WO2024045418A1 - 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法 - Google Patents

一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法 Download PDF

Info

Publication number
WO2024045418A1
WO2024045418A1 PCT/CN2022/139539 CN2022139539W WO2024045418A1 WO 2024045418 A1 WO2024045418 A1 WO 2024045418A1 CN 2022139539 W CN2022139539 W CN 2022139539W WO 2024045418 A1 WO2024045418 A1 WO 2024045418A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
conductive carbon
ionic liquid
parts
conductive
Prior art date
Application number
PCT/CN2022/139539
Other languages
English (en)
French (fr)
Inventor
侯帅
傅明利
黎小林
樊灵孟
贾磊
贾利川
展云鹏
朱闻博
惠宝军
冯宾
张逸凡
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2024045418A1 publication Critical patent/WO2024045418A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating

Definitions

  • This application belongs to the field of cross-linked polyethylene cable materials, and specifically relates to an ionic liquid-modified conductive carbon black cable semi-conductive shielding material and a preparation method thereof.
  • the semi-conductive shielding layer is an important part of the XLPE cable structure. It has the function of improving the electric field distribution and eliminating the air gap at the interface between the conductor and the insulation layer to avoid insulation failure caused by partial discharge.
  • the raw material used in the semi-conductive shielding layer is semi-conductive shielding material, which is generally obtained by melting and blending base resin, conductive carbon black and processing aids.
  • conductive carbon black itself has a relatively large specific surface area and large surface energy, conductive carbon black is prone to agglomeration, so its dispersion in the base resin is hindered. In addition, these conductive carbon black agglomerates will form burrs or protrusions during the extrusion process of the shielding material, causing local stress concentration in the cable insulation layer, making it more susceptible to damage and reducing the service life of the cable. In order to improve the dispersion performance of conductive carbon black in the base resin and thereby exert greater advantages in polymer materials, the modification of conductive carbon black has become a more important issue nowadays.
  • Ionic liquids are liquid ionic compounds composed of organic cations and organic (or inorganic) anions. They are also called room temperature molten salts and have a relatively low melting temperature. At the same time, ionic liquids themselves have relatively excellent properties: non-volatile, non-flammable, good thermal stability, wide liquid temperature range, high conductivity, strong solubility and other excellent properties. Conductive carbon black and ionic liquid can interact, and the ionic liquid adheres to the conductive carbon black. At the same time, when the conductive carbon black is filled into the composite material, the ionic liquid can also exert its own advantages to conduct semi-conductive shielding materials for high-voltage cables. Modification of multi-component synergistic effects.
  • Prior art document 1 discloses an inner shielding material for cables with anti-copper damage function and a preparation method thereof.
  • Each component of the shielding material is by weight: EVA, 30-35 parts; white oil, 5 parts ⁇ 8 parts; dispersant, 0.5-4 parts; cross-linking agent, 0.5-3 parts; plasticizer, 10-12 parts; ionic liquid surfactant, 0.6-0.8 parts; conductive carbon black, 30-32 parts; Antioxidant, 0.1 to 0.5 parts; anti-adhesive agent, 12 to 18 parts.
  • Prior art document 2 discloses an easy-to-peel semi-conductive shielding material, which is prepared from the following raw materials in parts by mass: 40 to 45 parts of EVA, 32 to 38 parts of conductive carbon black, 5 to 8 parts of white oil, 2 to 5 parts of lubricant, 0.5 to 4 parts of dispersant, 0.1 to 0.5 parts of antioxidant, 0.5 to 3 parts of cross-linking agent, 12 to 18 parts of anti-adhesive agent, and the trisiloxane imidazole ionic liquid surfactant is 0.6 ⁇ 0.8 parts.
  • the melt index of ethylene vinyl acetate copolymer is 5.5 ⁇ 6.3g/10min, the softening point is less than 40°C, the mass percentage of total vinyl acetate in the polymer is 25 ⁇ 35%, the anti-adhesive agent is nitrile rubber, and the ionic
  • the liquid surfactant is trisiloxane imidazole ionic liquid surfactant.
  • the function of adding a very small amount of ionic liquid is to use its lipophilic group to reduce the interfacial tension of white oil and improve the wettability of white oil and EVA, and does not involve the dispersion and dispersion of conductive carbon black. Influence of the conductive network of the entire material system.
  • ionic liquid is used as a conductive carbon black dispersant to improve the dispersion of conductive carbon black in the base resin, and at the same time, the inherent conductivity of ionic liquid is used to help A more stable connected conductive network is formed in the base resin to achieve the preparation of high-voltage cable semi-conductive shielding materials with high resistivity stability and ultra-smooth surface.
  • the purpose of this application is to overcome the existing technology in which conductive carbon black easily agglomerates during the extrusion process of high-voltage cable semi-conductive shielding materials, making it difficult for the electrical and mechanical properties of the shielding material to meet the requirements at the same time.
  • these agglomerates will also form protrusions that make the insulation layer Local electric field concentration occurs, causing the problem of insulation failure, and an ionic liquid-modified conductive carbon black cable semi-conductive shielding material and a preparation method thereof are provided.
  • a cable semi-conductive shielding material modified with ionic liquid conductive carbon black including a base material, conductive carbon black, cross-linking agent, antioxidant, lubricant, and ionic liquid; the weight parts of each component are as follows:
  • the substrate is one or more of ethylene-butyl acrylate and ethylene-ethyl acrylate.
  • the DBP absorption value of the conductive carbon black is 150ml/100g ⁇ 170ml/100g, the ash content is ⁇ 0.2%, and the 325 mesh residue content is ⁇ 8ppm.
  • the cross-linking agent is one or more of dicumyl peroxide and dicumyl peroxide.
  • the ionic liquid is an imidazole ionic liquid.
  • the lubricant is one or more of zinc stearate and pentaerythritol.
  • the antioxidant is one or more of antioxidant 1010 and antioxidant 300.
  • a method for preparing the above-mentioned ionic liquid-modified conductive carbon black cable semi-conductive shielding material including the following steps:
  • the mixture is melt-extruded, pelletized, and dried to obtain pellets;
  • the pellets are mixed with the cross-linking agent.
  • mixing the ionic liquid and deionized water includes: taking 300ml to 400ml of deionized water in a beaker, adding the ionic liquid to the deionized water, and stirring evenly with a magnetic stirrer at a rotation speed of 70rpm ⁇ 100rpm, stirring time is 10min ⁇ 15min.
  • the step before mixing the conductive carbon black and the dispersion liquid, the step includes: drying the conductive carbon black at 100°C to 120°C for 4h to 5h to remove moisture in the conductive carbon black.
  • mixing the conductive carbon black and the dispersion liquid includes: slowly pouring the conductive carbon black into the dispersion liquid, stirring for 25 to 35 minutes, and then letting it stand for 10 to 20 minutes. Then ultrasonic disperse in the ultrasonic dispersion instrument for 1h ⁇ 2h.
  • drying the dispersion suspension includes: placing the dispersion suspension in an oven for drying.
  • the oven temperature is 110°C to 130°C, and the drying time is 12h to 24h.
  • mixing the modified conductive carbon black, the antioxidant, and the lubricant, and then adding the base material, and continuing to mix includes: mixing the modified conductive carbon black, the lubricant The antioxidant and the lubricant are mixed evenly in a mixer, and then the base material is added, and mixing is continued at 45°C to 50°C, where the rotating speed of the mixer is 150rpm to 250rpm.
  • the melt-extruding, pelletizing, and drying of the mixture includes: melt-extruding the mixture in a twin-screw extruder at an extrusion temperature of 170°C to 190°C. , the host speed is 110rpm ⁇ 130rpm, and then cut into granules and dried.
  • mixing the pellet material with the cross-linking agent includes: adjusting the temperature of the pellet material to 60°C to 70°C, and then mixing the pellet material with the cross-linking agent. , and place it at 60°C ⁇ 70°C for 8h ⁇ 15h.
  • This application uses imidazole ionic liquids to perform non-covalent modification of conductive carbon black. Compared with covalent modification, non-covalent modification retains the good surface structure of conductive carbon black, giving it excellent electrical properties, mechanical properties, and thermal properties. to perform better.
  • ionic liquids are used for non-covalent modification of conductive carbon black, the hydrophobic part is wrapped on the conductive carbon black through van der Waals forces and ⁇ - ⁇ and other non-covalent interactions, while the hydrophilic part is directly connected to the polar end of the substrate. Combined, thereby enhancing dispersion, these non-covalent modifications increase the uniform stability of conductive carbon black dispersion in the base resin.
  • the conductive carbon black modified by the present application When used as a semi-conductive shielding material for high-voltage cables, it reduces the agglomeration of conductive carbon black in the base resin and improves the surface finish of the semi-conductive shielding material for high-voltage cables.
  • One embodiment of the present application provides a cable semi-conductive shielding material modified with ionic liquid conductive carbon black, including a base material, conductive carbon black, a cross-linking agent, an antioxidant, a lubricant, and an ionic liquid; it is characterized in that each The weight parts of the components are as follows: 58 to 64 parts of base material, 27 to 35 parts of conductive carbon black, 1 to 5 parts of ionic liquid, 1 to 2 parts of lubricant, 0.3 to 0.7 parts of antioxidant, and 0.4 to 0.4 parts of cross-linking agent. 2.2 servings.
  • the base material is one or more of ethylene-butyl acrylate and ethylene-ethyl acrylate.
  • the properties of the substrate are adjusted according to the content of the second copolymerized monomer, and the mass ratio of the second copolymerized monomer in the substrate is controlled to be between 16% and 20%.
  • the DBP absorption value of conductive carbon black is 150-170ml/100g, the ash content is ⁇ 0.2%, and the 325 mesh residue content is ⁇ 8ppm.
  • the conductive carbon black does not contain unnecessary impurities. Specifically, conductive carbon black does not contain impurity elements such as sulfur and silicon.
  • the cross-linking agent is one or more of dicumyl peroxide and dicumyl peroxide.
  • the ionic liquid is an imidazole ionic liquid.
  • the ionic liquid is 1-butyl-3-ethylimidazole chloride ([Emim]Cl).
  • the lubricant is one or more of zinc stearate and pentaerythritol.
  • the antioxidant is one or more of antioxidant 1010 and antioxidant 300.
  • the preparation method of the modified conductive carbon black includes: mixing ionic liquid and deionized water to obtain a dispersion; mixing the conductive carbon black and the dispersion to obtain a dispersed suspension; drying the dispersed suspension to obtain a modified conductive carbon black.
  • Another embodiment of the present application provides a method for preparing the above-mentioned ionic liquid-modified conductive carbon black cable semi-conductive shielding material, which includes the following steps:
  • the mixture is melted, extruded, pelletized, and dried to obtain pellets;
  • mixing the ionic liquid and deionized water includes: using a beaker to take 300ml to 400ml of deionized water, adding the ionic liquid to the deionized water, and stirring evenly with a magnetic stirrer, with a rotation speed of 70rpm to 100rpm, and a stirring time of 10min to 15min. .
  • the method before mixing the conductive carbon black with the dispersion liquid, includes: drying the conductive carbon black at 100°C to 120°C for 4h to 5h to remove moisture in the conductive carbon black.
  • mixing the conductive carbon black and the dispersion liquid includes: slowly pouring the conductive carbon black into the dispersion liquid, stirring for 25 to 35 minutes, then letting it stand for 10 to 20 minutes, and then ultrasonic dispersing in an ultrasonic dispersion instrument for 1 to 2 hours.
  • drying the dispersion suspension includes: placing the dispersion suspension in an oven for drying, the oven temperature is 110°C to 130°C, and the drying time is 12h to 24h.
  • mix the modified conductive carbon black, antioxidant, and lubricant and then add it to the base material.
  • Continue mixing includes: Mix the modified conductive carbon black, antioxidant, and lubricant evenly in a mixer, and then add The base material is mixed continuously at 45°C to 50°C, where the rotation speed of the mixer is 150rpm to 250rpm.
  • melting, extruding, pelletizing, and drying the mixture includes: melting and extruding the mixture in a twin-screw extruder, the extrusion temperature is 170°C to 190°C, and the main engine speed is 110rpm to 130rpm. Then cut into pellets and dried.
  • mixing the pellet material and the cross-linking agent includes: adjusting the temperature of the pellet material to 60°C to 70°C, then mixing the pellet material and the cross-linking agent, and placing it at 60°C to 70°C for 8h to 15h.
  • a method for preparing ionic liquid-modified conductive carbon black cable semi-conductive shielding material includes the following steps:
  • Step 1 Dry the conductive carbon black in an oven at 100°C to 120°C for 4h to 5h to remove the moisture in the conductive carbon black.
  • Step 2 Take 300ml to 400ml of deionized water in a beaker, add the ionic liquid to the deionized water, and stir evenly using a magnetic stirrer at a rotation speed of 70rpm to 100rpm and a stirring time of 10min to 15min to obtain a dispersion.
  • Step 3 Slowly pour the dried conductive carbon black into the dispersion liquid, stir for 30 minutes, then let it stand for 15 minutes, and then ultrasonically disperse it in an ultrasonic disperser for 1 hour to 2 hours to obtain a dispersed suspension.
  • Step 4 Put the dispersion suspension into an oven for drying.
  • the oven temperature is 110°C to 130°C and the drying time is 12h to 24h to obtain modified conductive carbon black.
  • Step 5 Mix the modified conductive carbon black, antioxidant, and lubricant in a mixer evenly, then add the base material, and continue mixing at 45°C to 50°C, where the mixer speed is 150rpm to 250rpm to obtain a mixed material.
  • Step 6 Melt and extrud the mixture in a twin-screw extruder at an extrusion temperature of 170°C to 190°C and a main engine speed of 110rpm to 130rpm, then pelletize and dry to obtain pellets.
  • Step 7 Put the pellets into the container and adjust the temperature of the pellets to 65°C in the oven. Then mix the pellets with the evenly ground cross-linking agent and place them at 65°C for 10 hours to make the pellets cross. The combined agent is fully absorbed.
  • Ionic liquid-modified conductive carbon black cable semi-conductive shielding material includes 61.25 parts by weight of base material, 35 parts of conductive carbon black, 1 part of ionic liquid, 1 part of lubricant, 0.5 part of antioxidant, and 0.75 part of cross-linking agent share.
  • the base material is EEA resin
  • the EA content is 17wt%
  • its melt index at 190°C and 2.16kg is 8.5g/min
  • the elongation at break is 900%.
  • Conductive carbon black is a high-purity conductive carbon black with a DBP absorption value of 158ml/100g, an ash content of 0.2%, a 325 mesh residue content of 5ppm, and no impurity elements such as sulfur and silicon.
  • the ionic liquid is 1-butyl-3-ethylimidazole chloride ([Emim]Cl).
  • the lubricant is a compound of zinc stearate and pentaerythritol, with a mass ratio of 1:1.
  • the antioxidant is a mixture of antioxidant 1010 and antioxidant 300, with a mass ratio of 1:1.
  • the cross-linking agent is dicumyl peroxide (BIPB).
  • step (3) Slowly pour the conductive carbon black in step (1) into the dispersion obtained in step 2 according to the weight ratio, stir for 30 minutes, and then let it stand for a period of time, the standing time is 15 minutes;
  • step (4) Put the dispersion suspension in step (4) into an oven and dry it to obtain modified conductive carbon black.
  • the oven temperature is 110°C and the drying time is 12 hours.
  • step (2) Melt and extrud the mixture obtained in step (1) in a twin-screw extruder at an extrusion temperature of 180°C and a main engine speed of 120 rpm, and then pelletize and dry to obtain pellets;
  • step (3) Put the dried pellets obtained in step (2) into a container, place it in an oven at 65°C, heat the pellets to 65°C, and then mix the pellets with a uniformly ground and set weight ratio. After the cross-linking agent is mixed evenly, it is placed in a 65°C oven for 10 hours to allow the granular material to fully absorb the cross-linking agent, and the high-voltage cable semi-conductive shielding material is obtained.
  • the only difference between this embodiment and Example 1 is that the ionic liquid is 2 parts.
  • the only difference between this embodiment and Example 1 is that the ionic liquid is 3 parts.
  • the only difference between this embodiment and Example 1 is that the ionic liquid is 4 parts.
  • the only difference between this comparative example and Example 1 is that the ionic liquid is 0 part.
  • the dispersant is 1 part EBS.
  • the high-voltage cable semi-conductive shielding material prepared in this application exhibits excellent mechanical properties and electrical properties.
  • the mechanical properties, resistivity and surface finish of the semi-conductive shielding material in Example 4 are optimal.
  • the tensile strength of the shielding material reaches 16.3MPa, the elongation at break reaches 321.6%, and the resistivity at 23°C and 90°C is 8.5 ⁇ cm and 8.5 ⁇ cm respectively. 60.3 ⁇ cm, and its performance is better than that of Comparative Example 2.
  • ionic liquids have a lubricant effect, which can significantly reduce the dynamic and static friction coefficients of high-voltage cable semi-conductive shielding materials, reduce scratches on the surface of semi-conductive shielding materials, and improve its easy processing performance and extrusion surface finish.
  • Comparative analysis of Example 4 and Comparative Example 2 shows that compared with traditional dispersants and dispersion methods, it can be seen that the preparation method of ionic liquid-modified conductive carbon black filler can significantly improve the surface of high-voltage cable semi-conductive shielding materials. Smoothness, the number of protrusions larger than 50 microns on the surface has been reduced from 7 to 0. This is due to the preparation method of highly dispersible conductive carbon black filler, which is to disperse conductive carbon black at the molecular level, which can make conductive carbon black and ionic liquid Full contact inhibits agglomeration between conductive carbon black particles, thereby increasing the surface finish of high-voltage cable semi-conductive shielding materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

本公开涉及一种离子液体改性导电炭黑的电缆半导电屏蔽料,包括基材、导电炭黑、交联剂、抗氧剂、润滑剂、离子液体;其特征在于,各组分的重量份数如下:基材58~64份、导电炭黑27~35份、离子液体1~5份、润滑剂1~2份、抗氧剂0.3~0.7份、交联剂0.4~2.2份。

Description

一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法
本申请要求于2022年09月02日提交中国专利局、申请号为2022110768801、发明名称为“一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于交联聚乙烯电缆材料领域,具体涉及一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法。
背景技术
近年来,随着电网改造、特高压等大型工程相继投入升级、建设,高压电缆需求量飞速上升。XLPE(Cross linked polyethylene交联聚乙烯)挤包绝缘电缆因其具备工艺简单、传输容量大、维护方便、成本低等优点,在高压电缆上得到广泛应用。半导电屏蔽层是XLPE电缆结构的重要组成部分,具有改善电场分布及消除导体与绝缘层交界面气隙,避免因局部放电引起绝缘失效的作用。半导电屏蔽层所用原料为半导电屏蔽料,一般是将基材树脂、导电炭黑及加工助剂通过熔融共混复合而得到。
由于导电炭黑本身拥有比较大的比表面积,表面能大等特点,使导电炭黑容易产生团聚,故其在基材树脂中的分散性受阻。此外这些导电炭黑团聚物在屏蔽料挤出过程中还会形成毛刺或突出物,使得电缆绝缘层出现局部应力集中从而更容易受到破坏,电缆的使用寿命下降。为了使导电炭黑在基材树脂中的分散性能变得更好,从而在聚合物材料中发 挥更大的优势,导电炭黑的改性问题成为现如今比较重要的问题。
离子液体是由有机阳离子和有机(或无机)阴离子两部分组成的液态的离子化合物,同时也被称为室温熔融盐,具有比较低的熔融温度。同时,离子液体本身具有比较优异的性能:不易挥发、不易燃,热稳定性好,液态温度范围宽,导电率高,溶解能力强等优异的性能。导电炭黑和离子液体可产生相互作用,离子液体附着在导电炭黑上,同时,将导电炭黑填充到复合材料中时,离子液体也可发挥出自身优势,对高压电缆半导电屏蔽料进行多组分协同效应的改性。
现有技术文件1(CN111117051A)公开了一种具有防铜害功能的电缆用内屏蔽料及其制备方法,所述屏蔽料按重量计各个组分为:EVA,30~35份;白油,5~8份;分散剂,0.5~4份;交联剂,0.5~3份;增塑剂,10~12份;离子液体表面活性剂,0.6~0.8份;导电炭黑,30~32份;抗氧剂,0.1~0.5份;抗粘结剂,12~18份。
现有技术文件2(CN106750848A)公开了一种易剥离半导电屏蔽料,有如下质量份的原料制备而成,EVA 40~45份、导电炭黑32~38份、白油5~8份、润滑剂2~5份、分散剂0.5~4份、抗氧剂0.1~0.5份、交联剂0.5~3份、抗粘结剂12~18份,三硅氧烷咪唑离子液体表面活性剂为0.6~0.8份。乙烯醋酸乙烯酯共聚物的熔融指数为5.5~6.3g/10min,软化点小于40℃,聚合物中总醋酸乙烯的质量百分含量为25~35%,抗粘结剂为丁腈橡胶,离子液体表面活性剂为三硅氧烷咪唑离子液体表面活性剂。
以上两个现有技术文件中,添加极少量的离子液体的作用是利用其亲油机团降低白油的界面张力,提高白油与EVA的润湿性,没有涉及对导电炭黑的分散和整个材料体系导电网络的影响。本方案相对于对比文件的区别之处为在制备方法上离子液体作为导电炭黑分散剂,提高导电 炭黑在基材树脂中的分散性,且同时利用离子液体的固有导电性,有助于在基础树脂中形成更为稳定的连通导电网络,以实现兼具高电阻率稳定性超光滑表面的高压电缆半导电屏蔽料的制备。
发明内容
本申请的目的是克服现有技术中高压电缆半导电屏蔽料挤出过程导电炭黑容易发生团聚使得屏蔽料电性能和机械性能难以同时满足要求,此外这些团聚物还会形成凸起使得绝缘层出现局部电场集中,从而引发绝缘失效的问题,并且提供了一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法。
为实现上述目的,本申请采取的技术方案如下:
一种离子液体改性导电炭黑的电缆半导电屏蔽料,包括基材、导电炭黑、交联剂、抗氧剂、润滑剂、离子液体;各组分的重量份数如下:
基材58~64份、导电炭黑27~35份、离子液体1~5份、润滑剂1~2份、抗氧剂0.3~0.7份、交联剂0.4~2.2份。
在一些实施方式中,所述基材为乙烯-丙烯酸丁酯和乙烯-丙烯酸乙酯中的一种或多种。
在一些实施方式中,所述导电炭黑的DBP吸收值为150ml/100g~170ml/100g,灰分含量≤0.2%,325目筛余物含量<8ppm。
在一些实施方式中,所述交联剂为过氧化二异丙基苯和过氧化二异丙苯中的一种或多种。
在一些实施方式中,所述离子液体为咪唑类离子液体。
在一些实施方式中,所述润滑剂为硬脂酸锌和季戊四醇中的一种或多种。
在一些实施方式中,所述抗氧剂为抗氧剂1010和抗氧剂300中的一种 或多种。
一种上述离子液体改性导电炭黑的电缆半导电屏蔽料的制备方法,包括以下步骤:
将所述离子液体与去离子水混合,得到分散液;
将所述导电炭黑与所述分散液混合,得到分散悬浮液;
将所述分散悬浮液烘干,得到改性导电炭黑;
将所述改性导电炭黑、所述抗氧剂、所述润滑剂混合,然后加入所述基材,继续混合,得到混合料;
将所述混合料熔融挤出、切粒、烘干,得到颗粒料;
将所述颗粒料与所述交联剂混合。
在一些实施方式中,所述将所述离子液体与去离子水混合包括:用烧杯取300ml~400ml去离子水,将所述离子液体加入所述去离子水中,利用磁力搅拌机搅拌均匀,转速为70rpm~100rpm,搅拌时间为10min~15min。
在一些实施方式中,所述将所述导电炭黑与所述分散液混合之前包括:将导电炭黑在100℃~120℃下烘干4h~5h,去除导电炭黑中的水分。
在一些实施方式中,所述将所述导电炭黑与所述分散液混合包括:将所述导电炭黑缓慢倒入所述分散液中,并搅拌25min~35min,然后静置10min~20min,再在超声分散仪中超声分散1h~2h。
在一些实施方式中,所述将所述分散悬浮液烘干包括:将所述分散悬浮液放入烘箱中烘干,烘箱温度为110℃~130℃,烘干时间为12h~24h。
在一些实施方式中,所述将所述改性导电炭黑、所述抗氧剂、所述润滑剂混合,然后加入所述基材,继续混合包括:将所述改性导电炭黑、所述抗氧剂、所述润滑剂在混合机中混合均匀,然后加入所述基材,在45℃~50℃继续混合,其中,混合机的转速为150rpm~250rpm。
在一些实施方式中,所述将所述混合料熔融挤出、切粒、烘干包括:将 所述混合料在双螺杆挤出机中进行熔融挤出,挤出温度为170℃~190℃,主机转速为110rpm~130rpm,然后切粒、烘干。
在一些实施方式中,所述将所述颗粒料与所述交联剂混合包括:将所述颗粒料的温度调节至60℃~70℃,然后将所述颗粒料与所述交联剂混合,并在60℃~70℃下放置8h~15h。
本申请的有益效果在于:
本申请使用咪唑类离子液体对导电炭黑进行非共价键改性,与共价修饰相比,非共价修饰保留导电炭黑良好的表面结构,使其优异的电性能,机械性能,热学性能得以更好的发挥。离子液体用于导电炭黑的非共价改性时,疏水部分通过范德华作用力及π-π等非共价相互作用包裹在导电炭黑上,亲水部分则直接和基材的极性端结合,从而增强分散性,这些非共价改性增加了导电炭黑在基材树脂中的分散均匀稳定性。本申请改性后的导电炭黑用于高压电缆半导电屏蔽料时,减少了导电炭黑在基材树脂中的团聚现象,提高了高压电缆半导电屏蔽料的表面光洁度。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请一实施方式提供了一种离子液体改性导电炭黑的电缆半导电屏蔽料,包括基材、导电炭黑、交联剂、抗氧剂、润滑剂、离子液体;其特征在于,各组分的重量份数如下:基材58~64份、导电炭黑27~35份、离子液体1~5份、润滑剂1~2份、抗氧剂0.3~0.7份、交联剂0.4~2.2份。
可选地,基材为乙烯-丙烯酸丁酯和乙烯-丙烯酸乙酯中的一种或多种。可选地,根据共聚第二单体含量调控基材性能,控制共聚第二单体在基材中的质量比在16%~20%之间。
可选地,导电炭黑的DBP吸收值为150-170ml/100g,灰分含量≤0.2%,325目筛余物含量<8ppm。进一步地,导电炭黑不含有多余杂质。具体地,导电炭黑不含有硫、硅等杂质元素
可选地,交联剂为过氧化二异丙基苯和过氧化二异丙苯中的一种或多种。
可选地,离子液体为咪唑类离子液体。进一步可选地,离子液体为1-丁基-3-乙基咪唑氯([Emim]Cl)。
可选地,润滑剂为硬脂酸锌和季戊四醇中的一种或多种。
可选地,抗氧剂为抗氧剂1010和抗氧剂300中的一种或多种。
本申请还有一实施方式提供了一种改性导电炭黑的制备方法。该改性导电炭黑的制备方法包括:将离子液体与去离子水混合,得到分散液;将导电炭黑与分散液混合,得到分散悬浮液;将分散悬浮液烘干,得到改性导电炭黑。
进一步地,本申请还有一实施方式提供了一种上述离子液体改性导电炭黑的电缆半导电屏蔽料的制备方法,包括以下步骤:
将离子液体与去离子水混合,得到分散液;
将导电炭黑与分散液混合,得到分散悬浮液;
将分散悬浮液烘干,得到改性导电炭黑;
将改性导电炭黑、抗氧剂、润滑剂混合,然后加入基材,继续混合,得到混合料;
将混合料熔融挤出、切粒、烘干,得到颗粒料;
将颗粒料与交联剂混合。
可选地,将离子液体与去离子水混合包括:用烧杯取300ml~400ml去离子水,将离子液体加入去离子水中,利用磁力搅拌机搅拌均匀,转速为70rpm~100rpm,搅拌时间为10min~15min。
可选地,将导电炭黑与分散液混合之前包括:将导电炭黑在100℃~120℃下烘干4h~5h,去除导电炭黑中的水分。
可选地,将导电炭黑与分散液混合包括:将导电炭黑缓慢倒入分散液中,并搅拌25min~35min,然后静置10min~20min,再在超声分散仪中超声分散1h~2h。
可选地,将分散悬浮液烘干包括:将分散悬浮液放入烘箱中烘干,烘箱温度为110℃~130℃,烘干时间为12h~24h。
可选地,将改性导电炭黑、抗氧剂、润滑剂混合,然后加入基材,继续混合包括:将改性导电炭黑、抗氧剂、润滑剂在混合机中混合均匀,然后加入基材,在45℃~50℃继续混合,其中,混合机的转速为150rpm~250rpm。
可选地,将混合料熔融挤出、切粒、烘干包括:将混合料在双螺杆挤出机中进行熔融挤出,挤出温度为170℃~190℃,主机转速为110rpm~130rpm,然后切粒、烘干。
可选地,将颗粒料与交联剂混合包括:将颗粒料的温度调节至60℃~70℃,然后将颗粒料与交联剂混合,并在60℃~70℃下放置8h~15h。
在一些实施方式中,离子液体改性导电炭黑的电缆半导电屏蔽料的制备方法,包括以下步骤:
步骤1,将导电炭黑在100℃~120℃烘箱中烘干4h~5h,去除导电炭黑中的水分。
步骤2,用烧杯取300ml~400ml去离子水,将离子液体加入去离子水中,利用磁力搅拌机搅拌均匀,转速为70rpm~100rpm,搅拌时间为10min~15min,得到分散液。
步骤3,将烘干后的导电炭黑缓慢倒入分散液中,并搅拌30min,然后静置15min,再在超声分散仪中超声分散1h~2h,得到分散悬浮液。
步骤4,将分散悬浮液放入烘箱中烘干,烘箱温度为110℃~130℃,烘干时间为12h~24h,得到改性导电炭黑。
步骤5,将改性导电炭黑、抗氧剂、润滑剂在混合机中混合均匀,然后加入基材,在45℃~50℃继续混合,其中,混合机的转速为150rpm~250rpm,得到混合料。
步骤6,将混合料在双螺杆挤出机中进行熔融挤出,挤出温度为170℃~190℃,主机转速为110rpm~130rpm,然后切粒、烘干,得到颗粒料。
步骤7,将颗粒料放入容器,并在烘箱中将颗粒料的温度调节至65℃,然后将颗粒料与研磨均匀的交联剂混合,并在65℃下放置10h,使颗粒料对交联剂进行充分吸收。
以下为具体实施例
作为本申请实施例的一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法。离子液体改性导电炭黑的电缆半导电屏蔽料,按照重量份数包括基材61.25份,导电炭黑35份、离子液体1份、润滑剂1份、抗氧剂0.5份、交联剂0.75份。
其中,基材为EEA树脂,EA含量17wt%,其在190℃和2.16kg下的熔融指数8.5g/min,断裂伸长率900%。
导电炭黑为高纯净度型导电炭黑,DBP吸收值为158ml/100g,灰分含量0.2%,325目筛余物含量5ppm,不含有硫、硅等杂质元素。
离子液体为1-丁基-3-乙基咪唑氯([Emim]Cl)。
润滑剂为硬脂酸锌和季戊四醇的复配物,质量比为1:1。
抗氧剂为抗氧剂1010和抗氧剂300的混合物,质量比为1:1。
交联剂为过氧化二异丙基苯(BIPB)。
本实施例改性导电炭黑的制备方法,包括以下步骤:
(1)将导电炭黑去除水分,烘箱温度设置为110℃,烘干4h;
(2)用烧杯取400ml去离子水,按重量配比将离子液体放入去离子水中,利用磁力搅拌机搅拌均匀,转速为80rpm,搅拌时间为15min;
(3)按重量配比将步骤(1)中的导电炭黑缓慢倒入步骤2得到的分散液中,并搅拌30min,然后静置一段时间,静置时间为15min;
(4)待搅拌、静置完成后,将离子液体和导电炭黑的混合液在超声分散仪中超声分散2h,得到离子液体改性导电炭黑的分散悬浮液;
(5)将步骤(4)中的分散悬浮液放入烘箱中烘干,得到改性导电炭黑,烘箱温度为110℃,烘干时间为12h。
本实施例的离子液体改性导电炭黑的电缆半导电屏蔽料的制备方法包括以下步骤:
(1)将改性导电炭黑与加工助剂(抗氧剂、润滑剂)在高速混合机下继续混合均匀,然后加入设定重量配比的基材在50℃继续混合均匀,其中,所述高速混合机是指转速控制在150~250rpm之间;
(2)将步骤(1)得到的混合物在双螺杆挤出机中进行熔融挤出,挤出温度180℃,主机转速120rpm,然后再经切粒、烘干制得颗粒料;
(3)将步骤(2)得到的烘干后的颗粒料放入容器,置于65℃的烘箱中将颗粒料加热到65℃,然后将颗粒料与研磨均匀的设定重量配比的交联剂混合均匀之后在65℃烘箱中放置10个小时使颗粒料对交联剂进行充分吸收,即得高压电缆半导电屏蔽料。
实施例2
作为本实施例的离子液体改性导电炭黑的电缆半导电屏蔽料,本实施例与实施例1的唯一区别为:离子液体为2份。
实施例3
作为本实施例的离子液体改性导电炭黑的电缆半导电屏蔽料,本实施例与实施例1的唯一区别为:离子液体为3份。
实施例4
作为本实施例的离子液体改性导电炭黑的电缆半导电屏蔽料,本实施例与实施例1的唯一区别为:离子液体为4份。
对比例1
作为本对比例的离子液体改性导电炭黑的电缆半导电屏蔽料,本对比例与实施例1的唯一区别为:离子液体为0份。
对比例2
作为本对比例的离子液体改性导电炭黑的电缆半导电屏蔽料,本对比例与实施例1的唯一区别为:分散剂为1份EBS。
性能测试
实施例1~实施例4和对比例1~对比例2高压电缆半导电屏蔽料的断面形貌、物理机械性能、电性能、以及表面光滑度性能如下所示。
表1 实施例和对比例物理机械性能及电性能
Figure PCTCN2022139539-appb-000001
从表1可以看出,本申请制备的高压电缆半导电屏蔽料表现出优异的 力学性能和电性能。实施例4半导电屏蔽料力学性能、电阻率和表面光洁度达到最优,屏蔽料拉伸强度达到16.3MPa,断裂伸长率达到321.6%,23℃和90℃电阻率分别为8.5Ω·cm和60.3Ω·cm,其性能都优于对比例2。这是由于离子液体用于导电炭黑的非共价改性时,疏水部分通过范德华作用力及π-π等非共价相互作用包裹在导电炭黑上,亲水部分则直接和基材的极性端结合,从而增强分散性,这些非共价改性增加了导电炭黑在基材树脂中的分散均匀稳定性,降低导电炭黑在基材树脂中的团聚现象,使屏蔽料电性能和力学性能得到同时提高;同时,离子液体因其自身的良好导电性,有助于提高半导电屏蔽料的导电性及其稳定性。此外,离子液体具有润滑剂作用,能显著降低高压电缆半导电屏蔽料的动态和静态摩擦系数,减少半导电屏蔽料表面划痕,提高其易加工性能和挤出表面光洁度。
实施例4与对比例2进行对比分析,与传统的分散剂与分散方法相比,可以看出采用离子液体改性导电炭黑填料的制备方法,可以显著地提高高压电缆半导电屏蔽料的表面光洁度,表面大于50微米的突起个数从7个降低为0个,这是由于采用高分散性导电炭黑填料的制备方法是对导电炭黑进行分子级分散,可以使导电炭黑与离子液体充分接触,抑制导电炭黑颗粒之间团聚现象,从而增加了高压电缆半导电屏蔽料的表面光洁度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。
最后所应当说明的是,以上实施例仅用以说明本申请技术方案而非限制本申请保护范围。在不背离本申请技术解决方案的前提下,本领域普通技术人员容易实现的对本申请所作任何改动都将落入本申请的权利要求范围之内。

Claims (15)

  1. 一种离子液体改性导电炭黑的电缆半导电屏蔽料,包括基材、导电炭黑、交联剂、抗氧剂、润滑剂、离子液体;其特征在于,各组分的重量份数如下:
    基材58~64份、导电炭黑27~35份、离子液体1~5份、润滑剂1~2份、抗氧剂0.3~0.7份、交联剂0.4~2.2份。
  2. 根据权利要求1所述的离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于:所述基材为乙烯-丙烯酸丁酯和乙烯-丙烯酸乙酯中的一种或多种。
  3. 根据权利要求1或2所述的离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于:所述导电炭黑的DBP吸收值为150ml/100g~170ml/100g,灰分含量≤0.2%,325目筛余物含量<8ppm。
  4. 根据权利要求1~3任一项所述的离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于:所述交联剂为过氧化二异丙基苯和过氧化二异丙苯中的一种或多种。
  5. 根据权利要求1~4任一项所述离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于:所述离子液体为咪唑类离子液体。
  6. 根据权利要求1~5任一项所述的离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于:所述润滑剂为硬脂酸锌和季戊四醇中的一种或多种。
  7. 根据权利要求1~6任一项所述的一种离子液体改性导电炭黑的电缆半导电屏蔽料,其特征在于,所述抗氧剂为抗氧剂1010和抗氧剂300中的一种或多种。
  8. 一种权利要求1~7任一项所述的离子液体改性导电炭黑的电缆半导电屏蔽料的制备方法,其特征在于,包括以下步骤:
    将所述离子液体与去离子水混合,得到分散液;
    将所述导电炭黑与所述分散液混合,得到分散悬浮液;
    将所述分散悬浮液烘干,得到改性导电炭黑;
    将所述改性导电炭黑、所述抗氧剂、所述润滑剂混合,然后加入所述基材,继续混合,得到混合料;
    将所述混合料熔融挤出、切粒、烘干,得到颗粒料;
    将所述颗粒料与所述交联剂混合。
  9. 根据权利要求8所述的制备方法,其特征在于,所述将所述离子液体与去离子水混合包括:用烧杯取300ml~400ml去离子水,将所述离子液体加入所述去离子水中,利用磁力搅拌机搅拌均匀,转速为70rpm~100rpm,搅拌时间为10min~15min。
  10. 根据权利要求8~9任一项所述的制备方法,其特征在于,所述将所述导电炭黑与所述分散液混合之前包括:将导电炭黑在100℃~120℃下烘干4h~5h,去除导电炭黑中的水分。
  11. 根据权利要求8~10任一项所述的制备方法,其特征在于,所述将所述导电炭黑与所述分散液混合包括:将所述导电炭黑缓慢倒入所述分散液中,并搅拌25min~35min,然后静置10min~20min,再在超声分散仪中超声分散1h~2h。
  12. 根据权利要求8~11任一项所述的制备方法,其特征在于,所述将所述分散悬浮液烘干包括:将所述分散悬浮液放入烘箱中烘干,烘箱温度为110℃~130℃,烘干时间为12h~24h。
  13. 根据权利要求8~12任一项所述的制备方法,其特征在于,所述将所述改性导电炭黑、所述抗氧剂、所述润滑剂混合,然后加入所述基材,继续混合包括:将所述改性导电炭黑、所述抗氧剂、所述润滑剂在混合机中混合均匀,然后加入所述基材,在45℃~50℃继续混合,其中,混合机的转速为150rpm~250rpm。
  14. 根据权利要求8~13任一项所述的制备方法,其特征在于,所述将所述混合料熔融挤出、切粒、烘干包括:将所述混合料在双螺杆挤出机中进行熔融挤出,挤出温度为170℃~190℃,主机转速为110rpm~130rpm,然后切粒、烘干。
  15. 根据权利要求8~14任一项所述的制备方法,其特征在于,所述将所述颗粒料与所述交联剂混合包括:将所述颗粒料的温度调节至60℃~70℃,然后将所述颗粒料与所述交联剂混合,并在60℃~70℃下放置8h~15h。
PCT/CN2022/139539 2022-09-02 2022-12-16 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法 WO2024045418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211076880.1A CN116120655A (zh) 2022-09-02 2022-09-02 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法
CN202211076880.1 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045418A1 true WO2024045418A1 (zh) 2024-03-07

Family

ID=86305092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139539 WO2024045418A1 (zh) 2022-09-02 2022-12-16 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法

Country Status (2)

Country Link
CN (1) CN116120655A (zh)
WO (1) WO2024045418A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001658A1 (de) * 2011-03-30 2012-10-04 Contitech Ag Kautschukmischung
DE202009018721U1 (de) * 2009-10-28 2013-03-13 Contitech Ag Elektrisch leitfähiger Polymerwerkstoff
CN105924981A (zh) * 2016-06-30 2016-09-07 合肥工业大学 一种含双键咪唑基离子液体修饰炭黑/硅橡胶复合力敏导电材料及其配制方法
CN114685883A (zh) * 2022-04-22 2022-07-01 南方电网科学研究院有限责任公司 一种超光滑高压电缆半导电内屏蔽料及其制备方法
CN115584095A (zh) * 2022-10-31 2023-01-10 江苏中煜橡塑科技有限公司 一种离子液体辅助分散制备高导电氟橡胶密封材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009018721U1 (de) * 2009-10-28 2013-03-13 Contitech Ag Elektrisch leitfähiger Polymerwerkstoff
DE102011001658A1 (de) * 2011-03-30 2012-10-04 Contitech Ag Kautschukmischung
CN105924981A (zh) * 2016-06-30 2016-09-07 合肥工业大学 一种含双键咪唑基离子液体修饰炭黑/硅橡胶复合力敏导电材料及其配制方法
CN114685883A (zh) * 2022-04-22 2022-07-01 南方电网科学研究院有限责任公司 一种超光滑高压电缆半导电内屏蔽料及其制备方法
CN115584095A (zh) * 2022-10-31 2023-01-10 江苏中煜橡塑科技有限公司 一种离子液体辅助分散制备高导电氟橡胶密封材料的方法

Also Published As

Publication number Publication date
CN116120655A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022111152A1 (zh) 一种高压电缆半导电屏蔽料及其制备方法
CN105131419B (zh) 一种高压直流电缆用半导电屏蔽料及其制备方法
CN107488295A (zh) 一种500kV及以下直流电缆用屏蔽料及其制备方法
CN113956565A (zh) 一种基于高结构导电炭黑的超光滑高压电缆半导电屏蔽料及制备方法
CN113150438A (zh) 一种石墨烯掺杂的热塑性电缆用半导电屏蔽料及制备方法
CN115216082B (zh) 剥离强度改善型半导电屏蔽料、制备方法、制品和电缆
CN106009190A (zh) 工作温度90℃的500kV及以下柔性直流电缆绝缘料与制备方法
CN115044130A (zh) 基于碳纳米纤维改性的屏蔽料及其制备方法和应用
CN115304854B (zh) 一种基于氧化石墨烯分散导电炭黑的高压电缆半导电屏蔽料及制备方法
CN113881133A (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法
CN114685883A (zh) 一种超光滑高压电缆半导电内屏蔽料及其制备方法
WO2022242026A1 (zh) 一种交联聚乙烯复合材料及其制备方法与应用
WO2020206979A1 (zh) 一种高压电缆用半导电屏蔽料及其制备方法和应用
WO2024045418A1 (zh) 一种离子液体改性导电炭黑的电缆半导电屏蔽料及其制备方法
WO2023035369A1 (zh) 一种基于高石墨化程度导电炭黑制备高压电缆半导电屏蔽料的方法
CN115322472B (zh) 基于复配树脂的半导电屏蔽料及其制备方法和应用
CN113698723B (zh) 一种用于环保型电缆的聚丙烯基热塑型半导电屏蔽料及制备方法
CN108395610A (zh) 一种碳纳米管半导体屏蔽料及其制备方法
WO2023065430A1 (zh) 一种导电炭黑高效分散的高压电缆半导电屏蔽料及制备方法
CN113150487A (zh) 一种热塑性屏蔽材料制备方法
Li et al. Dispersion of Carbon Blacks and Their Influence on the Properties of Semiconductive Materials use for High-voltage Power Cables
CN115093639A (zh) 表面光洁度改善型屏蔽料、制备方法和半导电屏蔽制品
WO2023065429A1 (zh) 一种低杂质导电炭黑制备高压电缆半导电屏蔽料的方法
CN112225969B (zh) 一种直流电缆绝缘材料及其制备方法
KR101412639B1 (ko) 에틸렌 알파-올레핀 공중합체와 카본나노튜브를 포함하는 특고압 전력케이블용 반도전성 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957230

Country of ref document: EP

Kind code of ref document: A1