WO2024045257A9 - 多功能自旋转冲洗过滤反应装置 - Google Patents

多功能自旋转冲洗过滤反应装置 Download PDF

Info

Publication number
WO2024045257A9
WO2024045257A9 PCT/CN2022/122885 CN2022122885W WO2024045257A9 WO 2024045257 A9 WO2024045257 A9 WO 2024045257A9 CN 2022122885 W CN2022122885 W CN 2022122885W WO 2024045257 A9 WO2024045257 A9 WO 2024045257A9
Authority
WO
WIPO (PCT)
Prior art keywords
water
sewage
cavity
pipe
clean water
Prior art date
Application number
PCT/CN2022/122885
Other languages
English (en)
French (fr)
Other versions
WO2024045257A1 (zh
Inventor
任重
梁怀均
郭义芳
王瀛淑
任埔立
Original Assignee
安阳市昌明环保设备有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安阳市昌明环保设备有限责任公司 filed Critical 安阳市昌明环保设备有限责任公司
Publication of WO2024045257A1 publication Critical patent/WO2024045257A1/zh
Publication of WO2024045257A9 publication Critical patent/WO2024045257A9/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks

Definitions

  • the invention relates to the field of machinery, in particular to a backwash filter and a rotary backwash filter in a water purification technology, and to wet solid particle purification and grading and sorting treatment.
  • the backwash filter used in the known wastewater purification water treatment technology is necessary in the purification process. It plays a role in intercepting impurities in the water.
  • the raw water enters the filter and flows through the filter screen to become clean water.
  • the impurities in the raw water are intercepted by the filter screen in the filter, so that they adhere to or clog on the surface of the filter screen mesh, affecting the filtering effect and water output of the filter. Therefore, it is necessary to reversely flush the filter screen of the filter to remove the impurities on the surface of the filter screen mesh to restore the processing capacity of the filter.
  • the existing backwash filter screen cleaning system is under the pressure difference transmitter controller, and the motor is used to drive its transmission mechanism in forward and reverse rotation, so that the cleaning nozzle and the suction pipe are radially rotated and axially reciprocated around the filter screen on both sides of the filter fixed filter screen, and the nozzle sprays high-pressure water flow to the outside of the filter screen to reversely flush the filter screen.
  • the impurities washed away are sucked in by the suction pipe and discharged.
  • the nozzle suction pipe covers the filter screen along both sides of the filter screen in the form of forward and reverse enveloping spiral lines to achieve the cleaning purpose.
  • Some filters have a scraper installed near the suction pipe inside the filter to loosen impurities, and some filters have a brush installed inside the filter to loosen impurities and an elastic suction pipe installed to suck impurities. These are all to flush out impurities at the filter mesh to achieve the cleaning purpose.
  • the mechanical devices of these backwash filters are complex in structure, with high manufacturing costs.
  • the motors frequently start in forward and reverse directions, which consumes high energy.
  • the equipment has high operating costs.
  • the high-pressure water flow from the nozzle has a large impact on the filter, which reduces the service life of the filter.
  • the reason why the above backwash filters are so complicated is that the mesh of the filter is blocked by impurities during operation.
  • the blocked impurities adhere to the inner surface of the filter under the impact of the water flow. The more they accumulate, the thicker the impurity layer becomes.
  • the cleaning system Only when the pressure difference between the raw water cavity and the clean water cavity reaches a certain value after being blocked to a certain extent, the cleaning system is turned on, which makes cleaning difficult. In other words, the cleaning system will not work unless it is blocked to a certain extent. Therefore, the working efficiency of the filter is reduced, and the operating and maintenance costs are high.
  • the technical problem to be solved by the present invention is: how to reduce the manufacturing cost and equipment operating energy consumption of the existing filter and improve the backwashing mode of the filter.
  • the present invention provides a multifunctional self-rotating flushing filtration reaction device.
  • the multifunctional self-rotating flushing and filtering reaction device comprises a main machine base, a main sewage outlet is arranged at the bottom of the main machine base, and a clean water collection cavity, a large clean water cavity, a raw water cavity, a small clean water cavity and a sewage cavity are arranged inside the main machine base;
  • a raw water inlet is arranged on the main machine base, and the raw water inlet is connected with the raw water cavity;
  • the large clean water cavity is connected to the clean water collection cavity through the water hole of the upper partition plate, and a clean water outlet is arranged on one side of the clean water collection cavity;
  • a large filter is used to separate the large clean water chamber from the raw water chamber
  • a rotating sewage suction device is arranged in the raw water cavity and the sewage cavity; a water spray device is connected below the rotating sewage suction device, the water spray device works in the sewage cavity, and a small filter screen is used to separate the small clean water cavity and the sewage cavity;
  • the small water purification cavity is connected to the water purification outlet;
  • the raw water enters the raw water cavity from the raw water inlet, part of the raw water enters the large filter, and enters the large clean water cavity after being filtered by the large filter.
  • the clean water passes through the water hole of the upper partition and enters the clean water collection cavity, and is finally discharged from the clean water outlet.
  • the dirt and impurities in this part of the raw water are intercepted by the large filter and attached to the mesh holes on the inner surface of the large filter; the other part of the raw water enters the large filter and then enters the rotating sewage suction device, and finally flows into the water spray device, and then is sprayed into the sewage cavity, enters the small clean water cavity through the small filter, and is finally connected to the clean water outlet through a pipe for discharge.
  • the dirt and impurities in the raw water are intercepted by the small filter and attached to the mesh holes on the inner surface of the small filter.
  • An upper partition, a middle partition and a lower partition are arranged in sequence from top to bottom inside the main machine base; a clean water collection chamber is between the upper partition and the top of the main machine base, a large clean water chamber is between the upper partition and the middle partition, a raw water chamber is between the middle partition and the lower partition, and a small clean water chamber and a sewage chamber are between the lower partition and the bottom of the main machine base.
  • the rotary sewage suction device includes an axially arranged hollow shaft and a plurality of sewage pipes connected to the hollow shaft, each sewage pipe is provided with a sewage channel, and the sewage channel is connected to the hollow shaft; the plurality of sewage pipes are vertically distributed in the axial direction according to a spiral line, and each sewage pipe is arranged perpendicular to the hollow shaft, and the plurality of sewage pipes constitute a propeller impeller mechanism.
  • the water spray device includes a water spray pipe connected to the hollow shaft.
  • the water spray pipe is located at the lower end of the hollow shaft and is vertically arranged with the hollow shaft.
  • a water spray port is arranged at the end of the water spray pipe, and the water spray port faces the booster plate, which is arranged on the inner wall of the main machine base.
  • the small clean water cavity is connected with the forward and reverse water pipes, the forward and reverse water channels are arranged in the forward and reverse water pipes, the other ends of the forward and reverse water pipes are respectively connected to the clean water outlet pipe and the backwash water pipe, and the clean water outlet pipe and the backwash water pipe are finally connected to the clean water outlet.
  • a flow stabilizing pipe is arranged at the clean water outlet, and the clean water outlet pipe and the backwash water inlet pipe are both connected to the clean water outlet through the flow stabilizing pipe; a water inlet pipe damping plate is arranged in the forward and reverse water pipes.
  • It also includes a forced sewage discharge channel, below which is a forced sewage discharge port, the forced sewage discharge channel is connected to the main sewage discharge port, and a forced sewage discharge electric valve and a forced sewage discharge pump are arranged on the forced sewage discharge channel, wherein the pressure of the forced sewage discharge pump is greater than the pressure in the raw water cavity.
  • a safety filter device is arranged at the raw water inlet, the safety filter device comprises a safety filter screen arranged at the raw water inlet, and the raw water inlet is also connected to the safety sewage outlet through a safety sewage pipe.
  • the safety filtering device is provided with a secondary water pumping port, which is arranged on a secondary water pumping pipe, and the secondary water pumping pipe is connected with the safety sewage pipe; a secondary water pumping electric valve and a secondary water pump are arranged on the secondary water pumping pipe; a sewage sedimentation tank is arranged below the safety sewage outlet, the forced sewage outlet, the secondary water pumping port and the main sewage outlet, a sewage conveyor is arranged in the sewage sedimentation tank, a sewage outlet is arranged on the side of the sewage sedimentation tank, and sewage impurities are sent to the sewage outlet by the sewage conveyor for discharge, and the sedimentation water in the sewage sedimentation tank is sent into the safety filtering device through the secondary water pump from the secondary water pumping port, and finally sent to the raw water inlet.
  • An application of the above-mentioned multifunctional self-rotating flushing and filtering reaction device in the grading and sorting of particulate solids includes a plurality of multifunctional self-rotating flushing and filtering reaction devices arranged in sequence, wherein the clean water outlet pipe of the previous multifunctional self-rotating flushing and filtering reaction device is connected to the raw water inlet of another multifunctional self-rotating flushing and filtering reaction device through an external pipe; and a feeding electric valve and a feeding pump are arranged on the other side of the clean water collection cavity in each multifunctional self-rotating flushing and filtering reaction device.
  • the traditional transmembrane pressure difference signal is replaced by detecting the water flow rate of the small filter
  • the sewage pipe can be used as the material selection outlet to produce particles in the wet process
  • the internal pressure of the equipment is used for both status monitoring and backwashing signal
  • the whole machine has multiple modes of use and can be used for industrial water or urban sewage treatment, as well as in chemical, mining and other industries.
  • Fig. 1 is a schematic diagram of the structure of the present invention
  • FIG2 is a cross-sectional schematic diagram of a rotary sewage suction device of the present invention.
  • FIG3 is a schematic diagram of a regional gap seam of the present invention.
  • Fig. 4 is a cross-sectional view of a water jet device of the present invention.
  • FIG. 5 is a schematic diagram of a multifunctional connection of the present invention.
  • the multifunctional self-rotating flushing and filtering reaction device comprises a main machine base 21, an upper cover 25 is arranged at the upper end of the main machine base 21, a lower cover 52 is arranged at the lower end, the bottom of the lower cover 52 is connected to the main sewage discharge channel, and the end of the main sewage discharge channel is the main sewage discharge port 1.
  • An upper partition 22-1, a middle partition 22-2 and a lower partition 22-3 are arranged in sequence from top to bottom inside the main machine base 21, so that a clean water collection cavity 61 is formed between the upper partition 22-1 and the top of the main machine base 21, a large clean water cavity 18 is formed between the upper partition 22-1 and the middle partition 22-2, a raw water cavity 45 is formed between the middle partition 22-2 and the lower partition 22-3, and a small clean water cavity 51 and a sewage cavity 47 are formed between the lower partition 22-3 and the bottom of the main machine base 21, and the small clean water cavity 51 and the sewage cavity 47 are separated by a small filter screen 50.
  • a raw water inlet 15 is provided on the side of the main machine base 21, and the raw water inlet 15 is connected to the raw water cavity 45.
  • a safety filter device 14 is provided at the raw water inlet 15, and the safety filter device 14 includes a safety filter 13 provided at the raw water inlet 15, and the raw water inlet 15 is also connected to the safety sewage outlet 3 through a safety sewage pipe 63. Further, a safety electric valve 4 is provided in the safety sewage pipe 63, and the safety electric valve 4 is connected to the PLC controller 54.
  • the upper partition 22-1 is provided with an upper partition water hole 26, and the clean water collection cavity 61 is connected to the large clean water cavity 18 through the upper partition water hole 26, and a clean water outlet 35 is provided on one side of the clean water collection cavity 61. Further, a feeding electric valve 23 and a feeding pump 24 are provided on the other side of the clean water collection cavity 61, and the feeding electric valve 23 and the feeding pump 24 are fixed on the side wall of the main machine base 21, and the feeding electric valve 23 and the feeding pump 24 are also connected to the PLC controller 54.
  • the large clean water cavity 18 is separated from the raw water cavity 45 by a large filter 17, and the upper and lower ends of the large filter 17 are fixed to the upper partition 22-1 and the middle partition 22-2 by stoppers 27. Furthermore, a guide ring 16 is provided at the bottom of the large filter 17 to facilitate the raw water to enter the large filter 17.
  • a rotary sewage suction device 20 is arranged in the raw water cavity 45 and the sewage cavity 47.
  • the rotary sewage suction device 20 includes an axially arranged hollow shaft 20-1.
  • the upper end of the hollow shaft 20-1 is connected to the upper partition 22-1 through an upper bearing seat 30, and the lower end of the hollow shaft 20-1 is connected to the lower partition 22-3 through a lower bearing seat 42, a single-row radial ball bearing 43, a plane thrust bearing 44, and a sealing ring 41.
  • the upper partition 22-1 and the lower partition 22-3 provide support for the rotary sewage suction device 20, so that the rotary sewage suction device 20 can rotate freely.
  • the rotary sewage suction device 20 also includes a plurality of sewage pipes 38 connected to the hollow shaft 20-1, and a sewage channel 39 is arranged in each sewage pipe 38, and then the sewage channel 39 is connected to the hollow shaft 20-1.
  • the plurality of sewage pipes 38 are vertically distributed in the axial direction according to the spiral line, and each sewage pipe 38 is arranged perpendicular to the hollow shaft 20-1, and the plurality of sewage pipes 38 constitute a propeller impeller mechanism.
  • One end of the sewage pipe 38 is connected to the hollow shaft 20-1, and the other end is close to the inner surface of the large filter 17.
  • a gap area 19 is enclosed between the inner surface of the large filter 17 and the sewage channel 39, and the gap area 19 is a rotary sewage suction space. This gap area 19 changes with the rotation of the propeller impeller mechanism, and the trajectory of the change is a circular motion.
  • the gap between the sewage channel 39 and the inner surface of the large filter 17 is larger than the mesh diameter of the safety filter 13 in the safety filter device 14 , thereby ensuring that dirt and impurities in the raw water can be discharged from the sewage channel 39 .
  • a water spray device 48 is arranged below the rotary sewage suction device 20, and the water spray device 48 works in the sewage cavity 47.
  • the water spray device 48 includes a water spray pipe 20-2 connected to the hollow shaft 20-1, and the water spray pipe 20-2 is located at the lower end of the hollow shaft 20-1 and is arranged vertically with the hollow shaft 20-1.
  • a water spray port is arranged at the end of the water spray pipe 20-2, and the water spray port faces the booster plate 49, and the booster plate 49 is arranged on the inner wall of the main machine base 21.
  • the booster plates 49 are distributed along the circumference on the inner wall of the main machine base 21, and can be a plurality of intermittently arranged booster plates, or a continuous annular booster plate.
  • a small filter screen 50 is arranged below the rotary sewage suction device 20, and the small filter screen 50 separates the small clean water cavity 51 from the sewage cavity 47.
  • the shape of the small filter screen 50 can be a flat filter screen or a filter screen with a bending structure.
  • the small clean water cavity 51 is connected to the forward and reverse water pipes 37, and the forward and reverse water channels 40 are arranged in the forward and reverse water pipes 37.
  • the other ends of the forward and reverse water pipes 37 are respectively connected to the clean water outlet pipe 36 and the backwashing water guide pipe 33, and the clean water outlet pipe 36 and the backwashing water guide pipe 33 are finally connected to the clean water outlet 35.
  • a flow stabilizing pipe 32 is provided at the clean water outlet 35 , and the clean water outlet pipe 36 and the backwash water inlet pipe 33 are both connected to the clean water outlet 35 through the flow stabilizing pipe 32 .
  • the flow direction of raw water is: raw water enters the raw water cavity 45 from the raw water inlet 15. Due to the obstruction of the lower partition 22-3, a part of the raw water enters the large filter screen 17 from the bottom, and enters the large clean water cavity 18 after being filtered by the large filter screen 17. This part of the clean water passes through the water hole 26 of the upper partition and enters the clean water collection cavity 61, and is finally discharged from the clean water outlet 35. This part of the raw water has completed the filtration and purification, and the dirt and impurities in the raw water are intercepted by the large filter screen 17 and attached to the mesh holes on the inner surface of the large filter screen 17.
  • Another part of the raw water enters the large filter 17 from the bottom and then enters the rotary suction device 20, enters the sewage discharge channel 39 through the sewage discharge pipe 38 on the rotary suction device 20, enters the hollow shaft 20-1 from the sewage discharge channel 39, and reaches the water spray pipe 20-2 of the water spray device 48 under the action of the pressure difference, and then is sprayed into the sewage cavity 47, enters the small clean water cavity 51 through the small filter 50, and is discharged from the clean water outlet pipe 36 to the clean water outlet 35 through the forward and reverse water channels 40 of the forward and reverse water pipes 37.
  • the dirt and impurities in the raw water are intercepted by the small filter 50 and attached to the mesh holes on the inner surface of the small filter 50.
  • the upper part of the rotary sewage suction device 20 is arranged at the center of the large filter screen 17 and the guide ring 16.
  • the raw water enters the raw water cavity 45 area.
  • the raw water impacts the propeller impeller mechanism through the guide ring 16 to do work.
  • the propeller impeller mechanism is impacted by the axial water flow in the large filter screen 17 and the guide ring 16 to generate thrust, so that the rotary sewage suction device 20 rotates.
  • the lower water spray device 48 is arranged in the sewage cavity 47 at the lower end of the rotary sewage suction device 20.
  • the sewage sucked by the multiple sewage pipes 38 flows through the hollow shaft 20-1 to the water spray port 20-3 at the end of the water spray pipe 20-2, and is sprayed from the water spray port 20-3 to the booster plate 49 in the sewage cavity 47.
  • the water spray device 48 sprays water flow to the multiple circumferential booster plates 49 in the sewage cavity 47 along the tangential direction.
  • the water flow ejected from the nozzle sprays the booster plate 49 along the tangential direction to do work and generate thrust.
  • the thrust generated by the propeller impeller mechanism is in the same direction as the thrust generated by the water jet device 48, thereby driving the rotary sewage suction device 20 to rotate.
  • water spray ports 20 - 3 are provided at both ends of the water spray pipe 20 - 2 , and the axial direction of the water spray ports 20 - 3 is perpendicular to the axial direction of the water spray pipe 20 - 2 , which is the best implementation.
  • the dirt impurities in the raw water are pushed by the raw water to the inner surface of the large filter 17 and blocked on the mesh, and a gap area 19 is formed between the inner surface of the large filter 17 and the sewage discharge channel 39.
  • This gap area 19 follows the rotation of the propeller impeller to make a circular motion, that is, the dirt impurities blocked on the mesh of the large filter 17 can only stay for 1/n revolution at most, n is the number of blades of the spiral impeller, and then are pressed into the sewage discharge channel 39 and sent to the sewage cavity 47.
  • the clean water is rushed into the sewage discharge channel 39 through the mesh of the large filter 17.
  • the dirt impurities blocked on the mesh are loosened by the impact of the water flow and are pressed into the sewage discharge channel for discharge, completing the connection cleaning without stopping the machine and increasing the output of clean water.
  • a forced sewage discharge channel 62 is provided, and a forced sewage discharge port is provided below the forced sewage discharge channel 62.
  • the forced sewage discharge channel 62 is connected to the main sewage discharge channel, and a forced sewage discharge electric valve 6 and a forced sewage discharge pump 8 are provided on the forced sewage discharge channel 62, wherein the pressure of the forced sewage discharge pump 8 is greater than the pressure in the raw water cavity 45.
  • a main sewage discharge electric valve 53 is provided in the main sewage discharge channel, and the main sewage discharge electric valve 53 or the forced sewage discharge electric valve 6 and the forced sewage discharge pump 8 are opened and closed respectively.
  • the above-mentioned forced sewage discharge electric valve 6, forced sewage discharge pump 8 and main sewage discharge electric valve 53 are all connected to the PLC controller 54.
  • the main sewage discharge electric valve 53 and the forced sewage discharge electric valve 6 are closed, and the sewage discharge channel 39 of the propeller water wheel mechanism presses the raw water containing dirt and impurities at the mesh holes on the inner surface of the large filter screen 17 into the sewage cavity 47.
  • a water pipe damping plate 34 is provided in the forward and reverse water pipes 37.
  • the water pipe damping plate 34 can be a butterfly valve provided in the forward and reverse water pipes 37, or can be an adjustment plate with a triangular cross section, which is fixed on the rotating shaft, and the rotation angle of the adjustment plate is controlled by the motor to control the rotation of the rotating shaft; according to the rotation angle, the opening of the backwash water pipe 33 and the clean water outlet pipe 36 is adjusted.
  • the water pipe mud blocking plate 34 adjusts the forward and reverse water channels 40, thereby controlling the rotation speed of the rotary sewage suction device 20.
  • the water pipe mud blocking plate 34 can adjust the backwash intensity of the small filter 50.
  • a raw water cavity differential pressure transmitter 12 for obtaining raw water pressure is provided in the raw water cavity 45
  • a sewage cavity differential pressure transmitter 11 for obtaining sewage pressure is provided in the sewage cavity 47
  • a small clean water cavity differential pressure transmitter 9 for obtaining clean water pressure is provided in the small clean water cavity 51
  • a safety pressure transmitter 10 for obtaining safety pressure is provided in the safety filter device 14
  • a flow sensor 60 is provided in the forward and reverse water pipes 37.
  • the raw water cavity differential pressure transmitter 12, the sewage cavity differential pressure transmitter 11, the small clean water cavity differential pressure transmitter 9, the safety pressure transmitter 10, and the flow sensor 60 are all connected to the PLC controller 54.
  • the flushing program in the present invention is set as the flow sensor 60 as the main cleaning program sensor, the small clean water cavity pressure differential transmitter 9, the safety pressure differential transmitter 10, the sewage cavity pressure differential transmitter 11, and the raw water cavity pressure differential transmitter 12 as the second cleaning sensor to provide signal instructions to the PLC controller 54.
  • the PLC controller After receiving the set value of the flow sensor 60, the PLC controller opens the main sewage discharge electric valve 53, increases the water flow pressure of the clean water in the large clean water cavity 18 on the gap area 19, increases the reverse flushing force on the mesh of the large filter 17, and loosens the dirt and impurities at the mesh and is pressed into the sewage cavity 47 and discharged from the main sewage discharge port 1.
  • part of the clean water enters the small clean water cavity 51 through the clean water outlet 35, the backwashing water pipe 33, the forward and reverse water pipes 37, and the forward and reverse water channel 40, and enters the sewage cavity 47 after passing through the small filter 50, impacting and loosening the dirt and impurities blocked on the mesh of the inner surface of the small filter 50 and discharging them, and reversely flushing the small filter 50.
  • the device When the device is in online operation, the device can be equipped with devices and set the operating program as required.
  • the safety filter device 14 is provided with a secondary water pumping port 2, which is provided on a secondary water pumping pipe 64, and the secondary water pumping pipe 64 is connected to the safety sewage pipe 63.
  • a secondary water pumping electric valve 5 and a secondary water pump 7 are provided on the secondary water pumping pipe 64, and both the secondary water pumping electric valve 5 and the secondary water pump 7 are connected to the PLC controller 54.
  • a sewage settling tank 57 is provided below the sewage outlet 3, the forced sewage outlet, the secondary water pumping outlet 2 and the main sewage outlet 1, a sewage settling tank 57 is provided with a sewage conveyor 58, a sewage outlet 59 is provided on the side of the sewage settling tank 57, and sewage impurities are sent to the sewage outlet 59 by the sewage conveyor 58 for discharge, and the sediment water in the sewage settling tank 57 is sent to the security filter device 14 through the secondary water pumping outlet 2 and the secondary water pump 7, and finally sent to the raw water inlet 15.
  • the sewage conveyor 58 is controlled by the sewage tank controller 56, and the sewage tank controller 56 is connected to the PLC controller 54.
  • the PLC controller 54 is connected to a power line interface 55, and a stopper 27 and a large filter 17 are provided below the upper partition.
  • the upper cover 25 is provided with an exhaust valve 28, a pressure gauge 29 and a safety valve 31, which are all prior arts.
  • the working process of the present invention is:
  • the raw water is pressed into the raw water cavity 45 and then flows out after being filtered in two ways.
  • One way passes through the large filter screen 17 and enters the large clean water cavity 18 and flows out from the clean water outlet 35.
  • the other way passes along the propeller impeller mechanism of the rotary sewage suction device 20, passes through the sewage discharge channel 39 of the sewage discharge pipe 38, enters the sewage cavity 47 from the water spraying device 48, passes through the small filter screen 50 to the small clean water cavity 51, and then flows out from the positive and negative water channels 40 through the clean water outlet pipe 36 to the clean water outlet 35.
  • the dirt and impurities in the raw water intercepted by the large filter screen 17 adhere to the inner surface of the large filter screen 17 and clog the mesh of the large filter screen.
  • the dirt and impurities in the raw water intercepted by the small filter screen 50 in the sewage cavity 47 also adhere to the inner surface of the small filter screen and clog the mesh of the small filter screen.
  • the propeller impeller mechanism is in the rotary sewage suction device 20, and multiple sewage pipes 38 are connected along the hollow shaft 20-1.
  • the sewage discharge channel 39 of the sewage discharge pipe 38 is connected to the hollow shaft 20-1.
  • the multiple sewage discharge pipes 38 are arranged in a spiral line, and the spiral surface constitutes a propeller impeller, which is set in the large filter 17 and the guide ring 16 in the raw water cavity.
  • the impeller under the impact of the water flow becomes a turbine to provide power for the rotary sewage suction device 20.
  • Another water spray device 48 is set at the lower end of the hollow shaft. The raw water is sprayed from the sewage discharge channel 39 through the hollow shaft 20-1 from the water spray device 48 to the booster plate 49.
  • the sprayed water column is sprayed along the tangential direction, thereby also obtaining a radial driving force.
  • the direction of these two forces is to push the rotary sewage suction device 20 to rotate in the same direction, and the speed is adjusted by the water pipe damping plate 34.
  • the raw water with dirt and impurities is pressed into the sewage discharge channel 39 from the periphery of this gap area 19.
  • the gap water flow direction is from the large water purification cavity 18 through the large filter 17 and is pressed into the sewage discharge channel 39. In this process, the water flow impacts the filter mesh, so that the dirt and impurities blocked on the mesh of the large filter 17 are loosened and pressed into the sewage discharge channel 39.
  • One sewage discharge channel 39 cleans an annular area with the rotation of the rotary sewage suction device, and multiple sewage discharge channels 39 cover the entire inner surface of the large filter 17 with the rotation, completing the backwashing of the large filter when the sewage discharge electric valve is not opened, and the machine is started and run synchronously for cleaning. Therefore, the mesh of the large filter will not be blocked by dirt and impurities, thereby improving efficiency.
  • the multifunctional self-rotating flushing and filtering reaction device has a new use.
  • the clean water outlet pipe 36 of a multifunctional self-rotating flushing and filtering reaction device is connected to the raw water inlet 15 of another multifunctional self-rotating flushing and filtering reaction device through an external pipe 65, which can be used as a production line for wet mineral processing, abrasive industry, sand making industry, sewage treatment industry, etc., to perform graded sorting of particulate solids.
  • the apertures of the large filter screen 17 and the small filter screen 50 in the plurality of multifunctional self-rotating flushing and filtering reaction devices arranged in sequence are adjusted in sequence, so that the particulate solids smaller than the aperture of the large filter screen 17 and the small filter screen 50 enter the next level, and those larger than the aperture are discharged from the main sewage outlet 1 of the current level.
  • the feeding electric valve 23, the feeding pump 24 and the exhaust valve 28 are arranged between N devices to form a multi-stage reactor to process a variety of liquid products. Further, the forced sewage discharge electric valve 6 and the forced sewage discharge pump 8 also need to be installed in the cascade device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)

Abstract

多功能自旋转冲洗过滤反应装置,在主体机座内部设置净水收集腔体、大净水腔体、原水腔体、小净水腔体和污水腔体;原水从原水进水口进入原水腔体内,一部分原水进入大滤网,经大滤网过滤后进入大净水腔体,该部分净水穿过上隔板过水孔进入净水收集腔体,最后从净水出水口排出,这部分原水中的污物杂质被大滤网拦截,附着在大滤网内表面网孔处;另一部分原水进入大滤网内部后而进入旋转吸污装置,最后流入喷水口装置中,然后喷射到污水腔体中,通过小滤网进入小净水腔体,最后通过管道连通至净水出水口排出,原水中的污物杂质被小滤网拦截,附着在小滤网的内表面网孔处。本发明运行即清洗,大滤网不会堵塞,提高了产能。

Description

多功能自旋转冲洗过滤反应装置 技术领域
本发明涉及机械领域,尤其涉及净化水处理技术中的反冲洗过滤器、旋转反冲洗过滤器,涉及湿法固体颗粒物净化和分级分选处理。
背景技术
目前,公知的废水净化水处理技术过程中使用的反冲洗过滤器在净化过程中是必要的,它起着拦截水中的杂质作用,在废水处理过程中,原水由进入过滤器流经滤网后成为净水,原水中的杂质被过滤器内的滤网拦截,使其附着或堵塞在滤网网孔表面上,影响过滤器的过滤效果和出水量,因此对过滤器的滤网反向冲洗,去掉滤网网孔表面上的杂质来恢复过滤器的处理能力是必要的。现有的反冲洗过滤器的滤网清洗系统是在压力差变送控制器下,采用电动机正反转带动其传动机构,使其清洗喷嘴和吸管在过滤器固定滤网的两侧围绕滤网做径向旋转和轴向往复运动,同时喷嘴向滤网外侧喷出高压水流,对滤网进行反向冲洗,被冲洗掉的杂质由吸管吸入后排出,喷嘴吸管沿滤网内处两侧以正反包络螺旋线的运动方式覆盖滤网来达到清洗目的。有的过滤器在滤网内侧吸管附近加装刮板用来松动杂质,也有的过滤器在滤网内侧加装毛刷来松动杂质和加装弹性吸管来吸杂质。这些都是为了冲洗掉滤网网孔处的杂质来达到清洗目的要求。
这几种反冲洗过滤器的机械装置结构复杂,制造成本高,电动机正反转频繁启动耗能高,设备运行成本高,喷嘴的高压水流对滤网的冲击力大,减少了滤网的使用寿命。以上几种反冲洗过滤器之所以这样复杂,其根本在于运行过程中滤网网孔被杂质堵塞,堵塞的杂质在水流的冲击下附着在滤网内表上,越积越多,杂质层越厚,只有堵到一定程度后出现了原水腔体与净水腔内的压差达到一定数值后,才开启清洗系统,这样就出现了清洗困难。也就是不堵塞到一定程度,清洗系统不会工作。因此,降低了过滤器的工作效率,运行成本和维修成本高。
发明内容
本发明要解决的技术问题是:如何降低现有过滤器的制造成本和设备运行能耗,改善过 滤器的反冲洗模式,本发明提供一种多功能自旋转冲洗过滤反应装置。
本发明的技术方案具体为:
多功能自旋转冲洗过滤反应装置,它包括主体机座,在主体机座的底部设有主排污口,在主体机座内部设置净水收集腔体、大净水腔体、原水腔体、小净水腔体和污水腔体;
其中,在主体机座上设置有原水进水口,原水进水口与原水腔体相连通;
大净水腔体通过上隔板过水孔连通净水收集腔体,在净水收集腔体的一侧设置净水出水口;
在大净水腔体与原水腔体之间用大滤网隔开;
在原水腔体和污水腔体内设置旋转吸污装置;旋转吸污装置下方连通喷水口装置,喷水口装置工作在污水腔体中,在小净水腔体与污水腔体之间用小滤网隔开;
小净水腔体连通净水出水口;
原水从原水进水口进入原水腔体内,一部分原水进入大滤网,经大滤网过滤后进入大净水腔体,该部分净水穿过上隔板过水孔进入净水收集腔体,最后从净水出水口排出,这部分原水中的污物杂质被大滤网拦截,附着在大滤网内表面网孔处;另一部分原水进入大滤网内部后而进入旋转吸污装置,最后流入喷水口装置中,然后喷射到污水腔体中,通过小滤网进入小净水腔体,最后通过管道连通至净水出水口排出,原水中的污物杂质被小滤网拦截,附着在小滤网的内表面网孔处。
在主体机座内部从上到下依次设置上隔板、中隔板和下隔板;上隔板与主体机座顶部之间为净水收集腔体,上隔板与中隔板之间为大净水腔体,中隔板与下隔板之间为原水腔体,下隔板与主体机座底部之间为小净水腔体和污水腔体。
旋转吸污装置包括轴向设置的空心轴,以及若干个与空心轴连通的排污管,每个排污管内均设置排污通道,进而排污通道与空心轴连通;多个排污管按照螺旋线在轴向方向垂直分布,且每个排污管垂直于空心轴设置,多个排污管构成螺旋浆叶轮机构。
喷水口装置包括与空心轴相连通的喷水管,喷水管位于空心轴下端,且与空心轴垂直设置,喷水管的末端设置喷水口,喷水口朝向助推板,助推板设置在主体机座的内壁上。
小净水腔体与正反向水管相连通,正反水通道设置在正反向水管内,正反向水管的另一端分别连接净水出水管和反冲洗引水管,净水出水管和反冲洗引水管最后均连接至净水出水口。
在净水出水口设置稳流管,净水出水管和反冲洗引水管均通过稳流管连接至净水出水口;在正反向水管内设置引水管阻尼板。
还包括强制排污通道,强制排污通道下方为强制排污口,强制排污通道连通至主排污口,在强制排污通道上设置强制排污电动阀和强制排污泵,其中,强制排污泵的压力大于原水腔体内的压力。
在原水进水口处设置保安过滤装置,保安过滤器装置包括设置在原水进水口处的保安滤网,且原水进水口还通过一个保安排污管道连接保安排污口。
保安过滤装置设置有二次抽水口,二次抽水口设置在二次抽水管道上,二次抽水管道与保安排污管道连通;在二次抽水管道上设置二次抽水电动阀和二次抽水泵;在保安排污口、强制排污口、二次抽水口和主排污口的下方设置有污水沉淀槽,污水沉淀槽内设置污物输送机,污水沉淀槽侧方设置污物出口,污物杂质由污物输送机送至污物出口排出,污水沉淀槽中的沉淀水由二次抽水口经二次抽水泵送入保安过滤装置中,最终送至原水进水口。
一种上述的多功能自旋转冲洗过滤反应装置在颗粒固体分级分选中的应用,包括依次设置的若干个多功能自旋转冲洗过滤反应装置,前一个多功能自旋转冲洗过滤反应装置的净水出水管通过外接管道连接另一个多功能自旋转冲洗过滤反应装置的原水进水口;在每个多功能自旋转冲洗过滤反应装置中净水收集腔体的另一侧设置加料电动阀和加料泵。
本发明的有益效果为:
1、运行即清洗,大滤网不会堵塞,提高了产能;
2、通过检测小滤网出水流量代替了传统的跨膜压差信号;
3、加装了多个加料口,可扩展联机生产化工合成液体产品;
4、排污管可做为选料出口,成为中湿法联机生产颗粒等;
5、无电机清洗机构,即降低制造成本,也提高了可靠性;
6、设备内部压力既用于状态监控,也用于反冲洗信号;
7、低能耗设计,仅PLC与电动阀工作时耗电;
8、整机多模式用途,可用于工业用水或城市污水处理,也可用于化工、矿业等行业。
附图说明
图1是本发明的结构原理图;
图2是本发明的旋转吸污装置剖面示意图;
图3是本发明的区域间隙缝示意图;
图4是本发明的喷水口装置剖面图;
图5是本发明的多功能联机示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1所示,多功能自旋转冲洗过滤反应装置,它包括主体机座21,在主体机座21上端设置上封盖25,下端设置下封盖52,下封盖52的底部连接主排污通道,主排污通道的端部为主排污口1。在主体机座21内部从上到下依次设置上隔板22-1、中隔板22-2和下隔板22-3,这样,上隔板22-1与主体机座21顶部之间为净水收集腔体61,上隔板22-1与中隔板22-2之间为大净水腔体18,中隔板22-2与下隔板22-3之间为原水腔体45,下隔板22-3与主体机座21底部之间为小净水腔体51和污水腔体47,在小净水腔体51与污水腔体47之间用小滤网50隔开。
主体机座21侧方设置原水进水口15,原水进水口15与原水腔体45相连通。在原水进水口15处设置保安过滤装置14,保安过滤器装置14包括设置在原水进水口15处的保安滤网13,且原水进水口15还通过一个保安排污管道63连接保安排污口3。进一步地,在保安排污管道63内设置保安电动阀4,保安电动阀4与PLC控制器54相连接。
上隔板22-1上设置上隔板过水孔26,净水收集腔体61通过上隔板过水孔26连通大净水腔体18,在净水收集腔体61的一侧设置净水出水口35。进一步地,在净水收集腔体61的另一侧设置加料电动阀23和加料泵24,加料电动阀23和加料泵24固定在主体机座21的侧壁上,且加料电动阀23和加料泵24也与PLC控制器54相连接。
在大净水腔体18与原水腔体45之间用大滤网17隔开,大滤网17上下两端分别由止口27固定在上隔板22-1和中隔板22-2上。进一步地,大滤网17的下部设置导流环16,便于原水进入大滤网17内部。
如图1、图2所示,在原水腔体45和污水腔体47内设置旋转吸污装置20,旋转吸污装置20包括轴向设置的空心轴20-1,空心轴20-1上端通过上轴承座30与上隔板22-1连接, 空心轴20-1下端通过下轴承座42、单列向心球轴承43和平面推力轴承44、密封圈41与下隔板22-3相连接,上隔板22-1和下隔板22-3为旋转吸污装置20提供支撑,使旋转吸污装置20能够自由旋转。
旋转吸污装置20还包括若干个与空心轴20-1连通的排污管38,每个排污管38内均设置排污通道39,进而排污通道39与空心轴20-1连通。多个排污管38按照螺旋线在轴向方向垂直分布,且每个排污管38垂直于空心轴20-1设置,多个排污管38构成螺旋浆叶轮机构。排污管38的一端与空心轴20-1连通,另一端靠近大滤网17的内表面处。需要说明的是,在大滤网17内表面与排污通道39之间围成一个间隙区域19,该间隙区域19为旋转吸污空间,这个间隙区域19跟随螺旋浆叶轮机构的转动而做变化,变化的轨迹为圆周运动。
进一步地,排污通道39与大滤网17内表面的间隙大于保安过滤装置14中的保安滤网13的网孔直径,从而保证了原水中的污物杂质能够从排污通道39中排出。
旋转吸污装置20下方设置喷水口装置48,喷水口装置48工作在污水腔体47中,喷水口装置48包括与空心轴20-1相连通的喷水管20-2,喷水管20-2位于空心轴20-1下端,且与空心轴20-1垂直设置,喷水管20-2的末端设置喷水口,喷水口朝向助推板49,助推板49设置在主体机座21的内壁上。需要说明的是,助推板49在主体机座21内壁上沿圆周分布,可以为多个间断设置的助推板,也可以为一个连续的圆环型助推板。
旋转吸污装置20下方设置小滤网50,小滤网50将小净水腔体51和污水腔体47隔开。小滤网50的形状可以为平面滤网,也可以为带折弯结构的滤网。小净水腔体51与正反向水管37相连通,正反水通道40设置在正反向水管37内,正反向水管37的另一端分别连接净水出水管36和反冲洗引水管33,净水出水管36和反冲洗引水管33最后均连接至净水出水口35。
进一步地,在净水出水口35设置稳流管32,净水出水管36和反冲洗引水管33均通过稳流管32连接至净水出水口35。
如图3、图4所示,原水流动方向为:原水从原水进水口15进入原水腔体45内,由于下隔板22-3的阻隔,一部分原水从下部进入大滤网17,经大滤网17过滤后进入大净水腔体18,该部分净水穿过上隔板过水孔26进入净水收集腔体61,最后从净水出水口35排出,这部分原水完成了过滤净化,原水中的污物杂质被大滤网17拦截,附着在大滤网17内表面网孔处。另一部分原水进入从下部进入大滤网17内部后而进入旋转吸污装置20,经旋转吸污装置20上的排污管38进入排污通道39,从排污通道39进入空心轴20-1,在压差作用下至喷水口装置48的喷水管20-2,然后喷射到污水腔体47中,通过小滤网50进入小净水腔 体51,经正反向水管37的正反水通道40,从净水出水口管36至净水出水口35排出,原水中的污物杂质被小滤网50拦截,附着在小滤网50的内表面网孔处。
本发明中,运行和清洗同时进行的工作原理是:
旋转吸污装置20上部设置在大滤网17和导流环16中心,原水进入原水腔体45区,在导流环16的作用下,原水经导流环16冲击螺旋浆叶轮机构做功,螺旋浆叶轮机构在大滤网17和导流环16内受到轴向水流的冲击产生推力,使旋转吸污装置20旋转起来。同时,下部喷水口装置48设置在旋转吸污器20下端的污水腔体47中,多个排污管38吸取的污水,通过空心轴20-1流至喷水管20-2的末端的喷水口20-3,从喷水口20-3喷射到污水腔体47内的助推板49上。喷水口装置48在污水腔体47中沿切线方向对圆周多个助推板49喷射水流,喷嘴射出的水流沿切线方向对助推板49喷射做功,产生推力。螺旋浆叶轮机构产生的推力和喷水口装置48产生的推力方向一致,从而推动旋转吸污装置20转动。
需要说明的是,如图4所示,在喷水管20-2的两端均设置喷水口20-3,喷水口20-3的轴向方向与喷水管20-2的轴向方向相垂直为最佳实施方式。
在旋转吸污装置20的转动过程中,原水中污物杂质被原水推压在大滤网17的内表面堵在网孔上,在大滤网17内表面与排污通道39之间围成一个间隙区域19,这个间隙区域19跟随螺旋浆叶轮转动做圆周运动,即堵塞在大滤网17网孔上的污物杂质最多只能停留1/n转,n为螺旋叶轮的叶片数,随即被压入排污通道39后,被送入污水腔体47。在间隙区域19内净水是通过大滤网17网孔冲入排污通道39,这个堵在网孔上的污物杂质被水流冲击松动后被压入排污通道排出,完成了不停机的连接清洗,提高了净水出水量。
进一步地,为增强排污效果,设置强制排污通道62,强制排污通道62下方为强制排污口,强制排污通道62连通至主排污通道,在强制排污通道62上设置强制排污电动阀6和强制排污泵8,其中,强制排污泵8的压力大于原水腔体45内的压力。为实现自动化控制,在主排污通道内设置主排污电动阀53,主排污电动阀53或强制排污电动阀6和强制排污泵8,两者一开一闭。上述的强制排污电动阀6、强制排污泵8和主排污电动阀53均与PLC控制器54相连接。
关闭主排污电动阀53和强制排污电动阀6,螺旋浆水轮机构的排污通道39把大滤网17内表面网孔处含有污物杂质的原水压进入污水腔体47。
进一步地,在正反向水管37内设置引水管阻尼板34。引水管阻尼板34可以为设置在正反向水管37内的蝶阀,也可以为一个截面为三角形的调节板,该调节板固定在转轴上,通过电机控制转轴转动,来控制调节板的转动角度;根据转动角度,来调节反冲洗引水管 33和净水出水管36的开度。这样,在未开启主排污电动阀53和/或强制排污电动阀6排污时,引水管阻泥板34来调节正反水通道40,从而控制旋转吸污装置20的转速。在开启主排污电动阀53或强制排污电动阀6时,引水管阻泥板34可调节对小滤网50的反洗强度。
为实现进一步自动控制,在原水腔体45内设置获取原水压力的原水腔压差变送器12,在污水腔体47内设置获取污水压力的污水腔体压差变送器11,在小净水腔体51内设置获取净水压力的小净水腔体压差变送器9,在保安过滤装置14内设置获取保安压力的保安压差变送器10、在正反向水管37内设置流量传感器60。上述的原水腔压差变送器12、污水腔体压差变送器11、小净水腔体压差变送器9、保安压差变送器10、流量传感器60均与PLC控制器54相连接。
本发明中的冲洗程序设定为流量传感器60为主清洗程序传感器,小净水腔体压差变送器9、保安压差变送器10、污水腔体压差变送器11、原水腔压差变送器12做为第二清洗传感器,给PLC控制器54提供信号指令。
由PLC控制器收到流量传感器60设定值后,开启主排污电动阀53,增大了大净水腔体18的净水对间隙区域19的水流压力,加大了对大滤网17网孔的反向冲洗力,网孔处污物杂质松动被压入污水腔体47从主排污口1排出。反向清洗小滤网50时,部分净水经净水出水口35、反冲洗引水管33、正反向水管37、正反水通道40进入小净水腔体51,通过小滤网50后进入污水腔体47,把堵塞在小滤网50内表面网孔上的污物杂质冲击松动排出,对小滤网50反向冲洗。
本装置在联机运行时可根据需要配备装置和设定运行程序。
进一步地,保安过滤装置14设置有二次抽水口2,二次抽水口2设置在二次抽水管道64上,二次抽水管道64与保安排污管道63连通。在二次抽水管道64上设置二次抽水电动阀5和二次抽水泵7,二次抽水电动阀5和二次抽水泵7均与PLC控制器54相连接。
进一步地,在保安排污口3、强制排污口、二次抽水口2和主排污口1的下方设置有污水沉淀槽57,污水沉淀槽57内设置污物输送机58,污水沉淀槽57侧方设置污物出口59,污物杂质由污物输送机58送至污物出口59排出,污水沉淀槽57中的沉淀水由二次抽水口2经二次抽水泵7送入保安过滤装置14中,最终送至原水进水口15。需要说明的是,污物输送机58由排污槽控制器56控制,排污槽控制器56与PLC控制器54相连接。
必要地,PLC控制器54上连接有电源线接口55,上隔板下方有止口27、大滤网17,这些为现有技术,在此不再赘述。
在上封盖25上设置有排气阀28、压力表29和安全阀31,这些均为现有技术。
本发明的工作过程是:
原水被压入原水腔体45内经两路过滤后流出,一路通过大滤网17进入大净水腔体18上接至净水出水口35流出,另一路沿旋转吸污装置20的螺旋浆叶轮机构,经排污管38的排污通道39从喷水口装置48进入污水腔体47,通过小滤网50至小净水腔体51后,由正反水通道40经净水出水管36至净水出水口35流出。原水通过大滤网17被拦截下的原水中的污物杂质附着在大滤网17内表面并堵塞在大滤网的网孔上,同样在污水腔体47的原水通过小滤网50被拦截下的原水中的污物杂质也附着在小滤网内表面堵塞在小滤网的网孔上。
螺旋桨叶轮机构是在旋转吸污装置20,沿空心轴20-1连通有多个排污管38,排污管38的排污通道39与空心轴20-1相连通,多个排污管38按螺旋线排列螺旋面构成了螺旋桨叶轮,设置在原水腔体内的大滤网17和导流环16内,在水流的冲击下的叶轮成为水轮机来为旋转吸污装置20提供动力。另一个设置在空心轴下端的喷水口装置48,原水由排污通道39经空心轴20-1内从喷水口装置48喷射到助推板49上,喷射的水流柱沿切线方向喷射,从而也获得径向推动力,这两个力的方向是同方向推动旋转吸污装置20旋转,转速由引水管阻尼板34调节。在大滤网17内表面与旋转吸污装置20的排污通道39口之间有大于保安滤网孔径的曲面的间隙区域19,带有污物杂质的原水从这个间隙区域19的周围被压入排污通道39,这个间隙区域19内水流方向有两个,一个是从间隙区域19的周围流向排污通道39,另一个是朝向大滤网17内表面,在这个区域间隙水流方向由大净水腔体18通过大滤网17被压入排污通道39,在这个过程中水流对滤网孔冲击使堵塞在大滤网17网孔上的污物杂质松动被压入排污通道39。一个排污通道39随着旋转吸污装置的旋转清洗一个环形区域,多个排污通道39随着旋转就覆盖了整个大滤网17内表面,完成了未开启排污电动阀时大滤网的反冲洗,开机运行同步清洗,因此,大滤网网孔不会被污物杂质堵塞,从而提高了效率。
当主排污电动阀53开启后,污水腔体47内的含污物杂质的原水排出有两种情况,一种是主排污电动阀53开启后,污水腔体47内压力迅速下降迫使大净水腔体18内水流加大了对大滤网17的间隙区域19处反冲洗力度,二是污水腔体47内的水压下降使得处于高水压的净水从正反向水管的正反向水管36进入小净水腔体内对小滤网50进行反冲洗,附着在小滤网50内表面上的污物杂质反方向水流冲击而松动被排出。关闭主排污电动阀53,开启强制排污电动阀6和强制排污泵8为强制排污,泵的压力大于原水腔体内压力。
另外,多功能自旋转冲洗过滤反应装置还有一个新用途。将一个多功能自旋转冲洗过滤反应装置的净水出水管36通过外接管道65连接另一个多功能自旋转冲洗过滤反应装置的原 水进水口15,可作为湿法选矿、磨料行业、制砂行业、污水处理行业等的生产线,进行颗粒固体的分级分选。在分级分选时,根据颗粒固体的粒径,对依次设置的多个多功能自旋转冲洗过滤反应装置中的大滤网17和小滤网50的孔径依次进行调整,这样,小于大滤网17和小滤网50孔径的颗粒固体进入下一级,大于其孔径的从本级的主排污口1排出。在分级分选中,N个装置之间设置加料电动阀23、加料泵24和排气阀28可组成多级反应器处理多种液体产品。进一步地,强制排污电动阀6和强制排污泵8也需要安装到级联的装置中。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明整体构思前提下,还可以作出若干改变和改进,这些也应该视为本发明的保护范围。

Claims (15)

  1. 多功能自旋转冲洗过滤反应装置,它包括主体机座(21),在主体机座(21)的底部设有主排污口(1),其特征在于:在主体机座(21)内部设置净水收集腔体(61)、大净水腔体(18)、原水腔体(45)、小净水腔体(51)和污水腔体(47);
    其中,在主体机座(21)上设置有原水进水口(15),原水进水口(15)与原水腔体(45)相连通;
    大净水腔体(18)通过上隔板过水孔(26)连通净水收集腔体(61),在净水收集腔体(61)的一侧设置净水出水口(35);
    在大净水腔体(18)与原水腔体(45)之间用大滤网(17)隔开;
    在原水腔体(45)和污水腔体(47)内设置旋转吸污装置(20);旋转吸污装置(20)下方连通喷水口装置(48),喷水口装置(48)工作在污水腔体(47)中,在小净水腔体(51)与污水腔体(47)之间用小滤网(50)隔开;
    小净水腔体(51)连通净水出水口(35);
    原水从原水进水口(15)进入原水腔体(45)内,一部分原水进入大滤网(17),经大滤网(17)过滤后进入大净水腔体(18),该部分净水穿过上隔板过水孔(26)进入净水收集腔体(61),最后从净水出水口(35)排出,这部分原水中的污物杂质被大滤网(17)拦截,附着在大滤网(17)内表面网孔处;另一部分原水进入大滤网(17)内部后而进入旋转吸污装置(20),最后流入喷水口装置(48)中,然后喷射到污水腔体(47)中,通过小滤网(50)进入小净水腔体(51),最后通过管道连通至净水出水口(35)排出,原水中的污物杂质被小滤网(50)拦截,附着在小滤网(50)的内表面网孔处。
  2. 根据权利要求1所述的多功能自旋转冲洗过滤反应装置,其特征在于:在主体机座(21)内部从上到下依次设置上隔板(22-1)、中隔板(22-2)和下隔板(22-3);上隔板(22-1)与主体机座(21)顶部之间为净水收集腔体(61),上隔板(22-1)与中隔板22-2之间为大净水腔体(18),中隔板(22-2)与下隔板(22-3)之间为原水腔体(45),下隔板(22-3)与主体机座(21)底部之间为小净水腔体(51)和污水腔体(47)。
  3. 根据权利要求1所述的多功能自旋转冲洗过滤反应装置,其特征在于:旋转吸污装置(20)包括轴向设置的空心轴(20-1),以及若干个与空心轴(20-1)连通的排污管(38),每个排污管(38)内均设置排污通道(39),进而排污通道(39)与空心轴(20-1)连通;多个排污管(38)按照螺旋线在轴向方向垂直分布,且每个排污管(38)垂直于空心轴(20-1)设置,多个排污管(38)构成螺旋浆叶轮机构。
  4. 根据权利要求3所述的多功能自旋转冲洗过滤反应装置,其特征在于:喷水口装置 (48)包括与空心轴(20-1)相连通的喷水管(20-2),喷水管(20-2)位于空心轴(20-1)下端,且与空心轴(20-1)垂直设置,喷水管(20-2)的末端设置喷水口(20-3),喷水口(20-3)朝向助推板(49),助推板(49)设置在主体机座(21)的内壁上。
  5. 根据权利要求4所述的多功能自旋转冲洗过滤反应装置,其特征在于:所述喷水管(20-2)的两端均设置喷水口(20-3),喷水口(20-3)的轴向方向与喷水管(20-2)的轴向方向相垂直。
  6. 根据权利要求1所述的多功能自旋转冲洗过滤反应装置,其特征在于:小净水腔体(51)与正反向水管(37)相连通,正反水通道(40)设置在正反向水管(37)内,正反向水管(37)的另一端分别连接净水出水管(36)和反冲洗引水管(33),净水出水管(36)和反冲洗引水管(33)最后均连接至净水出水口(35)。
  7. 根据权利要求6所述的多功能自旋转冲洗过滤反应装置,其特征在于:在原水腔体(45)内设置获取原水压力的原水腔压差变送器(12),在污水腔体(47)内设置获取污水压力的污水腔体压差变送器(11),在小净水腔体(51)内设置获取净水压力的小净水腔体压差变送器(9),在正反向水管(37)内设置流量传感器(60);所述的原水腔压差变送器(12)、污水腔体压差变送器(11)、小净水腔体压差变送器(9)、流量传感器(60)均与PLC控制器(54)相连接。
  8. 根据权利要求6所述的多功能自旋转冲洗过滤反应装置,其特征在于:在净水出水口(35)设置稳流管(32),净水出水管(36)和反冲洗引水管(33)均通过稳流管(32)连接至净水出水口(35)。
  9. 根据权利要求6所述的多功能自旋转冲洗过滤反应装置,其特征在于:在正反向水管(37)内设置引水管阻尼板(34)。
  10. 根据权利要求1所述的多功能自旋转冲洗过滤反应装置,其特征在于:还包括强制排污通道(62),强制排污通道(62)下方为强制排污口,强制排污通道(62)连通至主排污口(1),在强制排污通道(62)上设置强制排污电动阀(6)和强制排污泵(8),其中,强制排污泵(8)的压力大于原水腔体(45)内的压力。
  11. 根据权利要求1所述的多功能自旋转冲洗过滤反应装置,其特征在于:在原水进水口(15)处设置保安过滤装置(14),保安过滤器装置(14)包括设置在原水进水口(15)处的保安滤网(13),且原水进水口(15)还通过一个保安排污管道(63)连接保安排污口(3)。
  12. 根据权利要求11所述的多功能自旋转冲洗过滤反应装置,其特征在于:保安过滤 装置(14)设置有二次抽水口(2),二次抽水口(2)设置在二次抽水管道(64)上,二次抽水管道(64)与保安排污管道(63)连通;在二次抽水管道(64)上设置二次抽水电动阀(5)和二次抽水泵(7),二次抽水电动阀(5)和二次抽水泵(7)均与PLC控制器(54)相连接。
  13. 根据权利要求12所述的多功能自旋转冲洗过滤反应装置,其特征在于:在保安排污口(3)、强制排污口、二次抽水口(2)和主排污口(1)的下方设置有污水沉淀槽(57),污水沉淀槽(57)内设置污物输送机(58),污水沉淀槽(57)侧方设置污物出口(59),污物杂质由污物输送机(58)送至污物出口(59)排出,污水沉淀槽(57)中的沉淀水由二次抽水口(2)经二次抽水泵(7)送入保安过滤装置(14)中,最终送至原水进水口(15)。
  14. 一种权利要求1-13任一所述的多功能自旋转冲洗过滤反应装置在颗粒固体分级分选中的应用,其特征在于:包括依次设置的若干个多功能自旋转冲洗过滤反应装置,前一个多功能自旋转冲洗过滤反应装置的净水出水管(36)通过外接管道(65)连接另一个多功能自旋转冲洗过滤反应装置的原水进水口(15)。
  15. 根据权利要求14所述的多功能自旋转冲洗过滤反应装置在颗粒固体分级分选中的应用,其特征在于:在每个多功能自旋转冲洗过滤反应装置中净水收集腔体(61)的另一侧设置加料电动阀(23)和加料泵(24),加料电动阀(23)和加料泵(24)固定在主体机座(21)的侧壁上,且加料电动阀(23)和加料泵(24)也与PLC控制器(54)相连接。
PCT/CN2022/122885 2022-08-31 2022-09-29 多功能自旋转冲洗过滤反应装置 WO2024045257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211053216.5 2022-08-31
CN202211053216.5A CN117654141A (zh) 2022-08-31 2022-08-31 多功能自旋转冲洗过滤反应装置

Publications (2)

Publication Number Publication Date
WO2024045257A1 WO2024045257A1 (zh) 2024-03-07
WO2024045257A9 true WO2024045257A9 (zh) 2024-06-13

Family

ID=90066810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122885 WO2024045257A1 (zh) 2022-08-31 2022-09-29 多功能自旋转冲洗过滤反应装置

Country Status (2)

Country Link
CN (1) CN117654141A (zh)
WO (1) WO2024045257A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031358A1 (de) * 2009-07-02 2011-01-05 Hydac Process Technology Gmbh Filtervorrichtung und Filterelementanordnung zur Anwendung in der Filtervorrichtung
CN202410305U (zh) * 2012-01-17 2012-09-05 秦皇岛世纪源水处理技术有限公司 立式超声波集成过滤机
CN203710773U (zh) * 2014-01-03 2014-07-16 杨阳 一种自清洗过滤器
CN105214361B (zh) * 2015-10-28 2017-11-21 安阳市昌明环保设备有限责任公司 旋转冲洗过滤器
CN215692109U (zh) * 2021-09-26 2022-02-01 盈祥过滤设备(上海)有限公司 一种大通量多芯过滤器
CN114177680A (zh) * 2021-12-28 2022-03-15 河北润农节水科技股份有限公司 一种负压自吸反冲洗装置

Also Published As

Publication number Publication date
WO2024045257A1 (zh) 2024-03-07
CN117654141A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN203694673U (zh) 体外循环清洗滤料的核桃壳过滤器
CN103405962B (zh) 一种多级污水分离装置
WO2024045257A9 (zh) 多功能自旋转冲洗过滤反应装置
CN117563315A (zh) 一种水力驱动吸污式自清洗泵前过滤装置
JP2007038068A (ja) 固液分離装置
CN111392832A (zh) 一种灰水分离装置
CN203425617U (zh) 一种吸污车泥水分离装置
CN115614512A (zh) 一种多功能过滤阀
CN211724837U (zh) 一种自清洗管道过滤器
KR20010000766A (ko) 싸이클론식 연속여과기의 자동 역세 장치
CN110152374A (zh) 一种工业污水处理机
CN105481124A (zh) 柱形水力旋流除砂自动清洗网式过滤器
CN213049722U (zh) 一种离心油液净化机
CN102188852B (zh) 转盘式超声波自清洗微滤机
CN211914749U (zh) 一种机械零件清洗装置
CN220328038U (zh) 一种污水预处理装置
CN214399922U (zh) 一种高效提标改造处理装置
CN214600609U (zh) 一种分离式洗砂机
CN220802282U (zh) 一种反冲洗过滤器
CN220360933U (zh) 一种高分子生产用气体过滤装置
CN210530775U (zh) 钻井液回收用净化器及系统
CN217067858U (zh) 一种钻井液过滤装置
CN220695995U (zh) 一种具有多级净化功能的水处理设备
CN221107321U (zh) 一种水力驱动吸污式自清洗泵前过滤器
CN219023520U (zh) 一种工业污水用滤水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957076

Country of ref document: EP

Kind code of ref document: A1