WO2021208513A1 - 驱动控制电路、驱动控制方法、线路板及空调器 - Google Patents

驱动控制电路、驱动控制方法、线路板及空调器 Download PDF

Info

Publication number
WO2021208513A1
WO2021208513A1 PCT/CN2020/141017 CN2020141017W WO2021208513A1 WO 2021208513 A1 WO2021208513 A1 WO 2021208513A1 CN 2020141017 W CN2020141017 W CN 2020141017W WO 2021208513 A1 WO2021208513 A1 WO 2021208513A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switch
phase winding
winding
connection
Prior art date
Application number
PCT/CN2020/141017
Other languages
English (en)
French (fr)
Inventor
黄招彬
时崎久
曾贤杰
龙谭
张杰楠
赵鸣
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020571395.1U external-priority patent/CN211630105U/zh
Priority claimed from CN202010299692.XA external-priority patent/CN111355415A/zh
Priority claimed from CN202010299961.2A external-priority patent/CN111478641B/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021208513A1 publication Critical patent/WO2021208513A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular, to a drive control circuit, a drive control method, a circuit board, an air conditioner, and a storage medium.
  • the inverter compressor of the existing inverter air conditioner mostly uses a permanent magnet motor as the drive motor.
  • the three-phase winding of the permanent magnet motor usually needs to be switched between the delta connection and the open winding connection.
  • it is The purpose of switching the connection mode is realized by controlling the switching device.
  • most of the existing switching devices are mechanical, and their closing or opening actions require a certain amount of time to complete.
  • the permanent magnet motor needs to be shut down for a short time, which affects the compression The normal operation of the machine.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • embodiments of the present disclosure propose a drive control circuit, drive control method, circuit board, air conditioner, and storage medium, which can realize non-stop switching of the three-phase winding connection mode of the motor without affecting the normal operation of the compressor.
  • the embodiments of the present disclosure provide a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of the winding of each phase forms a first three-phase outlet group, and the other One end forms a second three-phase outlet group, characterized in that, the drive control circuit includes:
  • a first drive circuit connected to the second three-phase outgoing line group, and used to provide a first drive voltage to the three-phase winding
  • the switch assembly is respectively connected to the first three-phase outlet group and the second three-phase outlet group, the switch assembly is closed, the three-phase winding is switched to delta connection, the switch assembly is disconnected, and the three The phase winding is switched to the open winding connection;
  • the second drive circuit is connected to the first three-phase outlet group, and is used to provide a second drive circuit for the three-phase winding when the three-phase winding is switched between the delta connection and the open winding connection.
  • the drive control circuit provided by the embodiment of the present disclosure according to the first aspect has at least the following beneficial effects: by providing a switch component, the connection mode of the three-phase winding can be switched according to the different operating frequencies of the motor, and the operating efficiency of the motor is improved, and the A second driving circuit is provided.
  • the second driving circuit can provide a second driving voltage for the three-phase winding during the switching process of the connection state of the three-phase winding, and After the connection state is switched, the third driving voltage is provided for the three-phase winding to simulate the voltage environment of the switch component during the switching process. Therefore, when the connection mode is switched, the motor is still normal even if the switch component changes the on-off state Operation, can realize the non-stop switching of the motor's three-phase winding connection mode, and does not affect the normal operation of the compressor.
  • the embodiments of the present disclosure also provide a drive control method applied to a drive control circuit for driving an open-winding motor with three-phase windings, one end of each phase of the windings forms a first three-phase outlet group, The other end of the winding of each phase forms a second three-phase outlet group, and the drive control circuit includes:
  • the first driving circuit is connected to the second three-phase outlet group
  • the switch assembly is respectively connected to the first three-phase outlet group and the second three-phase outlet group, the switch assembly is closed, the three-phase winding is switched to delta connection, the switch assembly is disconnected, and the three The phase winding is switched to the open winding connection;
  • the second driving circuit is connected to the first three-phase outlet group
  • the driving control method includes:
  • the second driving circuit is controlled to provide a second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding.
  • the drive control method provided by the embodiment of the present disclosure according to the second aspect has at least the following beneficial effects: by controlling the opening and closing of the switch assembly to switch the three-phase winding from the first connection state to the second connection state, it is possible to realize the The working frequency switches the connection mode of the three-phase windings to improve the operating efficiency of the motor, and during the switching process, the second drive circuit is controlled to provide the second drive voltage to the three-phase windings to simulate the operation of the switching components during the switching process. Therefore, when switching the connection mode, even if the switch assembly changes the on-off state, the motor still runs normally, which can realize the non-stop switching of the motor’s three-phase winding connection mode without affecting the normal operation of the compressor.
  • embodiments of the present disclosure provide a drive control circuit for driving an open-winding motor with three-phase windings, one end of the winding of each phase forms a first three-phase outlet group, and the other One end forms a second three-phase outlet group, characterized in that, the drive control circuit includes:
  • a first drive circuit connected to the second three-phase outgoing line group, and used to provide a first drive voltage to the three-phase winding
  • the switch assembly includes a first switch group and a second switch group, the first switch group is connected to the first three-phase outlet group, and the second switch group is respectively connected to the first three-phase outlet group and the The second three-phase outlet group is connected, the first switch group is closed, the second switch group is disconnected, the three-phase winding is switched to star connection, the first switch group is disconnected, and the second switch group is closed, so The three-phase winding is switched to delta connection;
  • the second drive circuit is connected to the first three-phase outlet group, and is used to provide a second drive circuit for the three-phase winding when the three-phase winding is switched between the star connection and the delta connection.
  • the driving voltage stops working after the switching of the connection state of the three-phase winding is completed, and the second driving voltage is used to keep the motor running during the switching process of the connection state of the three-phase winding.
  • the drive control circuit provided by the embodiment of the present disclosure according to the third aspect has at least the following beneficial effects: by providing a switch component, the connection mode of the three-phase winding can be switched according to the different operating frequencies of the motor, and the operating efficiency of the motor can be improved, and by A second drive circuit is provided.
  • the connection mode of the three-phase winding is switched, the second drive circuit can provide a second drive voltage for the three-phase winding during the switching process of the connection state of the three-phase winding to simulate the switching process The voltage environment of the first switch group and the second switch group. Therefore, when the connection mode is switched, even if the first switch group or the second switch group changes the on-off state, the motor still runs normally, and the three-phase winding connection of the motor can be realized.
  • the non-stop switching of the mode does not affect the normal operation of the compressor.
  • the embodiments of the present disclosure provide a drive control method, which is applied to a drive control circuit.
  • the drive control circuit is used to drive an open-winding motor with three-phase windings, and one end of the winding in each phase forms a first A three-phase outlet group, the other end of the winding of each phase forms a second three-phase outlet group, characterized in that the drive control circuit includes:
  • a first drive circuit connected to the first three-phase outlet group
  • the switch assembly includes a first switch group and a second switch group, the first switch group is connected to the first three-phase outlet group, and the second switch group is respectively connected to the first three-phase outlet group and the The second three-phase outlet group is connected, the first switch group is closed, the second switch group is disconnected, the three-phase winding is switched to star connection, the first switch group is disconnected, and the second switch group is closed, so The three-phase winding is switched to delta connection;
  • the second driving circuit is connected to the second three-phase outlet group
  • the driving control method includes:
  • the second driving circuit is controlled to provide a second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding.
  • the drive control method provided by the embodiment of the present disclosure according to the fourth aspect has at least the following beneficial effects: by controlling the opening and closing of the switch assembly to switch the three-phase winding from the first connection state to the second connection state, it is possible to realize different motors according to different motors.
  • the working frequency switches the connection mode of the three-phase winding to improve the operating efficiency of the motor, and during the switching process, the second drive circuit is controlled to provide the second drive voltage to the three-phase winding to simulate the first switch during the switching process.
  • embodiments of the present disclosure also provide a circuit board, which includes the drive control circuit described in the first aspect or the third aspect.
  • the above-mentioned circuit board can switch the connection mode of the three-phase winding according to the different working frequency of the motor by setting the switch component, and improve the operation efficiency of the motor.
  • the second driving circuit can provide a second driving voltage for the three-phase winding during the switching process of the connection state of the three-phase winding to simulate the voltage environment of the switch component during the switching process. Therefore, when the connection mode is switched , Even if the switch assembly changes the on-off state, the motor still runs normally, which can realize the non-stop switching of the motor's three-phase winding connection mode, and does not affect the normal operation of the compressor.
  • embodiments of the present disclosure also provide an air conditioner, including the circuit board described in the fifth aspect; or including at least one processor and a memory for communicating with the at least one processor;
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the drive control method of the second aspect or the fourth aspect .
  • the above-mentioned air conditioner can switch the connection mode of the three-phase winding according to the different operating frequency of the motor by setting the switch assembly, and improve the operating efficiency of the motor.
  • the second driving circuit can provide a second driving voltage for the three-phase winding during the switching process of the connection state of the three-phase winding to simulate the voltage environment of the switch component during the switching process. Therefore, when the connection mode is switched , Even if the switch assembly changes the on-off state, the motor still runs normally, which can realize the non-stop switching of the motor's three-phase winding connection mode, and does not affect the normal operation of the compressor.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause a computer to execute the second aspect or the fourth aspect.
  • the drive control method described in the aspect is not limited to:
  • FIG. 1 is a circuit schematic diagram of a drive control circuit provided by an embodiment of the disclosure
  • FIG. 2 is a signal waveform diagram of a drive control circuit provided by an embodiment of the present disclosure to control a three-phase winding to switch from a delta connection to an open winding connection;
  • FIG. 3 is a schematic structural diagram of a first driving circuit provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a second driving circuit provided by an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a driving control method provided by an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of controlling the second driving circuit to provide the second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of controlling the second driving circuit to provide the second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding according to another embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of switching the connection mode of three-phase windings according to the working frequency of the motor according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of switching the connection mode of three-phase windings according to the working frequency of the motor according to another embodiment of the present disclosure.
  • FIG. 10 is a circuit schematic diagram of a drive control circuit provided by another embodiment of the present disclosure.
  • FIG. 11 is a circuit schematic diagram of a drive control circuit provided by another embodiment of the present disclosure.
  • FIG. 12 is a signal waveform diagram of a drive control circuit provided by another embodiment of the present disclosure to control a three-phase winding to switch from a star connection to a delta connection;
  • FIG. 13 is a signal waveform diagram of a drive control circuit provided by another embodiment of the present disclosure to control a three-phase winding to switch from a delta connection to an open winding connection;
  • 15 is a flowchart of controlling the second driving circuit to provide the second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding according to another embodiment of the present disclosure
  • 16 is a flowchart of supplementary steps of a drive control method provided by another embodiment of the present disclosure.
  • FIG. 17 is a flowchart of controlling the second driving circuit to provide a fourth driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding according to another embodiment of the present disclosure
  • 18 is a schematic diagram of switching the connection mode of three-phase windings according to the working frequency of the motor according to another embodiment of the present disclosure
  • 19 is a schematic diagram of switching the connection mode of three-phase windings according to the working frequency of the motor according to another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of the structure of a circuit board provided by an embodiment of the present disclosure.
  • Figure 21 is a schematic structural diagram of an air conditioner provided by an embodiment of the present disclosure.
  • Fig. 22 is a schematic structural diagram of an air conditioner provided by another embodiment of the present disclosure.
  • At least two means one or more, multiple means at least two, greater than, less than, exceeding, etc. are understood to not include the number, and above, below, and within are understood to include the number. If it is described that the first and second are only used for the purpose of distinguishing technical features, and cannot be understood as indicating or implying the relative importance or implicitly specifying the number of the indicated technical features or implicitly specifying the order of the indicated technical features relation.
  • the inverter compressor of the existing inverter air conditioner mostly uses a permanent magnet motor as the drive motor.
  • the three-phase winding of the permanent magnet motor usually needs to be switched between the delta connection and the open winding connection.
  • it is The purpose of switching the connection mode is realized by controlling the switching device.
  • most of the existing switching devices are mechanical, and their closing or opening actions require a certain amount of time to complete.
  • the permanent magnet motor needs to be shut down for a short time, which affects the compression The normal operation of the machine.
  • the embodiments of the present disclosure provide a drive control circuit, a drive control method, a circuit board, an air conditioner, and a storage medium, which can realize the non-stop switching of the three-phase winding connection mode of the motor without affecting the normal operation of the compressor.
  • an embodiment of the present disclosure provides a drive control circuit for driving an open-winding motor with three-phase windings 100, one end of each phase winding forms a first three-phase outlet group 101, and the other end of each phase winding The second three-phase outlet group 102 is formed.
  • the drive control circuit includes a first drive circuit 110 for providing a first drive voltage to the three-phase winding 100, a switch assembly 120, and a second drive circuit 130.
  • the first drive circuit 110 and the second drive circuit The three-phase outlet group 102 is connected; the switch assembly 120 is respectively connected to the first three-phase outlet group 101 and the second three-phase outlet group 102, the switch assembly 120 is closed, the three-phase winding 100 is switched to the delta connection, the switch assembly 120 is disconnected, and the three The phase winding 100 is switched to the open winding connection; the second driving circuit 130 is connected to the first three-phase outlet group 101, and is used to provide the three-phase winding 100 with a second driving voltage during the switching process of the connection state of the three-phase winding 100 and After the connection state of the winding 100 is switched, the third driving voltage is provided for the three-phase winding 100, where the second driving voltage is used to keep the motor running during the switching process of the connection state of the three-phase winding 100.
  • the motor is The three-phase winding 100 keeps running during the switching process of the connection state of the three-phase winding 100, which means that the motor is running with electricity rather than running due to inertia.
  • the switch assembly 120 includes a first switch K1, a second switch K2, and a third switch K3.
  • the three-phase winding 100 includes a three-phase winding.
  • the pins lead out of the motor, the first phase winding leads to the first pin M1 and the sixth pin M6 at both ends, the second phase winding leads to the second pin M2 and the fifth pin M5, and the third phase winding leads to the second pin M2 and the fifth pin M5.
  • the two ends of the winding lead to the third pin M3 and the fourth pin M4 respectively.
  • the first three-phase outlet group 101 includes a first pin M1, a second pin M2, and a third pin M3.
  • the phase outlet group 102 includes a fourth pin M4, a fifth pin M5, and a sixth pin M6.
  • the first switch K1 is connected to the second pin M2 and the sixth pin M6, respectively, and the second switch K2 is connected to the third pin.
  • the pin M3 and the fifth pin M5, and the third switch K3 are respectively connected to the first pin M1 and the fourth pin M4.
  • the second pin M2 and the sixth pin M6 are connected to each other, and the third pin M3 and the fifth pin M5 are connected to each other.
  • the first pin M1 and the fourth pin M4 are connected to each other, so that the three-phase winding 100 is connected in a delta.
  • the first switch K1, the second switch K2, and the third switch K3 are turned off at the same time, the first pin M1, the second pin M2, the third pin M3, the fourth pin M4, and the fifth pin are individually disconnected.
  • M5 and the sixth pin M6 supply power, so that the three-phase winding 100 is connected in an open winding.
  • the above-mentioned first switch K1, second switch K2, and third switch K3 can all be selected from electromagnetic relays, solid state relays, contactors or electronic switches, thereby having the advantages of stable switching and low cost.
  • the above-mentioned first switch K1, second switch K2, and third switch K3 are all single-pole single-throw relays. It should be added that if an electronic switch is selected, its on-resistance does not exceed 1 ohm.
  • the second driving circuit 130 when the three-phase winding 100 is switched from the delta connection to the open winding connection, it first enters the transition state.
  • the first driving circuit 110 provides a first driving voltage
  • the second driving circuit 130 is shut down
  • the switch component 120 is closed. Then, it enters a transition state, where, in the first stage, the state of the control switch assembly 120 remains unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the motor is still in delta connection State operation; in the second stage, the control switch assembly 120, the second drive circuit 130 output delta-connected three-phase voltage for a predetermined time threshold, in this stage, because the second drive circuit 130 outputs the delta-connected three-phase voltage Therefore, even if the switch assembly 120 is disconnected, the motor can still operate in a delta connection state.
  • the preset time threshold can be The duration of the action of the switch component 120.
  • the switch assembly 120 completes the disconnection action, the second drive circuit outputs the third drive voltage, and the three-phase winding 100 completes the switch from the delta connection to the open winding connection.
  • a transition state can be added when the three-phase winding 100 is switched from the delta connection to the open winding connection, thereby realizing non-stop switching.
  • the principle of switching the three-phase winding 100 from the open winding connection to the delta connection is similar to the above-mentioned process.
  • the first driving circuit 110 provides a first driving voltage
  • the second driving circuit 130 provides a third driving voltage
  • the switch component 120 is turned off. Then, it enters a transition state, where, in the second stage, the state of the control switch assembly 120 remains unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the motor is still in the open winding Connected state operation; in the first stage, the control switch assembly 120 is closed, the second drive circuit 130 outputs the delta-connected three-phase voltage for a preset time threshold.
  • the second drive circuit 130 outputs the delta-connected voltage Three-phase voltage. Therefore, when the switch assembly 120 is closed, the three-phase winding 100 is already in a delta connection state, that is, the motor can keep running. Since the switch assembly 120 needs a certain time to change from open to closed, it needs to continue.
  • the preset time threshold may be the duration of the action of the switch component 120.
  • the switch assembly 120 completes the closing action, controls the second drive circuit 130 to shut down, and the three-phase winding 100 completes the switch from the open winding connection to the delta connection.
  • a transition state can be added when the three-phase winding 100 is switched from an open winding connection to a delta connection, thereby realizing non-stop switching.
  • the second driving circuit 130 may continue to work, and the first driving circuit 110 may be shut down.
  • the second driving voltage is the three-phase voltage when the three-phase winding 100 is in the delta connection state, which can make the transition of the three-phase winding 100 during the switching process between the delta connection and the open winding connection more smooth and stable.
  • the second driving voltage can also be set to other voltage values during the switching process.
  • connection mode of the three-phase winding 100 can be switched according to the different operating frequencies of the motor, and the operating efficiency of the motor can be improved.
  • the second driving circuit 130 can provide a second driving voltage for the three-phase winding 100 during the switching process of the connection state of the three-phase winding 100 to simulate the voltage environment of the switch assembly 120 during the switching process. Therefore, when the connection mode is switched, Even if the switch assembly 120 changes the on-off state, the motor still operates normally, and the non-stop switching of the connection mode of the three-phase winding 100 of the motor can be realized without affecting the normal operation of the compressor.
  • the first driving circuit 110 and the second driving circuit 130 each include a first bridge arm 310, a second bridge arm 320, and a third bridge arm 330 connected in parallel with each other.
  • the arm 310, the second bridge arm 320, and the third bridge arm 330 all include two power switch tubes Q connected in series, and a diode D is connected in anti-parallel to the power switch tube Q.
  • the first bridge arm 310, the second bridge arm 320, and the third bridge arm 330 form a three-phase bridge structure.
  • the first drive circuit 110 can output a sine wave AC that drives the motor to operate.
  • the signal can provide the first drive voltage to the three-phase winding 100.
  • the second drive circuit 130 can output the three-phase voltage when the three-phase winding 100 is in the delta connection state, or the third drive voltage.
  • the three output terminals A1, B1, and C1 of the first driving circuit 110 are respectively connected to the sixth pin M6, the fifth pin M5, and the fourth pin M4 of the three-phase winding 100
  • the second The three output terminals A2, B2, and C2 of the driving circuit 130 are respectively connected to the first pin M1, the second pin M2, and the third pin M3 of the three-phase winding 100.
  • SPWM can be used as the drive signal to drive the first drive circuit 110, which can effectively reduce the harmonic components of the output voltage and output current, and improve the output waveform, so that the first drive circuit 110 can output a sine wave AC signal.
  • the first driving voltage is provided to the three-phase winding 100.
  • the second driving circuit 130 can output the three-phase voltage when the three-phase winding 100 is in the delta connection state, or the third driving voltage.
  • the second drive circuit 130 outputs a triangular three-phase voltage, that is, the output terminal A2 of the second drive circuit 130 and the output terminal C1 of the first drive circuit 110 output the same voltage, and the output terminal B2 of the second drive circuit 130 and the first drive circuit 130 output the same voltage.
  • the output terminal A1 of a driving circuit 110 outputs the same voltage
  • the output terminal C2 of the second driving circuit 130 and the output terminal B1 of the first driving circuit 110 output the same voltage.
  • the first driving voltage and the third driving voltage can be adjusted according to the connection state of the three-phase winding.
  • the power switch Q of the first driving circuit 110 adopts a metal oxide semiconductor MOS device, including a MOS device made of Si material, or a MOS device made of SiC material, or a MOS device made of GaN material.
  • the second driver The power switch tube Q of the circuit 130 adopts an insulated gate bipolar IGBT device.
  • the first driving circuit 110 is used as the main driving device of the motor, and its power switch tube Q adopts MOS devices.
  • MOS devices Compared with IGBT devices, MOS devices have lower current and lower conduction voltage drop at light load, so they have operation The advantage of high efficiency.
  • the second driving circuit 130 is used to simulate the voltage environment of the switch assembly 120 during the switching process, and its power switch tube Q adopts an IGBT device, which has the advantage of low cost.
  • the driving control circuit further includes a power supply component 140, which is connected to the first driving circuit 110 and the second driving circuit 130, respectively, and the first driving circuit 110 and the second driving circuit 130 are common ground and common bus arrangement.
  • the power supply component 140 can provide an input voltage for the first driving circuit 110 and the second driving circuit 130 to realize the operation of the driving motor and the purpose of simulating the voltage environment of the switch component 120 during the switching process.
  • the power supply component 140 can also be set independently of the drive control circuit.
  • the first drive circuit 110 and the second drive circuit 130 are provided with a common ground and a common bus, which can improve the stability of operation.
  • the power supply component 140 includes an AC power supply 141 and a rectifying component 142 for converting the AC power supply 141 into a DC output.
  • the AC power supply 141 is connected to the rectifying component 142, and the rectifying component 142 is connected to the first driving circuit 110 and the second driving circuit 110 and the second driving circuit, respectively.
  • Drive circuit 130 By providing the rectifier component 142, the AC power source 141 can be converted into a DC output to adapt to the input signal requirements of the first driving circuit 110 and the second driving circuit 130.
  • the drive control circuit further includes a filter component, and the filter component and the power supply component are connected in parallel with each other.
  • the filter component includes an electrolytic capacitor C, and the filter component adopts the electrolytic capacitor C, which has the advantages of simple structure and low cost.
  • control of the first driving circuit 110, the switch assembly 120, and the second driving circuit 130 can be implemented by a controller, such as a single-chip microcomputer.
  • an embodiment of the present disclosure also provides a driving control method, which is applied to the driving control circuit shown in FIG. 1, and the driving control method includes but is not limited to the following steps:
  • Step 501 Control the opening and closing of the switch assembly to switch the three-phase winding from the first connection state to the second connection state;
  • Step 502 Control the second driving circuit to provide a second driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding.
  • the first connection state and the second connection state have at least the following possible combinations:
  • a combination is that the first connection state is delta connection, and the second connection state is open winding connection.
  • the switching process of the second drive circuit in the three-phase winding connection state is controlled.
  • the middle to three-phase winding provides the second driving voltage, including:
  • Step 601 The three-phase windings are kept in delta connection, and the second driving circuit is controlled to output the three-phase voltage when the three-phase windings are in the delta connection state;
  • Step 602 Control the switch component to be turned off, and the second drive circuit outputs the three-phase voltage when the three-phase winding is in the delta connection state for a preset time threshold;
  • Step 603 Control the second driving circuit to output the third driving voltage.
  • step 601 the motor is still operating in the delta connection state; in step 602, the second drive circuit is controlled to simulate the three-phase voltage of the three-phase winding in the delta connection state, even if the switch assembly is disconnected, the motor It can still operate in a delta connection state, where the preset time threshold can be the action duration of the switch component; in step 603, the second driving circuit is controlled to output the third driving voltage, and the three-phase windings work in an open winding connection mode. It can be seen that through the above steps 601 and 603, the non-stop switching of the motor can be realized.
  • step 502 the second drive circuit is controlled to switch between the three-phase winding connection state.
  • the process of providing the second driving voltage to the three-phase winding includes the following steps:
  • Step 701 the three-phase windings are kept in open winding connection, and the second driving circuit is controlled to output the three-phase voltage when the three-phase windings are in a delta connection state;
  • Step 702 Control the switch assembly shown in FIG. 1 to close, or control the second switch group of the switch assembly shown in FIGS. 10 to 11 to close, and the second drive circuit outputs the three-phase voltage when the three-phase winding is in the delta connection state , Lasting for the second time threshold;
  • Step 703 Control the second driving circuit to stop working.
  • step 701 the motor is still operating in the open winding connection state; in step 702, the second drive circuit is controlled to simulate the three-phase voltage when the three-phase winding is in the delta connection state, that is, in the switch assembly or switch During the closing process of the second switch group of the component, the three-phase windings can already be operated in a delta connection state, and the second time threshold may be the action duration of the second switch group. It can be seen that through the above steps 701 to 703, non-stop switching of the motor can be realized.
  • the connection mode of the three-phase winding can be switched according to the different working frequencies of the motor, and the operating efficiency of the motor is improved.
  • the second driving circuit is controlled to provide the second driving voltage to the three-phase winding.
  • the second driving voltage is the three-phase voltage when the three-phase winding is in the delta connection state to simulate the voltage environment of the switch component during the switching process. Therefore, , When switching the connection mode, even if the switch assembly changes the on-off state, the motor still runs normally, which can realize the non-stop switching of the motor's three-phase winding connection mode without affecting the normal operation of the compressor.
  • connection mode of the three-phase winding may be switched according to the working frequency of the motor. In some embodiments, it may include one or a combination of the following judgment methods:
  • the switching component is controlled to switch to switch the three-phase winding to the open winding connection.
  • the first frequency threshold is equal to the second frequency threshold.
  • the three-phase winding is switched to the corresponding connection state according to the working frequency of the motor, so that the motor can run in a connection that is compatible with the working frequency. Way to improve the operating efficiency of the motor.
  • the first frequency threshold can be determined according to the actual operating conditions of the motor, and is not limited here.
  • connection mode of the three-phase windings can be switched according to the working frequency of the motor.
  • the first frequency threshold and the second frequency threshold can be set.
  • the first frequency threshold is smaller than the second frequency threshold.
  • one or a combination of the following judgment methods can be included:
  • the first frequency threshold and the second frequency threshold can form a hysteresis interval, thereby avoiding frequent switching of the connection state of the motor and ensuring the stability of the motor operation.
  • the first frequency threshold and the second frequency threshold can be determined according to the actual operating conditions of the motor, and are not limited here.
  • another embodiment of the present disclosure provides a drive control circuit for driving an open-winding motor with three-phase windings 100, one end of each phase winding forms a first three-phase outlet group 101, and the other of each phase winding One end forms the second three-phase outlet group 102.
  • the drive control circuit includes a first drive circuit 110 for providing a first drive voltage to the three-phase winding 100, a switch assembly 120, and a second drive circuit 130.
  • the first drive circuit 110 and the second drive circuit The two and three-phase outlet groups 102 are connected;
  • the switch assembly 120 includes a first switch group 121 and a second switch group 122.
  • the first switch group 121 is connected to the first three-phase outlet group 101, and the second switch group 122 is respectively connected to the first three-phase
  • the outlet group 101 and the second three-phase outlet group 102 are connected, the first switch group 121 is closed, the second switch group 122 is disconnected, the three-phase winding 100 is switched to star connection, the first switch group 121 is disconnected, and the second switch group 122 is closed, the three-phase winding 100 is switched to the delta connection;
  • the second driving circuit 130 is connected to the first three-phase outgoing line group 101, and is used to provide the three-phase winding 100 with a second driving voltage during the switching process of the connection state of the three-phase winding 100 and Stop working after the switching of the connection state of the three-phase winding 100 is completed.
  • the second driving voltage is used to keep the motor running during the switching process of the connection state of the three-phase winding 100.
  • the motor is connected to the three-phase winding 100. Keeping running during the state switching process refers to the electric motor running instead of running due to inertia.
  • the first switch group 121 includes a first switch K1 and a second switch K2
  • the three-phase winding 100 includes a three-phase winding
  • the pins of the first phase winding, the second phase winding, and the third phase winding lead to the motor
  • the two ends of the first phase winding lead to the first pin M1 and the sixth pin M6, the two ends of the second phase winding lead to the second pin M2 and the fifth pin M5, and the two ends of the third phase winding.
  • the terminal leads to the third pin M3 and the fourth pin M4 respectively.
  • the first three-phase outlet group 101 includes a first pin M1, a second pin M2, and a third pin M3, and the first switch K1 is respectively connected to The first pin M1 and the second pin M2, and the second switch K2 are respectively connected to the second pin M2 and the third pin M3.
  • the second switch group 122 includes a fourth switch K4, a fifth switch K5, and a sixth switch K6.
  • the first three-phase outlet group 101 includes a first pin M1, a second pin M2, and a third pin M3.
  • the phase outlet group 102 includes a fourth pin M4, a fifth pin M5, and a sixth pin M6.
  • the fourth switch K4 is connected to the second pin M2 and the sixth pin M6, and the fifth switch K5 is connected to the third pin.
  • the pin M3 and the fifth pin M5, and the sixth switch K6 are respectively connected to the first pin M1 and the fourth pin M4.
  • the first switch group 121 includes a first switch K1 and a second switch K2.
  • the first switch K1 and the second switch K2 are closed at the same time, and the second switch group 122 is in an open state, the first pin M1, The second pin M2 and the third pin M3 are connected to each other, so that the three-phase winding 100 is in a star connection state.
  • the second switch group 122 includes a fourth switch K4, a fifth switch K5, and a sixth switch K6.
  • the first switch K1, the second switch K2, the fourth switch K4, the fifth switch K5, and the sixth switch K6 are turned off at the same time, the first pin M1, the second pin M2, the third pin M3, The fourth pin M4, the fifth pin M5, and the sixth pin M6 supply power, so that the three-phase winding 100 is in an open winding connection.
  • the first switch group 121 may also include a first switch K1, a second switch K2, and a third switch K3.
  • One ends of the first switch K1, the second switch K2, and the third switch K3 are mutually Connected, the other ends of the first switch K1, the second switch K2, and the third switch K3 are respectively connected to the first pin M1, the second pin M2, and the third pin M3, respectively.
  • the first switch K1, the second switch K2, and the third switch K3 are closed at the same time, and the second switch group 122 is in an open state, the first pin M1, the second pin M2, and the third pin M3 are connected to each other.
  • the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, the fifth switch K5, and the sixth switch K6 can all be selected from electromagnetic relays, solid state relays, contactors, or electronic switches. It is selected in the middle, which has the advantages of stable switching and low cost.
  • the above-mentioned first switch K1, second switch K2, third switch K3, fourth switch K4, fifth switch K5, and sixth switch K6 are all single-pole single-throw relays. It should be added that if an electronic switch is selected, its on-resistance does not exceed 1 ohm.
  • the driving control circuit described in FIG. 10 and FIG. 11 referring to FIG. 12, by setting the second driving circuit 130, when the three-phase winding 100 is switched from the star connection to the delta connection, it first enters the transition state.
  • the first driving circuit 110 provides the first driving voltage
  • the second driving circuit 130 is shut down
  • the first switch group 121 is closed
  • the second switch group 122 is disconnected.
  • the first time threshold may be the operating time of the first switch group 121; in the third stage, the first switch The group 121 completes the disconnection action, the state of the second switch group 122 is controlled to remain unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the second driving circuit 130 changes from the neutral point voltage of the star connection to the three-phase voltage of the delta connection. In this stage, the motor is still in the state of normal power supply, so it can keep running.
  • the state of the switch group 121 remains unchanged, the second switch group 122 is closed, and the second drive circuit 130 outputs the delta-connected three-phase voltage for the second time threshold.
  • the second drive circuit 130 Since the second drive circuit 130 outputs the delta-connected three-phase voltage, the second drive circuit 130 outputs the delta-connected three-phase voltage.
  • the three-phase winding 100 is equivalent to being in a delta connection state, that is, the motor can keep running. Since it takes a certain time for the second switch group 122 to change from open to closed, it needs to last for a second time. Threshold, the second time threshold may be the duration of the action of the second switch group 122.
  • the second switch group 122 completes the closing action, controls the second drive circuit 130 to shut down, and the three-phase winding 100 completes the switch from the star connection to the delta connection.
  • a transition state can be added when the three-phase winding 100 is switched from a star connection to a delta connection, thereby realizing non-stop switching.
  • the principle of switching the three-phase winding 100 from the delta connection to the star connection is similar to the above-mentioned process.
  • the first driving circuit 110 provides a first driving voltage
  • the second driving circuit 130 is shut down
  • the first switch group 121 is opened
  • the second switch group 122 is closed.
  • it enters the transition state.
  • the transition state in the IV stage, the states of the first switch group 121 and the second switch group 122 are controlled unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the motor In the third stage, the motor is still running in the delta connection state; in the third stage, the state of the first switch group 121 is controlled to remain unchanged, the second switch group 122 is disconnected, and the second drive circuit 130 outputs the delta-connected three-phase voltage, and continues for the third stage. Two time thresholds. In this stage, since the second drive circuit 130 outputs a delta-connected three-phase voltage, even if the second switch group 122 is disconnected, the motor can still operate in a delta connection state.
  • the second switch group 122 It takes a certain period of time to change from closed to open, so it needs to last for a second time threshold, which can be the action time of the second switch group 122; in the second stage, the second switch group 122 completes the opening action and controls The state of the first switch group 121 remains unchanged, and the second drive circuit 130 outputs a star-connected neutral point voltage. At this stage, since the first switch group 121 and the second switch group 122 do not operate, the second drive circuit 130 is The three-phase voltage of the output delta connection becomes the neutral point voltage of the output star connection.
  • the motor In this stage, the motor is still in the state of normal power supply, so it can keep running; in the first stage, control the first switch group 121 to close and the first switch group 121
  • the state of the second switch group 122 remains unchanged, and the second drive circuit 130 outputs the star-connected neutral point voltage for the first time threshold. Since the second drive circuit 130 outputs the star-connected neutral point voltage, the first switch
  • the group 121 is closed, the three-phase winding 100 is already in a star connection state, that is, the motor can keep running. Since it takes a certain time for the first switch group 121 to change from open to closed, it needs to last for the first time threshold.
  • the first time threshold may be the action duration of the first switch group 121.
  • the first switch group 121 completes the closing action, controls the second drive circuit 130 to shut down, and the three-phase winding 100 completes the switch from the delta connection to the star connection.
  • a transition state can be added when the three-phase winding 100 is switched from the delta connection to the star connection, thereby realizing non-stop switching.
  • the second driving voltage is the neutral point voltage when the three-phase winding 100 is in the star connection state, or is the three-phase voltage when the three-phase winding 100 is in the delta connection state, so that the three-phase winding 100 is The transition between star connection and delta connection is smoother and smoother.
  • the second driving voltage can also be set to other voltage values during the switching process.
  • the second driving circuit is further used to provide a third driving voltage for the three-phase winding during the switching process of the connection state of the three-phase winding and provide a fourth driving voltage for the three-phase winding after the switching of the connection state of the three-phase winding is completed.
  • the third driving voltage is the three-phase voltage when the three-phase windings are in a delta connection state.
  • the embodiment of the present disclosure is provided with a second drive circuit 130.
  • the transition state When the three-phase winding 100 is switched from the delta connection to the open winding connection, the transition state.
  • the first driving circuit 110 provides a first driving voltage
  • the second driving circuit 130 is shut down
  • the first switch group 121 is opened
  • the second switch group 122 is closed. Then, it enters a transition state.
  • the transition state in the Vth stage, the state of the first switch group 121 and the second switch group 122 is controlled unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the motor In the stage, the motor is still running in the delta connection state; in the VI stage, the state of the first switch group 121 is controlled to remain unchanged, the second switch group 122 is disconnected, and the second drive circuit 130 outputs the delta-connected three-phase voltage, and continues the first Two time thresholds.
  • the second drive circuit 130 since the second drive circuit 130 outputs a delta-connected three-phase voltage, even if the second switch group 122 is disconnected, the motor can still operate in a delta connection state.
  • the second switch group 122 It takes a certain period of time to change from closed to open, so it needs to last for a second time threshold, and the second time threshold may be the action time of the second switch group 122.
  • the second switch group 122 completes the disconnection action
  • the second driving circuit outputs the fourth driving voltage
  • the three-phase winding 100 completes the switching from the delta connection to the open winding connection.
  • a transition state can be added when the three-phase winding 100 is switched from the delta connection to the open winding connection, thereby realizing non-stop switching.
  • the principle of switching the three-phase winding 100 from the open winding connection to the delta connection is similar to the above-mentioned process.
  • the first driving circuit 110 provides a first driving voltage
  • the second driving circuit 130 provides a fourth driving voltage
  • the first switch group 121 is turned off
  • the second switch group 122 is turned off. Then, it enters a transition state.
  • the transition state in the VI stage, the states of the first switch group 121 and the second switch group 122 are controlled unchanged, and the second drive circuit 130 outputs a delta-connected three-phase voltage.
  • the motor In the stage, the motor is still running in the open winding connection state; in the V stage, the state of the first switch group 121 is controlled to remain unchanged, the second switch group 122 is closed, and the second drive circuit 130 outputs a delta-connected three-phase voltage, and continues the first Two-time threshold.
  • the second drive circuit 130 since the second drive circuit 130 outputs a delta-connected three-phase voltage, the three-phase winding 100 is equivalent to being in a delta-connected state during the closing process of the second switch group 122, that is, the motor can be To keep running, since it takes a certain time for the second switch group 122 to change from open to closed, it needs to last for a second time threshold, and the second time threshold may be the action duration of the second switch group 122.
  • the second switch group 122 completes the closing action, controls the second drive circuit 130 to shut down, and the three-phase winding 100 completes the switch from the open winding connection to the delta connection.
  • a transition state can be added when the three-phase winding 100 is switched from an open winding connection to a delta connection, thereby realizing non-stop switching.
  • the second driving circuit 130 may continue to work, and the first driving circuit 110 may be shut down.
  • the third driving voltage is the three-phase voltage when the three-phase winding 100 is in the delta connection state, which can make the transition of the three-phase winding 100 during the switching process between the delta connection and the open winding connection more smooth and stable.
  • the third driving voltage can also be set to other voltage values during the switching process.
  • connection mode of the three-phase winding 100 can be switched according to the different operating frequencies of the motor, and the operating efficiency of the motor can be improved.
  • the second driving circuit 130 may provide a second driving voltage for the three-phase winding 100 during the switching process of the connection state of the three-phase winding 100, the second driving voltage being the neutral point voltage of the three-phase winding 100 in the star connection state, or
  • the three-phase winding 100 is in the three-phase voltage in the delta connection state to simulate the voltage environment of the first switch group 121 and the second switch group 122 during the switching process.
  • connection mode when the connection mode is switched, even the first switch group 121 or the second switch group 122 changes the on-off state, the motor still runs normally, and the non-stop switching of the connection mode of the three-phase winding 100 of the motor can be realized without affecting the normal operation of the compressor.
  • the first driving circuit 110 and the second driving circuit 130 may also adopt the structures described in FIGS. 3 and 4.
  • An embodiment of the present disclosure also provides a driving control method, which is applied to the driving control circuit shown in FIG. 10 or FIG. 11.
  • the driving control method as a whole can still refer to steps 501 and 502 shown in FIG. This will not be repeated.
  • the first connection state and the second connection state have at least the following possible combinations:
  • a combination is that the first connection state is star connection, and the second connection state is delta connection.
  • step 502 the switching process of the second drive circuit in the three-phase winding connection state is controlled.
  • Providing the second driving voltage to the three-phase winding includes the following steps:
  • Step 801 the three-phase windings are kept in star connection, and the second driving circuit is controlled to output the neutral point voltage when the three-phase windings are in the star connection state;
  • Step 802 Control the first switch group to be turned off, and the second drive circuit outputs the neutral point voltage of the three-phase winding in the star connection state for a first time threshold;
  • Step 803 controlling the second driving circuit to output the three-phase voltage when the three-phase winding is in a delta connection state
  • Step 804 controlling the second switch group to close, and the second driving circuit outputs the three-phase voltage when the three-phase winding is in the delta connection state for a second time threshold;
  • Step 805 Control the second driving circuit to stop working.
  • step 801 the motor is still running in the star connection state; in step 802, the second drive circuit is controlled to simulate the neutral point voltage of the three-phase winding in the star connection state, even if the first switch When the group is disconnected, the motor can still run in a star connection state, where the first time threshold can be the action duration of the first switch group; in step 803, the motor is in a normal power supply state, so it can keep running; in step 804, The second driving circuit is controlled to simulate the three-phase voltage when the three-phase winding is in the delta connection state, that is, during the process of closing the second switch group, the motor can already run in the delta connection state, where the second time threshold is the second switch The duration of the group's action. It can be seen that through the above steps 801 to 805, non-stop switching of the motor can be realized.
  • step 502 the second drive circuit is controlled to switch between the three-phase winding connection state.
  • the process of providing the second driving voltage to the three-phase winding includes the following steps:
  • Step 901 The three-phase windings are kept in delta connection, and the second driving circuit is controlled to output the three-phase voltage when the three-phase windings are in the delta connection state;
  • Step 902 Control the second switch group to be turned off, and the second drive circuit outputs the three-phase voltage when the three-phase winding is in the delta connection state for a second time threshold;
  • Step 903 Control the second driving circuit to output the neutral point voltage when the three-phase winding is in the star connection state
  • Step 904 controlling the first switch group to be closed, and the second driving circuit outputs the neutral point voltage of the three-phase winding in the star connection state for the first time threshold;
  • Step 905 Control the second driving circuit to stop working.
  • step 901 the motor is still operating in the delta connection state; in step 902, the second drive circuit is controlled to simulate the three-phase voltage when the three-phase winding is in the delta connection state, even if the second switch group is disconnected.
  • the motor can still run in a delta connection state, where the second time threshold can be the action duration of the second switch group; in step 903, the motor is in a normal power supply state, so it can keep running; in step 904, the second drive is controlled
  • the circuit simulates the neutral point voltage of the three-phase winding in the star connection state, that is, in the process of closing the first switch group, the motor can already run in the star connection state first, where the first time threshold is the first switch group The duration of the action. It can be seen that through the above steps 901 to 905, non-stop switching of the motor can be realized.
  • the driving control method may further include the following steps:
  • Step 1001 controlling the second driving circuit to provide a third driving voltage to the three-phase winding during the switching process of the connection state of the three-phase winding.
  • a combination is that the first connection state is delta connection, and the second connection state is open winding connection.
  • providing the third driving voltage to the three-phase winding includes the following steps:
  • Step 1101 The three-phase windings are kept in delta connection, and the second driving circuit is controlled to output the three-phase voltage when the three-phase windings are in the delta connection state;
  • Step 1102 Control the second switch group to be turned off, and the second drive circuit outputs the three-phase voltage when the three-phase winding is in the delta connection state for a second time threshold;
  • Step 1103 Control the second driving circuit to output the fourth driving voltage.
  • step 1101 the motor is still operating in the delta connection state; in step 1102, the second drive circuit is controlled to simulate the three-phase voltage when the three-phase winding is in the delta connection state, even if the second switch group is disconnected , The motor can still run in a delta connection state, where the second time threshold can be the action duration of the second switch group; in step 1103, the second drive circuit is controlled to output the fourth drive voltage, and the three-phase windings work in an open winding connection mode . It can be seen that through the above steps 1101 and 1103, the non-stop switching of the motor can be realized.
  • step 1001 the second drive circuit is controlled to be in the three-phase winding connection state.
  • steps 701 to 703 of FIG. 7 please refer to steps 701 to 703 of FIG. 7 and detailed description, which will not be repeated here.
  • the connection mode of the three-phase winding can be switched according to the different working frequencies of the motor, and the operating efficiency of the motor is improved.
  • the second drive circuit is controlled to provide the second drive voltage to the three-phase winding to simulate the voltage environment of the first switch group and the second switch group during the switching process. Therefore, when the connection mode is switched, Even if the first switch group or the second switch group changes the on-off state, the motor still runs normally, and the non-stop switching of the three-phase winding connection mode of the motor can be realized without affecting the normal operation of the compressor.
  • connection mode of the three-phase winding can be switched according to the working frequency of the motor.
  • it includes one or more of the following: A combination of two judgment methods:
  • the switching component is controlled to switch to switch the three-phase winding from star connection or open winding connection to delta connection.
  • the first frequency threshold is lower than the second frequency threshold.
  • the motor By judging the working frequency of the motor and switching the three-phase windings to the corresponding connection state according to the working frequency of the motor, the motor can be operated in a connection mode adapted to the working frequency and the operating efficiency of the motor can be improved. It can be understood that the above-mentioned second frequency threshold is greater than the first frequency threshold, and the first frequency threshold and the second frequency threshold may be determined according to the actual operating conditions of the motor, which is not limited herein.
  • connection mode of the three-phase winding is switched according to the working frequency of the motor.
  • the four frequency threshold, the fifth frequency threshold, and the sixth frequency threshold may include one or a combination of the following judgment methods:
  • control the opening and closing of the switch assembly to switch the three-phase winding from delta connection to star connection;
  • the operating frequency of the motor being higher than the fourth frequency threshold and lower than the fifth frequency threshold, controlling the opening and closing of the switch assembly to switch the three-phase winding from star connection or open winding connection to delta connection;
  • the operating frequency of the motor being higher than the sixth frequency threshold, controlling the opening and closing of the switch assembly to switch the three-phase winding from the delta connection to the open winding connection;
  • the third frequency threshold and the fourth frequency threshold can form a hysteresis interval
  • the fifth frequency threshold and the sixth frequency threshold can form a hysteresis interval, so as to avoid frequent switching of the connection state of the motor and ensure Stability of motor operation.
  • the third frequency threshold, the fourth frequency threshold, the fifth frequency threshold, and the sixth frequency threshold may be determined according to the actual operating conditions of the motor, and are not limited here.
  • FIG. 20 is a circuit board provided by an embodiment of the present disclosure, which includes the drive control circuit in the above-mentioned embodiment. Therefore, the above-mentioned circuit board can switch the connection mode of the three-phase winding 100 according to different working frequencies of the motor by setting the switch assembly 120, or by setting the switch assembly 120 and its first switch group 121 and second switch group 122, and improve the motor
  • the second drive circuit 130 when the connection mode of the three-phase winding 100 is switched, the second drive circuit 130 can provide a second drive for the three-phase winding 100 during the switching process of the connection state of the three-phase winding 100
  • the voltage is used to simulate the voltage environment of the switch assembly 120 or the first switch group 121 and the second switch group 122 of the switch assembly 120 during the switching process.
  • connection mode when the connection mode is switched, even if the switch assembly 120 changes the on-off state or The first switch group 121 and the second switch group 122 of the switch assembly 120 change the on and off states, and the motor still runs normally, which can realize the non-stop switching of the connection mode of the three-phase winding 100 of the motor, and does not affect the normal operation of the compressor.
  • the air conditioner includes the circuit board and the compressor in the above embodiment.
  • the compressor is driven by a permanent magnet motor, and the circuit board is used to control the The operating mode of the permanent magnet motor.
  • the above-mentioned air conditioner can switch the connection mode of the three-phase winding 100 according to different working frequencies of the motor by setting the switch assembly 120, or by setting the switch assembly 120 and its first switch group 121 and second switch group 122, and improve the operation of the motor.
  • the second driving circuit 130 when the connection mode of the three-phase winding 100 is switched, the second driving circuit 130 can provide the second driving voltage for the three-phase winding 100 during the switching process of the connection state of the three-phase winding 100, to simulate the voltage environment of the switch assembly 120 or the first switch assembly 121 and the second switch assembly 122 of the switch assembly 120 during the switching process, therefore, when the connection mode is switched, even if the switch assembly 120 changes the on-off state or the switch assembly The first switch group 121 and the second switch group 122 of 120 change the on and off states, and the motor still runs normally, which can realize the non-stop switching of the connection mode of the three-phase winding 100 of the motor, and does not affect the normal operation of the compressor.
  • Fig. 22 is a schematic diagram of an air conditioner provided by an embodiment of the present disclosure.
  • the air conditioner in the embodiment of the present disclosure includes one or more processors 1201 and a memory 1202.
  • one processor 1201 and one memory 1202 are taken as an example.
  • the processor 1201 and the memory 1202 may be connected through a bus or in other ways. In FIG. 22, the connection through a bus is taken as an example.
  • the memory 1202 can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory 1202 may include a high-speed random access memory 1202, and may also include a non-transitory memory 1202, such as at least one magnetic disk storage device, a flash memory component, or other non-transitory solid-state storage devices.
  • the memory 1202 may optionally include a memory 1202 remotely provided with respect to the processor 1201, and these remote memories 1202 may be connected to the operation control device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 22 does not constitute a limitation on the air conditioner, and may include more or fewer components than shown in the figure, or a combination of certain components, or different component arrangements.
  • the non-transitory software programs and instructions required to implement the drive control method applied to the air conditioner in the above embodiment are stored in the memory 1202, and when executed by the processor 1201, the drive control method applied to the air conditioner in the above embodiment is executed
  • the method steps 501 to 502 in FIG. 5 the method steps 601 to 603 in FIG. 6, the method steps 701 to 703 in FIG. 7, the method steps 801 to 805 in FIG. 14, and the method steps 801 to 805 in FIG.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • an embodiment of the present disclosure also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors 1201, for example,
  • the execution of one processor 1201 in FIG. 22 can cause the above-mentioned one or more processors 1201 to execute the drive control method in the above-mentioned method embodiment, for example, execute the above-described method steps 501 to 502 in FIG. 5 and in FIG. 6
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Abstract

一种驱动控制电路、驱动控制方法、线路板及空调器。驱动控制电路包括:第一驱动电路(110),与第二三相出线组连接,用于向三相绕组(100)提供第一驱动电压;开关组件(120),分别与第一三相出线组和第二三相出线组连接,开关组件(120)闭合,三相绕组(100)切换至三角形连接,开关组件(120)断开,三相绕组(100)切换至开绕组连接;第二驱动电路(130),与第一三相出线组连接,用于在三相绕组(100)在不同连接方式之间切换的过程中为三相绕组(100)提供第二驱动电压且在三相绕组(100)连接状态切换完成后为三相绕组(100)提供第三驱动电压,使电机在三相绕组(100)连接状态的切换过程中保持运转。

Description

驱动控制电路、驱动控制方法、线路板及空调器
相关申请的交叉引用
本申请要求于2020年4月16日提交的申请号为202010299961.2、名称为“驱动控制电路、驱动控制方法、线路板及空调器”、于2020年4月16日提交的申请号为202010299692.X、名称为“驱动控制电路、驱动控制方法、线路板及空调器”,以及于2020年4月16日提交的申请号为202020571395.1、名称为“驱动控制电路、线路板及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调器技术领域,具体而言,涉及一种驱动控制电路、驱动控制方法、线路板、空调器及存储介质。
背景技术
现有变频空调的变频压缩机多采用永磁电机作为驱动电机,受变频空调的运行需求影响,永磁电机的三相绕组通常需要在三角形连接和开绕组连接之间进行切换,一般来说是通过控制开关器件来实现连接方式切换的目的。然而现有的开关器件大多数为机械式,其闭合或者断开的动作需要一定的时长来完成,在利用现有的方案切换连接方式时,永磁电机需要进行短暂的停机,从而影响了压缩机的正常运作。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开实施例提出一种驱动控制电路、驱动控制方法、线路板、空调器及存储介质,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第一方面,本公开实施例提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
第一驱动电路,与所述第二三相出线组连接,用于向所述三相绕组提供第一驱动电压;
开关组件,分别与所述第一三相出线组和所述第二三相出线组连接,所述开关组件闭合,所述三相绕组切换至三角形连接,所述开关组件断开,所述三相绕组切换至开绕组连接;
第二驱动电路,与所述第一三相出线组连接,用于在所述三相绕组在所述三角形连接和所述开绕组连接之间切换的过程中为所述三相绕组提供第二驱动电压且在所述三相绕组连接状态切换完成后为所述三相绕组提供第三驱动电压,所述第二驱动电压用于使所述电机在所述三相绕组连接状态的切换过程中保持运转。
根据第一方面的本公开实施例提供的驱动控制电路至少具有以下有益效果:通过设置开关组件,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路,在切换三相绕组的连接方式时,第二驱动电路可以在所述三相绕组连接状态切换过程中为所述三相绕组提供第二驱动电压且在所述三相绕组连接状态切换完成后为所述三相绕组提供第三驱动电压,以模拟在切换过程中开关组件所处的电压环境,因此,在切换连接方式时,即使开关组件改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第二方面,本公开实施例还提供了一种驱动控制方法,应用于驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括:
第一驱动电路,与所述第二三相出线组连接;
开关组件,分别与所述第一三相出线组和所述第二三相出线组连接,所述开关组件闭合,所述三相绕组切换至三角形连接,所述开关组件断开,所述三相绕组切换至开绕组连接;
第二驱动电路,与所述第一三相出线组连接;
所述驱动控制方法包括:
控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态;
控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压。
根据第二方面的本公开实施例提供的驱动控制方法至少具有以下有益效果:通过控制开关组件的开闭以使三相绕组从第一连接状态切换至第二连接状态,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,在切换过程中控制所述第二驱动电路向所述三相绕组提供第二驱动电压,以模拟在切换过程中开关组件所处的电压环境,因此,在切换连接方式时,即使开关组件改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第三方面,本公开实施例提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
第一驱动电路,与所述第二三相出线组连接,用于向所述三相绕组提供第一驱动电压;
开关组件,包括第一开关组和第二开关组,所述第一开关组与所述第一三相出线组连接,所述第二开关组分别与所述第一三相出线组和所述第二三相出线组连接,所述第一开关组闭合,第二开关组断开,所述三相绕组切换至星形连接,所述第一开关组断开,第二开关组闭合,所述三相绕组切换至三角形连接;
第二驱动电路,与所述第一三相出线组连接,用于在所述三相绕组在所述星形连接和所述三角形连接之间切换的过程中为所述三相绕组提供第二驱动电压且在所述三相绕组连接状态切换完成后停止工作,所述第二驱动电压用于使所述电机在所述三相绕组连接状态的切换过程中保持运转。
根据第三方面的本公开实施例提供的驱动控制电路至少具有以下有益效果:通过设置开关组件,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路,在切换三相绕组的连接方式时,第二驱动电路可以在所述三相绕组连接状态切换过程中为所述三相绕组提供第二驱动电压,以模拟在切换过程中第一开关组和第二开关组所处的电压环境,因此,在切换连接方式时,即使第一开关组或者第二开关组改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第四方面,本公开实施例提供了一种驱动控制方法,应用于驱动控制电路,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,所每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
第一驱动电路,与所述第一三相出线组连接;
开关组件,包括第一开关组和第二开关组,所述第一开关组与所述第一三相出线组连接,所述第二开关组分别与所述第一三相出线组和所述第二三相出线组连接,所述第一开关组闭合,第二开关组断开,所述三相绕组切换至星形连接,所述第一开关组断开,第二开关组闭合,所述三相绕组切换至三角形连接;
第二驱动电路,与所述第二三相出线组连接;
所述驱动控制方法包括:
控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态;
控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压。
根据第四方面的本公开实施例提供的驱动控制方法至少具有以下有益效果:通过控制开关组件的开闭以使三相绕组从第一连接状态切换至第二连接状态,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,在切换过程中控制所述第二驱动电路向所述三相绕组提供第二驱动电压,以模拟在切换过程中第一开关组和第二开关组所处的电压环境,因此,在切换连接方式时,即使第一开关组或者第二开关组改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第五方面,本公开实施例还提供了一种线路板,包括有第一方面或第三方面所述的驱动控制电路。
因此,上述线路板通过设置开关组件,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路,在切换三相绕组的连接方式时,第二驱动电路可以在所述三相绕组连接状态切换过程中为所述三相绕组提供第二驱动电压,以模拟在切换过程中开关组件所处的电压环境,因此,在切换连接方式时,即使开关组件改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第五方面,本公开实施例还提供了一种空调器,包括有第五方面所述的线路板;或者包括至少一个处理器和用 于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行第二方面或第四方面所述的驱动控制方法。
因此,上述空调器通过设置开关组件,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路,在切换三相绕组的连接方式时,第二驱动电路可以在所述三相绕组连接状态切换过程中为所述三相绕组提供第二驱动电压,以模拟在切换过程中开关组件所处的电压环境,因此,在切换连接方式时,即使开关组件改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
第六方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行第二方面或第四方面所述的驱动控制方法。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例提供的驱动控制电路的电路原理图;
图2为本公开一个实施例提供的驱动控制电路控制三相绕组从三角形连接切换至开绕组连接的信号波形图;
图3为本公开一个实施例提供的第一驱动电路的示意性的结构示意图;
图4为本公开一个实施例提供的第二驱动电路的示意性的结构示意图;
图5为本公开一个实施例提供的驱动控制方法的流程图;
图6为本公开一个实施例提供的控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压的流程图;
图7为本公开另一个实施例提供的控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压的流程图;
图8为本公开一个实施例提供的根据电机的工作频率切换三相绕组的连接方式的示意图;
图9为本公开另一个实施例提供的根据电机的工作频率切换三相绕组的连接方式的示意图;
图10为本公开另一个实施例提供的驱动控制电路的电路原理图;
图11为本公开另一个实施例提供的驱动控制电路的电路原理图;
图12为本公开另一个实施例提供的驱动控制电路控制三相绕组从星形连接切换至三角形连接的信号波形图;
图13为本公开另一个实施例提供的驱动控制电路控制三相绕组从三角形连接切换至开绕组连接的信号波形图;
图14为本公开另一个实施例提供的控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压的流程图;
图15为本公开另一个实施例提供的控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压的流程图;
图16为本公开另一个实施例提供的驱动控制方法的补充步骤的流程图;
图17为本公开另一个实施例提供的控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第四驱动电压的流程图;
图18为本公开另一个实施例提供的根据电机的工作频率切换三相绕组的连接方式的示意图;
图19为本公开另一个实施例提供的根据电机的工作频率切换三相绕组的连接方式的示意图;
图20本公开一个实施例提供的线路板的结构简要示意图;
图21本公开一个实施例提供的空调器的结构简要示意图;
图22本公开另一个实施例提供的空调器的结构简要示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理 解为对本公开的限制。
在本公开的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,至少两个的含义是一个或者多个,多个的含义是至少两个,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。
现有变频空调的变频压缩机多采用永磁电机作为驱动电机,受变频空调的运行需求影响,永磁电机的三相绕组通常需要在三角形连接和开绕组连接之间进行切换,一般来说是通过控制开关器件来实现连接方式切换的目的。然而现有的开关器件大多数为机械式,其闭合或者断开的动作需要一定的时长来完成,在利用现有的方案切换连接方式时,永磁电机需要进行短暂的停机,从而影响了压缩机的正常运作。
基于此,本公开实施例提供了一种驱动控制电路、驱动控制方法、线路板、空调器及存储介质,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
下面结合附图,对本公开实施例作进一步阐述。
参照图1,本公开一实施例提供了一种驱动控制电路,用于驱动具有三相绕组100的开绕组电机,每相绕组的一端组成第一三相出线组101,每相绕组的另一端组成第二三相出线组102,驱动控制电路包括用于向三相绕组100提供第一驱动电压的第一驱动电路110、开关组件120和第二驱动电路130,第一驱动电路110与第二三相出线组102连接;开关组件120分别与第一三相出线组101和第二三相出线组102连接,开关组件120闭合,三相绕组100切换至三角形连接,开关组件120断开,三相绕组100切换至开绕组连接;第二驱动电路130与第一三相出线组101连接,用于在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压且在三相绕组100连接状态切换完成后为三相绕组100提供第三驱动电压,其中,第二驱动电压用于使电机在三相绕组100连接状态的切换过程中保持运转,在本实施例中,电机在三相绕组100连接状态的切换过程中保持运转,指的是电机带电运转而非因惯性运转。
在一实施例中,开关组件120包括第一开关K1、第二开关K2和第三开关K3,三相绕组100包括三相绕组,第一相绕组、第二相绕组和第三相绕组的引脚引出电机外,第一相绕组的两端分别引出第一引脚M1和第六引脚M6,第二相绕组的两端分别引出第二引脚M2和第五引脚M5,第三相绕组的两端分别引出第三引脚M3和第四引脚M4,基于此,第一三相出线组101包括第一引脚M1、第二引脚M2和第三引脚M3,第二三相出线组102包括第四引脚M4、第五引脚M5和第六引脚M6,第一开关K1分别连接第二引脚M2和第六引脚M6,第二开关K2分别连接第三引脚M3和第五引脚M5,第三开关K3分别连接第一引脚M1和第四引脚M4。
其中,当第一开关K1、第二开关K2和第三开关K3同时闭合,此时第二引脚M2和第六引脚M6相互连接,第三引脚M3和第五引脚M5相互连接,第一引脚M1和第四引脚M4相互连接,使得三相绕组100呈三角形连接。当第一开关K1、第二开关K2、第三开关K3同时断开时,单独对第一引脚M1、第二引脚M2、第三引脚M3、第四引脚M4、第五引脚M5和第六引脚M6供电,使得三相绕组100呈开绕组连接。
在一实施例中,上述第一开关K1、第二开关K2、第三开关K3均可以从电磁继电器、固态继电器、接触器或者电子开关中选取,从而具有切换稳定、成本低的优点。在一实施例中,上述第一开关K1、第二开关K2、第三开关K3均为单刀单掷继电器。需要补充说明的是,若选取电子开关,则其导通电阻不超过1欧姆。
参照图2,本公开实施例通过设置第二驱动电路130,三相绕组100从三角形连接切换至开绕组连接时,先进入过渡状态。三相绕组100处于三角形连接时,第一驱动电路110提供第一驱动电压,第二驱动电路130关停,开关组件120闭合。然后,进入过渡状态,其中,在过渡状态中,在第I阶段,控制开关组件120的状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,电机仍处于三角形连接状态运转;在第II阶段,控制开关组件120、第二驱动电路130输出三角形连接的三相电压,并持续预设时间阈值,在此阶段中,由于第二驱动电 路130输出三角形连接的三相电压,因此即使开关组件120断开,电机仍可以以三角形连接状态运转,另外,由于开关组件120由闭合变成断开需要一定的时长,因此需要持续预设时间阈值,预设时间阈值可以为开关组件120的动作时长。最后,开关组件120完成断开动作,第二驱动电路输出第三驱动电压,三相绕组100完成从三角形连接切换至开绕组连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从三角形连接切换至开绕组连接时增加过渡状态,从而实现不停机切换。
三相绕组100从开绕组连接切换至三角形连接的原理与上述过程相类似。三相绕组100处于开绕组连接时,第一驱动电路110提供第一驱动电压,第二驱动电路130提供第三驱动电压,开关组件120断开。然后,进入过渡状态,其中,在过渡状态中,在第II阶段,控制开关组件120的状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,电机仍处于开绕组连接状态运转;在第I阶段,控制开关组件120闭合、第二驱动电路130输出三角形连接的三相电压,并持续预设时间阈值,在此阶段中,由于第二驱动电路130输出三角形连接的三相电压,因此在开关组件120闭合的过程中,三相绕组100已经相当于处于三角形连接状态,即电机可以保持运转,由于开关组件120由断开变成闭合需要一定的时长,因此需要持续预设时间阈值,预设时间阈值可以为开关组件120的动作时长。最后,开关组件120完成闭合动作,控制第二驱动电路130关停,三相绕组100完成从开绕组连接切换至三角形连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从开绕组连接切换至三角形连接时增加过渡状态,从而实现不停机切换。
可以理解的是,在三相绕组100完成从开绕组连接至三角形连接的切换后,第二驱动电路130可以继续工作,而关停第一驱动电路110。
需要补充说明的是,第二驱动电压为三相绕组100处于三角形连接状态下的三相电压,能够使得三相绕组100在三角形连接和开绕组连接的切换过程中过渡得更加流畅、平稳。本领域技术人员可以理解的是,在切换过程中还可以将第二驱动电压设置为其他的电压值。
通过设置开关组件120,能够实现根据电机不同的工作频率切换三相绕组100的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路130,在切换三相绕组100的连接方式时,第二驱动电路130可以在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压,以模拟在切换过程中开关组件120所处的电压环境,因此,在切换连接方式时,即使开关组件120改变开闭状态,电机仍然正常运转,可以实现电机三相绕组100连接方式的不停机切换,不影响压缩机的正常运作。
参照图3、图4,在一实施例中,第一驱动电路110和第二驱动电路130均包括互相并联的第一桥臂310、第二桥臂320和第三桥臂330,第一桥臂310、第二桥臂320和第三桥臂330均包括两个串联的功率开关管Q,功率开关管Q上反并联有二极管D。第一桥臂310、第二桥臂320和第三桥臂330构成三相桥结构,通过控制六个功率开关管Q的通断状态,第一驱动电路110可以输出驱动电机运作的正弦波交流信号即可以向三相绕组100提供第一驱动电压,同理,第二驱动电路130可以输出三相绕组100处于三角形连接状态下的三相电压,或者第三驱动电压。参照图1,相对应地,第一驱动电路110的三个输出端A1、B1和C1分别连接三相绕组100的第六引脚M6、第五引脚M5和第四引脚M4,第二驱动电路130的三个输出端A2、B2和C2分别连接三相绕组100的第一引脚M1、第二引脚M2和第三引脚M3。示例性地,可以采用SPWM作为驱动第一驱动电路110的驱动信号,可以有效减小输出电压和输出电流的谐波分量,改善输出波形,使得第一驱动电路110输出正弦波交流信号,即可以向三相绕组100提供第一驱动电压,同理,第二驱动电路130可以输出三相绕组100处于三角形连接状态下的三相电压,或者第三驱动电压。另外,第二驱动电路130输出三角形的三相电压,即第二驱动电路130的输出端A2与第一驱动电路110的输出端C1输出相同的电压、第二驱动电路130的输出端B2与第一驱动电路110的输出端A1输出相同的电压、第二驱动电路130的输出端C2与第一驱动电路110的输出端B1输出相同的电压。本领域技术人员可以理解的是,第一驱动电压和第三驱动电压可以根据三相绕组的连接状态而进行调整。
在一些实施例中,第一驱动电路110的功率开关管Q采用金属氧化物半导体MOS器件,包括采用Si材料的MOS器件、或者SiC材料的MOS器件、或者GaN材料的MOS器件等,第二驱动电路130的功率开关管Q采用绝缘栅双极型IGBT器件。其中,第一驱动电路110作为电机的主要驱动器件,其功率开关管Q采用MOS器件,相比于IGBT器件,MOS器件在轻负荷时,电流较小、导通压降更低,因此具有运行效率高的优点。而第二驱动电路130用于模拟在切换过程中开关组件120所处的电压环境,其功率开关管Q采用IGBT器件,具有成本低的优点。
在一实施例中,驱动控制电路还包括电源组件140,电源组件140分别连接第一驱动电路110和第二驱动电路 130,第一驱动电路110和第二驱动电路130为共地且共母线设置。电源组件140可以为第一驱动电路110和第二驱动电路130提供输入电压,以实现驱动电机运作和模拟在切换过程中开关组件120所处的电压环境的目的。在其他实施例中,电源组件140也可以独立于驱动控制电路设置,第一驱动电路110和第二驱动电路130为共地且共母线设置,能够提高工作的稳定性。
在一实施例中,电源组件140包括交流电源141和用于将交流电源141转换成直流输出的整流组件142,交流电源141连接整流组件142,整流组件142分别连接第一驱动电路110和第二驱动电路130。通过设置整流组件142,可以将交流电源141转换成直流输出,以适配第一驱动电路110和第二驱动电路130的输入信号需求。
在一实施例中,驱动控制电路还包括滤波组件,所述滤波组件与所述电源组件相互并联。通过设置滤波组件,可以滤除电源组件140的干扰信号,提高电源组件140的稳定性。在一实施例中,滤波组件包括电解电容C,滤波组件采用电解电容C,具有结构简单、成本低的优点。
在一实施例中,上述第一驱动电路110、开关组件120和第二驱动电路130的控制可以利用控制器实现,例如利用单片机等。
另外,参照图5,本公开一实施例还提供了一种驱动控制方法,应用于图1所示的驱动控制电路,该驱动控制方法包括但不限于以下步骤:
步骤501:控制开关组件的开闭以使三相绕组从第一连接状态切换至第二连接状态;
步骤502:控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压。
其中,第一连接状态和第二连接状态至少具有以下可能的组合:
参照图6,一种组合是,第一连接状态为三角形连接,第二连接状态为开绕组连接,在此情况下,上述步骤502中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压,包括:
步骤601:三相绕组保持三角形连接,控制第二驱动电路输出三相绕组处于三角形连接状态下的三相电压;
步骤602:控制开关组件断开,第二驱动电路输出三相绕组处于三角形连接状态下的三相电压,持续预设时间阈值;
步骤603:控制第二驱动电路输出第三驱动电压。
在一些实施例中,在步骤601中,电机仍处于三角形连接状态运转;在步骤602中,控制第二驱动电路模拟三相绕组处于三角形连接状态下的三相电压,即使开关组件断开,电机仍可以以三角形连接状态运转,其中预设时间阈值可以是开关组件的动作时长;在步骤603中,控制第二驱动电路输出第三驱动电压,三相绕组以开绕组连接方式工作。可见,通过上述步骤601和603,可以实现电机的不停机切换。
参照图7,另一种组合是,第一连接状态为开绕组连接,第二连接状态为三角形连接,在此情况下,上述步骤502中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压,包括以下步骤:
步骤701:三相绕组保持开绕组连接,控制第二驱动电路输出三相绕组处于三角形连接状态下的三相电压;
步骤702:控制如图1所示的开关组件闭合,或控制如图10至11所示的开关组件的第二开关组闭合,第二驱动电路输出三相绕组处于三角形连接状态下的三相电压,持续第二时间阈值;
步骤703:控制所述第二驱动电路停止工作。
在一些实施例中,在步骤701中,电机仍处于开绕组连接状态运转;在步骤702中,控制第二驱动电路模拟三相绕组处于三角形连接状态下的三相电压,即在开关组件或开关组件的第二开关组的闭合过程中,三相绕组已经可以先以三角形连接状态运转,其中第二时间阈值可以是第二开关组的动作时长。可见,通过上述步骤701至703,可以实现电机的不停机切换。
三相绕组处于三角形连接状态下的三相电压在上述驱动控制电路的实施例中已作出解释,在此不再赘述。
通过控制开关组件的开闭以使三相绕组从第一连接状态切换至第二连接状态,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,在切换过程中控制第二驱动电路向三相绕组提供第二驱动电压,第二驱动电压为三相绕组处于三角形连接状态下的三相电压,以模拟在切换过程中开关组件所处的电压环境,因此,在切换连接方式时,即使开关组件改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
在一实施例中,参照图8,可以根据电机的工作频率切换三相绕组的连接方式,在一些实施例中,可以包括以下一种或者多种判断方式的组合:
根据电机的工作频率低于第一频率阈值,控制开关组件的开闭以使三相绕组切换至三角形连接;
根据电机的工作频率高于第二频率阈值,控制开关组件的开闭以使三相绕组切换至开绕组连接。
其中,第一频率阈值等于第二频率阈值,通过判断电机的工作频率,根据电机的工作频率的高低使三相绕组切换至对应的连接状态,能够使电机运行在与工作频率相适配的连接方式,提升电机的运行效率。可以理解的是,第一频率阈值可以根据电机的实际运转情况决定,在此不作限定。
在一实施例中,参照图9,根据电机的工作频率切换三相绕组的连接方式,可以通过设置第一频率阈值和第二频率阈值,其中第一频率阈值小于第二频率阈值,在一些实施例中,可以包括以下一种或者多种判断方式的组合:
根据电机的工作频率低于第一频率阈值,控制开关组件的开闭以使三相绕组切换至三角形连接;
根据电机的工作频率高于第二频率阈值,控制开关组件的开闭以使三相绕组切换至开绕组连接;
在判断电机的工作频率时,第一频率阈值和第二频率阈值能形成迟滞区间,从而可以避免电机的连接状态出现频繁切换的现象,保证电机运行的稳定性。第一频率阈值、第二频率阈值可以根据电机的实际运转情况决定,在此不作限定。
需要补充说明的是,上述实施例中的方法仅示意性地应用于图1所示的驱动控制电路,除此以外也可以应用于其他相类似的电路中。
参照图10,本公开另一实施例提供了一种驱动控制电路,用于驱动具有三相绕组100的开绕组电机,每相绕组的一端组成第一三相出线组101,每相绕组的另一端组成第二三相出线组102,驱动控制电路包括用于向三相绕组100提供第一驱动电压的第一驱动电路110、开关组件120和第二驱动电路130,第一驱动电路110与第二三相出线组102连接;开关组件120包括第一开关组121和第二开关组122,第一开关组121与第一三相出线组101连接,第二开关组122分别与第一三相出线组101和第二三相出线组102连接,第一开关组121闭合,第二开关组122断开,三相绕组100切换至星形连接,第一开关组121断开,第二开关组122闭合,三相绕组100切换至三角形连接;第二驱动电路130与第一三相出线组101连接,用于在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压且在三相绕组100连接状态切换完成后停止工作,其中,第二驱动电压用于使电机在三相绕组100连接状态的切换过程中保持运转,在本实施例中,电机在三相绕组100连接状态的切换过程中保持运转,指的是电机带电运转而非因惯性运转。
在一实施例中,第一开关组121包括第一开关K1和第二开关K2,三相绕组100包括三相绕组,第一相绕组、第二相绕组和第三相绕组的引脚引出电机外,第一相绕组的两端分别引出第一引脚M1和第六引脚M6,第二相绕组的两端分别引出第二引脚M2和第五引脚M5,第三相绕组的两端分别引出第三引脚M3和第四引脚M4,基于此,第一三相出线组101包括第一引脚M1、第二引脚M2和第三引脚M3,第一开关K1分别连接第一引脚M1和第二引脚M2,第二开关K2分别连接第二引脚M2和第三引脚M3。第二开关组122包括第四开关K4、第五开关K5和第六开关K6,第一三相出线组101包括第一引脚M1、第二引脚M2和第三引脚M3,第二三相出线组102包括第四引脚M4、第五引脚M5和第六引脚M6,第四开关K4分别连接第二引脚M2和第六引脚M6,第五开关K5分别连接第三引脚M3和第五引脚M5,第六开关K6分别连接第一引脚M1和第四引脚M4。
其中,第一开关组121包括第一开关K1和第二开关K2,当第一开关K1和第二开关K2同时闭合,且第二开关组122处于断开状态,此时第一引脚M1、第二引脚M2和第三引脚M3相互连接,使得三相绕组100处于星形连接状态。而第二开关组122包括第四开关K4、第五开关K5和第六开关K6,当第四开关K4、第五开关K5和第六开关K6同时闭合,且第一开关组121处于断开状态,此时第二引脚M2和第六引脚M6相互连接,第三引脚M3和第五引脚M5相互连接,第一引脚M1和第四引脚M4相互连接,使得三相绕组100呈三角形连接。当第一开关K1、第二开关K2、第四开关K4、第五开关K5和第六开关K6同时断开时,单独对第一引脚M1、第二引脚M2、第三引脚M3、第四引脚M4、第五引脚M5和第六引脚M6供电,使得三相绕组100呈开绕组连接。
参照图11,在一实施例中,第一开关组121也可以包括第一开关K1、第二开关K2和第三开关K3,第一开关K1、第二开关K2和第三开关K3的一端相互连接,第一开关K1、第二开关K2和第三开关K3的另一端分别对应连接第一引脚M1、第二引脚M2和第三引脚M3。当第一开关K1、第二开关K2和第三开关K3同时闭合,且第二开关组122处于断开状态,此时第一引脚M1、第二引脚M2和第三引脚M3相互连接,也可以使得三相绕组100处于星形连接状态。
在一实施例中,上述第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5和第六开关K6均可 以从电磁继电器、固态继电器、接触器或者电子开关中选取,从而具有切换稳定、成本低的优点。在一实施例中,上述第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关K5和第六开关K6均为单刀单掷继电器。需要补充说明的是,若选取电子开关,则其导通电阻不超过1欧姆。
根据如图10、图11所述的驱动控制电路的实施例,参照图12,通过设置第二驱动电路130,三相绕组100从星形连接切换至三角形连接时,先进入过渡状态。三相绕组100处于星形连接时,第一驱动电路110提供第一驱动电压,第二驱动电路130关停,第一开关组121闭合,第二开关组122断开。然后,进入过渡状态,其中,在过渡状态中,在第I阶段,控制第一开关组121和第二开关组122的状态不变、第二驱动电路130输出星形连接的中性点电压,在此阶段中,电机仍处于星形连接状态运转;在第II阶段,控制第一开关组121断开、第二开关组122状态不变、第二驱动电路130输出星形连接的中性点电压,并持续第一时间阈值,在此阶段中,由于第二驱动电路130输出星形连接的中性点电压,因此即使第一开关组121断开,电机仍可以以星形连接状态运转,另外,由于第一开关组121由闭合变成断开需要一定的时长,因此需要持续第一时间阈值,第一时间阈值可以为第一开关组121的动作时长;在第III阶段,第一开关组121完成断开动作,控制第二开关组122状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,由于第一开关组121和第二开关组122没有动作,第二驱动电路130由输出星形连接的中性点电压变成输出三角形连接的三相电压,在此阶段中电机仍处于正常供电的状态,因而可以保持运转;在第IV阶段,控制第一开关组121状态不变、第二开关组122闭合、第二驱动电路130输出三角形连接的三相电压,并持续第二时间阈值,由于第二驱动电路130输出三角形连接的三相电压,因此第二开关组122闭合的过程中,三相绕组100已经相当于处于三角形连接状态,即电机可以保持运转,由于第二开关组122由断开变成闭合需要一定的时长,因此需要持续第二时间阈值,第二时间阈值可以为第二开关组122的动作时长。最后,第二开关组122完成闭合动作,控制第二驱动电路130关停,三相绕组100完成从星形连接向三角形连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从星形连接切换至三角形连接时增加过渡状态,从而实现不停机切换。
三相绕组100从三角形连接切换至星形连接的原理与上述过程相类似。三相绕组100处于三角形连接时,第一驱动电路110提供第一驱动电压,第二驱动电路130关停,第一开关组121断开,第二开关组122闭合。然后,进入过渡状态,其中,在过渡状态中,在第IV阶段,控制第一开关组121和第二开关组122的状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,电机仍处于三角形连接状态运转;在第III阶段,控制第一开关组121状态不变、第二开关组122断开、第二驱动电路130输出三角形连接的三相电压,并持续第二时间阈值,在此阶段中,由于第二驱动电路130输出三角形连接的三相电压,因此即使第二开关组122断开,电机仍可以以三角形连接状态运转,另外,由于第二开关组122由闭合变成断开需要一定的时长,因此需要持续第二时间阈值,第二时间阈值可以为第二开关组122的动作时长;在第II阶段,第二开关组122完成断开动作,控制第一开关组121状态不变、第二驱动电路130输出星形连接的中性点电压,在此阶段中,由于第一开关组121和第二开关组122没有动作,第二驱动电路130由输出三角形连接的三相电压变成输出星形连接的中性点电压,在此阶段中电机仍处于正常供电的状态,因而可以保持运转;在第I阶段,控制第一开关组121闭合、第二开关组122状态不变、第二驱动电路130输出星形连接的中性点电压,并持续第一时间阈值,由于第二驱动电路130输出星形连接的中性点电压,因此第一开关组121闭合的过程中,三相绕组100已经相当于处于星形连接状态,即电机可以保持运转,由于第一开关组121由断开变成闭合需要一定的时长,因此需要持续第一时间阈值,第一时间阈值可以为第一开关组121的动作时长。最后,第一开关组121完成闭合动作,控制第二驱动电路130关停,三相绕组100完成从三角形连接向星形连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从三角形连接切换至星形连接时增加过渡状态,从而实现不停机切换。
需要补充说明的是,第二驱动电压为三相绕组100处于星形连接状态下的中性点电压,或者为三相绕组100处于三角形连接状态下的三相电压,能够使得三相绕组100在星形连接和三角形连接切换过程中过渡得更加流畅、平稳。本领域技术人员可以理解的是,在切换过程中还可以将第二驱动电压设置为其他的电压值。
在一实施例中,第二驱动电路还用于在三相绕组连接状态的切换过程中为三相绕组提供第三驱动电压且在三相绕组连接状态切换完成后为三相绕组提供第四驱动电压,第三驱动电压为三相绕组处于三角形连接状态下的三相电压。
根据如图10、图11所述的驱动控制电路的实施例,参照图13,本公开实施例通过设置第二驱动电路130,三相绕组100从三角形连接切换至开绕组连接时,先进入过渡状态。三相绕组100处于三角形连接时,第一驱动电路 110提供第一驱动电压,第二驱动电路130关停,第一开关组121断开,第二开关组122闭合。然后,进入过渡状态,其中,在过渡状态中,在第V阶段,控制第一开关组121和第二开关组122的状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,电机仍处于三角形连接状态运转;在第VI阶段,控制第一开关组121状态不变、第二开关组122断开、第二驱动电路130输出三角形连接的三相电压,并持续第二时间阈值,在此阶段中,由于第二驱动电路130输出三角形连接的三相电压,因此即使第二开关组122断开,电机仍可以以三角形连接状态运转,另外,由于第二开关组122由闭合变成断开需要一定的时长,因此需要持续第二时间阈值,第二时间阈值可以为第二开关组122的动作时长。最后,第二开关组122完成断开动作,第二驱动电路输出第四驱动电压,三相绕组100完成从三角形连接切换至开绕组连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从三角形连接切换至开绕组连接时增加过渡状态,从而实现不停机切换。
三相绕组100从开绕组连接切换至三角形连接的原理与上述过程相类似。三相绕组100处于开绕组连接时,第一驱动电路110提供第一驱动电压,第二驱动电路130提供第四驱动电压,第一开关组121断开,第二开关组122断开。然后,进入过渡状态,其中,在过渡状态中,在第VI阶段,控制第一开关组121和第二开关组122的状态不变、第二驱动电路130输出三角形连接的三相电压,在此阶段中,电机仍处于开绕组连接状态运转;在第V阶段,控制第一开关组121状态不变、第二开关组122闭合、第二驱动电路130输出三角形连接的三相电压,并持续第二时间阈值,在此阶段中,由于第二驱动电路130输出三角形连接的三相电压,因此在第二开关组122闭合的过程中,三相绕组100已经相当于处于三角形连接状态,即电机可以保持运转,由于第二开关组122由断开变成闭合需要一定的时长,因此需要持续第二时间阈值,第二时间阈值可以为第二开关组122的动作时长。最后,第二开关组122完成闭合动作,控制第二驱动电路130关停,三相绕组100完成从开绕组连接切换至三角形连接的切换。综上,通过第二驱动电路130,可以在三相绕组100从开绕组连接切换至三角形连接时增加过渡状态,从而实现不停机切换。
可以理解的是,在三相绕组100完成从星形连接至三角形连接的切换后,第二驱动电路130可以继续工作,而关停第一驱动电路110。
需要补充说明的是,第三驱动电压为三相绕组100处于三角形连接状态下的三相电压,能够使得三相绕组100在三角形连接和开绕组连接的切换过程中过渡得更加流畅、平稳。本领域技术人员可以理解的是,在切换过程中还可以将第三驱动电压设置为其他的电压值。
通过设置开关组件120,能够实现根据电机不同的工作频率切换三相绕组100的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路130,在切换三相绕组100的连接方式时,第二驱动电路130可以在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压,第二驱动电压为三相绕组100处于星形连接状态下的中性点电压,或者为三相绕组100处于三角形连接状态下的三相电压,以模拟在切换过程中第一开关组121和第二开关组122所处的电压环境,因此,在切换连接方式时,即使第一开关组121或者第二开关组122改变开闭状态,电机仍然正常运转,可以实现电机三相绕组100连接方式的不停机切换,不影响压缩机的正常运作。
根据如图10、图11所述的驱动控制电路的实施例,在一实施例中,第一驱动电路110和第二驱动电路130可同样采用如图3、4所述的结构。
本公开一实施例还提供了一种驱动控制方法,应用于图10或者图11所示的驱动控制电路,该驱动控制方法整体上仍可参照如图5所示的步骤501和步骤502,在此不再重复。其中,第一连接状态和第二连接状态至少具有以下可能的组合:
参照图14,一种组合是,第一连接状态为星形连接,第二连接状态为三角形连接,在此情况下,上述步骤502中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压,包括以下步骤:
步骤801:三相绕组保持星形连接,控制第二驱动电路输出三相绕组处于星形连接状态下的中性点电压;
步骤802:控制第一开关组断开,第二驱动电路输出三相绕组处于星形连接状态下的中性点电压,持续第一时间阈值;
步骤803:控制第二驱动电路输出三相绕组处于三角形连接状态下的三相电压;
步骤804:控制第二开关组闭合,第二驱动电路输出三相绕组处于三角形连接状态下的三相电压,持续第二时间阈值;
步骤805:控制第二驱动电路停止工作。
在一些实施例中,在步骤801中,电机仍处于星形连接状态运转;在步骤802中,控制第二驱动电路模拟三相 绕组处于星形连接状态下的中性点电压,即使第一开关组断开,电机仍可以以星形连接状态运转,其中第一时间阈值可以是第一开关组的动作时长;在步骤803中,电机处于正常供电状态,因而可以保持运转;在步骤804中,控制第二驱动电路模拟三相绕组处于三角形连接状态下的三相电压,即在第二开关组闭合的过程中,电机已经可以先以三角形连接状态运转,其中,第二时间阈值为第二开关组的动作时长。可见,通过上述步骤801至805,可以实现电机的不停机切换。
参照图15,另一种组合是,第一连接状态为三角形连接,第二连接状态为星形连接,在此情况下,上述步骤502中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第二驱动电压,包括以下步骤:
步骤901:三相绕组保持三角形连接,控制第二驱动电路输出三相绕组处于三角形连接状态下的三相电压;
步骤902:控制第二开关组断开,第二驱动电路输出三相绕组处于三角形连接状态下的三相电压,持续第二时间阈值;
步骤903:控制第二驱动电路输出三相绕组处于星形连接状态下的中性点电压;
步骤904:控制第一开关组闭合,第二驱动电路输出三相绕组处于星形连接状态下的中性点电压,持续第一时间阈值;
步骤905:控制第二驱动电路停止工作。
在一些实施例中,在步骤901中,电机仍处于三角形连接状态运转;在步骤902中,控制第二驱动电路模拟三相绕组处于三角形连接状态下的三相电压,即使第二开关组断开,电机仍可以以三角形连接状态运转,其中第二时间阈值可以是第二开关组的动作时长;在步骤903中,电机处于正常供电状态,因而可以保持运转;在步骤904中,控制第二驱动电路模拟三相绕组处于星形连接状态下的中性点电压,即在第一开关组闭合的过程中,电机已经可以先以星形连接状态运转,其中,第一时间阈值为第一开关组的动作时长。可见,通过上述步骤901至905,可以实现电机的不停机切换。
三相绕组处于星形连接状态下的中性点电压或者三相绕组处于三角形连接状态下的三相电压在上述驱动控制电路的实施例中已作出解释,在此不再赘述。
参照图16,当三相绕组在三角形连接和开绕组连接之间切换时,驱动控制方法还可以包括以下步骤:
步骤1001:控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第三驱动电压。
在此基础上,参照图17,一种组合是,第一连接状态为三角形连接,第二连接状态为开绕组连接,在此情况下,上述步骤1001中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第三驱动电压,包括以下步骤:
步骤1101:三相绕组保持三角形连接,控制第二驱动电路输出三相绕组处于三角形连接状态下的三相电压;
步骤1102:控制第二开关组断开,第二驱动电路输出三相绕组处于三角形连接状态下的三相电压,持续第二时间阈值;
步骤1103:控制第二驱动电路输出第四驱动电压。
在一些实施例中,在步骤1101中,电机仍处于三角形连接状态运转;在步骤1102中,控制第二驱动电路模拟三相绕组处于三角形连接状态下的三相电压,即使第二开关组断开,电机仍可以以三角形连接状态运转,其中第二时间阈值可以是第二开关组的动作时长;在步骤1103中,控制第二驱动电路输出第四驱动电压,三相绕组以开绕组连接方式工作。可见,通过上述步骤1101和1103,可以实现电机的不停机切换。
参照前述图7,另一种组合是,第一连接状态为开绕组连接,第二连接状态为三角形连接,在此情况下,上述步骤1001中,控制第二驱动电路在三相绕组连接状态的切换过程中向三相绕组提供第三驱动电压,请参照图7的步骤701至703及详细描述,在此不再重复。
通过控制开关组件的开闭以使三相绕组从第一连接状态切换至第二连接状态,能够实现根据电机不同的工作频率切换三相绕组的连接方式,提升电机的运行效率,并且,在切换过程中控制所述第二驱动电路向所述三相绕组提供第二驱动电压,以模拟在切换过程中第一开关组和第二开关组所处的电压环境,因此,在切换连接方式时,即使第一开关组或者第二开关组改变开闭状态,电机仍然正常运转,可以实现电机三相绕组连接方式的不停机切换,不影响压缩机的正常运作。
根据如图10、图11所述的驱动控制电路,在一实施例中,参照图18,可以根据电机的工作频率切换三相绕组的连接方式,在一些实施例中,包括以下一种或者多种判断方式的组合:
根据电机的工作频率低于第一频率阈值,控制开关组件的开闭以使三相绕组从三角形连接切换至星形连接;
根据电机的工作频率高于第一频率阈值且低于第二频率阈值,控制开关组件的开闭以使三相绕组从星形连接或者开绕组连接切换至三角形连接。
根据电机的工作频率高于第二频率阈值,控制开关组件的开闭以使三相绕组从三角形连接切换至开绕组连接;
其中,第一频率阈值低于第二频率阈值。
通过判断电机的工作频率,根据电机的工作频率的高低使三相绕组切换至对应的连接状态,能够使电机运行在与工作频率相适配的连接方式,提升电机的运行效率。可以理解的是,上述第二频率阈值大于第一频率阈值,并且第一频率阈值和第二频率阈值可以根据电机的实际运转情况决定,在此不作限定。
根据如图10、图11所述的驱动控制电路,在一实施例中,参照图19,根据电机的工作频率切换三相绕组的连接方式,可以通过设置依次增大的第三频率阈值、第四频率阈值、第五频率阈值和第六频率阈值,在一些实施例中,可以包括以下一种或者多种判断方式的组合:
根据电机的工作频率低于第三频率阈值,控制开关组件的开闭以使三相绕组从三角形连接切换至星形连接;
根据电机的工作频率高于第四频率阈值且低于第五频率阈值,控制开关组件的开闭以使三相绕组从星形连接或者开绕组连接切换至三角形连接;
根据电机的工作频率高于第六频率阈值,控制开关组件的开闭以使三相绕组从三角形连接切换至开绕组连接;
在判断电机的工作频率时,第三频率阈值和第四频率阈值能形成迟滞区间、第五频率阈值和第六频率阈值能形成迟滞区间,从而可以避免电机的连接状态出现频繁切换的现象,保证电机运行的稳定性。第三频率阈值、第四频率阈值、第五频率阈值和第六频率阈值可以根据电机的实际运转情况决定,在此不作限定。
需要补充说明的是,上述实施例中的方法仅示意性地应用于图10或者图11所示的驱动控制电路,除此以外也可以应用于其他相类似的电路中。
参照图20,图20是本公开一实施例提供的线路板,包括有上述实施例中的驱动控制电路。因此,上述线路板通过设置开关组件120,或通过设置开关组件120及其第一开关组121和第二开关组122,能够实现根据电机不同的工作频率切换三相绕组100的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路130,在切换三相绕组100的连接方式时,第二驱动电路130可以在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压,以模拟在切换过程中开关组件120或开关组件120的第一开关组121和第二开关组122所处的电压环境,因此,在切换连接方式时,即使开关组件120改变开闭状态或开关组件120的第一开关组121和第二开关组122改变开闭状态,电机仍然正常运转,可以实现电机三相绕组100连接方式的不停机切换,不影响压缩机的正常运作。
参照图21,本公开的另一实施例还提供了一种空调器,该空调器包括有上述实施例中的线路板以及压缩机,压缩机采用永磁电机驱动,上述线路板用于控制该永磁电机的运转模式。上述空调器通过设置开关组件120,或通过设置开关组件120及其第一开关组121和第二开关组122,能够实现根据电机不同的工作频率切换三相绕组100的连接方式,提升电机的运行效率,并且,通过设置第二驱动电路130,在切换三相绕组100的连接方式时,第二驱动电路130可以在三相绕组100连接状态切换过程中为三相绕组100提供第二驱动电压,以模拟在切换过程中开关组件120或开关组件120的第一开关组121和第二开关组122所处的电压环境,因此,在切换连接方式时,即使开关组件120改变开闭状态或开关组件120的第一开关组121和第二开关组122改变开闭状态,电机仍然正常运转,可以实现电机三相绕组100连接方式的不停机切换,不影响压缩机的正常运作。
参照图22,图22是本公开一实施例提供的空调器的示意图。本公开实施例的空调器包括一个或多个处理器1201和存储器1202,图12中以一个处理器1201及一个存储器1202为例。
处理器1201和存储器1202可以通过总线或者其他方式连接,图22中以通过总线连接为例。
存储器1202作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器1202可以包括高速随机存取存储器1202,还可以包括非暂态存储器1202,例如至少一个磁盘存储器件、闪存组件、或其他非暂态固态存储器件。在一些实施方式中,存储器1202可选包括相对于处理器1201远程设置的存储器1202,这些远程存储器1202可以通过网络连接至该运行控制装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,图22中示出的装置结构并不构成对空调器的限定,可以包括比图示更多或更少的 部件,或者组合某些部件,或者不同的部件布置。
实现上述实施例中应用于空调器的驱动控制方法所需的非暂态软件程序以及指令存储在存储器1202中,当被处理器1201执行时,执行上述实施例中应用于空调器的驱动控制方法,例如,执行以上描述的图5中的方法步骤501至502、图6中的方法步骤601至603、图7中的方法步骤701至703、图14中的方法步骤801至805、图15中的方法步骤901至905、图16中的方法步骤1001、图17中的方法步骤1101至1103。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本公开的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器1201执行,例如,被图22中的一个处理器1201执行,可使得上述一个或多个处理器1201执行上述方法实施例中的驱动控制方法,例如,执行以上描述的图5中的方法步骤501至502、图6中的方法步骤601至603、图7中的方法步骤701至703、图14中的方法步骤801至805、图15中的方法步骤901至905、图16中的方法步骤1001、图17中的方法步骤1101至1103。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本公开的较佳实施进行了具体说明,但本公开并不局限于上述实施方式,熟悉本领域的技术人员在不违背本公开精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本公开权利要求所限定的范围内。

Claims (27)

  1. 一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
    第一驱动电路,与所述第二三相出线组连接,用于向所述三相绕组提供第一驱动电压;
    开关组件,分别与所述第一三相出线组和所述第二三相出线组连接,所述开关组件闭合,所述三相绕组切换至三角形连接,所述开关组件断开,所述三相绕组切换至开绕组连接;
    第二驱动电路,与所述第一三相出线组连接,用于在所述三相绕组在所述三角形连接和所述开绕组连接之间切换的过程中为所述三相绕组提供第二驱动电压且在所述三相绕组连接状态切换完成后为所述三相绕组提供第三驱动电压,所述第二驱动电压用于使所述电机在所述三相绕组连接状态的切换过程中保持运转。
  2. 根据权利要求1所述的驱动控制电路,其特征在于:所述第二驱动电压为所述三相绕组处于所述三角形连接状态下的三相电压。
  3. 根据权利要求1所述的驱动控制电路,其特征在于:所述开关组件包括第一开关、第二开关和第三开关,所述三相绕组包括第一相绕组、第二相绕组和第三相绕组,所述第一相绕组包括第一引脚和第六引脚、所述第二相绕组包括第二引脚和第五引脚,所述第三相绕组包括第三引脚和第四引脚,所述第一三相出线组包括所述第一引脚、所述第二引脚和所述第三引脚,所述第二三相出线组包括所述第四引脚、所述第五引脚和所述第六引脚,所述第一开关分别连接所述第二引脚和所述第六引脚,所述第二开关分别连接所述第三引脚和所述第五引脚,所述第三开关分别连接所述第一引脚和所述第四引脚。
  4. 根据权利要求1所述的驱动控制电路,其特征在于:
    所述第一驱动电路和第二驱动电路均包括互相并联的第一桥臂、第二桥臂和第三桥臂,所述第一桥臂、第二桥臂和第三桥臂均包括两个串联的功率开关管,所述功率开关管上反并联有二极管。
  5. 根据权利要求1所述的驱动控制电路,其特征在于:还包括电源组件,所述电源组件分别连接所述第一驱动电路和所述第二驱动电路,所述第一驱动电路和第二驱动电路为共地且共母线设置。
  6. 一种驱动控制方法,应用于驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
    第一驱动电路,与所述第二三相出线组连接;
    开关组件,分别与所述第一三相出线组和所述第二三相出线组连接,所述开关组件闭合,所述三相绕组切换至三角形连接,所述开关组件断开,所述三相绕组切换至开绕组连接;
    第二驱动电路,与所述第一三相出线组连接;
    所述驱动控制方法包括:
    控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态;
    控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压。
  7. 根据权利要求6所述的驱动控制方法,其特征在于,所述第一连接状态为三角形连接,所述第二连接状态为开绕组连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压,包括:
    所述三相绕组保持所述三角形连接,控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述开关组件断开,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续预设时间阈值;
    控制所述第二驱动电路输出第三驱动电压。
  8. 根据权利要求6所述的驱动控制方法,其特征在于,所述第一连接状态为开绕组连接,所述第二连接状态为三角形连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压,包括:
    所述三相绕组保持所述开绕组连接,控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述开关组件闭合,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续预设时间阈值;
    控制所述第二驱动电路停止工作。
  9. 根据权利要求6至8任一项所述的驱动控制方法,其特征在于,所述控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态,包括以下至少之一:
    根据所述电机的工作频率低于第一频率阈值,控制所述开关组件的开闭以使所述三相绕组切换至三角形连接;
    根据所述电机的工作频率高于第二频率阈值,控制所述开关组件的开闭以使所述三相绕组切换至开绕组连接;
    其中,所述第一频率阈值小于或者等于所述第二频率阈值。
  10. 一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
    第一驱动电路,与所述第二三相出线组连接,用于向所述三相绕组提供第一驱动电压;
    开关组件,包括第一开关组和第二开关组,所述第一开关组与所述第一三相出线组连接,所述第二开关组分别与所述第一三相出线组和所述第二三相出线组连接,所述第一开关组闭合,第二开关组断开,所述三相绕组切换至星形连接,所述第一开关组断开,第二开关组闭合,所述三相绕组切换至三角形连接;
    第二驱动电路,与所述第一三相出线组连接,用于在所述三相绕组在所述星形连接和所述三角形连接之间切换的过程中为所述三相绕组提供第二驱动电压且在所述三相绕组连接状态切换完成后停止工作,所述第二驱动电压用于使所述电机在所述三相绕组连接状态的切换过程中保持运转。
  11. 根据权利要求10所述的驱动控制电路,其特征在于:所述第二驱动电压为所述三相绕组处于所述星形连接状态下的中性点电压,或者为所述三相绕组处于所述三角形连接状态下的三相电压。
  12. 根据权利要求10所述的驱动控制电路,其特征在于:所述第一开关组和所述第二开关组均断开,所述三相绕组切换至开绕组连接,所述第二驱动电路还用于在所述三相绕组在所述三角形连接和所述开绕组连接之间切换的过程中为所述三相绕组提供第三驱动电压且在所述三相绕组连接状态切换完成后为所述三相绕组提供第四驱动电压,所述第三驱动电压用于使所述电机在所述三相绕组连接状态的切换过程中保持运转。
  13. 根据权利要求12所述的驱动控制电路,其特征在于:所述第三驱动电压为所述三相绕组处于所述三角形连接状态下的三相电压。
  14. 根据权利要求10所述的驱动控制电路,其特征在于:所述第一开关组包括第一开关和第二开关,所述第一三相出线组包括第一引脚、第二引脚和第三引脚,所述第一开关分别连接所述第一引脚和所述第二引脚,所述第二开关分别连接所述第二引脚和所述第三引脚。
  15. 根据权利要求10所述的驱动控制电路,其特征在于:所述第一开关组包括第一开关、第二开关和第三开关,所述第一三相出线组包括第一引脚、第二引脚和第三引脚,所述第一开关、第二开关和第三开关的一端相互连接,所述第一开关、第二开关和第三开关的另一端分别对应连接所述第一引脚、第二引脚和第三引脚。
  16. 根据权利要求10所述的驱动控制电路,其特征在于:所述第二开关组包括第四开关、第五开关和第六开关,所述三相绕组包括第一相绕组、第二相绕组和第三相绕组,所述第一相绕组包括第一引脚和第六引脚、所述第二相绕组包括第二引脚和第五引脚,所述第三相绕组包括第三引脚和第四引脚,所述第一三相出线组包括所述第一引脚、所述第二引脚和所述第三引脚,所述第二三相出线组包括所述第四引脚、所述第五引脚和所述第六引脚,所述第四开关分别连接所述第二引脚和所述第六引脚,所述第五开关分别连接所述第三引脚和所述第五引脚,所述第六开关分别连接所述第一引脚和所述第四引脚。
  17. 一种驱动控制方法,应用于驱动控制电路,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,所每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,其特征在于,所述驱动控制电路包括:
    第一驱动电路,与所述第一三相出线组连接;
    开关组件,包括第一开关组和第二开关组,所述第一开关组与所述第一三相出线组连接,所述第二开关组分别与所述第一三相出线组和所述第二三相出线组连接,所述第一开关组闭合,第二开关组断开,所述三相绕组切换至星形连接,所述第一开关组断开,第二开关组闭合,所述三相绕组切换至三角形连接;
    第二驱动电路,与所述第二三相出线组连接;
    所述驱动控制方法包括:
    控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态;
    控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压。
  18. 根据权利要求17所述的驱动控制方法,其特征在于,所述第一连接状态为星形连接,所述第二连接状态为三角形连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压,包括:
    所述三相绕组保持所述星形连接,控制所述第二驱动电路输出所述三相绕组处于所述星形连接状态下的中性点电压;
    控制所述第一开关组断开,所述第二驱动电路输出所述三相绕组处于所述星形连接状态下的中性点电压,持续第一时间阈值;
    控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述第二开关组闭合,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续第二时间阈值;
    控制所述第二驱动电路停止工作。
  19. 根据权利要求17所述的驱动控制方法,其特征在于,所述第一连接状态为三角形连接,所述第二连接状态为星形连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第二驱动电压,包括:
    所述三相绕组保持所述三角形连接,控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述第二开关组断开,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续第二时间阈值;
    控制所述第二驱动电路输出所述三相绕组处于所述星形连接状态下的中性点电压;
    控制所述第一开关组闭合,所述第二驱动电路输出所述三相绕组处于所述星形连接状态下的中性点电压,持续第一时间阈值;
    控制所述第二驱动电路停止工作。
  20. 根据权利要求17所述的驱动控制方法,其特征在于,所述第一开关组和所述第二开关组均断开,所述三相绕组切换至开绕组连接,所述驱动控制方法还包括:
    控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第三驱动电压。
  21. 根据权利要求20所述的驱动控制方法,其特征在于,所述第一连接状态为三角形连接,所述第二连接状态为开绕组连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第三驱动电压,包括:
    所述三相绕组保持所述三角形连接,控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述第二开关组断开,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续第二时间阈值;
    控制所述第二驱动电路输出第四驱动电压。
  22. 根据权利要求17所述的驱动控制方法,其特征在于,所述第一连接状态为开绕组连接,所述第二连接状态为三角形连接,所述控制所述第二驱动电路在所述三相绕组连接状态的切换过程中向所述三相绕组提供第三驱动电压,包括:
    所述三相绕组保持所述开绕组连接,控制所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压;
    控制所述第二开关组闭合,所述第二驱动电路输出所述三相绕组处于所述三角形连接状态下的三相电压,持续第二时间阈值;
    控制所述第二驱动电路停止工作。
  23. 根据权利要求17至22任一项所述的驱动控制方法,其特征在于,所述控制所述开关组件的开闭以使所述 三相绕组从第一连接状态切换至第二连接状态,包括以下至少之一:
    根据所述电机的工作频率低于第一频率阈值,控制所述开关组件的开闭以使所述三相绕组从三角形连接切换至星形连接;
    根据所述电机的工作频率高于第一频率阈值且低于第二频率阈值,控制所述开关组件的开闭以使所述三相绕组从星形连接或者开绕组连接切换至三角形连接;
    根据所述电机的工作频率高于第二频率阈值,控制所述开关组件的开闭以使所述三相绕组从三角形连接切换至开绕组连接;
    其中,所述第一频率阈值低于所述第二频率阈值。
  24. 根据权利要求17至22任一项所述的驱动控制方法,其特征在于,所述控制所述开关组件的开闭以使所述三相绕组从第一连接状态切换至第二连接状态,包括以下至少之一:
    根据所述电机的工作频率低于第三频率阈值,控制所述开关组件的开闭以使所述三相绕组从三角形连接切换至星形连接;
    根据所述电机的工作频率高于第四频率阈值且低于第五频率阈值,控制所述开关组件的开闭以使所述三相绕组从星形连接或者开绕组连接切换至三角形连接;
    根据所述电机的工作频率高于第六频率阈值,控制所述开关组件的开闭以使所述三相绕组从三角形连接切换至开绕组连接;
    其中,所述第三频率阈值、所述第四频率阈值、所述第五频率阈值和所述第六频率阈值依次增大。
  25. 一种线路板,其特征在于:包括有如权利要求1至5或权利要求10至16任一项所述的驱动控制电路。
  26. 一种空调器,其特征在于:
    包括如权利要求10/25所述的线路板;
    或者,
    包括至少一个处理器和用于与所述至少一个处理器通信连接的存储器;所述存储器存储有能够被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求6至9或权利要求17至24中任意一项所述的驱动控制方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如权利要求6至9或权利要求17至24中任意一项所述的驱动控制方法。
PCT/CN2020/141017 2020-04-16 2020-12-29 驱动控制电路、驱动控制方法、线路板及空调器 WO2021208513A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202020571395.1 2020-04-16
CN202010299692.X 2020-04-16
CN202020571395.1U CN211630105U (zh) 2020-04-16 2020-04-16 驱动控制电路、线路板及空调器
CN202010299961.2 2020-04-16
CN202010299692.XA CN111355415A (zh) 2020-04-16 2020-04-16 驱动控制电路、驱动控制方法、线路板及空调器
CN202010299961.2A CN111478641B (zh) 2020-04-16 2020-04-16 驱动控制电路、驱动控制方法、线路板及空调器

Publications (1)

Publication Number Publication Date
WO2021208513A1 true WO2021208513A1 (zh) 2021-10-21

Family

ID=78084715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141017 WO2021208513A1 (zh) 2020-04-16 2020-12-29 驱动控制电路、驱动控制方法、线路板及空调器

Country Status (1)

Country Link
WO (1) WO2021208513A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969240B2 (ja) * 2012-03-28 2016-08-17 アスモ株式会社 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
CN109560744A (zh) * 2017-09-26 2019-04-02 株式会社东芝 马达驱动系统及开路绕组构造马达的接线切换方法
CN109586624A (zh) * 2018-12-27 2019-04-05 珠海格力电器股份有限公司 一种电机的控制装置、电机及其控制方法
CN111355415A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111478642A (zh) * 2020-04-16 2020-07-31 广州华凌制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111478641A (zh) * 2020-04-16 2020-07-31 广州华凌制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969240B2 (ja) * 2012-03-28 2016-08-17 アスモ株式会社 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
CN109560744A (zh) * 2017-09-26 2019-04-02 株式会社东芝 马达驱动系统及开路绕组构造马达的接线切换方法
CN109586624A (zh) * 2018-12-27 2019-04-05 珠海格力电器股份有限公司 一种电机的控制装置、电机及其控制方法
CN111355415A (zh) * 2020-04-16 2020-06-30 广东美的制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111478642A (zh) * 2020-04-16 2020-07-31 广州华凌制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器
CN111478641A (zh) * 2020-04-16 2020-07-31 广州华凌制冷设备有限公司 驱动控制电路、驱动控制方法、线路板及空调器

Similar Documents

Publication Publication Date Title
CN111355415A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355416A (zh) 电机驱动控制电路、驱动方法、线路板及空调器
CN111478642B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
WO2022142310A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
JP2020503830A (ja) 三相中性点クランプインバータに基づく変調方法および装置
CN110233566A (zh) 驱动控制电路和家电设备
US11431271B2 (en) Electric motor drive device
CN105915122B (zh) 基于直接转矩控制的五相逆变器双电机系统容错控制方法
CN111478641B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
WO2021208513A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355420B (zh) 电机驱动控制电路、驱动方法、线路板及空调器
WO2021135249A1 (zh) 一种逆变电路控制方法及相关装置
WO2023226562A1 (zh) 充放电电路的控制方法、装置、设备、系统及存储介质
CN207896952U (zh) SiC型功率开关管的驱动电路、智能功率模块以及空调器
JP7348409B2 (ja) モータ駆動制御回路、駆動方法、配線板及び空調機
CN208369467U (zh) 图腾柱pfc电路及空调器
WO2022227954A1 (zh) 一种三相电源变换电路、家电设备、控制方法及装置
WO2019184835A1 (zh) 三相异步电机起动装置及其起动方法
CN111355421B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN211630105U (zh) 驱动控制电路、线路板及空调器
CN114696668A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355425A (zh) 驱动控制电路、驱动方法、装置、压缩机和空调设备
CN209299172U (zh) 一种变频输出的开关控制装置和变频器
CN110299824A (zh) 驱动控制电路和家电设备
WO2024045369A1 (zh) 电机驱动电路的控制方法、控制装置、空调器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20931276

Country of ref document: EP

Kind code of ref document: A1