WO2024045369A1 - 电机驱动电路的控制方法、控制装置、空调器及存储介质 - Google Patents

电机驱动电路的控制方法、控制装置、空调器及存储介质 Download PDF

Info

Publication number
WO2024045369A1
WO2024045369A1 PCT/CN2022/134363 CN2022134363W WO2024045369A1 WO 2024045369 A1 WO2024045369 A1 WO 2024045369A1 CN 2022134363 W CN2022134363 W CN 2022134363W WO 2024045369 A1 WO2024045369 A1 WO 2024045369A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
motor
connection state
output terminal
module
Prior art date
Application number
PCT/CN2022/134363
Other languages
English (en)
French (fr)
Inventor
冯君璞
汤奇雄
颜小君
张杰楠
龙谭
徐云松
黎辉玲
邱小洲
李鹏
Original Assignee
佛山市顺德区美的电子科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电子科技有限公司, 广东美的制冷设备有限公司 filed Critical 佛山市顺德区美的电子科技有限公司
Publication of WO2024045369A1 publication Critical patent/WO2024045369A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to the field of motor technology, and in particular, to a control method, a control device, an air conditioner and a storage medium for a motor drive circuit.
  • Open-winding motors are widely used in household appliances. For example, open-winding motors are often used as drive motors in air conditioners. In order to ensure the normal operation of the motor, it is usually necessary to set up an Intelligent Power Module (IPM) to drive and control the motor. IPM The module integrates switching devices and driver circuits. Since the operating efficiency of the motor is different when the motor windings adopt different connection methods, it is often necessary to switch the motor windings between different connection methods. In related technologies, the electronic control topology for switching connection methods is relatively complex, and the switching implementation The method is not simple enough.
  • IPM Intelligent Power Module
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a control method, control device, air conditioner and storage medium for a motor drive circuit, which facilitates switching of the motor between different connection states, and the connection state switching is implemented in a simple manner.
  • inventions of the present invention provide a method for controlling a motor drive circuit.
  • the motor drive circuit is used to drive a motor with three-phase windings.
  • the motor drive circuit includes a first IPM module, a second IPM module, and a switching module.
  • the first IPM module and the second IPM module are connected by a common bus, one end of the three-phase winding is connected to the output end of the first IPM module, and the other end of the three-phase winding Connected to the common end of the switching module, the first end of the switching module is connected to the output end of the second IPM module, and the second end of the switching module is connected to the output end of the first IPM module,
  • the switching module is used to connect the first end or the second end, and the first relay is provided on the bus bar between the first IPM module and the second IPM module;
  • the control method includes :
  • the target connection states include a star connection state, a delta connection state and an open winding connection state .
  • the switching module can be connected to the first end or the second end, thereby being able to be switched to the second IPM module.
  • the output end or the output end of the first IPM module, and the first relay can switch the connection relationship between the first IPM module and the second IPM module.
  • the switching module and the first relay are controlled through coordination
  • the working state of the motor can change the connection relationship between the motor and the first IPM module and the second IPM module, so as to facilitate the switching of the motor between the star connection state, the delta connection state and the open winding connection state, and the connection state switching is realized
  • the method is simple and helps to improve the operating efficiency of the motor.
  • This embodiment is introduced by setting the first relay on the lower bus. By disconnecting the first relay from the lower bus, the connection between the first IPM module and the second IPM module can be disconnected, and at the same time, the switching module can be connected to the first end. One end of the motor is connected to the output end of the first IPM module, and the other end is connected to the output end of the second IPM module through the switching module.
  • the second IPM module can be used to connect the neutral point, thereby switching the motor to a star connection state. , star connection switching can be realized through the cooperative control of the first relay and the switching module, and the switching implementation method is simple.
  • the switching module when the motor is in a delta connection state, the switching module is connected to the second end, and the switching module is connected to the output end of the first IPM module.
  • the switching module by connecting the switching module to the second end, one end of the motor is connected to the output end of the first IPM module, and the other end is connected to the output end of the first IPM module through the switching module, and the first IPM module provides the motor with The driving voltage causes the motor to switch to the delta connection state.
  • the second IPM module has no action.
  • the delta connection switching can be realized by controlling the switching module.
  • the switching implementation method is simple.
  • the switching module is connected to the first end.
  • One end of the motor is connected to the output end of the first IPM module, and the other end is connected to the third IPM module through the switching module.
  • the output end of the two IPM modules drives the motor together through the first IPM module and the second IPM module, causing the motor to switch to the open winding connection state.
  • the open winding connection switching can be realized through the cooperative control of the first relay and the switching module, and the switching is realized. The way is simple.
  • the switching module includes a second relay, a third relay and a fourth relay
  • the first IPM module includes a first output terminal, a second output terminal and a third output terminal
  • the second IPM module includes a fourth output terminal, a fifth output terminal and a sixth output terminal, one end of the three-phase winding is connected to the first output terminal, the second output terminal and the third output terminal respectively, and the The other end of the three-phase winding is connected to the main contacts of the second relay, the third relay and the fourth relay respectively, and the two movable contacts of the second relay are connected to the fourth output end and the third relay respectively.
  • the two output terminals are connected, the two movable contacts of the third relay are respectively connected to the fifth output terminal and the third output terminal, and the two movable contacts of the fourth relay are respectively connected to the sixth output terminal.
  • the output terminal is connected to the first output terminal; the control of the working status of the switching module and the first relay includes:
  • connection relationship between the motor and the first IPM module and the second IPM module can be changed to facilitate the realization of the motor in different connection states. switch between.
  • the first relay is arranged on the lower bus.
  • the connection between the first IPM module and the second IPM module can be disconnected, and at the same time, the second relay and the fourth output can be controlled.
  • terminal is connected
  • the third relay is controlled to be connected to the fifth output terminal
  • the fourth relay is controlled to be connected to the sixth output terminal, that is, the main contacts of the three relays in the switching module are all connected to the output terminal of the second IPM module.
  • the three switching tubes of the lower arm of the second IPM module are in the conducting state.
  • the motor can be switched to the star connection state, and the first The cooperative control of the relay, the second relay, the third relay and the fourth relay can realize star connection switching, and the switching implementation method is simple.
  • the second relay when the motor is in a delta connection state, the second relay is connected to the second output terminal, the third relay is connected to the third output terminal, and the A fourth relay is connected to the first output terminal.
  • the third relay to the third output terminal, and the fourth relay to the first output terminal are all connected to the third output terminal.
  • the movable contact connected to the output end of an IPM module can switch the motor to a delta connection state.
  • the first IPM module provides a driving voltage to the motor, and the second IPM module has no action.
  • the output terminal connection that is, the main contacts of the three relays in the switching module are all connected to the movable contact connected to the output terminal of the second IPM module, which can cause the motor to switch to the open winding connection state, and the first IPM module and the second
  • the IPM module coordinates the drive motor, and can realize open winding connection switching through the cooperative control of the first relay, the second relay, the third relay and the fourth relay.
  • the switching implementation method is simple.
  • the above control method of the motor drive circuit also includes:
  • motors Since motors usually run in different operating frequency bands, they need to switch between low, medium and high frequency operating states. When the three-phase windings use different connection methods in different operating frequency bands, the operating efficiency of the motor is different. According to the operation of the motor Frequency is used to determine whether to control the motor to switch to the target connection state. Selecting the most suitable motor connection state in different operating frequency bands can ensure the efficient operation of the motor and help improve the operating efficiency of the motor.
  • determining whether to switch to the target connection state based on the operating frequency includes at least one of the following:
  • the first preset threshold, the second preset threshold, the third preset threshold, and the fourth preset threshold increase in sequence.
  • the motor By setting the first preset threshold, when the operating frequency is less than the first preset threshold, the motor switches from the delta connection state to the star connection state.
  • the second preset threshold when the operating frequency is greater than the second preset threshold , the motor switches from the star connection state to the delta connection state, by setting the third preset threshold.
  • the third preset threshold When the operating frequency is less than the third preset threshold, the motor switches from the open winding connection state to the delta connection state, by setting the third preset threshold.
  • Four preset thresholds When the operating frequency is greater than the fourth preset threshold, the motor switches from the delta connection state to the open winding connection state. Based on the motor's operating frequency and the preset threshold, it is judged whether to switch to the target connection state, which can cause the motor to switch to The optimal motor connection state under the frequency band, thereby achieving efficient operation of the motor in the entire frequency band.
  • an embodiment of the present invention provides an operation control device, including at least one control processor and a memory for communicative connection with the at least one control processor; the memory stores information that can be processed by the at least one control processor.
  • the instructions are executed by the at least one control processor, so that the at least one control processor can execute the control method as described in the above embodiment of the first aspect.
  • the operation control device provided according to the embodiment of the present invention at least has the following beneficial effects: by arranging the switching module and the first relay, the switching module can connect to the first end or the second end, thereby being able to switch the output end connected to the second IPM module. Or the output end of the first IPM module.
  • the first relay can switch the connection relationship between the first IPM module and the second IPM module. Based on the topology of the motor drive circuit, the working status of the switching module and the first relay is controlled through coordination. , can change the connection relationship between the motor and the first IPM module and the second IPM module, and facilitate the switching of the motor between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching is simple to implement. It is helpful to improve the operating efficiency of the motor.
  • an embodiment of the present invention provides an air conditioner, including the operation control device as described in the embodiment of the second aspect.
  • the air conditioner provided according to the embodiment of the present invention at least has the following beneficial effects: by arranging the switching module and the first relay, the switching module can connect to the first end or the second end, thereby being able to switch the output end or the second end connected to the second IPM module.
  • the output end of the first IPM module, and the first relay can switch the connection relationship between the first IPM module and the second IPM module.
  • Based on the topology of the motor drive circuit through coordinated control of the working status of the switching module and the first relay, It can change the connection relationship between the motor and the first IPM module and the second IPM module, so as to facilitate the switching of the motor between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching is simple and effective. It is beneficial to improve the operating efficiency of the motor.
  • embodiments of the present invention provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute as described in the first embodiment. control method.
  • the computer-readable storage medium provided according to the embodiment of the present invention has at least the following beneficial effects: by arranging the switching module and the first relay, the switching module can connect to the first end or the second end, thereby being able to switch the connection to the second IPM module.
  • the output end or the output end of the first IPM module, and the first relay can switch the connection relationship between the first IPM module and the second IPM module.
  • the working state can change the connection relationship between the motor and the first IPM module and the second IPM module to facilitate the switching of the motor between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching implementation method Simple and conducive to improving the operating efficiency of the motor.
  • Figure 1 is a schematic structural diagram of a motor drive circuit provided by an embodiment of the present invention.
  • Figure 2 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a motor drive circuit provided by another embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a motor drive circuit in a star connection state provided by another embodiment of the present invention.
  • Figure 5 is a schematic diagram of the driving waveform and relay action waveform of the motor drive circuit provided by another embodiment of the present invention.
  • Figure 6 is a schematic structural diagram of a motor drive circuit in a delta connection state provided by another embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a motor drive circuit in an open winding connection state provided by another embodiment of the present invention.
  • Figure 8 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 9 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 10 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 11 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 12 is a flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 13 is a schematic diagram of switching between different connection states according to the operating frequency of the motor provided by another embodiment of the present invention.
  • Figure 14 is an overall flow chart of a control method for a motor drive circuit provided by another embodiment of the present invention.
  • Figure 15 is a schematic structural diagram of an operation control device provided by another embodiment of the present invention.
  • connection/connection should be understood in a broad sense.
  • it can be a fixed connection or a movable connection, a detachable connection or a non-detachable connection, or an integral connection; it can be Mechanical connection can also be electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium.
  • control method, control device, air conditioner and storage medium of the motor drive circuit provided by the embodiments of the present invention facilitate the switching of the motor between different connection states, and the connection state switching is implemented in a simple manner.
  • the motor drive circuit of the embodiment of the present invention is used to drive a motor 100 with three-phase windings.
  • the motor drive circuit includes a first IPM module 200, a second IPM module 300, a switching module 400 and a first relay S1.
  • the first IPM module 200 and the second IPM module 300 are connected to a common bus 500.
  • One end of the three-phase winding is connected to the output end of the first IPM module 200.
  • the other end of the three-phase winding is connected to the common end of the switching module 400.
  • the switching module 400 The first end is connected to the output end of the second IPM module 300, the second end of the switching module 400 is connected to the output end of the first IPM module 200, the switching module 400 is used to connect the first end or the second end, the first The relay S1 is provided on the busbar 500 between the first IPM module 200 and the second IPM module 300 .
  • the motor 100 requires different driving voltages in different connection states.
  • the first IPM module 200 and the second IPM module 300 are used to provide driving voltages for the motor 100.
  • the connection relationship between an IPM module 200 and a second IPM module 300 is used to provide driving voltages for the motor 100.
  • the switching module 400 When the common end of the switching module 400 is connected to the first end, that is, connected to the first end, the switching module 400 is connected to the output end of the second IPM module 300.
  • the switching module 400 is connected to the output end of the first IPM module 200 to facilitate switching between different connection modes, thereby adjusting the driving mode of the motor 100.
  • a first embodiment of the present invention provides a control method for the motor drive circuit.
  • the control method of the motor drive circuit includes but is not limited to step S110:
  • Step S110 Control the working states of the switching module and the first relay to switch the motor to different target connection states, where the target connection states include a star connection state, a delta connection state and an open winding connection state.
  • the working states of the switching module 400 and the first relay S1 can be coordinated and controlled according to the operating state of the motor 100, so that the motor 100 can switch between different target connection states, which is beneficial to improving the operating efficiency of the motor 100. .
  • the working state of the switching module 400 may be to connect the first end or the second end, and the working state of the first relay S1 may be in a closed or open state.
  • the switching module 400 can be connected to the first end or the second end, thereby being able to switch the connection to the second IPM module 300.
  • the output end or the output end of the first IPM module 200, and the first relay S1 can switch the connection relationship between the first IPM module 200 and the second IPM module 300.
  • the switching module 400 is controlled through coordination and the working state of the first relay S1, which can change the connection relationship between the motor 100 and the first IPM module 200 and the second IPM module 300, so as to facilitate the realization of the motor 100 in the star connection state, delta connection state and open winding connection state.
  • the switching between the two modes and the connection state switching are implemented in a simple manner, which is beneficial to improving the operating efficiency of the motor 100 .
  • the electrical control topology for realizing connection mode switching in the related art is relatively complex, often requiring multiple switch components to be controlled separately, and the switching implementation method is not simple enough.
  • the motor drive circuit in the embodiment of the present invention is configured with a switching module 400 and the first relay S1 to switch the connection mode of the three-phase winding, achieving a simple structure, which can reduce the number of relays, thereby reducing the electronic control area, which is beneficial to reducing costs.
  • This embodiment is introduced by assuming that the first relay S1 is disposed on the lower bus. By disconnecting the first relay S1 from the lower bus, the connection between the first IPM module 200 and the second IPM module 300 can be disconnected, and at the same time, the switching module 400 Connecting the first end, one end of the motor 100 is connected to the output end of the first IPM module 200, and the other end is connected to the output end of the second IPM module 300 through the switching module 400.
  • the second IPM module 300 can be used to connect the neutral point. , thereby causing the motor 100 to switch to the star connection state.
  • Star connection switching can be realized through the cooperative control of the first relay S1 and the switching module 400, and the switching implementation method is simple.
  • the control method of the motor drive circuit in this embodiment is by using The first relay S1 realizes the connection of the neutral point, which can reduce the number of relays. At the same time, there is no need to consider the consistency of the switching time of the two relays, thereby reducing the probability of switching failure of the motor drive circuit.
  • the first IPM module 200 provides a driving voltage to the motor 100 .
  • the switching module 400 when the motor 100 is in the delta connection state, the switching module 400 is connected to the second end, and the switching module 400 is connected to the output end of the first IPM module 200 .
  • one end of the motor 100 is connected to the output end of the first IPM module 200, and the other end is connected to the output end of the first IPM module 200 through the switching module 400.
  • the first end is connected to the output end of the first IPM module 200.
  • the IPM module 200 provides a driving voltage to the motor 100, thereby switching the motor 100 to a delta connection state.
  • the second IPM module 300 has no action, and the delta connection switching can be realized by controlling the switching module 400.
  • the switching implementation method is simple.
  • the motor 100 when the motor 100 is in the delta connection state, the motor 100 is driven by the first IPM module 200, and the second IPM module 300 has no action, as long as the switching module 400 is connected to the output end of the first IPM module 200,
  • This embodiment does not limit the working state of the first relay S1, that is, the first relay S1 may be in a closed or open state.
  • the switching module 400 is connected to the first end.
  • One end of the motor 100 is connected to the output end of the first IPM module 200, and the other end of the motor 100 is connected to the output end of the first IPM module 200.
  • the switching module 400 is connected to the output end of the second IPM module 300, and the first IPM module 200 and the second IPM module 300 jointly drive the motor 100, so that the motor 100 is switched to the open winding connection state.
  • the control method of the motor drive circuit in this embodiment controls the first relay S1 to be disconnected and the switching module 400 to connect to the first end, so that the switching module 400 is connected to the output end of the second IPM module 300, thereby switching the motor 100 to In the star connection state, the first IPM module 200 provides the driving voltage at this time; by controlling the switching module 400 to connect to the second end, the switching module 400 is connected to the output end of the first IPM module 200, thereby switching the motor 100 to the delta type.
  • the first IPM module 200 provides the driving voltage at this time; by controlling the first relay S1 to close and the switching module 400 to connect to the first end, the switching module 400 is connected to the output end of the second IPM module 300, thereby causing the motor to 100 switches to the open winding connection state, and at this time, the first IPM module 200 and the second IPM module 300 jointly provide the driving voltage.
  • both the first IPM module 200 and the second IPM module 300 include three bridge arms connected in parallel, and each bridge arm includes two switch tubes connected in series, wherein the switch tubes can It is a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or an Insulated Gate Bipolar Transistor (IGBT).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the three bridge arms of the first IPM module 200 respectively include two first switching transistors Q1 and second switching transistors Q2 connected in series, and two third switching transistors Q3 and Q2 connected in series.
  • the four switching tubes Q4, the two fifth switching tubes Q5 and the sixth switching tube Q6 connected in series control the on-off state of the six switching tubes in the first IPM module 200, so that the first IPM module 200 can output the drive motor 100
  • the operating sine wave AC signal, that is, the first IPM module 200 provides the driving voltage to the motor 100.
  • the three bridge arms of the second IPM module 300 respectively include two seventh switching tubes Q7 and eighth switching tubes connected in series.
  • the on-off state causes the second IPM module 300 to provide the driving voltage to the motor 100 .
  • the switching module 400 includes a second relay S2, a third relay S3 and a fourth relay S4.
  • the first IPM module 200 includes a first output terminal a1, a second output terminal b1 and a third output terminal c1.
  • the two IPM modules 300 include a fourth output terminal a2, a fifth output terminal b2 and a sixth output terminal c2.
  • One end of the three-phase winding is connected to the first output terminal a1, the second output terminal b1 and the third output terminal c1 respectively.
  • the other end of the phase winding is connected to the main contacts of the second relay S2, the third relay S3 and the fourth relay S4 respectively.
  • the two movable contacts of the second relay S2 are respectively connected to the fourth output terminal a2 and the second output terminal b1.
  • connection, the two movable contacts of the third relay S3 are respectively connected to the fifth output terminal b2 and the third output terminal c1
  • the two movable contacts of the fourth relay S4 are respectively connected to the sixth output terminal c2 and the first output terminal a1. connect.
  • the switching module 400 includes three single-pole double-throw relays, namely the second relay S2, the third relay S3 and the fourth relay S4.
  • the two movable contacts of each relay are respectively connected with the output of the first IPM module 200.
  • the terminal is connected to the output terminal of the second IPM module 300.
  • Three The phase winding includes a first terminal m1, a second terminal m2, a third terminal m3, a fourth terminal m4, a fifth terminal m5 and a sixth terminal m6.
  • the first terminal m1 is connected to the first output terminal a1, and the second terminal m2 is connected to the first output terminal a1.
  • the second output terminal b1 is connected, the third terminal m3 is connected with the third output terminal c1, the fourth terminal m4 is connected with the main contact of the second relay S2, the fifth terminal m5 is connected with the main contact of the third relay S3, and
  • the six terminal m6 is connected to the main contact of the fourth relay S4.
  • controlling the working status of the switching module and the first relay in step S110 includes the following steps:
  • the connection relationship between the motor 100 and the first IPM module 200 and the second IPM module 300 can be changed to facilitate implementation
  • the motor 100 switches between different connection states.
  • the second relay S2, the third relay S3 and the fourth relay S4 can be connected to the three-phase winding in cooperation with each other.
  • the fourth terminal m4, the fifth terminal m5 and the sixth terminal m6 of the three-phase winding are all Connected to the common terminal of the switching module 400, the working states of the second relay S2, the third relay S3 and the fourth relay S4 change synchronously.
  • the second relay S2, the third relay S3 and the fourth relay S4 are connected at the same time. to the output end of the first IPM module 200 or the output end of the second IPM module 300 to ensure that the motor 100 can be driven normally.
  • the switching module 400 when the switching module 400 is connected to the first end, the second relay S2 is connected to the fourth output end a2, and the The third relay S3 is connected to the fifth output terminal b2, and the fourth relay S4 is connected to the sixth output terminal c2, that is, the switching module 400 is connected to the output terminal of the second IPM module 300.
  • the second relay S2 when the switching module 400 is connected to the second terminal, The second relay S2 is connected to the second output terminal b1, the third relay S3 is connected to the third output terminal c1, and the fourth relay S4 is connected to the first output terminal a1, that is, the switching module 400 is connected to the output terminal of the first IPM module 200. .
  • the first relay S1 is set on the lower bus. By disconnecting the first relay S1 from the lower bus, the connection between the first IPM module 200 and the second IPM module 300 can be disconnected, and the second relay can be controlled at the same time.
  • S2 is connected to the fourth output terminal a2
  • the third relay S3 is controlled to be connected to the fifth output terminal b2
  • the fourth relay S4 is controlled to be connected to the sixth output terminal c2, that is, the main contacts of the three relays in the switching module 400 are all connected. to the movable contact connected to the output end of the second IPM module 300.
  • the three switching tubes of the lower arm of the second IPM module 300 are in a conductive state, that is, the eighth switching tube Q8, the tenth switching tube Q10 and The twelfth switching tube Q12 is all in a conductive state, and the neutral point is connected together through the eighth switching tube Q8, the tenth switching tube Q10, and the twelfth switching tube Q12.
  • the neutral point is connected by using the second IPM module 300.
  • the connection can cause the motor 100 to switch to a star connection state.
  • the driving waveforms of the first IPM module 200 and the second IPM module 300 can be referred to Figure 5.
  • the first IPM module 200 provides a driving voltage to the motor 100 through the first relay.
  • Star connection switching can be realized by cooperative control of S1, the second relay S2, the third relay S3 and the fourth relay S4, and the switching implementation method is simple.
  • the second relay S2 By connecting the second relay S2 to the second output terminal b1, the third relay S3 to the third output terminal c1, and the fourth relay S4 to the first output terminal a1, that is, the main control unit of the three relays in the switching module 400
  • the contacts are all connected to the movable contact connected to the output end of the first IPM module 200, which can switch the motor 100 to a delta connection state.
  • the first relay S1 is disconnected.
  • the first IPM module 200 and The driving waveform of the second IPM module 300 can be referred to Figure 5.
  • the first IPM module 200 provides a driving voltage for the motor 100.
  • the second IPM module 300 has no action.
  • the fourth relay S4 is controlled to be connected to the sixth output terminal c2, that is, the main contacts of the three relays in the switching module 400 are connected to the movable contacts connected to the output terminal of the second IPM module 300, which can cause the motor 100 to switch to In the open winding connection state, the driving waveforms of the first IPM module 200 and the second IPM module 300 at this time can be referred to Figure 5.
  • the first IPM module 200 and the second IPM module 300 coordinately drive the motor 100 through the first relay S1 and the second relay S1.
  • the cooperative control of relay S2, the third relay S3 and the fourth relay S4 can realize open winding connection switching, and the switching implementation method is simple.
  • step S210 the above control method of the motor drive circuit also includes but is not limited to step S210 and step S220:
  • Step S210 Obtain the operating frequency of the motor
  • Step S220 Determine whether to switch to the target connection state according to the operating frequency.
  • the motor 100 Since the motor 100 usually runs in different operating frequency bands, it needs to switch between low, medium and high frequency operating states. When the three-phase windings use different connection methods in different operating frequency bands, the operating efficiency of the motor 100 is different. According to the motor The operating frequency of 100 is used to determine whether to control the motor 100 to switch to the target connection state. Selecting the most suitable connection state of the motor 100 in different operating frequency bands can ensure the efficient operation of the motor 100 and help improve the operating efficiency of the motor 100.
  • the star connection has advantages in the low frequency band, the motor 100 has lower losses and the running speed is stable.
  • the delta connection has advantages in the mid-frequency band.
  • the open winding connection is driven by two IPM modules and has advantages in the high frequency band. According to the operating frequency of the motor 100, a better connection state of the motor 100 can be determined, which facilitates the efficient operation of the motor 100 in the full frequency range.
  • step S220 judging whether to switch to the target connection state is based on the operating frequency, including at least one of the following:
  • Step S310 When the motor is in the delta connection state, when the operating frequency is less than the first preset threshold, the motor switches to the star connection state;
  • Step S320 When the motor is in the star connection state, when the operating frequency is greater than the second preset threshold, the motor switches to the delta connection state;
  • Step S330 When the motor is in the open winding connection state, when the operating frequency is less than the third preset threshold, the motor switches to the delta connection state;
  • Step S340 When the motor is in the delta connection state, when the operating frequency is greater than the fourth preset threshold, the motor switches to the open winding connection state;
  • the first preset threshold, the second preset threshold, the third preset threshold, and the fourth preset threshold increase in sequence.
  • the motor 100 switches from the delta connection state to the star connection state.
  • the second preset threshold when the operating frequency is greater than the second preset threshold, the motor 100 switches from the star connection state to the delta connection state.
  • the third preset threshold when the operating frequency is less than the third preset threshold, the motor 100 switches from the open winding connection state to the delta connection state.
  • Type connection state by setting the fourth preset threshold, when the operating frequency is greater than the fourth preset threshold, the motor 100 switches from the delta connection state to the open winding connection state, and whether to switch is determined based on the operating frequency of the motor 100 and the preset threshold.
  • the motor 100 can be switched to the optimal motor 100 connection state in the frequency band, thereby achieving efficient operation of the motor 100 in the entire frequency band.
  • the motor 100 is running in the frequency increasing process, that is, the operating frequency of the motor 100 increases, when the operating frequency reaches the second preset threshold, it switches from the star connection state to the delta connection state.
  • the operating frequency reaches the fourth preset threshold, it switches from the delta connection state to the open winding connection state;
  • the motor 100 is running in the frequency reduction process, that is, the operating frequency of the motor 100 decreases, when the operating frequency reaches the third preset threshold, it switches from the delta connection state to the open winding connection state.
  • the open winding connection state is switched to the delta connection state, and when the operating frequency reaches the first preset threshold, the delta connection state is switched to the star connection state.
  • the operating frequency is greater than the fourth preset threshold before switching to the open winding connection state, and the operating frequency is less than the third preset threshold before switching to the delta connection state, which can avoid frequent occurrence of the connection state of the motor 100. switching situation.
  • the first relay is S1
  • the second relay is S2
  • the third relay is S3.
  • the fourth relay is S4
  • the first output terminal is a1
  • the second output terminal is b1
  • the third output terminal is c1
  • the fourth output terminal is a2
  • the fifth output terminal is b2
  • the sixth output terminal is c2
  • Step 1 S1 is disconnected, S2, S3, and S4 are connected to a2, b2, and c2 respectively, and the motor is in a star connection state;
  • Step 2 Determine whether to switch to the target connection state based on the operating frequency; when the operating frequency is greater than the second preset threshold, perform step 3;
  • Step 3 S2, S3, and S4 are connected to a1, b1, and c1 respectively, and the motor is in a delta connection state;
  • Step 4 Determine whether to switch to the target connection state based on the operating frequency; when the operating frequency is less than the first preset threshold, perform step 1; when the operating frequency is greater than the fourth preset threshold, perform step 5;
  • Step 5 S1 is closed, S2, S3, and S4 are connected to a2, b2, and c2 respectively, and the motor is in an open winding connection state;
  • Step 6 Determine whether to switch to the target connection state based on the operating frequency; when the operating frequency is less than the third preset threshold, perform step 3.
  • first preset threshold, the second preset threshold, the third preset threshold, and the fourth preset threshold increase in sequence, and the specific values can be set according to the actual needs of the motor 100 .
  • the control method of the motor drive circuit realizes switching between the star connection state, the delta connection state and the open winding connection state by using the first relay S1, the second relay S2, the third relay S3 and the fourth relay S4. , the topology of the motor drive circuit is simple, and the connection state switching is convenient. At the same time, by detecting the operating frequency of the motor 100, and judging whether to switch to the target connection state based on the operating frequency and the preset threshold, the motor 100 can operate efficiently in the full frequency band, with It is beneficial to improve the operating efficiency of the motor 100.
  • a second embodiment of the present invention provides an operation control device 1500, including at least one control processor 1510 and a memory 1520 for communicative connection with the at least one control processor 1510; the control processor 1510 and The memory 1520 may be connected through a bus or other means.
  • An example of being connected through a bus is shown in Figure 15.
  • the memory 1520 stores instructions that can be executed by at least one control processor 1510, and the instructions are executed by at least one control processor 1510, so that at least A control processor 1510 is capable of executing the control method of the motor drive circuit of the first embodiment, for example, executing the above-described method steps S110 in FIG. 2 , method steps S210 and S220 in FIG. 8 , and the method in FIG.
  • Step S310 method step S320 in Fig. 10, method step S330 in Fig. 11, method step S340 in Fig. 12, and method step in Fig. 14.
  • the switching module 400 can be connected to the first end or the second end, so that it can be switched to the output end of the second IPM module 300 or the output end of the first IPM module 200.
  • the first end Relay S1 can switch the connection relationship between the first IPM module 200 and the second IPM module 300.
  • Based on the topology of the motor drive circuit by coordinating and controlling the working states of the switching module 400 and the first relay S1, it can change the relationship between the motor 100 and the second IPM module 300.
  • connection relationship between the first IPM module 200 and the second IPM module 300 facilitates switching of the motor 100 between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching is implemented in a simple manner and is conducive to improving The operating efficiency of the motor 100.
  • a third embodiment of the present invention provides an air conditioner, including the operation control device of the above second embodiment.
  • the switching module 400 can be connected to the first end or the second end, so that it can be switched to the output end of the second IPM module 300 or the output end of the first IPM module 200.
  • the first end Relay S1 can switch the connection relationship between the first IPM module 200 and the second IPM module 300.
  • Based on the topology of the motor drive circuit by coordinating and controlling the working states of the switching module 400 and the first relay S1, it can change the relationship between the motor 100 and the second IPM module 300.
  • connection relationship between the first IPM module 200 and the second IPM module 300 facilitates switching of the motor 100 between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching is implemented in a simple manner and is conducive to improving The operating efficiency of the motor 100.
  • a fourth embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions can be used to cause the computer to execute the motor driving circuit of the first embodiment.
  • the control method for example, executes the above-described method step S110 in Figure 2, method steps S210 and S220 in Figure 8, method step S310 in Figure 9, method step S320 in Figure 10, method step S330 in Figure 11 , method step S340 in Fig. 12, and method step S340 in Fig. 14.
  • the switching module 400 and the first relay S1 the switching module 400 can be connected to the first end or the second end, so that it can be switched to the output end of the second IPM module 300 or the output end of the first IPM module 200.
  • the first end Relay S1 can switch the connection relationship between the first IPM module 200 and the second IPM module 300. Based on the topology of the motor drive circuit, by coordinating and controlling the working states of the switching module 400 and the first relay S1, it can change the relationship between the motor 100 and the second IPM module 300.
  • the connection relationship between the first IPM module 200 and the second IPM module 300 facilitates switching of the motor 100 between the star connection state, the delta connection state and the open winding connection state.
  • the connection state switching is implemented in a simple manner and is conducive to improving The operating efficiency of the motor 100.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk, DVD or other optical disk storage, magnetic cassettes, magnetic tape, disk storage or other magnetic storage devices, or may be used Any other medium that stores the desired information and can be accessed by a computer. Additionally, it is known to those of ordinary skill in the art that communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Abstract

本发明提出一种电机驱动电路的控制方法、控制装置、空调器及存储介质,其中电机驱动电路用于驱动具有三相绕组的电机(100),三相绕组的一端与第一IPM模块(200)的输出端连接,另一端与切换模块(400)的公共端连接,切换模块(400)的第一端与第二IPM模块(300)的输出端连接,切换模块(400)的第二端与第一IPM模块(200)的输出端连接,切换模块(400)用于连通第一端或者连通第二端,第一继电器(S1)设置于第一IPM模块(200)和第二IPM模块(300)之间的母线(500)。该控制方法包括:控制切换模块和第一继电器的工作状态,以使电机切换至不同的目标连接状态,其中,目标连接状态包括星型连接状态、三角型连接状态和开绕组连接状态(S110)。

Description

电机驱动电路的控制方法、控制装置、空调器及存储介质
相关申请的交叉引用
本申请要求于2022年08月29日提交的申请号为202211042225.4、名称为“电机驱动电路的控制方法、控制装置、空调器及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机技术领域,尤其涉及一种电机驱动电路的控制方法、控制装置、空调器及存储介质。
背景技术
开绕组电机广泛应用于家用电器中,例如空调器中多采用开绕组电机作为驱动电机,为了保证电机的正常运行,通常需要设置智能功率模块(Intelligent Power Module,IPM)对电机进行驱动控制,IPM模块将开关器件和驱动电路集成在一起。由于电机绕组采用不同的连接方式时电机的运行效率有所区别,往往需要令电机绕组在不同的连接方式之间切换,而相关技术中实现连接方式切换的电控拓扑结构相对较复杂,切换实现方式不够简单。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种电机驱动电路的控制方法、控制装置、空调器及存储介质,便于实现电机在不同的连接状态之间切换,连接状态切换实现方式简单。
第一方面,本发明实施例提供一种电机驱动电路的控制方法,所述电机驱动电路用于驱动具有三相绕组的电机,所述电机驱动电路包括第一IPM模块、第二IPM模块、切换模块和第一继电器,所述第一IPM模块和所述第二IPM模块共母线连接,所述三相绕组的一端与所述第一IPM模块的输出端连接,所述三相绕组的另一端与所述切换模块的公共端连接,所述切换模块的第一端与所述第二IPM模块的输出端连接,所述切换模块的第二端与所述第一IPM模块的输出端连接,所述切换模块用于连通所述第一端或者连通所述第二端,所述第一继电器设置于所述第一IPM模块和所述第二IPM模块之间的母线;所述控制方法包括:
控制所述切换模块和所述第一继电器的工作状态,以使所述电机切换至不同的目标连接状态,其中,所述目标连接状态包括星型连接状态、三角型连接状态和开绕组连接状态。
根据本发明实施例提供的电机驱动电路的控制方法,至少具有如下有益效果:通过设置切换模块和第一继电器,切换模块能够连通第一端或者第二端,从而能够切换连接至第二IPM模块的输出端或者第一IPM模块的输出端,同时第一继电器能够切换第一IPM模块和第二IPM模块之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块和第一继电器的工作状态,能够改变电机与第一IPM模块以及第二IPM模块之间的连接关系,便于实现电机在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机的运行效率。
在上述电机驱动电路的控制方法中,当所述电机处于星型连接状态,所述第一继电器断开,所述切换模块连通所述第一端,所述切换模块连接至所述第二IPM模块的输出端。
本实施例以第一继电器设置在下母线进行介绍,通过令第一继电器断开下母线,能够使得第一IPM模块和第二IPM模块之间的连接断开,同时令切换模块连通第一端,电机的一端与第一IPM模块的输出端连接,另一端通过切换模块连接至第二IPM模块的输出端,可以利用第二IPM模块进行中性点的连接,从而使得电机切换至星型连接状态,通过第一继电器和切换模块的配合控制即可实现星型连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,当所述电机处于三角型连接状态,所述切换模块连通所述第二端,所述切换模块连接至所述第一IPM模块的输出端。
需要说明的是,通过令切换模块连通第二端,电机的一端与第一IPM模块的输出端连接,另一端通过切换模块与第一IPM模块的输出端连接,由第一IPM模块为电机提供驱动电压,从而使得电机切换至三角型连接状态,此时第二IPM模块无动作,通过控制切换模块即可实现三角型连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,当所述电机处于开绕组连接状态,所述第一继电器闭合,所述切换模块连通所述第一端,所述切换模块连接至所述第二IPM模块的输出端。
通过令第一继电器闭合,使得第一IPM模块和第二IPM模块保持连接,同时令切换模块连通第一端,电机的一端与第一IPM模块的输出端连接,另一端通过切换模块连接至第二IPM模块的输出端,通过第一IPM模块和第二IPM模块共同驱动电机,使得电机切换至开绕组连接状态,通过第一继电器和切换模块的配合控制即可实现开绕组连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,所述切换模块包括第二继电器、第三继电器和第四继电器,所述第一IPM模块包括第一输出端、第二输出端和第三输出端,所述第二IPM模块包括第四输出端、第五输出端和第六输出端,所述三相绕组的一端分别与所述第一输出端、第二输出端和第三输出端连接,所述三相绕组的另一端分别与所述第二继电器、第三继电器和第四继电器的主触点连接,所述第二继电器的两个动触点分别与所述第四输出端和所述第二输出端连接,所述第三继电器的两个动触点分别与所述第五输出端和所述第三输出端连接,所述第四继电器的两个动触点分别与所述第六输出端和所述第一输出端连接;所述控制所述切换模块和所述第一继电器的工作状态,包括:
控制所述第一继电器、所述第二继电器、所述第三继电器和所述第四继电器的工作状态。
通过协调控制第一继电器、第二继电器、第三继电器和第四继电器的工作状态,能够改变电机与第一IPM模块以及第二IPM模块之间的连接关系,便于实现电机在不同的连接状态之间切换。
在上述电机驱动电路的控制方法中,当所述电机处于星型连接状态,所述第一继电器断开,所述第二继电器连接至所述第四输出端,所述第三继电器连接至所述第五输出端,所述第四继电器连接至所述第六输出端。
在本实施例中,第一继电器设置在下母线,通过令第一继电器断开下母线,能够使得第一IPM模块和第二IPM模块之间的连接断开,同时控制第二继电器与第四输出端连接,控制第三继电器与第五输出端连接,控制第四继电器与第六输出端连接,即切换模块中的三个继电器的主触点均连接至与第二IPM模块的输出端连接的动触点,此时第二IPM模块的下桥臂的三个开关管处于导通状态,通过利用第二IPM模块进行中性点的连接,能够使得电机切换 至星型连接状态,通过第一继电器、第二继电器、第三继电器和第四继电器的配合控制即可实现星型连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,当所述电机处于三角型连接状态,所述第二继电器连接至所述第二输出端,所述第三继电器连接至所述第三输出端,所述第四继电器连接至所述第一输出端。
通过令第二继电器与第二输出端连接,第三继电器与第三输出端连接,第四继电器与第一输出端连接,即控制切换模块中的三个继电器的主触点均连接至与第一IPM模块的输出端连接的动触点,能够使得电机切换至三角型连接状态,第一IPM模块为电机提供驱动电压,第二IPM模块无动作,通过控制第二继电器、第三继电器和第四继电器即可实现三角型连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,当所述电机处于开绕组连接状态,所述第一继电器闭合,所述第二继电器连接至所述第四输出端,所述第三继电器连接至所述第五输出端,所述第四继电器连接至所述第六输出端。
通过控制第一继电器闭合,使得第一IPM模块和第二IPM模块保持连接,同时控制第二继电器与第四输出端连接,控制第三继电器与第五输出端连接,控制第四继电器与第六输出端连接,即切换模块中的三个继电器的主触点均连接至与第二IPM模块的输出端连接的动触点,能够使得电机切换至开绕组连接状态,第一IPM模块和第二IPM模块协调驱动电机,通过第一继电器、第二继电器、第三继电器和第四继电器的配合控制即可实现开绕组连接切换,切换实现方式简单。
在上述电机驱动电路的控制方法中,还包括:
获取所述电机的运行频率;
根据所述运行频率判断是否切换至所述目标连接状态。
由于电机通常运行在不同的工作频段,需要在低中高频的运行状态之间切换,而在不同的工作频段下三相绕组采用不同的连接方式时电机的运行效率有所区别,根据电机的运行频率来判断是否控制电机切换至目标连接状态,在不同的工作频段选择最适合的电机连接状态,能够保证电机的高效运行,有利于提高电机的运行效率。
在上述电机驱动电路的控制方法中,所述根据所述运行频率判断是否切换至所述目标连接状态,包括以下至少之一:
在所述电机处于三角型连接状态的情况下,当所述运行频率小于第一预设阈值,所述电机切换至星型连接状态;
在所述电机处于星型连接状态的情况下,当所述运行频率大于第二预设阈值,所述电机切换至三角型连接状态;
在所述电机处于开绕组连接状态的情况下,当所述运行频率小于第三预设阈值,所述电机切换至三角型连接状态;
在所述电机处于三角型连接状态的情况下,当所述运行频率大于第四预设阈值,所述电机切换至开绕组连接状态;
其中,所述第一预设阈值、所述第二预设阈值、所述第三预设阈值、所述第四预设阈值依次增大。
通过设定第一预设阈值,当运行频率小于第一预设阈值,电机从三角型连接状态切换至 星型连接状态,通过设定第二预设阈值,当运行频率大于第二预设阈值,电机从星型连接状态切换至三角型连接状态,通过设定第三预设阈值,当运行频率小于第三预设阈值,电机从开绕组连接状态切换至三角型连接状态,通过设定第四预设阈值,当运行频率大于第四预设阈值,电机从三角型连接状态切换至开绕组连接状态,根据电机的运行频率和预设阈值判断是否切换至目标连接状态,能够使得电机切换至所处频段下的最优电机连接状态,从而实现电机全频段的高效运行。
第二方面,本发明实施例提供一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如上第一方面实施例所述的控制方法。
根据本发明实施例提供的运行控制装置,至少具有如下有益效果:通过设置切换模块和第一继电器,切换模块能够连通第一端或者第二端,从而能够切换连接至第二IPM模块的输出端或者第一IPM模块的输出端,同时第一继电器能够切换第一IPM模块和第二IPM模块之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块和第一继电器的工作状态,能够改变电机与第一IPM模块以及第二IPM模块之间的连接关系,便于实现电机在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机的运行效率。
第三方面,本发明实施例提供一种空调器,包括有如上第二方面实施例所述的运行控制装置。
根据本发明实施例提供的空调器,至少具有如下有益效果:通过设置切换模块和第一继电器,切换模块能够连通第一端或者第二端,从而能够切换连接至第二IPM模块的输出端或者第一IPM模块的输出端,同时第一继电器能够切换第一IPM模块和第二IPM模块之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块和第一继电器的工作状态,能够改变电机与第一IPM模块以及第二IPM模块之间的连接关系,便于实现电机在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机的运行效率。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面实施例所述的控制方法。
根据本发明实施例提供的计算机可读存储介质,至少具有如下有益效果:通过设置切换模块和第一继电器,切换模块能够连通第一端或者第二端,从而能够切换连接至第二IPM模块的输出端或者第一IPM模块的输出端,同时第一继电器能够切换第一IPM模块和第二IPM模块之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块和第一继电器的工作状态,能够改变电机与第一IPM模块以及第二IPM模块之间的连接关系,便于实现电机在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机的运行效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书以及附图中所特别指出的结构来实现和获得。
附图说明
下面结合附图和实施例对本发明进一步地说明;
图1是本发明一实施例提供的电机驱动电路的结构示意图。
图2是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图3是本发明另一实施例提供的电机驱动电路的结构示意图;
图4是本发明另一实施例提供的星型连接状态的电机驱动电路的结构示意图;
图5是本发明另一实施例提供的电机驱动电路的驱动波形及继电器动作波形示意图;
图6是本发明另一实施例提供的三角型连接状态的电机驱动电路的结构示意图;
图7是本发明另一实施例提供的开绕组连接状态的电机驱动电路的结构示意图;
图8是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图9是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图10是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图11是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图12是本发明另一实施例提供的电机驱动电路的控制方法的流程图;
图13是本发明另一实施例提供的根据电机运行频率切换在不同的连接状态的示意图;
图14是本发明另一实施例提供的电机驱动电路的控制方法的整体流程图;以及
图15是本发明另一实施例提供的运行控制装置的结构示意图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
应了解,在本发明实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数,“若干”的含义是一个或者多个,除非另有明确具体的限定。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,可以理解的是,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。
此外,除非另有明确的规定和限定,术语“连接/相连”应做广义理解,例如,可以是固定连接或活动连接,也可以是可拆卸连接或不可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连。需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。
需要说明的是,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供的电机驱动电路的控制方法、控制装置、空调器及存储介质,便于实现电机在不同的连接状态之间切换,连接状态切换实现方式简单。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,本发明实施例的电机驱动电路用于驱动具有三相绕组的电机100,电机驱 动电路包括第一IPM模块200、第二IPM模块300、切换模块400和第一继电器S1,第一IPM模块200和第二IPM模块300共母线500连接,三相绕组的一端与第一IPM模块200的输出端连接,三相绕组的另一端与切换模块400的公共端连接,切换模块400的第一端与第二IPM模块300的输出端连接,切换模块400的第二端与第一IPM模块200的输出端连接,切换模块400用于连通第一端或者连通第二端,第一继电器S1设置于第一IPM模块200和第二IPM模块300之间的母线500。
需要说明的是,电机100处于不同的运行状态下,三相绕组采取不同的连接方式时电机100的运行效率有所区别,为了保证电机100的高效运行,往往需要令三相绕组在不同的连接方式之间切换。而电机100在不同的连接状态下所需的驱动电压不相同,第一IPM模块200和第二IPM模块300用于为电机100提供驱动电压,通过设置切换模块400,能够灵活切换电机100与第一IPM模块200以及第二IPM模块300的连接关系,当切换模块400的公共端连接至第一端,即连通第一端,切换模块400连接至第二IPM模块300的输出端,当切换模块400的公共端连接至第二端,即连通第二端,切换模块400连接至第一IPM模块200的输出端,便于切换不同的连接方式,从而能够调节电机100的驱动方式。通过将第一继电器S1设置在第一IPM模块200和第二IPM模块300之间的母线500,当第一继电器S1闭合,第一IPM模块200和第二IPM模块300保持连接,当第一继电器S1断开,第一IPM模块200和第二IPM模块300之间的连接断开。第一继电器S1能够切换第一IPM模块200和第二IPM模块300之间的连接关系。
如图2所示,基于上述图1的电机驱动电路,本发明的第一方面的实施例提供一种电机驱动电路的控制方法,电机驱动电路的控制方法包括但不限于步骤S110:
步骤S110:控制切换模块和第一继电器的工作状态,以使电机切换至不同的目标连接状态,其中,目标连接状态包括星型连接状态、三角型连接状态和开绕组连接状态。
在实际控制过程中,可以根据电机100的运行状态,协调控制切换模块400和第一继电器S1的工作状态,从而令电机100在不同的目标连接状态之间切换,有利于提高电机100的运行效率。
需要说明的是,切换模块400的工作状态可以是连通第一端或者连通第二端,第一继电器S1的工作状态可以是闭合或断开状态。
上述第一方面实施例提供的电机驱动电路的控制方法,通过设置切换模块400和第一继电器S1,切换模块400能够连通第一端或者第二端,从而能够切换连接至第二IPM模块300的输出端或者第一IPM模块200的输出端,同时第一继电器S1能够切换第一IPM模块200和第二IPM模块300之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块400和第一继电器S1的工作状态,能够改变电机100与第一IPM模块200以及第二IPM模块300之间的连接关系,便于实现电机100在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机100的运行效率。
需要说明的是,相关技术中实现连接方式切换的电控拓扑结构相对较复杂,往往需要多个开关部件分别控制,切换实现方式不够简单,而本发明实施例的电机驱动电路通过设置切换模块400和第一继电器S1来切换三相绕组的连接方式,实现结构简单,可以减少继电器的数量,从而减少电控面积,有利于降低成本。
在上述电机驱动电路的控制方法中,当电机100处于星型连接状态,第一继电器S1断开, 切换模块400连通第一端,切换模块400连接至第二IPM模块300的输出端。
本实施例以第一继电器S1设置在下母线进行介绍,通过令第一继电器S1断开下母线,能够使得第一IPM模块200和第二IPM模块300之间的连接断开,同时令切换模块400连通第一端,电机100的一端与第一IPM模块200的输出端连接,另一端通过切换模块400连接至第二IPM模块300的输出端,可以利用第二IPM模块300进行中性点的连接,从而使得电机100切换至星型连接状态,通过第一继电器S1和切换模块400的配合控制即可实现星型连接切换,切换实现方式简单。
针对现有技术中星型连接切换的结构基础是将两个继电器设置在电机三相线间,使得两个继电器的切换时间一致性要求较高,本实施例的电机驱动电路的控制方法通过利用第一继电器S1实现中性点的连接,能够减少继电器的数量,同时无需考虑两个继电器切换时间一致性的问题,从而减少电机驱动电路的切换故障几率。
需要说明的是,当电机100处于星型连接状态时,通过第一IPM模块200为电机100提供驱动电压。
在上述电机驱动电路的控制方法中,当电机100处于三角型连接状态,切换模块400连通第二端,切换模块400连接至第一IPM模块200的输出端。
需要说明的是,通过令切换模块400连通第二端,电机100的一端与第一IPM模块200的输出端连接,另一端通过切换模块400与第一IPM模块200的输出端连接,由第一IPM模块200为电机100提供驱动电压,从而使得电机100切换至三角型连接状态,此时第二IPM模块300无动作,通过控制切换模块400即可实现三角型连接切换,切换实现方式简单。
可以理解的是,当电机100处于三角型连接状态,通过第一IPM模块200驱动电机100,第二IPM模块300无动作,只要令切换模块400连接至第一IPM模块200的输出端即可,本实施例并不对第一继电器S1的工作状态作限制,即第一继电器S1可以是闭合或断开状态。
在上述电机驱动电路的控制方法中,当电机100处于开绕组连接状态,第一继电器S1闭合,切换模块400连通第一端,切换模块400连接至第二IPM模块300的输出端。
通过令第一继电器S1闭合,使得第一IPM模块200和第二IPM模块300保持连接,同时令切换模块400连通第一端,电机100的一端与第一IPM模块200的输出端连接,另一端通过切换模块400连接至第二IPM模块300的输出端,通过第一IPM模块200和第二IPM模块300共同驱动电机100,使得电机100切换至开绕组连接状态,通过第一继电器S1和切换模块400的配合控制即可实现开绕组连接切换,切换实现方式简单。
本实施例的电机驱动电路的控制方法,通过控制第一继电器S1断开以及控制切换模块400连通第一端,使得切换模块400连接至第二IPM模块300的输出端,从而令电机100切换至星型连接状态,此时由第一IPM模块200提供驱动电压;通过控制切换模块400连通第二端,使得切换模块400连接至第一IPM模块200的输出端,从而令电机100切换至三角型连接状态,此时由第一IPM模块200提供驱动电压;通过控制第一继电器S1闭合以及控制切换模块400连通第一端,使得切换模块400连接至第二IPM模块300的输出端,从而令电机100切换至开绕组连接状态,此时由第一IPM模块200和第二IPM模块300共同提供驱动电压。
通过设置切换模块400和第一继电器S1,协调控制切换模块400和第一继电器S1的工作状态,即可实现三相绕组的星型连接、三角型连接和开绕组连接,通过设置第一IPM模块 200和第二IPM模块300,能够向处于不同目标连接状态下的电机100提供合适的驱动电压,保证电机100在不同的连接状态能够稳定高效地工作。
如图3所示,需要说明的是,第一IPM模块200和第二IPM模块300均包括三个相互并联的桥臂,每个桥臂包括两个相互串联的开关管,其中,开关管可以为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或者绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)。
如图3所示,具体地,第一IPM模块200的三个桥臂分别包括两个相互串联的第一开关管Q1和第二开关管Q2,两个相互串联的第三开关管Q3和第四开关管Q4,两个相互串联的第五开关管Q5和第六开关管Q6,通过控制第一IPM模块200中六个开关管的通断状态,使得第一IPM模块200可以输出驱动电机100运行的正弦波交流信号,即第一IPM模块200向电机100提供驱动电压,相应地,第二IPM模块300的三个桥臂分别包括两个相互串联的第七开关管Q7和第八开关管Q8,两个相互串联的第九开关管Q9和第十开关管Q10,两个相互串联的第十一开关管Q11和第十二开关管Q12,通过控制第二IPM模块300中六个开关管的通断状态,使得第二IPM模块300向电机100提供驱动电压。
如图3所示,切换模块400包括第二继电器S2、第三继电器S3和第四继电器S4,第一IPM模块200包括第一输出端a1、第二输出端b1和第三输出端c1,第二IPM模块300包括第四输出端a2、第五输出端b2和第六输出端c2,三相绕组的一端分别与第一输出端a1、第二输出端b1和第三输出端c1连接,三相绕组的另一端分别与第二继电器S2、第三继电器S3和第四继电器S4的主触点连接,第二继电器S2的两个动触点分别与第四输出端a2和第二输出端b1连接,第三继电器S3的两个动触点分别与第五输出端b2和第三输出端c1连接,第四继电器S4的两个动触点分别与第六输出端c2和第一输出端a1连接。
需要说明的是,切换模块400包括三个单刀双掷继电器,即第二继电器S2、第三继电器S3和第四继电器S4,每个继电器的两个动触点分别与第一IPM模块200的输出端和第二IPM模块300的输出端连接,通过令继电器的主触点连接至不同的动触点,能够切换连接至第一IPM模块200的输出端或者第二IPM模块300的输出端,三相绕组包括第一端子m1、第二端子m2、第三端子m3、第四端子m4、第五端子m5和第六端子m6,第一端子m1与第一输出端a1连接,第二端子m2与第二输出端b1连接,第三端子m3与第三输出端c1连接,第四端子m4与第二继电器S2的主触点连接,第五端子m5与第三继电器S3的主触点连接,第六端子m6与第四继电器S4的主触点连接。
在上述电机驱动电路的控制方法中,步骤S110中控制切换模块和第一继电器的工作状态,包括以下步骤:
控制第一继电器、第二继电器、第三继电器和第四继电器的工作状态。
通过协调控制第一继电器S1、第二继电器S2、第三继电器S3和第四继电器S4的工作状态,能够改变电机100与第一IPM模块200以及第二IPM模块300之间的连接关系,便于实现电机100在不同的连接状态之间切换。
需要说明的是,通过设置第二继电器S2、第三继电器S3和第四继电器S4,能够与三相绕组相互配合连接,三相绕组的第四端子m4、第五端子m5和第六端子m6均连接至切换模块400的公共端,第二继电器S2、第三继电器S3和第四继电器S4的工作状态同步变化,可以理解的是,第二继电器S2、第三继电器S3和第四继电器S4同时连接至第一IPM模块200的 输出端或者第二IPM模块300的输出端,保证能够正常驱动电机100,例如,当切换模块400连通第一端,第二继电器S2连接至第四输出端a2,第三继电器S3连接至第五输出端b2,第四继电器S4连接至第六输出端c2,即切换模块400连接至第二IPM模块300的输出端,同理,当切换模块400连通第二端,第二继电器S2连接至第二输出端b1,第三继电器S3连接至第三输出端c1,第四继电器S4连接至第一输出端a1,即切换模块400连接至第一IPM模块200的输出端。
如图4和图5所示,在上述电机驱动电路的控制方法中,当电机100处于星型连接状态,第一继电器S1断开,第二继电器S2连接至第四输出端a2,第三继电器S3连接至第五输出端b2,第四继电器S4连接至第六输出端c2。
在本实施例中,第一继电器S1设置在下母线,通过令第一继电器S1断开下母线,能够使得第一IPM模块200和第二IPM模块300之间的连接断开,同时控制第二继电器S2与第四输出端a2连接,控制第三继电器S3与第五输出端b2连接,控制第四继电器S4与第六输出端c2连接,即切换模块400中的三个继电器的主触点均连接至与第二IPM模块300的输出端连接的动触点,此时第二IPM模块300的下桥臂的三个开关管处于导通状态,即第八开关管Q8、第十开关管Q10和第十二开关管Q12均处于导通状态,中性点通过第八开关管Q8、第十开关管Q10和第十二开关管Q12连接在一起,通过利用第二IPM模块300进行中性点的连接,能够使得电机100切换至星型连接状态,此时第一IPM模块200和第二IPM模块300的驱动波形可参照图5,第一IPM模块200为电机100提供驱动电压,通过第一继电器S1、第二继电器S2、第三继电器S3和第四继电器S4的配合控制即可实现星型连接切换,切换实现方式简单。
如图5和图6所示,在上述电机驱动电路的控制方法中,当电机100处于三角型连接状态,第二继电器S2连接至第二输出端b1,第三继电器S3连接至第三输出端c1,第四继电器S4连接至第一输出端a1。
通过令第二继电器S2与第二输出端b1连接,第三继电器S3与第三输出端c1连接,第四继电器S4与第一输出端a1连接,即控制切换模块400中的三个继电器的主触点均连接至与第一IPM模块200的输出端连接的动触点,能够使得电机100切换至三角型连接状态,本实施例中第一继电器S1断开,此时第一IPM模块200和第二IPM模块300的驱动波形可参照图5,第一IPM模块200为电机100提供驱动电压,第二IPM模块300无动作,通过控制第二继电器S2、第三继电器S3和第四继电器S4即可实现三角型连接切换,切换实现方式简单。
如图5和图7所示,在上述电机驱动电路的控制方法中,当电机100处于开绕组连接状态,第一继电器S1闭合,第二继电器S2连接至第四输出端a2,第三继电器S3连接至第五输出端b2,第四继电器S4连接至第六输出端c2。
通过控制第一继电器S1闭合,使得第一IPM模块200和第二IPM模块300保持连接,同时控制第二继电器S2与第四输出端a2连接,控制第三继电器S3与第五输出端b2连接,控制第四继电器S4与第六输出端c2连接,即切换模块400中的三个继电器的主触点均连接至与第二IPM模块300的输出端连接的动触点,能够使得电机100切换至开绕组连接状态,此时第一IPM模块200和第二IPM模块300的驱动波形可参照图5,第一IPM模块200和第二IPM模块300协调驱动电机100,通过第一继电器S1、第二继电器S2、第三继电器S3和第四继电器S4的配合控制即可实现开绕组连接切换,切换实现方式简单。
本领域技术人员可以理解的是,图1、图3、图4、图6和图7中示出的电机驱动电路的结构并不构成对本发明实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图8所示,在上述电机驱动电路的控制方法中,还包括但不限于步骤S210和步骤S220:
步骤S210:获取电机的运行频率;
步骤S220:根据运行频率判断是否切换至目标连接状态。
由于电机100通常运行在不同的工作频段,需要在低中高频的运行状态之间切换,而在不同的工作频段下三相绕组采用不同的连接方式时电机100的运行效率有所区别,根据电机100的运行频率来判断是否控制电机100切换至目标连接状态,在不同的工作频段选择最适合的电机100连接状态,能够保证电机100的高效运行,有利于提高电机100的运行效率。
需要说明的是,星型连接在低频段有优势,电机100损耗较低,运行速度平稳,三角型连接在中频段有优势,开绕组连接由两个IPM模块共同驱动,在高频段有优势,根据电机100的运行频率可以判断较优的电机100连接状态,便于实现电机100全频段的高效运行。
如图9至图13所示,在上述电机驱动电路的控制方法中,步骤S220中根据运行频率判断是否切换至目标连接状态,包括以下至少之一:
步骤S310:在电机处于三角型连接状态的情况下,当运行频率小于第一预设阈值,电机切换至星型连接状态;
步骤S320:在电机处于星型连接状态的情况下,当运行频率大于第二预设阈值,电机切换至三角型连接状态;
步骤S330:在电机处于开绕组连接状态的情况下,当运行频率小于第三预设阈值,电机切换至三角型连接状态;
步骤S340:在电机处于三角型连接状态的情况下,当运行频率大于第四预设阈值,电机切换至开绕组连接状态;
其中,第一预设阈值、第二预设阈值、第三预设阈值、第四预设阈值依次增大。
需要说明的是,通过设定第一预设阈值,当运行频率小于第一预设阈值,电机100从三角型连接状态切换至星型连接状态,通过设定第二预设阈值,当运行频率大于第二预设阈值,电机100从星型连接状态切换至三角型连接状态,通过设定第三预设阈值,当运行频率小于第三预设阈值,电机100从开绕组连接状态切换至三角型连接状态,通过设定第四预设阈值,当运行频率大于第四预设阈值,电机100从三角型连接状态切换至开绕组连接状态,根据电机100的运行频率和预设阈值判断是否切换至目标连接状态,能够使得电机100切换至所处频段下的最优电机100连接状态,从而实现电机100全频段的高效运行。
可以理解的是,当电机100运行在低频段,则选择星型连接,当电机100运行在中频段,则选择三角型连接,当电机100运行在高频段,则选择开绕组连接,有利于提高电机100的运行效率。
如图13所示,具体地,若电机100运行在升频过程中,即电机100的运行频率上升,当运行频率达到第二预设阈值则从星型连接状态切换至三角型连接状态,当运行频率达到第四预设阈值则从三角型连接状态切换至开绕组连接状态;若电机100运行在降频过程中,即电机100的运行频率下降,当运行频率达到第三预设阈值则从开绕组连接状态切换至三角型连接状态,当运行频率达到第一预设阈值则从三角型连接状态切换至星型连接状态。
当判断电机100是否在星型连接状态和三角型连接状态之间切换,通过设置第一预设阈值和第二预设阈值,且令第二预设阈值大于第一预设阈值,在比较电机100的运行频率时,运行频率大于第二预设阈值才切换至三角型连接状态,运行频率小于第一预设阈值才切换至星型连接状态,能够避免电机100的连接状态出现频繁切换的情况,保证电机100运行的稳定可靠。
同理,当判断电机100是否在三角型连接状态和开绕组连接状态之间切换,通过设置第三预设阈值和第四预设阈值,且令第四预设阈值大于第三预设阈值,在比较电机100的运行频率时,运行频率大于第四预设阈值才切换至开绕组连接状态,运行频率小于第三预设阈值才切换至三角型连接状态,能够避免电机100的连接状态出现频繁切换的情况。
如图14所示,为了更清楚阐述本发明的电机驱动电路的控制方法,以下将用一个整体实施例作进一步介绍,其中,第一继电器为S1,第二继电器为S2,第三继电器为S3,第四继电器为S4,第一输出端为a1,第二输出端为b1,第三输出端为c1,第四输出端为a2,第五输出端为b2,第六输出端为c2,本发明的电机驱动电路的控制方法具体如下:
步骤1:S1断开,S2、S3、S4分别连接至a2、b2、c2,电机处于星型连接状态;
步骤2:根据运行频率判断是否切换至目标连接状态;当运行频率大于第二预设阈值,执行步骤3;
步骤3:S2、S3、S4分别连接至a1、b1、c1,电机处于三角型连接状态;
步骤4:根据运行频率判断是否切换至目标连接状态;当运行频率小于第一预设阈值,执行步骤1;当运行频率大于第四预设阈值,执行步骤5;
步骤5:S1闭合,S2、S3、S4分别连接至a2、b2、c2,电机处于开绕组连接状态;
步骤6:根据运行频率判断是否切换至目标连接状态;当运行频率小于第三预设阈值,执行步骤3。
需要说明的是,第一预设阈值、第二预设阈值、第三预设阈值、第四预设阈值依次增大,具体数值可以根据电机100的实际需求进行设定。
本实施例提供的电机驱动电路的控制方法,通过使用第一继电器S1、第二继电器S2、第三继电器S3和第四继电器S4实现星型连接状态、三角型连接状态以及开绕组连接状态的切换,电机驱动电路的拓扑结构简单,连接状态切换方便,同时,通过检测电机100的运行频率,根据运行频率和预设阈值判断是否切换至目标连接状态,能够使得电机100在全频段高效运行,有利于提高电机100的运行效率。
如图15所示,本发明的第二方面实施例提供一种运行控制装置1500,包括至少一个控制处理器1510和用于与至少一个控制处理器1510通信连接的存储器1520;控制处理器1510和存储器1520可以通过总线或者其他方式连接,图15中示出通过总线连接的例子,存储器1520存储有可被至少一个控制处理器1510执行的指令,指令被至少一个控制处理器1510执行,以使至少一个控制处理器1510能够执行如上第一方面实施例的电机驱动电路的控制方法,例如,执行以上描述的图2中的方法步骤S110、图8中的方法步骤S210和S220、图9中的方法步骤S310、图10中的方法步骤S320、图11中的方法步骤S330、图12中的方法步骤S340、以及图14的方法步骤。通过设置切换模块400和第一继电器S1,切换模块400能够连通第一端或者第二端,从而能够切换连接至第二IPM模块300的输出端或者第一IPM模块200的输出端,同时第一继电器S1能够切换第一IPM模块200和第二IPM模块300之间的连接关系, 基于电机驱动电路的拓扑结构,通过协调控制切换模块400和第一继电器S1的工作状态,能够改变电机100与第一IPM模块200以及第二IPM模块300之间的连接关系,便于实现电机100在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机100的运行效率。
本发明的第三方面实施例提供一种空调器,包括有如上第二方面实施例的运行控制装置。通过设置切换模块400和第一继电器S1,切换模块400能够连通第一端或者第二端,从而能够切换连接至第二IPM模块300的输出端或者第一IPM模块200的输出端,同时第一继电器S1能够切换第一IPM模块200和第二IPM模块300之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块400和第一继电器S1的工作状态,能够改变电机100与第一IPM模块200以及第二IPM模块300之间的连接关系,便于实现电机100在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机100的运行效率。
本发明的第四方面实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令可以用于使计算机执行如上第一方面实施例的电机驱动电路的控制方法,例如,执行以上描述的图2中的方法步骤S110、图8中的方法步骤S210和S220、图9中的方法步骤S310、图10中的方法步骤S320、图11中的方法步骤S330、图12中的方法步骤S340、以及图14的方法步骤。通过设置切换模块400和第一继电器S1,切换模块400能够连通第一端或者第二端,从而能够切换连接至第二IPM模块300的输出端或者第一IPM模块200的输出端,同时第一继电器S1能够切换第一IPM模块200和第二IPM模块300之间的连接关系,基于电机驱动电路的拓扑结构,通过协调控制切换模块400和第一继电器S1的工作状态,能够改变电机100与第一IPM模块200以及第二IPM模块300之间的连接关系,便于实现电机100在星型连接状态、三角型连接状态和开绕组连接状态之间的切换,连接状态切换实现方式简单,有利于提高电机100的运行效率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质或非暂时性介质和通信介质或暂时性介质。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘DVD或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (13)

  1. 一种电机驱动电路的控制方法,其中,所述电机驱动电路用于驱动具有三相绕组的电机,所述电机驱动电路包括第一IPM模块、第二IPM模块、切换模块和第一继电器,所述第一IPM模块和所述第二IPM模块共母线连接,所述三相绕组的一端与所述第一IPM模块的输出端连接,所述三相绕组的另一端与所述切换模块的公共端连接,所述切换模块的第一端与所述第二IPM模块的输出端连接,所述切换模块的第二端与所述第一IPM模块的输出端连接,所述切换模块用于连通所述第一端或者连通所述第二端,所述第一继电器设置于所述第一IPM模块和所述第二IPM模块之间的母线;
    所述控制方法包括:
    控制所述切换模块和所述第一继电器的工作状态,以使所述电机切换至不同的目标连接状态,其中,所述目标连接状态包括星型连接状态、三角型连接状态和开绕组连接状态。
  2. 根据权利要求1所述的控制方法,其中,当所述电机处于星型连接状态,所述第一继电器断开,所述切换模块连通所述第一端,所述切换模块连接至所述第二IPM模块的输出端。
  3. 根据权利要求1所述的控制方法,其中,当所述电机处于三角型连接状态,所述切换模块连通所述第二端,所述切换模块连接至所述第一IPM模块的输出端。
  4. 根据权利要求1所述的控制方法,其中,当所述电机处于开绕组连接状态,所述第一继电器闭合,所述切换模块连通所述第一端,所述切换模块连接至所述第二IPM模块的输出端。
  5. 根据权利要求1所述的控制方法,其中,所述切换模块包括第二继电器、第三继电器和第四继电器,所述第一IPM模块包括第一输出端、第二输出端和第三输出端,所述第二IPM模块包括第四输出端、第五输出端和第六输出端,所述三相绕组的一端分别与所述第一输出端、第二输出端和第三输出端连接,所述三相绕组的另一端分别与所述第二继电器、第三继电器和第四继电器的主触点连接,所述第二继电器的两个动触点分别与所述第四输出端和所述第二输出端连接,所述第三继电器的两个动触点分别与所述第五输出端和所述第三输出端连接,所述第四继电器的两个动触点分别与所述第六输出端和所述第一输出端连接;所述控制所述切换模块和所述第一继电器的工作状态,包括:
    控制所述第一继电器、所述第二继电器、所述第三继电器和所述第四继电器的工作状态。
  6. 根据权利要求5所述的控制方法,其中,当所述电机处于星型连接状态,所述第一继电器断开,所述第二继电器连接至所述第四输出端,所述第三继电器连接至所述第五输出端,所述第四继电器连接至所述第六输出端。
  7. 根据权利要求5所述的控制方法,其中,当所述电机处于三角型连接状态,所述第二继电器连接至所述第二输出端,所述第三继电器连接至所述第三输出端,所述第四继电器连接至所述第一输出端。
  8. 根据权利要求5所述的控制方法,其中,当所述电机处于开绕组连接状态,所述第一继电器闭合,所述第二继电器连接至所述第四输出端,所述第三继电器连接至所述第五输出端,所述第四继电器连接至所述第六输出端。
  9. 根据权利要求1所述的控制方法,还包括:
    获取所述电机的运行频率;以及
    根据所述运行频率判断是否切换至所述目标连接状态。
  10. 根据权利要求9所述的控制方法,其中,所述根据所述运行频率判断是否切换至所述目标连接状态,包括以下至少之一:
    在所述电机处于三角型连接状态的情况下,当所述运行频率小于第一预设阈值,所述电机切换至星型连接状态;
    在所述电机处于星型连接状态的情况下,当所述运行频率大于第二预设阈值,所述电机切换至三角型连接状态;
    在所述电机处于开绕组连接状态的情况下,当所述运行频率小于第三预设阈值,所述电机切换至三角型连接状态;以及
    在所述电机处于三角型连接状态的情况下,当所述运行频率大于第四预设阈值,所述电机切换至开绕组连接状态;以及
    其中,所述第一预设阈值、所述第二预设阈值、所述第三预设阈值、所述第四预设阈值依次增大。
  11. 一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如权利要求1至10任一项所述的控制方法。
  12. 一种空调器,包括有如权利要求11所述的运行控制装置。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,其中所述计算机可执行指令用于使计算机执行如权利要求1至10任一项所述的控制方法。
PCT/CN2022/134363 2022-08-29 2022-11-25 电机驱动电路的控制方法、控制装置、空调器及存储介质 WO2024045369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211042225.4 2022-08-29
CN202211042225.4A CN117674676A (zh) 2022-08-29 2022-08-29 电机驱动电路的控制方法、控制装置、空调器及存储介质

Publications (1)

Publication Number Publication Date
WO2024045369A1 true WO2024045369A1 (zh) 2024-03-07

Family

ID=90066742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134363 WO2024045369A1 (zh) 2022-08-29 2022-11-25 电机驱动电路的控制方法、控制装置、空调器及存储介质

Country Status (2)

Country Link
CN (1) CN117674676A (zh)
WO (1) WO2024045369A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227979A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム
CN108023524A (zh) * 2017-12-08 2018-05-11 合肥工业大学 绕组开放式永磁同步电机驱动系统及绕组切换策略
CN109891736A (zh) * 2016-10-31 2019-06-14 三菱电机株式会社 电动机驱动装置及空调机
CN111355415A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111355424A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227979A (ja) * 2011-04-14 2012-11-15 Yaskawa Electric Corp 交流電動機の巻線切替装置及び交流電動機駆動システム
CN109891736A (zh) * 2016-10-31 2019-06-14 三菱电机株式会社 电动机驱动装置及空调机
CN108023524A (zh) * 2017-12-08 2018-05-11 合肥工业大学 绕组开放式永磁同步电机驱动系统及绕组切换策略
CN111355415A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111355424A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器

Also Published As

Publication number Publication date
CN117674676A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN107579696B (zh) 带电切换方法、装置、系统、电机、压缩机及存储介质
CN108336941B (zh) 控制电路、控制方法、永磁同步电机、压缩机与存储介质
CN111355416A (zh) 电机驱动控制电路、驱动方法、线路板及空调器
CN111355424B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355415A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
WO2024045369A1 (zh) 电机驱动电路的控制方法、控制装置、空调器及存储介质
WO2022142310A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355420B (zh) 电机驱动控制电路、驱动方法、线路板及空调器
WO2024000949A1 (zh) Dc/ac变换电路及其控制方法、周波变换器的调制方法
WO2023226364A1 (zh) 一种充电装置及充电控制方法
WO2023061010A1 (zh) 电压驱动电路、系统及家电设备
CN111478641B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN114696668A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN210273883U (zh) 一种电子式电机绕组切换开关及系统
WO2021208513A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN113972824A (zh) 图腾柱pfc电路、控制方法、线路板及空调器
CN105917571A (zh) 电机控制电路、方法、电机系统、无人机及其控制方法
CN210093135U (zh) 一种直流电机转向控制电路、直流电机及拉幕机
CN211089514U (zh) 一种三相式多电桥式电机控制电路
CN211630105U (zh) 驱动控制电路、线路板及空调器
CN214412277U (zh) 一种浪涌电流抑制装置
CN220798108U (zh) 电机正反转驱动及控制电路
CN202818186U (zh) 一种单相交流电动机及其正反转控制电路
WO2022017323A1 (zh) 图腾柱pfc电路、控制方法、线路板及空调器
CN212572454U (zh) 变频器切换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957181

Country of ref document: EP

Kind code of ref document: A1