buffer part and the first buffer part can flexibly deform, which can play a better buffering role in the notch, thereby avoiding excessive notch stress of the explosion-proof valve, ensuring the application reliability of the explosion-proof valve, and realizing the improvement of the explosion-proof valve. service life purpose.
  • At least one set of convex hull structures is provided in the area surrounded by the first buffer portion, so that multiple buffer structures are formed in the area surrounded by the score.
  • multiple sets of convex hull structures can produce flexible deformation, provide a certain amount of flexible deformation, and can play a better buffering role in the notch, thereby avoiding explosion-proof
  • the notch stress of the valve is too large to ensure the application reliability of the explosion-proof valve and achieve the purpose of extending the service life of the explosion-proof valve.
  • Figure 1 is a schematic structural diagram of an explosion-proof valve provided in Embodiment 1 of the present application.
  • Figure 2 is a schematic cross-sectional view along the A-A direction in Figure 1;
  • Figure 3 is a partial enlarged schematic diagram of G in Figure 2;
  • Figure 4 is a schematic structural diagram of an explosion-proof valve provided in Embodiment 2 of the present application.
  • Figure 5 is a schematic cross-sectional view along the C-C direction in Figure 4.
  • Figure 6 is a schematic structural diagram of an explosion-proof valve provided in Embodiment 3 of the present application.
  • Figure 7 is a schematic cross-sectional view along the D-D direction in Figure 6;
  • Figure 8 is a schematic structural diagram of an explosion-proof valve provided in Embodiment 4 of the present application.
  • Figure 9 is a schematic cross-sectional view along the E-E direction in Figure 8.
  • Figure 10 is an exploded schematic diagram of the top cover assembly provided by the embodiment of the present application.
  • FIG 11 is a schematic diagram of the battery structure provided by the embodiment of the present application.
  • Figure 12 is a schematic diagram comparing the battery core attenuation at 130°C between the explosion-proof valve provided in Embodiment 1 of the present application and the conventional explosion-proof valve;
  • Figure 13 is a schematic structural diagram of a conventional explosion-proof valve provided by the embodiment of the present application.
  • the explosion-proof valve 1 shown in Figure 1 it includes a mounting part 10 and a main body part 11.
  • the mounting part 10 is arranged around the main body part 11; wherein the main body part 11 includes a first buffer part 112 and a first connecting part 111.
  • the first buffer part 112 is connected to the first connecting part 111, the first connecting part 111 is connected to the mounting part 10, the first buffering part 112 is located on the side of the first connecting part 111 away from the mounting part 10, the first buffering part 112 is opposite to the first connecting part 111 protrudes, and a notch 1111 is provided on the first connecting portion 111 .
  • the score 1111 is provided on the first connection part 111, the score 1111 is located between the mounting part 10 and the first buffer part 112, that is, the first buffer part 112 is located on the score.
  • the first buffer portion 112 is a convex structure that can be flexibly deformed.
  • the mounting part 10 Since the mounting part 10 is located at the outer peripheral edge of the explosion-proof valve 1 and the thickness of the mounting part is relatively large, even when the explosion-proof valve 1 is subjected to a large air pressure or when the air pressure inside the explosion-proof valve 1 fluctuates, the gap between the notch 1111 and the mounting part 10
  • the stability is also higher than the stability in the area surrounded by the score 1111, so setting the first buffer part 112 in the area surrounded by the score 1111 can better protect the area surrounded by the score 1111, and the score
  • the area surrounded by 1111 is also the central area of the explosion-proof valve 1, which makes the provision of the first buffer portion 112 particularly able to reduce the deformation of the middle area of the explosion-proof valve 1 toward the outer surface or the inner surface in the thickness direction, thereby better improving the The stability of the opening threshold of the entire explosion-proof valve 1.
  • the central area of the explosion-proof valve 1 lacks a third buffer that can provide flexible deformation.
  • a buffer portion 112 makes it easy for the explosion-proof valve 1 to cause excessive stress at the notch 1111 when affected by external factors, which further causes the explosion-proof valve 1 to quickly fatigue and reduce its service life.
  • the mounting part 10 is provided on the outer peripheral edge of the main body part 11.
  • the mounting part 10 is used to sealingly connect the explosion-proof valve 1 to the top cover assembly;
  • the notch 1111 surrounds the first buffer part 112, and the notch 1111 is The position on the explosion-proof valve 1 with the smallest burst pressure value.
  • the notch 1111 is used to open the explosion-proof valve 1 when the air pressure in the internal space of the top cover assembly reaches the opening threshold of the explosion-proof valve 1 to release the gas in the internal space of the top cover assembly. Prevent explosions from occurring.
  • the overall outer contour of the explosion-proof valve 1 is in the shape of a racetrack, and the notch 1111 is also set in a shape similar to the runway, so that the notch 1111 can more easily open the explosion-proof valve 1 when the internal space pressure reaches the opening threshold of the explosion-proof valve 1;
  • Figure 1 The notch 1111 is at least partially disposed around the first buffer portion 112 , that is, a section of the first connecting portion 111 is left to separate the notch 1111 in order to prevent the structural strength of the notch 1111 from being too low.
  • the first buffer part 112 is a flexibly deformable structure.
  • the first buffer part 112 includes a first section 1121 and a second section 1122.
  • the first section 1121 and the second section 1122 are connected.
  • the second section 1122 Connected to the first connecting part 111, the first section 1121 is located on the side of the second section 1122 away from the first connecting part 111, and the first section 1121 is parallel to the first connecting part 111; the first buffer part 112 is relative to the first connecting part
  • the protruding direction of 111 is to protrude toward the front of the explosion-proof valve 1 along the thickness direction of the explosion-proof valve 1.
  • the first buffer portion 112 can also be set toward The back of the explosion-proof valve 1 protrudes.
  • the first section 1121 and the second section 1122 can be integrally stamped on the main body 11 , or can be formed by other easily implemented processing methods.
  • the parallelism between the first section 1121 and the first connecting portion 111 refers to being completely parallel or almost completely parallel.
  • an angle range of 10° that is completely parallel is considered to be parallel.
  • the first buffer portion 112 when the explosion-proof valve 1 is subjected to extrusion, thermal deformation or internal air pressure, the first buffer portion 112 can provide a certain amount of flexible deformation to avoid excessive stress on the notch 1111, thereby allowing the explosion-proof valve to be lifted. 1 service life; when the explosion-proof valve 1 is subject to vibration, impact or abnormal drop, the first buffer portion 112 can provide a certain degree of flexible buffering, weakening the impact on the explosion-proof valve 1 and ensuring the application reliability of the explosion-proof valve 1.
  • the thickness of the first section 1121 be the first thickness D 1
  • the thickness of the second section 1122 be the second thickness D 2
  • the thickness of the first connecting portion 111 be the third thickness. D 3
  • the thickness of the first section 1121 and the second section 1122 can have the following size relationship:
  • the thickness of the first section 1121 is designed is the minimum thickness; the minimum value of the thickness of the second section 1122 is D 2min , and the maximum value of the thickness of the second section 1122 is D 2max , which satisfies:
  • unchanged means that the thickness remains basically the same.
  • the error range of the thickness is considered to be unchanged within 0.05mm; increasing means that the thickness increases uniformly or non-uniformly, as long as the thickness is extended. It is sufficient that the thickness maintains an increasing trend in the direction.
  • the first thickness D 1 and the third thickness D 3 further satisfy:
  • H 1 represents the protruding height of the first buffer part 112 relative to the first connecting part 111
  • a represents the angle formed between the first section 1121 and the second section 1122, and 120° ⁇ a ⁇ 175°.
  • the first thickness D 1 and the third thickness D 3 further satisfy:
  • the included angle a may be any of 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, 165°, 170°, 175°
  • One or two combinations of ranges, and limiting the included angle a within this range can enable the first buffer portion 112 to better meet the flexible buffering requirements of the explosion-proof valve 1 .
  • the thickness of the second section 1122 is no greater than the thickness of the first connecting portion 111 , so that the first buffer portion 112 is more likely to be formed when the explosion-proof valve 1 is affected by external factors that easily cause stress concentration in the notch 1111 Flexible deformation.
  • the first thickness D 1 and the second thickness D 2 further satisfy:
  • the range of D 2 -D 1 may be any of 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm.
  • the first section 1121 and the second section 1122 are connected through an arc transition, and the arc radius is 0.1 ⁇ 2mm, preferably in the range of 0.2 ⁇ 1mm, which can further reduce local concentrated stress.
  • the thickness of the notch 1111 is 0.01 ⁇ 0.3mm
  • the thickness of the first section 1121 is 0.1 ⁇ 0.5mm
  • the distance between the notch 1111 and the first buffer part 112 is 0.5 ⁇ 3mm.
  • the notch 1111 of the explosion-proof valve provided in Embodiment 1 is provided between the mounting part 10 and the first buffer part 112.
  • the first buffer part 112 is a convex structure that can be flexibly deformed; when the explosion-proof valve 1.
  • the first buffer portion 112 can produce flexible deformation, provide a certain amount of flexible deformation, and play a buffering role in the notch 1111. This avoids excessive stress in the notch 1111, weakens the impact on the explosion-proof valve 1, ensures the application reliability of the explosion-proof valve 1, prevents it from rapid fatigue due to such influence, and achieves the purpose of extending the service life of the explosion-proof valve 1.
  • the main body 11 also includes a second buffer part 113 and the protruding direction of the first buffer part 112 is the same as that of the first buffer part 113.
  • the first connecting part 111 is connected to the second buffering part 113
  • the second buffering part 113 is connected to the mounting part 10
  • the second buffering part 113 is raised relative to the first connecting part 111 .
  • the second buffer portion 113 is located between the mounting portion 10 and the first connecting portion 111 .
  • the protruding direction of the second buffer portion 113 is the same as or opposite to the protruding direction of the first buffer portion 112 .
  • the first buffer portion 112 is a structure formed on the main body 11 that protrudes toward the back of the explosion-proof valve 1 along the thickness direction of the explosion-proof valve 1 .
  • the second buffer portion 113 is a structure formed on the main body 11 that is oriented in the same direction as the first buffer. The portions 112 protrude in the same direction.
  • the second buffer portion 113 can be integrally stamped on the main body portion 11 , or can be formed by other easily implemented processing methods.
  • the second buffer part 113 and the first buffer part 112 can be combined when the explosion-proof valve 1 is easily damaged.
  • the notch 1111 produces flexible deformation when affected by external factors that cause stress concentration, providing a certain amount of flexible deformation.
  • the first buffer part 112 is not provided in the area surrounded by the score 1111, or the score 1111 is not provided between the mounting part 10 and the first buffer part 112, and is not provided between the mounting part 10 and the first connecting part 111
  • the second buffer part 113 will directly act on the notch 1111 and cause the explosion-proof valve 1 to fail. Therefore, the second buffer part 113 and the first The buffer portion 112 can be flexibly deformed and can provide a better buffering effect on the notch 1111, thereby avoiding excessive stress on the notch 1111 of the explosion-proof valve 1, ensuring the application reliability of the explosion-proof valve 1, and improving the service life of the explosion-proof valve. the goal of.
  • the convex hull 1123 includes a third segment 11231 and a fourth segment 11232, the third segment 11231 is connected to the fourth segment 11232, the fourth segment 11232 is connected to the first segment 1121, and the third segment 11231 is connected to the first segment 11231. 1121 parallel.
  • the first buffer portion 112 faces the front of the explosion-proof valve 1
  • the convex bump 1123 faces the back of the explosion-proof valve 1 .
  • the bulge 1123 may be formed by stamping or otherwise forming the first section 1121 .
  • the number of convex hulls 1123 may be one or more, as long as the strength of the first buffer part 112 is not affected.
  • the explosion-proof valve 1 provided in the third embodiment is further provided with at least one set of convex bumps 1123 in the area surrounded by the first section 1121, so that at least a double structure for buffering is formed in the area surrounded by the notches 1111.
  • both the bulge 1123 and the first buffer portion 112 can produce flexible deformation, providing multiple amounts of flexible deformation; if the area surrounded by the notch 1111 is not When the first buffer part 112 is provided, or the notch 1111 is not provided between the mounting part 10 and the first buffer part 112, and the convex bump 1123 is not provided on the first section 1121, when the first section 1121 is subjected to a greater impact force , due to the lack of the convex hull 1123 that can provide buffering for the first section 1121, the first section 1121 will break before the score 1111, causing the explosion-proof valve 1 to fail prematurely.
  • the setting of the convex hull 1123 can play a role in cushioning the score 1111. Better buffering effect, thereby avoiding excessive stress in the notch 1111 of the explosion-proof valve, ensuring the application reliability of the explosion-proof valve 1, and achieving the purpose of extending the service life of the explosion-proof valve 1.
  • the explosion-proof valve 1 shown in Figures 8-9 which includes a mounting part 10 and a main body part 11.
  • the mounting part 10 is arranged around the main body part 11; wherein the main body part 11 includes a first buffer part 112 and a first connecting part 111.
  • the first connecting part 111 is connected to the mounting part 10
  • the first buffering part 112 is connected to the first connecting part 111
  • the first buffering part 112 is raised relative to the first connecting part 111 ;
  • a notch 1111 is provided on the first buffering part 112 .
  • the first buffer part 112 includes a first section 1121 and a second section 1122.
  • the first section 1121 is connected to the second section 1122.
  • the second section 1122 is connected to the first connecting part 111.
  • the first section 1121 is connected to the first connecting part 111.
  • the first connecting part 111 is parallel, and notches 1111 are provided on the first section 1121.
  • the notches 1111 are arranged at intervals or continuously.
  • the score 1111 is provided on the first buffer part 112
  • the score 1111 is located in the area surrounded by the first buffer part 112, especially for the top cover to be squeezed into the shell. process, due to the large extruded area of the explosion-proof valve 1, if the score 1111 is not provided on the first buffer part 112, or if the first buffer part 112 is not provided on the explosion-proof valve 1, it will cause the score 1111 to be different from the first buffer part 112.
  • the buffer part 112 has different actions under the same force, so that a large area of external force causes stress concentration at the notch 1111 during the extrusion process.
  • the notch 1111 is directly provided on the first buffer part 112, then Flexible deformation will occur along with the first buffer portion 112, which reduces the problem that the buffer generated by the first buffer portion 112 is difficult to cover the notch 1111 due to the large force-bearing area of the explosion-proof valve 1. Therefore, when the notch 1111 directly When disposed on the first buffer portion 112, the flexible deformation of the first buffer portion 112 under a special process can have a better effect in reducing the stress of the notch 1111.
  • the top cover assembly 2 includes a top cover 21 and an explosion-proof valve 1 .
  • the explosion-proof valve 1 can be any one of the structures in Embodiments 1 to 4.
  • the top cover 21 is provided with an explosion-proof hole 211 that matches the installation part 10 .
  • the installation part 10 is installed in the explosion-proof hole 211 to sealingly connect the explosion-proof valve 1 to the top cover 21 .
  • the explosion-proof hole 211 is a stepped hole
  • the mounting part 10 is an annular boss matching the stepped hole.
  • the thickness of the annular boss is 0.1 ⁇ 2.0mm, and the preferred thickness is 0.3 ⁇ 1.0mm. When the thickness of the annular boss is within the above range, the stability of the strength of the mounting part 10 relative to the main body part 11 can be improved.
  • the top cover assembly 2 further includes a protective film 22 , which is attached to the outer surface of the top cover 21 and completely covers the explosion-proof hole 211 to prevent electrolyte or other impurities from contaminating the explosion-proof valve 1 .
  • the top cover 21 is also equipped with positive poles 23 and negative poles 24 at both ends in the length direction. When the top cover assembly 2 is installed at the opening of the battery casing, the positive pole 23 and the negative pole 24 are respectively used to electrically connect the positive and negative electrodes of the battery core located inside the casing.
  • the explosion-proof valve 1 is sealingly connected to the top cover 21 to allow the first buffer portion 112 to flexibly deform when it is affected by external factors that easily cause stress concentration in the notches 1111 during the preparation process or application scenarios. , providing a certain amount of flexible deformation and buffering the notch 1111 to weaken the impact of the explosion-proof valve 1 and ensure the application reliability of the explosion-proof valve 1 so that it will not suffer from rapid fatigue due to such influence and achieve improvement service life purpose.
  • the battery 3 includes a case 31 , a battery core (not shown in the figure) enclosed by the case 31 , and a top cover assembly 2 that seals the case 31 .
  • the battery core includes a positive electrode sheet, a negative electrode sheet, and a separator disposed between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode post 23 and the negative electrode post 24 installed on the top cover 21 are respectively used to electrically connect the positive electrode sheet and the negative electrode sheet of the battery core.
  • the battery core burst values of the explosion-proof valve in Example 1 and the conventional explosion-proof valve are respectively detected, and the unit is MPa. See Table 1 for the test comparison results.
  • a conventional explosion-proof valve refers to an explosion-proof valve that does not contain a first buffer part, such as an explosion-proof valve with a C-shaped score line. See Figure 13 for the specific structure.
  • the battery core burst value range of the conventional explosion-proof valve is 0.833Mpa ⁇ 0.949Mpa
  • the battery core burst value range of the explosion-proof valve in Example 1 is 0.871Mpa ⁇ 0.954Mpa.
  • the standard deviation is further calculated for the obtained data, and 32 groups are used to calculate the standard deviation.
  • Comparison of the samples shows that the standard deviation of the battery core burst value of the explosion-proof valve in Example 1 is 0.0193, and the standard deviation of the battery burst value of the conventional explosion-proof valve is 0.0293.
  • the standard deviation of the explosion-proof valve in Example 1 is significantly lower than that of the conventional explosion-proof valve.
  • the explosion-proof valve of Embodiment 1 and the conventional explosion-proof valve were subjected to a 130-degree high-temperature accelerated decay test.
  • the test results after 12 weeks are shown in Figure 12.
  • the average attenuation of the explosion-proof valve in Example 1 is about 0.1
  • the average attenuation of the conventional explosion-proof valve core is 0.25, indicating that the explosion-proof valve in Example 1 can significantly slow down the attenuation and improve the life.
  • the explosion-proof valve 1 of the present application can flexibly deform the first buffer part 112 during the preparation process or application scenario.
  • the first buffer part 112 provides a certain amount of flexible deformation to buffer the notch 1111.
  • the stress concentration in the notch 1111 affects the consistency of the blast value of the explosion-proof valve and the rapid attenuation during use, reduces the stress concentration formed at the notch 1111, and ensures the application reliability of the explosion-proof valve 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

公开一种防爆阀及电池,防爆阀包括安装部和主体部,安装部环绕主体部设置,在主体部上设置刻痕;主体部包括第一缓冲部和第一连接部,第一缓冲部相对于第一连接部凸起;第一连接部与安装部连接,第一缓冲部与第一连接部连接,第一缓冲部位于第一连接部远离安装部的一侧。本申请的第一缓冲部相对于第一连接部凸起,第一缓冲部为可发生柔性变形的结构,当防爆阀在制备过程中或应用场景中受到容易使刻痕产生应力集中的外界因素影响时,第一缓冲部能够产生柔性变形并提供柔性变形量,对刻痕起到缓冲作用,从而避免刻痕应力集中,保证了防爆阀的应用可靠性,使其不会发生快速疲劳,实现提升电池使用寿命的目的。

Description

一种防爆阀及电池
本申请要求于2022年09月01日提交中国专利局、申请号为202222289495.7、发明名称为“一种防爆阀及电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池技术领域,具体涉及一种防爆阀及电池。
背景技术
在电池的制备过程中,有多项制程都可能对防爆阀产生一定的负面影响。例如,引脚与裸电池的超声焊接、顶盖入壳时的XY向挤压、顶盖与壳体的激光焊接、注液时交替施加正负压以及高温烘烤等,都容易在防爆阀的爆破薄弱区形成应力集中。此外,电池受到如振动、冲击和内部产气等造成的内压作用到防爆阀上时,也很容易在防爆阀的爆破薄弱区形成应力集中。上述所产生的应力集中会影响防爆阀的长期可靠性,甚至造成防爆阀快速疲劳,降低防爆阀的使用寿命。
技术问题
本申请提供一种防爆阀及电池,旨在解决防爆阀爆破薄弱区形成的应力集中问题。
技术解决方案
第一方面,本申请实施例提供一种防爆阀,包括:
安装部;
主体部,所述安装部环绕所述主体部设置;在所述主体部上设置刻痕;
其中,所述主体部包括第一缓冲部和第一连接部,所述第一缓冲部与所述第一连接部连接,所述第一连接部与所述安装部连接,所述第一缓冲部位于所述第一连接部远离所述安装部的一侧,所述第一缓冲部相对于所述第一连接部凸起,在所述第一连接部上设置刻痕。
在一些实施例中,所述第一缓冲部包括第一段和第二段,所述第一段和所述第二段连接,所述第二段与所述第一连接部连接;所述第一段位于所述第二段远离所述第一连接部的一侧,并与所述第一连接部平行。
在一些实施例中,通过设置第一段和第二段,使得所述第一缓冲部为可发生柔性变形的结构,并为防爆阀提供一定的柔性变形量;第一缓冲部的形状不限于第一段和第二段的连接形状,也可以是连续的圆弧结构或多段凸起的结构。
在一些实施例中,为了使得第一缓冲部更容易产生柔性变形,所述第一段的厚度值为D 1,所述第二段的厚度沿朝着所述第一连接部延伸的方向增大,所述第二段厚度的最小值为D 2min,所述第二段厚度的最大值为D 2max,满足:
0.1mm≤D 2min-D 1≤0.2mm;0.3mm≤D 2max-D 1≤0.5mm。
在一些实施例中,所述第一段的厚度值为D 1,所述第二段的厚度值为D 2,所述第一连接部的厚度值为D 3,当D 1≥D 2时,所述D 1,所述D 2和所述D 3进一步满足:
0.5≤(H 1+D 3)/(D 1+D 3)≤2.5且0mm≤D 3-D 1≤0.5mm;和/或
0.1≤(H 1+D 3)/tan(180-a)≤1.8;
式中,H 1表示所述第一缓冲部相对于所述第一连接部凸起的高度;a表示所述第一段和所述第二段之间形成的夹角,且120°≤a≤175°。
在一些实施例中,所述第一段和所述第二段之间通过圆弧过渡连接。圆弧过渡连接的圆弧半径为0.1~2mm,优选为0.2~1mm,可进一步降低局部集中受力。
在一些实施例中,在所述第一段上设置至少一组凸包,所述凸包相对于所述第一段凸起;所述凸包凸起的方向与所述第一缓冲部凸起的方向相同或相反。
在一些实施例中,在第一段上进一步设置凸包结构,所形成的凸包也可以产生柔性变形,从而产生多重的缓冲效果,进一步保证了防爆阀的应用可靠性。
在一些实施例中,所述凸包包括第三段和第四段,所述第三段与所述第四段连接,所述第四段与所述第一段连接,所述第三段位于所述第四段远离所述第一段的一侧,并与所述第一段平行。
在一些实施例中,所述刻痕设置在所述第一连接部上,至少部分所述刻痕环绕所述第一缓冲部设置;或者
所述刻痕设置在所述第一缓冲部上。
在一些实施例中,所述刻痕位于所述第一缓冲部和所述安装部之间,刻痕为防爆阀上爆破压力值最小的位置,用于防爆阀的开启;所述第一缓冲部可以均匀分散内压,为刻痕提供缓冲,减少在刻痕处容易形成的应力集中,避免因疲劳等因素引起非正常失效。
在一些实施例中,所述刻痕可以是连续设置或者非连续设置。连续设置是指刻痕围绕第一缓冲部形成完整的一圈结构,非连续设置是指刻痕在围绕第一缓冲部时被隔断,隔断设置可以提高刻痕的强度,刻痕的具体设置方式以实际需求为准。
在一些实施例中,为了进一步对刻痕起到更好的缓冲作用,所述主体部包括第二缓冲部,所述第一连接部与所述第二缓冲部连接,所述第二缓冲部与所述安装部连接;所述第一连接部位于所述第二缓冲部远离所述安装部的一侧;所述第二缓冲部相对于所述第一连接部凸起,所述第二缓冲部凸起的方向与所述第一缓冲部凸起的方向相同或相反。
第二方面,本申请还提供一种电池,包括:
防爆阀;以及
顶盖组件,所述顶盖组件包括:顶盖,所述顶盖开设有防爆孔,所述防爆阀与所述顶盖连接且盖封所述防爆孔。
有益效果
相较于现有技术,本申请的第一缓冲部相对于第一连接部凸起,以使第一缓冲部为可发生柔性变形的凸包结构,当防爆阀在制备过程中或应用场景中受到容易使刻痕产生应力集中的外界因素影响时,第一缓冲部能够产生柔性变形,提供一定的柔性变形量,对刻痕起到缓冲作用,从而避免防爆阀的刻痕应力过大,以削弱防爆阀受到的影响,保证防爆阀的应用可靠性,使其不会发生快速疲劳,实现提升防爆阀使用寿命的目的。
本申请通过在刻痕与安装部之间增设第二缓冲部,可使得第二缓冲部与第一缓冲部共同在防爆阀受到容易使刻痕产生应力集中的外界因素影响时产生柔性变形,提供一定的柔性变形量。第二缓冲部与第一缓冲部均能发生柔性变形,能够对刻痕起到更好的缓冲作用,从而避免防爆阀的刻痕应力过大,保证防爆阀的应用可靠性,实现提升防爆阀使用寿命的目的。
本申请通过在第一缓冲部围成的区域内设置至少一组凸包结构,使得在刻痕围成的区域内形成了多重的缓冲结构。当防爆阀受到容易使刻痕产生应力集中的外界因素影响时,多组凸包结构均能产生柔性变形,提供一定的柔性变形量,能够对刻痕起到更好的缓冲作用,从而避免防爆阀的刻痕应力过大,保证防爆阀的应用可靠性,实现提升防爆阀使用寿命的目的。
附图说明
图1为本申请实施例一提供的防爆阀的结构示意图;
图2为图1中A-A方向的剖面示意图;
图3为图2中G处的局部放大示意图;
图4为本申请实施例二提供的防爆阀的结构示意图;
图5为图4中C-C方向的剖面示意图;
图6为本申请实施例三提供的防爆阀的结构示意图;
图7为本图6中D-D方向的剖面示意图;
图8为本申请实施例四提供的防爆阀的结构示意图;
图9为图8中E-E方向的剖面示意图;
图10为本申请实施例提供的顶盖组件的爆炸示意图;
图11为本申请实施例提供的电池结构示意图;
图12为本申请施例一提供的防爆阀与常规防爆阀在130℃下的电芯衰减对比示意图;
图13为本申请实施例提供的常规防爆阀结构示意图;
附图标记,1-防爆阀,2-顶盖组件,3-电池,10-安装部,11-主体部,21-顶盖,22-保护膜,23-正极柱,24-负极柱,31-壳体,111-第一连接部,112-第一缓冲部,113-第二缓冲部,211-防爆孔,1111-刻痕,1121-第一段,1122-第二段,1123-凸包,11231-第三段,11232-第四段。
本发明的实施方式
本申请提供一种防爆阀及电池,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
实施例一
参见图1所示的防爆阀1,包括安装部10和主体部11,安装部10环绕主体部11设置;其中,主体部11包括第一缓冲部112和第一连接部111,第一缓冲部112与第一连接部111连接,第一连接部111与安装部10连接,第一缓冲部112位于第一连接部111远离安装部10的一侧,第一缓冲部112相对于第一连接部111凸起,在第一连接部111上设置刻痕1111。
实施例一提供的防爆阀1,因为将刻痕1111设置在第一连接部111上,所以刻痕1111是位于安装部10和第一缓冲部112之间的,即第一缓冲部112位于刻痕1111围成的区域内,且第一缓冲部112为可发生柔性变形的凸起的结构。由于安装部10位于防爆阀1的外周边缘且安装部的厚度较大,因此即使防爆阀1在承受较大气压作用时或防爆阀1的内侧气压波动时,刻痕1111与安装部10之间的稳定性也高于刻痕1111围成的区域内的稳定性,所以在刻痕1111围成的区域内设置第一缓冲部112可以更好的保护刻痕1111所围成的区域,而刻痕1111围成的区域也是防爆阀1的中心区域,这使得第一缓冲部112的设置尤其可以减少防爆阀1的中部区域在厚度方向上向外侧表面或向内侧表面的变形,从而更好地提高整个防爆阀1的开启阈值的稳定性。若刻痕1111围成的区域内不设置第一缓冲部112,或者刻痕1111不设置在安装部10和第一缓冲部112之间,由于防爆阀1的中心区域缺少能提供柔性变形的第一缓冲部112,使得防爆阀1在受到外界因素影响时容易导致刻痕1111处的应力过大,从而进一步造成防爆阀1快速疲劳,寿命降低的问题。
请进一步参阅图2,安装部10设置在主体部11的外周边缘上,安装部10用于将防爆阀1密封连接在顶盖组件上;刻痕1111环绕第一缓冲部112,刻痕1111是防爆阀1上爆破压力值最小的位置,刻痕1111用于在顶盖组件的内部空间气压达到防爆阀1的开启阈值时开启防爆阀1,释放掉顶盖组件的内部空间中的气体,以防止爆炸发生。防爆阀1的整体外轮廓呈跑道形,刻痕1111也设置为与跑道相似的形状,以使得刻痕1111能更容易在内部空间气压达到防爆阀1的开启阈值时开启防爆阀1;图1中的刻痕1111至少部分绕第一缓冲部112设置,即在第一连接部111留有一段隔断刻痕1111的区域,以避免刻痕1111的结构强度过低。
在一些实施例中,第一缓冲部112为可发生柔性变形的结构,第一缓冲部112包括第一段1121和第二段1122,第一段1121和第二段1122连接,第二段1122与第一连接部111连接,第一段1121位于第二段1122远离第一连接部111的一侧,第一段1121与第一连接部111平行;第一缓冲部112相对于第一连接部111凸起的方向是沿防爆阀1厚度方向朝防爆阀1的正面凸出,因为第一缓冲部112的凸出方向并不影响其柔性变形的能力,第一缓冲部112也可设置为朝向防爆阀1的背面凸出。第一段1121和第二段1122可以是在主体部11上一体冲压形成,也可以由其它容易实现的加工方式形成。
在一些实施例中,第一段1121与第一连接部111的平行是指完全平行或几乎完全平行,例如,在完全平行的10°角度范围内都算作平行。
在一些实施例中,当防爆阀1在受到挤压、热变形或内部气压作用时,第一缓冲部112能够提供一定的柔性变形量,以避免刻痕1111应力过大,从而可以提升防爆阀1的使用寿命;当防爆阀1在受到振动、冲击或异常跌落时,第一缓冲部112能够提供一定的柔性缓冲,削弱防爆阀1受到的影响,保证防爆阀1的应用可靠性。
在一些实施例中,请进一步参阅图3,令第一段1121的厚度为第一厚度D 1,第二段1122的厚度为第二厚度D 2,第一连接部111的厚度为第三厚度D 3,则第一段1121和第二段1122的厚度可以具有以下的大小关系:
第一种,D 1<D 2且第一厚度D 1不变,在沿朝着第一连接部111延伸的方向上第二厚度D 2增大,此时,第一段1121的厚度被设计为最小的厚度;第二段1122厚度的最小值为D 2min,第二段1122厚度的最大值为D 2max,满足:
0.1mm≤D 2min-D 1≤0.2mm;0.3mm≤D 2max-D 1≤0.5mm;
或者第二种,D 1≥D 2且第一厚度D 1不变,第二厚度D不变。
在一些实施例中,不变是指厚度基本保持一致,例如,厚度的误差范围在0.05mm以内都算作不变;增大是指厚度均匀增大或者非均匀增大,只要满足在延伸的方向上厚度保持增大的趋势即可。
在一些实施例中,当D 1≥D 2且第一厚度D 1保持不变,第二厚度D 2保持不变时,第一厚度D 1和第三厚度D 3进一步满足:
0.5≤(H 1+D 3)/(D 1+D 3)≤2.5且0mm≤D 3-D 1≤0.5mm;和/或
0.1≤(H 1+D 3)/tan(180-a)≤1.8;
式中,H 1表示第一缓冲部112相对于第一连接部111凸起的高度;a表示第一段1121和第二段1122之间形成的夹角,且120°≤a≤175°。
在一些实施例中,第一厚度D 1和第三厚度D 3进一步满足:
1.0≤(H 1+D 3)/(D 1+D 3)≤1.6,且0mm≤D 3-D 1≤0.2mm;和/或
0.2≤(H 1+D 3)/tan(180-a)≤0.9。
在一些实施例中,夹角a可以是120°、125°、130°、135°、140°、145°、150°、155°、160°、165°、170°、175°中的任一种或任意两种组成的范围,将夹角a限定在此范围内,可使得第一缓冲部112更好地满足防爆阀1的柔性缓冲需求。
在一些实施例中,第二段1122的厚度不大于第一连接部111的厚度,以使得第一缓冲部112在防爆阀1受到容易使刻痕1111产生应力集中的外界因素影响时更容易产生柔性变形。
在一些实施例中,当D 1<D 2且所述第一厚度D 1不变,沿朝着所述第一连接部(111)延伸的方向所述第二厚度D 2增大时,所述第一厚度D 1和所述第二厚度D 2进一步满足:
0.1mm≤D 2-D 1≤0.5mm。
在一些实施例中,D 2-D 1的范围可以是0.1mm、0.2mm、0.3mm、0.4mm和0.5mm中的任一种。
在一些实施例中,第一段1121和第二段1122之间通过圆弧过渡连接,圆弧半径为0.1~2mm,优选为0.2~1mm的范围,可进一步降低局部集中受力。
在一些实施例中,刻痕1111的厚度为0.01~0.3mm,第一段1121的厚度为0.1~0.5mm,刻痕1111与第一缓冲部112之间的距离为0.5~3mm。
在一些实施例中,实施例一提供的防爆阀的刻痕1111设置在安装部10与第一缓冲部112之间,第一缓冲部112为可发生柔性变形的凸起的结构;当防爆阀1在制备过程中或应用场景中受到容易使刻痕1111产生应力集中的外界因素影响时,第一缓冲部112能够产生柔性变形,提供一定的柔性变形量,对刻痕1111起到缓冲作用,从而避免刻痕1111应力过大,以削弱防爆阀1受到的影响,保证防爆阀1的应用可靠性,使其不会因为此种影响而发生快速疲劳,实现提升防爆阀1使用寿命的目的。
实施例二
请进一步参见图4-5所示的防爆阀1,其结构与实施例一相似,不同之处在于,主体部11还包括第二缓冲部113且第一缓冲部112的凸出方向与实施例一相反。第一连接部111与第二缓冲部113连接,第二缓冲部113与安装部10连接,第二缓冲部113相对于第一连接部111凸起。第二缓冲部113位于安装部10和第一连接部111之间,第二缓冲部113凸起的方向与第一缓冲部112凸起的方向相同或相反。在图4中,第一缓冲部112为主体部11上形成的沿防爆阀1厚度方向朝防爆阀1背面凸出的结构,第二缓冲部113为主体部11上形成的朝向与第一缓冲部112相同方向凸出的结构。
在一些实施例中,第二缓冲部113可以是在主体部11上一体冲压形成,也可以由其它容易实现的加工方式形成。
实施例二提供的防爆阀1,通过在安装部10和第一连接部111之间增设第二缓冲部113,可使得第二缓冲部113与第一缓冲部112共同在防爆阀1受到容易使刻痕1111产生应力集中的外界因素影响时产生柔性变形,提供一定的柔性变形量。若刻痕1111围成的区域内不设置第一缓冲部112,或者刻痕1111不设置在安装部10和第一缓冲部112之间,且安装部10和第一连接部111之间不设置第二缓冲部113,当安装部10与刻痕1111之间的部分受到更大的冲击力时,会直接作用在刻痕1111上而导致防爆阀1失效,因此第二缓冲部113与第一缓冲部112均能发生柔性变形,能够对刻痕1111起到更好的缓冲作用,从而避免防爆阀1的刻痕1111应力过大,保证防爆阀1的应用可靠性,实现提升防爆阀使用寿命的目的。
实施例三
请进一步参见图6-7所示的防爆阀1,其结构与实施例一相似,不同之处在于,第一段1121上设置一组凸包1123,凸包1123在第一段1121围成的区域内形成;凸包1123相对于第一段1121凸起;凸包1123凸起的方向与第一缓冲部112凸起的方向相同或相反。
在一些实施例中,凸包1123包括第三段11231和第四段11232,第三段11231与第四段11232连接,第四段11232与第一段1121连接,第三段11231与第一段1121平行。第一缓冲部112朝向防爆阀1的正面,凸包1123朝向防爆阀1的背面。可以通过在第一段1121上进行冲压或其他方式形成凸包1123。
在一些实施例中,凸包1123的个数可以是一个或多个,只要不影响第一缓冲部112的强度即可。
实施例三提供的防爆阀1,通过在第一段1121围成的区域内进一步设置至少一组凸包1123,使得在刻痕1111围成的区域内形成了至少双重用于缓冲的结构,当防爆阀1受到容易使刻痕1111产生应力集中的外界因素影响时,凸包1123与第一缓冲部112均能产生柔性变形,提供多重的柔性变形量;若刻痕1111围成的区域内不设置第一缓冲部112,或者刻痕1111不设置在安装部10和第一缓冲部112之间,且不在第一段1121上设置凸包1123,当第一段1121受到更大的冲击力时,由于缺少能对第一段1121提供缓冲的凸包1123,会使得第一段1121先于刻痕1111断裂,从而导致防爆阀1提前失效,因此凸包1123的设置能够对刻痕1111起到更好的缓冲作用,从而避免防爆阀的刻痕1111应力过大,保证防爆阀1的应用可靠性,实现提升防爆阀1使用寿命的目的。
实施例四
请进一步参见图8-9所示的防爆阀1,包括安装部10和主体部11,安装部10环绕主体部11设置;其中,主体部11包括第一缓冲部112和第一连接部111,第一连接部111与安装部10连接,第一缓冲部112与第一连接部111连接,第一缓冲部112相对于第一连接部111凸起;在第一缓冲部112上设置刻痕1111。
在一些实施例中,第一缓冲部112包括第一段1121和第二段1122,第一段1121与第二段1122连接,第二段1122与第一连接部111连接,第一段1121与第一连接部111平行,在第一段1121上设置刻痕1111,刻痕1111间隔设置或连续设置。
实施例四提供的防爆阀1,因为将刻痕1111设置在第一缓冲部112上,所以刻痕1111是位于第一缓冲部112围成的区域内,特别是针对顶盖入壳挤压的制程,由于防爆阀1受挤压的面积较大,若刻痕1111不设置在第一缓冲部112上,或者防爆阀1上不设置第一缓冲部112,则会导致刻痕1111与第一缓冲部112在相同的受力下具有不同的动作,使得挤压过程中由于较大面积的外力而造成刻痕1111处产生应力集中,若刻痕1111直接设置在第一缓冲部112上,则会随着第一缓冲部112一起产生柔性变形,减少了防爆阀1因受力面积大而造成的第一缓冲部112产生的缓冲难以覆盖到刻痕1111的问题,因此,当刻痕1111直接设置在第一缓冲部112上时,在特殊制程下第一缓冲部112的柔性变形在减弱刻痕1111的应力时能起到更加良好的效果。
在一些实施例中,请进一步参阅图10的顶盖组件2,顶盖组件2包括顶盖21及防爆阀1,防爆阀1可以是实施例一至四中的任意一种结构。顶盖21上设有与安装部10匹配的防爆孔211,安装部10安装于防爆孔211内以将防爆阀1密封连接在顶盖21上。
在一些实施例中,防爆孔211为阶梯孔,安装部10为与阶梯孔匹配的环形凸台,环形凸台的厚度为0.1~2.0mm,优选的厚度为0.3~1.0mm。环形凸台的厚度在上述的范围内可以提高安装部10相对于主体部11强度的稳定性。
在一些实施例中,顶盖组件2还包括保护膜22,保护膜22贴设在顶盖21的外侧表面上并且完全覆盖防爆孔211以防止电解液或其它杂质污染防爆阀1。顶盖21在其长度方向的两端还安装有正极柱23和负极柱24。当顶盖组件2安装在电池的壳体的开口处时,正极柱23和负极柱24分别用于电性连接位于壳体内部的电芯的正极和负极。
在一些实施例中,顶盖21上密封连接了防爆阀1,能够在制备过程中或应用场景中受到容易使刻痕1111产生应力集中的外界因素影响时,使第一缓冲部112产生柔性变形,提供一定的柔性变形量,对刻痕1111起到缓冲作用,以削弱防爆阀1受到的影响,保证防爆阀1的应用可靠性,使其不会因为此种影响而发生快速疲劳,实现提升使用寿命的目的。
在一些实施例中,请进一步参阅图11的电池3,电池3包括壳体31、被壳体31包裹在内的电芯(图中未示出)以及密封壳体31的顶盖组件2,电芯包括正极片、负极片以及设置在正极片与负极片之间的隔膜,顶盖21上安装的正极柱23和负极柱24分别用于电性连接电芯的正极片和负极片。
在一些实施例中,分别检测实施例一防爆阀与常规防爆阀的电芯爆破值,单位为Mpa,测试比较的结果参见表1。
在一些实施例中,常规防爆阀是指不含有第一缓冲部的防爆阀,如带C型刻线的防爆阀,具体结构参见图13。
表1
序号 实施例一防爆阀(Mpa) 常规防爆阀(Mpa)
1 0.910 0.901
2 0.905 0.833
3 0.917 0.949
4 0.902 0.926
5 0.899 0.922
6 0.907 0.911
7 0.909 0.938
8 0.910 0.936
9 0.871 0.913
10 0.904 0.909
11 0.898 0.914
12 0.935 0.899
13 0.900 0.902
14 0.902 0.877
15 0.910 0.856
16 0.899 0.926
17 0.911 0.887
18 0.885 0.867
19 0.915 0.869
20 0.903 0.906
21 0.888 0.867
22 0.904 0.853
23 0.912 0.858
24 0.947 0.871
25 0.880 0.907
26 0.940 0.909
27 0.941 0.859
28 0.932 0.866
29 0.941 0.905
30 0.907 0.906
31 0.954 0.902
32 0.910 0.854
标准差 0.0193 0.0293
由表1可知,常规防爆阀的电芯爆破值范围为0.833Mpa~0.949Mpa,实施例一防爆阀的电芯爆破值范围为0.871Mpa~0.954Mpa,进一步对所得数据计算标准差,通过32组样品的对比可知,实施例一防爆阀的电芯爆破值的标准差为0.0193,常规防爆阀的电芯爆破值的标准差为0.0293,实施例一防爆阀的标准差明显低于常规防爆阀的标准差,因此实施例一防爆阀的标准差更小,说明实施例一防爆阀所测试的电芯爆破值更接近平均值,使得施例一防爆阀的电芯爆破值一致性优于常规防爆阀。
在一些实施例中,分别对实施例一防爆阀与常规防爆阀进行130度高温加速衰减测试,12周后的测试结果参见图12。由图12可知,高温加速测试12周之后,实施例一防爆阀的平均衰减约0.1,而常规防爆阀电芯平均衰减了0.25,说明实施例一防爆阀能明显减缓衰减,提高寿命。
本申请的防爆阀1能够在制备过程中或应用场景中使第一缓冲部112产生柔性变形,第一缓冲部112提供一定的柔性变形量从而对刻痕1111起到缓冲作用,针对不同的制程,都可以解决刻痕1111因应力集中而影响防爆阀爆破值的一致性及使用过程中的快速衰减的问题,减少了在刻痕1111处形成的应力集中,保证防爆阀1的应用可靠性,使防爆阀1不会因为外部影响而发生快速疲劳,提升防爆阀1的使用寿命,同时也使得包含上述防爆阀1的电池寿命及应用可靠性得到提高。
以上对本申请实施例所提供的正极活性材料及电化学装置进行了详细介绍,本申请中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (14)

  1. 一种防爆阀,其特征在于,包括:
    安装部(10);
    主体部(11),所述安装部(10)环绕所述主体部(11)设置;在所述主体部(11)上设置刻痕(1111);
    其中,所述主体部(11)包括第一缓冲部(112)和第一连接部(111),所述第一缓冲部(112)与所述第一连接部(111)连接,所述第一连接部(111)与所述安装部(10)连接,所述第一缓冲部(112)位于所述第一连接部(111)远离所述安装部(10)的一侧,所述第一缓冲部(112)相对于所述第一连接部(111)凸起,在所述第一连接部(111)上设置刻痕(1111)。
  2. 根据权利要求1所述的防爆阀,其特征在于,所述第一缓冲部(112)包括第一段(1121)和第二段(1122),所述第一段(1121)和所述第二段(1122)连接,所述第二段(1122)与所述第一连接部(111)连接;所述第一段(1121)位于所述第二段(1122)远离所述第一连接部(111)的一侧,并与所述第一连接部(111)平行。
  3. 根据权利要求2所述的防爆阀,其特征在于,所述第一段(1121)的厚度值为D 1,所述第二段(1122)的厚度沿朝着所述第一连接部(111)延伸的方向增大,所述第二段(1122)厚度的最小值为D 2min,所述第二段(1122)厚度的最大值为D 2max,满足:
    0.1mm≤D 2min-D 1≤0.2mm;0.3mm≤D 2max-D 1≤0.5mm。
  4. 根据权利要求2所述的防爆阀,其特征在于,所述第一段(1121)的厚度值为D 1,所述第二段(1122)的厚度值为D 2,所述第一连接部(111)的厚度值为D 3,当D 1≥D 2时,所述D 1,所述D 2和所述D 3进一步满足:
    0.5≤(H 1+D 3)/(D 1+D 3)≤2.5且0mm≤D 3-D 1≤0.5mm。
  5. 根据权利要求4所述的防爆阀,其特征在于,所述D 3进一步满足:
    0.1≤(H 1+D 3)/tan(180-a)≤1.8;
    式中,H 1表示所述第一缓冲部(112)相对于所述第一连接部(111)凸起的高度;a表示所述第一段(1121)和所述第二段(1122)之间形成的夹角,且120°≤a≤175°。
  6. 根据权利要求2-5任一项所述的防爆阀,其特征在于,所述第一段(1121)和所述第二段(1122)之间通过圆弧过渡连接。
  7. 根据权利要求2-6任一项所述的防爆阀,其特征在于,在所述第一段(1121)上设置至少一组凸包(1123),所述凸包(1123)中的至少一组相对于所述第一段(1121)凸起;所述凸包(1123)凸起的方向与所述第一缓冲部(112)凸起的方向相同。
  8. 根据权利要求2-6任一项所述的防爆阀,其特征在于,在所述第一段(1121)上设置至少一组凸包(1123),所述凸包(1123)中的至少一组相对于所述第一段(1121)凸起;所述凸包(1123)凸起的方向与所述第一缓冲部(112)凸起的方向相反。
  9. 根据权利要求7或8所述的防爆阀,其特征在于,所述凸包(1123)包括第三段(11231)和第四段(11232),所述第三段(11231)与所述第四段(11232)连接,所述第四段(11232)与所述第一段(1121)连接;所述第三段(11231)位于所述第四段(11232)远离所述第一段(1121)的一侧,所述第三段(11231)与所述第一段(1121)平行。
  10. 根据权利要求1-9任一项所述的防爆阀,其特征在于,所述刻痕(1111)设置在所述第一连接部(111)上,至少部分所述刻痕(1111)环绕所述第一缓冲部(112)设置。
  11. 根据权利要求1-9任一项所述的防爆阀,其特征在于,所述刻痕(1111)设置在所述第一缓冲部(112)上。
  12. 根据权利要求1-11任一项所述的防爆阀,其特征在于,所述主体部(11)包括第二缓冲部(113),所述第一连接部(111)与所述第二缓冲部(113)连接,所述第二缓冲部(113)与所述安装部(10)连接;所述第一连接部(111)位于所述第二缓冲部(113)远离所述安装部(10)的一侧;所述第二缓冲部(113)相对于所述第一连接部(111)凸起,所述第二缓冲部(113)凸起的方向与所述第一缓冲部(112)凸起的方向相同。
  13. 根据权利要求1-11任一项所述的防爆阀,其特征在于,所述主体部(11)包括第二缓冲部(113),所述第一连接部(111)与所述第二缓冲部(113)连接,所述第二缓冲部(113)与所述安装部(10)连接;所述第一连接部(111)位于所述第二缓冲部(113)远离所述安装部(10)的一侧;所述第二缓冲部(113)相对于所述第一连接部(111)凸起,所述第二缓冲部(113)凸起的方向与所述第一缓冲部(112)凸起的方向相反。
  14. 一种电池,其特征在于,包括:
    权利要求1-13任一项所述的防爆阀(1);以及
    顶盖组件(2),所述顶盖组件(2)包括顶盖(21),所述顶盖(21)开设有防爆孔(211),所述防爆阀(1)与所述顶盖(21)连接且盖封所述防爆孔(211)。
PCT/CN2022/143655 2022-08-29 2022-12-29 一种防爆阀及电池 WO2024045456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222289495.7 2022-08-29
CN202222289495.7U CN218300123U (zh) 2022-08-29 2022-08-29 一种防爆阀及电池

Publications (1)

Publication Number Publication Date
WO2024045456A1 true WO2024045456A1 (zh) 2024-03-07

Family

ID=84811729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143655 WO2024045456A1 (zh) 2022-08-29 2022-12-29 一种防爆阀及电池

Country Status (2)

Country Link
CN (1) CN218300123U (zh)
WO (1) WO2024045456A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771964B (zh) * 2023-08-28 2024-01-12 深圳海辰储能控制技术有限公司 防爆阀、端盖组件、储能装置以及用电设备
CN117638394B (zh) * 2024-01-25 2024-04-12 蜂巢能源科技股份有限公司 单体电池及电池包

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208955080U (zh) * 2018-10-18 2019-06-07 江苏天钧精密技术有限公司 一种电池盖板防爆片
CN212161868U (zh) * 2020-04-20 2020-12-15 欣旺达电动汽车电池有限公司 一种电池顶盖组件及单体电池
CN217158533U (zh) * 2021-09-30 2022-08-09 欣旺达电动汽车电池有限公司 一种防爆阀、顶盖组件及电池
CN114937849A (zh) * 2022-03-28 2022-08-23 江苏正力新能电池技术有限公司 一种防爆阀、电池盖板组件和动力电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208955080U (zh) * 2018-10-18 2019-06-07 江苏天钧精密技术有限公司 一种电池盖板防爆片
CN212161868U (zh) * 2020-04-20 2020-12-15 欣旺达电动汽车电池有限公司 一种电池顶盖组件及单体电池
CN217158533U (zh) * 2021-09-30 2022-08-09 欣旺达电动汽车电池有限公司 一种防爆阀、顶盖组件及电池
CN114937849A (zh) * 2022-03-28 2022-08-23 江苏正力新能电池技术有限公司 一种防爆阀、电池盖板组件和动力电池

Also Published As

Publication number Publication date
CN218300123U (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024045456A1 (zh) 一种防爆阀及电池
TWI725613B (zh) 用於儲能裝置的防爆外殼以及儲能裝置
WO2022152042A1 (zh) 用于电芯的防爆阀、电芯及电池模组
WO2023109196A1 (zh) 一种防爆阀、顶盖组件及电池
KR101275593B1 (ko) 밀폐형 전지의 안전판 및 이를 이용한 밀폐형 전지
JP2009530767A (ja) 高い充放電率の円筒型二次電池
JP5379958B2 (ja) 電池
US20230123149A1 (en) Top cover assembly and battery
WO2022184081A1 (zh) 电池
WO2024045458A1 (zh) 顶盖组件、电池及用电设备
US11664555B2 (en) Secondary battery, battery module and electric vehicle
CN211150600U (zh) 锂亚硫酰氯电池壳体底部防爆结构
US20230113541A1 (en) Explosion-proof sheet of secondary battery and secondary battery
CN211929545U (zh) 一种电池顶盖及电池
CN115298884A (zh) 圆筒形电池
WO2020133662A1 (zh) 二次电池和电池模组
WO2017113098A1 (zh) 二次电池及其制备方法
KR102329403B1 (ko) 에너지 저장 장치에 이용되는 방폭형 하우징 및 에너지 저장 장치
JP2864175B2 (ja) 角形密閉式電池
CN208189650U (zh) 二次电池顶盖组件及二次电池
CN215644862U (zh) 一种防爆片及电池
US20230026117A1 (en) Security apparatus, manufacturing method thereof and battery
CN218300115U (zh) 一种防爆阀、顶盖组件及电池
KR20200063735A (ko) 이차전지 및 그 이차전지 제조방법
CN220121967U (zh) 一种电池盖板及电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957265

Country of ref document: EP

Kind code of ref document: A1