WO2024045183A1 - 电磁装置及电源设备 - Google Patents

电磁装置及电源设备 Download PDF

Info

Publication number
WO2024045183A1
WO2024045183A1 PCT/CN2022/116845 CN2022116845W WO2024045183A1 WO 2024045183 A1 WO2024045183 A1 WO 2024045183A1 CN 2022116845 W CN2022116845 W CN 2022116845W WO 2024045183 A1 WO2024045183 A1 WO 2024045183A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal conductive
substrate
via hole
electromagnetic device
metal layers
Prior art date
Application number
PCT/CN2022/116845
Other languages
English (en)
French (fr)
Inventor
李志涛
史少飞
邵德俭
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2022/116845 priority Critical patent/WO2024045183A1/zh
Publication of WO2024045183A1 publication Critical patent/WO2024045183A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to an electromagnetic device and power supply equipment.
  • magnetic devices are evolving from wound magnetic structures to planar magnetic structures.
  • Magnetic devices using planar magnetic structures have been used in electronic equipment such as power bricks, high-power and high-density power supplies, and adapters.
  • the heat dissipation performance of the planar magnetic structure is poor, and the heat of the inner winding is difficult to transfer to the surface of the structure. This has become the main bottleneck in the evolution of planar magnetic devices to high density and miniaturization.
  • This application provides an electromagnetic device and power supply equipment to improve the heat dissipation performance of planar magnetic devices.
  • the present application provides an electromagnetic device, which may include a substrate, a magnetic core, a winding structure and a thermally conductive component.
  • the substrate may have a first via hole and a second via hole.
  • the magnetic core may be disposed in the first via hole.
  • the winding structure may be disposed within the substrate, and the winding structure may be disposed around the magnetic core.
  • the thermal conductive component may include a thermal conductive column and a thermal conductive sheet.
  • the thermal conductive column may be disposed in the second via hole.
  • the thermal conductive sheet may be disposed in the substrate.
  • the thermal conductive column may be connected to the winding structure through the thermal conductive sheet.
  • the heat of the winding structure can be transferred to the thermal conductive column through the thermal conductive sheet, and then exported to the surface of the substrate through the thermal conductive column, and can then be transmitted to the surrounding space through other thermal conductive materials or thermal devices to achieve temperature control of the winding structure. reduce.
  • the operating temperature of electromagnetic devices is low, which can support the evolution of electronic equipment to high power density and miniaturization.
  • the hole wall of the second via hole can be provided with a thermal conductive layer
  • the thermal conductive pillar can be connected to the thermal conductive layer
  • the thermal conductive sheet can be connected to the thermal conductive layer, so that the thermal conductive pillar can be connected to the thermal conductive sheet through the thermal conductive layer.
  • the setting of the thermal conductive layer can make the heat transfer to the thermal conductive column more reliably, increase the thermal conductive area and improve the heat dissipation efficiency.
  • the thermal conductive sheet may be provided with a third via hole, and the third via hole and the second via hole may be coaxially arranged.
  • the thermal conductive pillar can be inserted into the second via hole and the third via hole at the same time to realize the connection between the thermal conductive pillar and the thermal conductive sheet.
  • the connection between the thermal conductive pillar and the thermal conductive sheet is more convenient.
  • the thermal conductive pillar may include a pillar body and a head.
  • the pillar body may be disposed in the second via hole, and the head and the pillar body may be welded together.
  • the thermal conductive pillar adopts this split structure.
  • the pillar body can be buried in the second via hole first, and then the head and the pillar body are welded and connected to facilitate processing.
  • the first end of the thermal conductive column may exceed one side surface of the substrate, and the second end of the thermal conductive column may exceed the other side surface of the substrate.
  • Thermal conductive pillars can conduct heat out to both sides of the substrate, thereby dissipating heat through both sides of the substrate and improving heat dissipation efficiency.
  • thermal conductive columns In addition to the above-mentioned method of arranging thermal conductive columns, other methods can also be used.
  • the first end of the thermal conductive column can exceed one side surface of the substrate, and the second end of the thermal conductive column can be flush with the other side surface of the substrate or located on the substrate. Inside. Thermal conductive columns occupy less space and are convenient for setting other devices on the surface of the substrate.
  • the substrate may have a plurality of second via holes, and the plurality of second via holes may be arranged around the first via hole.
  • a second via hole may be provided with at least one thermal conductive pillar. The number of thermal conductive columns in a certain area can be increased to improve the thermal conductivity effect.
  • the first end of the thermally conductive sheet is connected to the thermally conductive pillar, and the second end of the thermally conductive sheet is connected to the winding structure.
  • the first end of the thermal conductive sheet is connected to a plurality of thermal conductive columns. Multiple thermal conductive columns can be arranged on a thermal conductive path where a thermal conductive sheet is located, which can improve thermal conduction efficiency.
  • the winding structure includes a plurality of annular metal layers, and the plurality of metal layers are stacked along the axial direction of the magnetic core. Multiple annular metal layers are stacked and arranged as coils surrounding the magnetic core, forming a planar magnetic structure with the magnetic core and the substrate.
  • the structure is relatively simple and the size is small, so it can be applied to electronic equipment with high power density.
  • the thermally conductive sheet is connected to one of the plurality of metal layers, and the thermally conductive sheet is flush with one of the metal layers.
  • the installation of thermal conductive sheets is relatively convenient.
  • a portion of the metal layers among the plurality of metal layers form a first winding, and adjacent metal layers in the first winding are connected in series. Another part of the metal layers in the plurality of metal layers forms a second winding, and the metal layers in the second winding are connected in parallel. Planar magnetic structures can meet different usage needs.
  • different metal layers in the first winding are respectively connected to different thermal conductive pillars.
  • the thermal conductivity is high and the thermal conductivity effect is significant.
  • different metal layers in the second winding are connected to the same thermal conductive pillar.
  • the structure is relatively simple.
  • the magnetic core includes a first part and a second part.
  • the first part is plugged and disposed in the first via hole from one side of the substrate, and the second part is plugged and disposed in the first via hole from the other side of the substrate.
  • the present application provides a power supply device, including an electromagnetic device as in any of the possible implementations of the first aspect.
  • the operating temperature of the electromagnetic device is low, and the power supply equipment can meet the needs of high power density and miniaturization.
  • Figure 1 is a schematic top structural view of an electromagnetic device provided by an embodiment of the present application.
  • Figure 2 is a schematic cross-sectional structural diagram of an electromagnetic device provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional structural diagram of an electromagnetic device provided by another embodiment of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of a possible arrangement of thermal conductive columns of the electromagnetic device provided by the embodiment of the present application;
  • Figure 5 is a schematic plan view of a possible arrangement of thermal conductive columns of the electromagnetic device provided by the embodiment of the present application.
  • Figure 6 is a schematic three-dimensional structural diagram of another possible arrangement of thermal conductive columns of the electromagnetic device provided by the embodiment of the present application.
  • Figure 7 is a schematic cross-sectional structural diagram of an electromagnetic device provided by another embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of an electromagnetic device provided by another embodiment of the present application.
  • Figure 9 is a schematic cross-sectional structural diagram of an electromagnetic device provided by another embodiment of the present application.
  • the electromagnetic device provided by the embodiment of the present application can be adapted to electronic equipment.
  • it can be adapted to power supply equipment and can be used as a transformer device inside the power supply equipment.
  • embodiments of the present application provide an electromagnetic device that has strong heat dissipation performance and can meet the design requirements of high density and miniaturization.
  • FIG. 1 shows a schematic top structural view of an electromagnetic device provided by an embodiment of the present application.
  • the electromagnetic device provided by the embodiment of the present application may include a substrate 100 , a magnetic core 200 , a winding structure 300 and a thermally conductive component 400 .
  • the substrate 100 can be a printed circuit board (PCB) or other non-conductive plate material.
  • the substrate 100 can have a first side and a second side opposite to each other.
  • the substrate 100 may have a first via hole and a second via hole, both of which extend from the first side to the second side of the substrate 100 .
  • Figure 2 shows a schematic cross-sectional structural view of an electromagnetic device provided by an embodiment of the present application.
  • the magnetic core 200 may be disposed in the first via hole.
  • the magnetic core 200 may adopt a split structure.
  • the magnetic core 200 may include a first part 201 and a second part 202.
  • the first part 201 may be inserted into the first via hole from one side of the substrate 100, and the second part 202 It can be plugged into the first via hole from the other side of the substrate 100 .
  • the first portion 201 of the magnetic core 200 can be plugged into the first via hole from the first side of the substrate 100, and the second portion 202 of the magnetic core 200 can be plugged into the first via hole from the second side of the substrate 100.
  • the structures of the first part 201 and the second part 202 of the magnetic core 200 may be the same.
  • the structures of the first part 201 and the second part 202 may both be an M-shaped structure, a U-shaped structure or a straight-shaped structure; or , the structures of the first part 201 and the second part 202 may be different.
  • the first part 201 may have an M-shaped structure
  • the second part 202 may have a straight-shaped structure.
  • the shape of the first via hole is adapted to the shape of the magnetic core 200 .
  • the first part 201 of the magnetic core 200 can be fixed in the first via hole by bonding, or the first part 201 of the magnetic core 200 can be fixed in the first via hole by interference fit;
  • the way in which the two parts 202 are fixed in the first via hole and the way in which the first part 201 is fixed in the first via hole may be the same or different.
  • the magnetic core 200 adopts a split structure. Accordingly, the first via hole may include a first section and a second section, and the first section and the second section may not be connected. That is, the first via hole formed by the first section and the second section
  • the hole may include two blind holes, and the first part 201 and the second part 202 of the magnetic core 200 may be inserted into the first section and the second section of the first via hole, respectively.
  • the first section and the second section of the first via hole can also be connected, that is, the first via hole formed by the first section and the second section can be a through hole.
  • the winding structure 300 can be disposed in the substrate 100, and the winding structure 300 can be disposed around the magnetic core 200. In practical applications, the winding structure 300 can be electrically connected to other components through lines on the substrate 100.
  • the winding structure 300 may include a plurality of annular metal layers 301 serving as coils surrounding the magnetic core 200 .
  • Multiple metal layers 301 may be stacked in sequence along the axial direction of the magnetic core 200 , that is, multiple metal layers 301 may be stacked in sequence from the first side to the second side of the substrate 100 .
  • the multiple metal layers 301 can be disposed on different layers of the circuit board. More specifically, the circuit board can have multiple mid layers, and the multiple metal layers 301 can be disposed on different layers. middle layer. Multiple metal layers 301 may be arranged coaxially.
  • the magnetic core 200 is disposed within the surrounding range of the metal layer 301 .
  • a part of the metal layers 301 among the plurality of metal layers 301 may form the first winding 302, and adjacent metal layers 301 in the first winding 302 may be connected in series.
  • each metal layer 301 in the first winding 302 can be connected end-to-end in sequence; another part of the metal layers 301 of the plurality of metal layers 301 can form the second winding 303, and the metal layers 301 in the second winding 303 can be connected in parallel.
  • each metal layer 301 in the second winding 303 Can be connected head-to-head or tail-to-tail.
  • adjacent metal layers 301 can be connected to each other through vias of the connection layer and layer of the circuit board, thereby forming a path.
  • the thermal conductive assembly may include thermal conductive columns 401 and thermal conductive sheets 402 .
  • the thermal conductive pillar 401 may be disposed in the second via hole 101 .
  • the thermally conductive sheet 402 may be disposed within the substrate 100.
  • the thermally conductive sheet 402 may be disposed in the above-mentioned intermediate layer.
  • the first end of the thermally conductive sheet 402 can be connected to the thermally conductive column 401, and the second end of the thermally conductive sheet 402 can be connected to the winding structure 300, so that the thermally conductive column 401 can be connected to the winding structure 300 through the thermally conductive sheet 402.
  • the thermal conduction path is: winding structure 300 - thermal conductive sheet 402 - thermal conductive column 401.
  • the heat is conducted to the surface of the substrate 100 through the thermally conductive pillars 401, and then the heat can be transferred to the surrounding space through other thermally conductive materials or thermally conductive devices, thereby reducing the temperature of the winding structure 300.
  • the thermally conductive pillar 401 may include a pillar body 4011 and a head 4012.
  • the pillar body 4011 may be disposed in the second through hole 101, and the head 4012 and the pillar body 4011 may be welded together.
  • Thermal conductive pillar 401 adopts this split structure.
  • the pillar body 4011 can be buried in the second via hole 101 first, and then the head 4012 and the pillar body 4011 are welded and connected, which facilitates processing in terms of technology.
  • the first end of the pillar 4011 can be plugged into the second via hole 101, and the second end of the pillar 4011 can be flush with or slightly beyond one side surface of the substrate 100, so as to facilitate The head 4012 is welded and connected.
  • the head 4012 is located outside the substrate 100 and can be in contact with one side surface of the substrate 100 .
  • the thermal conductive pillar 401 can be made of high thermal conductive materials such as copper, iron, aluminum or ceramics.
  • the cross-sectional shape of the thermal conductive pillar 401 may be circular, rectangular, rhombus, etc.
  • the thermal conductive pillar 401 is disposed in the second via hole 101.
  • the hole wall of the second via hole 101 can be provided with a thermal conductive layer 403, the thermal conductive pillar 401 can be connected to the thermal conductive layer 403, and the thermal conductive sheet 402 can also be connected to the thermal conductive layer 403.
  • the thermally conductive layer 403 is connected, so that the thermally conductive pillar 401 can be connected to the thermally conductive sheet 402 through the thermally conductive layer 403 .
  • the thermal conduction path is: winding structure 300 - thermal conductive sheet 402 - thermal conductive layer 403 - thermal conductive column 401.
  • the arrangement of the thermal conductive layer 403 can make the heat transfer to the thermal conductive pillar 401 more reliably, increase the thermal conductive area, and improve the heat dissipation efficiency.
  • the thermal conductive layer 403 may be disposed in the second via hole 101 along the circumferential direction of the second via hole 101 , the thermal conductive layer 403 may form a hollow cylinder-like structure, and the thermal conductive layer 403 may be disposed around the thermal conductive pillar 401 .
  • the thermal conductive pillar 401 is inserted into the second via hole 101.
  • the thermal conductive pillar 401 can be fixed in the second via hole 101 by welding, crimping or bonding. For example, the thermal conductive pillar 401 can be welded to the thermal conductive layer 403.
  • the thermal conductive column 401 includes a split column body 4011 and a head 4012
  • the column body 4011 can be welded and connected to the thermal conductive layer 403, and the head 4012 is welded and connected to the column body 4011.
  • the first end of the thermally conductive pillar 401 can extend beyond one side surface of the substrate 100
  • the second end of the thermally conductive pillar 401 can extend beyond the other side surface of the substrate 100 , that is, both ends of the thermally conductive pillar 401 can extend beyond the other side surface of the substrate 100 . respectively protrude from the first side and the second side of the substrate 100 .
  • the thermal conductive pillar 401 located on the right side of the figure has its two ends extending out of the first side and the second side of the substrate 100 respectively.
  • the thermally conductive pillars 401 arranged in this way can conduct heat to both sides of the substrate 100 and dissipate heat through the two sides of the substrate 100, thereby improving the heat dissipation efficiency.
  • the first end of the thermal conductive pillar 401 can extend beyond one side surface of the substrate 100 , and the second end of the thermal conductive pillar 401 can be located within the substrate 100 , that is, the second end of the thermal conductive pillar 401 does not extend beyond the substrate. 100 on the other side surface. Based on the relative positional relationship shown in FIG. 2 , the second end of the thermal conductive pillar 401 located on the left side of the figure is located in the substrate 100 .
  • the thermally conductive pillars 401 arranged in this manner occupy less space and are convenient for arranging other devices on the surface of the substrate 100 .
  • the second via hole 101 can be a through hole or a blind hole; when the second via hole 101 is a blind hole, the depth of the second via hole 101 can be adapted to the length of the thermal conductive pillar 401. Specifically, The depth of the second via hole 101 may be adapted to the length of the column body 4011.
  • FIG. 3 shows a schematic cross-sectional structural diagram of an electromagnetic device provided by another embodiment of the present application.
  • the numbers in FIG. 3 may refer to the same numbers in FIG. 2 .
  • the first end of the thermal conductive pillar 401 may exceed one side surface of the substrate 100 , and the second end of the thermal conductive pillar 401 may be flush with the other side surface of the substrate 100 , that is, The second end of the thermal conductive pillar 401 does not extend beyond the other side surface of the substrate 100 .
  • the second end of the thermal conductive pillar 401 located on the left side of the figure is flush with the surface of the substrate 100 .
  • the thermally conductive pillars 401 arranged in this manner also occupy less space, which also facilitates the arrangement of other devices on the surface of the substrate 100 .
  • the number of thermal conductive pillars 401 may be multiple.
  • the substrate 100 may have a plurality of second via holes 101 so that a plurality of thermally conductive pillars 401 may be provided.
  • a plurality of second via holes 101 may be disposed around the first via hole.
  • At least one thermal conductive pillar 401 may be disposed in a second via hole 101 to improve the thermal conductivity effect.
  • the thermal conductivity of the thermal pillar 401 is related to its material, diameter, layout location, layout quantity, etc. In actual application, it can be balanced according to the heat dissipation requirements.
  • Figure 4 shows a schematic three-dimensional structural diagram of a possible arrangement of thermal conductive columns of the electromagnetic device provided by the embodiment of the present application
  • Figure 5 shows a kind of electromagnetic device provided by the embodiment of the present application.
  • a plurality of thermally conductive pillars 401 with smaller diameters may be provided in the second via holes in a certain area on the periphery of the winding structure 300 to speed up the process. Heat dissipates in this area.
  • Figure 4 specifically illustrates the situation in which eleven thermally conductive pillars 401 with smaller diameters are arranged at five positions around the periphery of the winding structure; the winding structure is not shown in Figure 4.
  • the thermally conductive pillars 401 are shown in the figure. 401 is arranged on the periphery of the magnetic core 200, indicating that the thermal conductive pillar 401 is arranged on the periphery of the winding structure.
  • Figure 6 shows a schematic three-dimensional structural diagram of another possible arrangement of thermal conductive columns of the electromagnetic device provided by the embodiment of the present application.
  • the winding structure A thermal conductive pillar 401 with a larger diameter can be provided in the second via hole in a certain area of the periphery, which can also speed up the heat dissipation in this area.
  • Figure 6 specifically illustrates the situation in which five thermally conductive pillars 401 with larger diameters are arranged at five positions around the periphery of the winding structure; the winding structure is not shown in Figure 6.
  • the thermally conductive pillars 401 are used in the figure. Being arranged on the periphery of the magnetic core 200 indicates that the thermal conductive pillars 401 are arranged on the periphery of the winding structure.
  • a certain area around the periphery of the winding structure may be provided with a plurality of second via holes, and each of the plurality of second via holes may be provided with at least one thermal conductive pillar 401 , can also speed up the heat dissipation in this area.
  • the above-mentioned installation methods of the thermal conductive columns 401 can be used when targeted heat dissipation is required for areas with high heat.
  • FIG. 7 shows a schematic cross-sectional structural view of an electromagnetic device provided by another embodiment of the present application.
  • some of the thermal conductive columns 401 among the plurality of thermal conductive columns 401 can be disposed on the periphery of the winding structure 300 without being connected to the winding structure 300 .
  • the heat of the winding structure 300 can be transferred to this part of the thermal conductive columns 401 through the substrate 100 itself.
  • the thermal conductive pillar 401 located on the right side of the figure is not connected to the winding structure 300 .
  • This arrangement of the thermal conductive pillars 401 can be suitable for dissipating heat in areas with relatively low heat.
  • the thermally conductive sheet 402 may be provided with a third via hole.
  • the third via hole may be disposed at the first end of the thermally conductive sheet 402 .
  • the third via hole may be disposed coaxially with the second via hole.
  • the thermal conductive pillar 401 can be disposed in the second via hole and the third via hole at the same time to realize the connection between the thermal conductive pillar 401 and the thermal conductive sheet 402 .
  • the thermal conductive pillar 401 and the thermal conductive sheet 402 can be connected by welding.
  • the thermal conductive pillar 401 can be welded and connected to the thermal conductive layer 403, and the first end of the thermal conductive sheet 402 can be welded and connected to the thermal conductive layer 403, thereby realizing the connection between the thermal conductive pillar 401 and the thermal conductive sheet 402. .
  • FIG. 8 shows a schematic cross-sectional structural view of an electromagnetic device provided by another embodiment of the present application.
  • the magnetic core is not shown in the figure.
  • the first end of the thermal conductive sheet 402 can be connected to the thermal conductive column 401
  • the second end of the thermal conductive sheet 402 can be connected to the winding structure 300 .
  • the first end of the thermal conductive sheet 402 can be connected to multiple thermal conductive columns 401, so that multiple thermal conductive columns 401 can be arranged on a thermal conductive path, which can improve thermal conduction efficiency.
  • thermally conductive pillars 401 When multiple thermal conductive pillars 401 are provided in a certain area around the periphery of the winding structure 300, the multiple thermal conductive pillars 401 located in this area can be arranged away from the winding structure 300 in order along the radial direction of the winding structure 300.
  • Figure 8 shows This arrangement of the thermally conductive pillars 401; alternatively, multiple thermally conductive pillars 401 located in this area can be arranged side by side in a direction perpendicular to the radial direction of the winding structure 300.
  • These thermally conductive pillars 401 can be connected to the winding structure 300 through a thermally conductive sheet 402. In this case, the thermally conductive sheet 402 can be provided with a plurality of third via holes.
  • the thermally conductive sheet 402 may be connected to one metal layer 301 among the plurality of metal layers 301 of the winding structure 300 , and the thermally conductive sheet 402 may be disposed flush with this metal layer 301 .
  • the thermal conductive sheet 402 may be disposed on the same layer of the circuit board as the metal layer 301 .
  • the thermal conductive sheet 402 can be welded and connected to the metal layer 301, or made of the same material and integrally formed.
  • FIG. 9 shows a schematic cross-sectional structural view of an electromagnetic device provided by another embodiment of the present application.
  • the number of thermally conductive sheets 402 may be multiple.
  • a thermal conductive column 401 may be connected to multiple thermal conductive sheets 402.
  • One thermal conductive sheet 402 of the plurality of thermal conductive sheets 402 may be connected to the metal layer 301 of the winding structure 300; other thermal conductive sheets 402 are not connected to the metal layer of the winding structure 300.
  • the layers 301 are connected, and the heat of the winding structure 300 can be transferred to these thermal conductive sheets 402 through the substrate 100 itself, and then transferred to the thermal conductive columns 401 through these thermal conductive sheets 402.
  • the arrangement of these thermal conductive sheets 402 can improve the thermal conduction efficiency and speed up heat dissipation.
  • the reference numerals in FIG. 9 may refer to the same reference numerals in FIG. 2 .
  • the thermal conductive sheet 402 connects the thermal conductive column 401 to the winding structure 300 .
  • Different metal layers 301 in the first winding 302 can be connected to different thermal conductive columns 401 respectively. That is to say, when different metal layers 301 connected in series are connected to the thermal conductive columns 401, they are connected to different thermal conductive columns through different thermal conductive sheets 402. 401 are connected individually, and one metal layer 301 corresponds to one thermal conductive sheet 402 and one thermal conductive pillar 401.
  • different metal layers 301 in the second winding 303 can be connected to the same thermal conductive pillar 401 , that is, different metal layers 301 in parallel can be connected to one thermal conductive pillar 401 through a thermal conductive sheet 402 .
  • different metal layers 301 in the second winding 303 can be connected to different thermal conductive pillars 401 respectively. That is to say, different metal layers 301 connected in parallel can be individually connected to different thermal conductive pillars 401 through different thermal conductive sheets 402.
  • the metal layer 301 corresponds to a thermal conductive sheet 402 and a thermal conductive pillar 401.
  • part of the metal layer 301 in the second winding 303 is connected to a certain thermal conductive column 401 through a thermal conductive sheet 402, and another part of the metal layer 301 is connected to other thermal conductive columns 401 through a thermal conductive sheet 402.
  • At least one metal layer 301 corresponds to a thermal conductive column. piece 402 and a thermal conductive pillar 401.
  • the heat of the inner part of the winding structure 300 can be transferred to the thermal conductive column 401 through the thermal conductive sheet 402, and then exported to the surface of the substrate 100 through the thermal conductive column 401, and can then be passed through other thermal conductive materials or thermal devices. It is transmitted to the surrounding space to reduce the temperature of the winding structure 300 .
  • the operating temperature of electromagnetic devices is low, which can support the evolution of power supply equipment to high power density and miniaturization.
  • the temperature reduction benefit of the inner layer part of the winding structure 300 of the electromagnetic device provided by the embodiment of the present application is higher, and the winding structure
  • the temperature of the inner part of 300 can be reduced by about 5 to 20°C, which can meet the needs of high-power and high-density power supply products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

公开了一种电磁装置及电源设备。电磁装置可以包括基板、磁芯、绕组结构和导热组件。基板具有第一过孔和第二过孔。磁芯设置在第一过孔内。绕组结构设置在基板内,且绕组结构围绕磁芯设置。导热组件包括导热柱和导热片,导热柱设置在第二过孔内,导热片设置在基板内,导热柱通过导热片与绕组结构连接。在采用上述结构时,绕组结构的热量可以通过导热片传递到导热柱,再通过导热柱导出到基板表面,进而可以通过其他导热材料或导热器件等传递到周围空间,实现绕组结构的温度的降低。电磁装置的工作温度较低,可以支持电子设备向高功率密度、小型化演进。

Description

电磁装置及电源设备 技术领域
本申请涉及电子设备技术领域,尤其涉及一种电磁装置及电源设备。
背景技术
为了实现电感、变压器等磁器件尺寸更小,功率密度更高,磁器件正由绕线磁结构向平面磁结构演进。采用平面磁结构的磁器件目前已在电源砖、大功率高密电源、适配器等电子设备中有所应用。然而,相较于绕线磁结构,平面磁结构的散热性能较差,其内层绕组的热量很难传递到结构表面,这成为了平面磁器件向高密小型化演进的主要瓶颈。
发明内容
本申请提供一种电磁装置及电源设备,以提升平面磁器件的散热性能。
第一方面,本申请提供了一种电磁装置,可以包括基板、磁芯、绕组结构和导热组件。基板可以具有第一过孔和第二过孔。磁芯可以设置在第一过孔内。绕组结构可以设置在基板内,且绕组结构可以围绕磁芯设置。导热组件可以包括导热柱和导热片,导热柱可以设置在第二过孔内,导热片可以设置在基板内,导热柱可以通过导热片与绕组结构连接。
本申请提供的技术方案,绕组结构的热量可以通过导热片传递到导热柱,再通过导热柱导出到基板表面,进而可以通过其他导热材料或导热器件等传递到周围空间,实现绕组结构的温度的降低。电磁装置的工作温度较低,可以支持电子设备向高功率密度、小型化演进。
在一个具体的可实施方案中,第二过孔的孔壁可以设置有导热层,导热柱可以与导热层连接,导热片可以与导热层连接,从而导热柱可以通过导热层与导热片连接。导热层的设置可以使热量比较可靠地传递到导热柱上,可以增加导热面积,提高散热效率。
在一个具体的可实施方案中,导热片可以设置有第三过孔,第三过孔与第二过孔可以同轴设置。导热柱可以同时穿设在第二过孔和第三过孔内,实现导热柱与导热片连接,导热柱与导热片的连接比较方便。
在一个具体的可实施方案中,导热柱可以包括柱身和头部,柱身可以设置在第二过孔内,头部与柱身可以焊接连接。导热柱采用这种分体式结构,柱身可以先埋设在第二过孔内,再将头部与柱身焊接连接,便于工艺加工。
在具体设置导热柱时,导热柱的第一端可以超出基板的一侧表面,导热柱的第二端可以超出基板的另一侧表面。导热柱可以将热量导出到基板的两侧表面,从而可以通过基板的两侧表面散热,可以提高散热效率。
除了上述设置导热柱的方式以外,还可以采用其他的方式,如导热柱的第一端可以超出基板的一侧表面,导热柱的第二端可以与基板的另一侧表面平齐或位于基板内。导热柱占用空间较小,便于在基板表面设置其他器件。
在一个具体的可实施方案中,基板可以具有多个第二过孔,多个第二过孔可以围绕第一过孔设置。一个第二过孔可以设置有至少一个导热柱。可以增加某一区域的导热柱布设数量,可以提升导热效果。
在一个具体的可实施方案中,导热片的第一端与导热柱连接,导热片的第二端与绕组结构连接。导热片的第一端与多个导热柱连接。在一个导热片所在的一条导热路径上可以布置多个导热柱,可以提高导热效率。
在一个具体的可实施方案中,绕组结构包括多个环状的金属层,多个金属层沿磁芯的轴向层叠设置。多个环状的金属层层叠设置,作为围绕磁芯的线圈,与磁芯及基板形成平面磁结构,结构比较简单,尺寸较小,可以应用于功率密度较高的电子设备。
在一个具体的可实施方案中,导热片与多个金属层中的一个金属层连接,导热片与一个金属层平齐设置。导热片的设置比较方便。
在一个具体的可实施方案中,多个金属层中的一部分金属层形成第一绕组,第一绕组中的相邻金属层串联连接。多个金属层中的另一部分金属层形成第二绕组,第二绕组中的金属层并联连接。平面磁结构可以满足不同的使用需求。
在一个具体的可实施方案中,第一绕组中的不同金属层分别与不同的导热柱连接。导热效率较高,导热效果比较显著。
在一个具体的可实施方案中,第二绕组中的不同金属层与同一个导热柱连接。结构比较简单。
在一个具体的可实施方案中,磁芯包括第一部分和第二部分,第一部分由基板的一侧插接设置在第一过孔内,第二部分由基板的另一侧插接设置在第一过孔内。磁芯与基板的装配比较方便。
第二方面,本申请提供了一种电源设备,包括如前述第一方面中任一可实施方案中的电磁装置。
本申请提供的技术方案,电磁装置的工作温度较低,电源设备可以满足高功率密度、小型化需求。
附图说明
图1为本申请实施例提供的电磁装置的俯视结构示意图;
图2为本申请实施例提供的电磁装置的剖视结构示意图;
图3为本申请另一实施例提供的电磁装置的剖视结构示意图;
图4为本申请实施例提供的电磁装置的一种可能的导热柱设置方式的立体结构示意图;
图5为本申请实施例提供的电磁装置的一种可能的导热柱设置方式的平面结构示意图;
图6为本申请实施例提供的电磁装置的另一种可能的导热柱设置方式的立体结构示意图;
图7为本申请另一实施例提供的电磁装置的剖视结构示意图;
图8为本申请另一实施例提供的电磁装置的剖视结构示意图;
图9为本申请另一实施例提供的电磁装置的剖视结构示意图。
附图标记:
100-基板;200-磁芯;300-绕组结构;400-导热组件;101-第二过孔;201-第一部分;
202-第二部分;301-金属层;302-第一绕组;303-第二绕组;401-导热柱;402-导热片;
403-导热层;4011-柱身;4012-头部。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
为了方便理解,首先说明本申请涉及的电磁装置的应用场景。本申请实施例提供的电磁装置可以适配于电子设备,例如,可以适配于电源设备,可以作为电源设备内部的变压器件。
现有的磁器件正由绕线磁结构向平面磁结构演进,平面磁结构的磁器件更容易满足高密小型化的设计需求。然而,相较于绕线磁结构,平面磁结构的散热性能较差,其内层绕组的热量很难传递到结构表面。
基于此,本申请实施例提供了一种电磁装置,具有较强的散热性能,可以满足高密小型化的设计需求。
首先参考图1,图1示出了本申请实施例提供的电磁装置的俯视结构示意图。如图1所示,本申请实施例提供的电磁装置可以包括基板100、磁芯200、绕组结构300和导热组件400。基板100可以采用印制电路板(printed circuit board,PCB),也可以采用其他非导电板材,基板100可以具有相对的第一侧和第二侧。并且,基板100可以具有第一过孔和第二过孔,第一过孔和第二过孔均由基板100的第一侧向第二侧延伸。
参考图2,图2示出了本申请实施例提供的电磁装置的剖视结构示意图。如图2所示,在具体实施中,磁芯200可以设置在第一过孔内。磁芯200可以采用分体式结构,具体地,磁芯200可以包括第一部分201和第二部分202,第一部分201可以由基板100的一侧插接设置在第一过孔内,第二部分202可以由基板100的另一侧插接设置在第一过孔内。例如,磁芯200的第一部分201可以由基板100的第一侧插接进入第一过孔,磁芯200的第二部分202可以由基板100的第二侧插接进入第一过孔。
具体实施时,磁芯200的第一部分201和第二部分202的结构可以相同,例如,第一部分201和第二部分202的结构均可以为M型结构、U型结构或一字型结构;或者,第一部分201和第二部分202的结构可以不同,例如,第一部分201可以为M型结构,第二部分202可以为一字型结构。第一过孔的形状与磁芯200的形状相适应。磁芯200的第一部分201可以通过粘接的方式固定在第一过孔内,或者,磁芯200的第一部分201可以通过过盈配合的方式固定在第一过孔内;磁芯200的第二部分202固定在第一过孔内的方式和第一部分201固定在第一过孔内的方式可以相同,也可以不同。磁芯200采用分体式结构,相适应地,第一过孔可以包括第一段和第二段,第一段和第二段可以不连通,即第一段和第二段形成的第一过孔可以包括两个盲孔,磁芯200的第一部分201和第二部分202可以分别插接到第一过孔的第一段和第二段内。此外,第一过孔的第一段和第二段也可以连通,即第一段和第二段形成的第一过孔可以为一个通孔。
在具体实施中,绕组结构300可以设置在基板100内,且绕组结构300可以围绕磁芯200设置,实际应用时,绕组结构300可以通过基板100上的线路与其他元件电性连接。绕组结构300可以包括多个环状的金属层301,金属层301作为围绕磁芯200的线圈。多个金属层301可以沿磁芯200的轴向依次层叠设置,即多个金属层301可以由基板100的第一侧向第二侧依次层叠设置。具体地,多个金属层301可以分别设置在电路板的不同层(layer),更为具体地,电路板可以具有多个中间层(mid layer),多个金属层301可以分别设置在不同的中间层。多个金属层301可以同轴设置。磁芯200设置在金属层301的环绕范围内。
具体实施时,多个金属层301中的一部分金属层301可以形成第一绕组302,第一绕组302中的相邻金属层301可以串联连接,具体地,第一绕组302中的各个金属层301可以依次首尾连接;多个金属层301中的另一部分金属层301可以形成第二绕组303,第二绕组303中的金属层301可以并联连接,具体地,第二绕组303中的各个金属层301可以首首连接、尾尾连接。实际连接时,相邻金属层301之间可以通过电路板的连接层与层的过孔实现相互连接,从而形成通路。
作为一种可能的实施例,导热组件可以包括导热柱401和导热片402。导热柱401可以设置在第二过孔101内。导热片402可以设置在基板100内,例如,导热片402可以设置在上述的中间层。导热片402的第一端可以与导热柱401连接,导热片402的第二端可以与绕组结构300连接,从而导热柱401可以通过导热片402与绕组结构300实现连接。实际应用时,导热路径为:绕组结构300-导热片402-导热柱401。通过导热柱401将热量导出到基板100表面,进而可以通过其他导热材料或导热器件等将热量传递到周围空间,实现绕组结构300的温度的降低。
在具体实施中,导热柱401可以包括柱身4011和头部4012,柱身4011可以设置在第二过孔101内,头部4012与柱身4011可以焊接连接。导热柱401采用这种分体式结构,具体设置时,柱身4011可以先埋设在第二过孔101内,再将头部4012与柱身4011焊接连接,在工艺上加工方便。具体地,柱身4011的第一端可以插接进入第二过孔101内,柱身4011的第二端可以与基板100的一侧表面平齐或略超出基板100的一侧表面,以便于与头部4012焊接连接,头部4012位于基板100以外并可以与基板100的一侧表面抵接。导热柱401可以采用铜、铁、铝或陶瓷等高导热材料制成。导热柱401的横截面形状可以是圆形、矩形或菱形等。
实际设置时,导热柱401设置在第二过孔101内,具体地,第二过孔101的孔壁可以设置有导热层403,导热柱401可以与导热层403连接,导热片402也可以与导热层403连接,从而导热柱401可以通过导热层403与导热片402实现连接。实际应用时,导热路径为:绕组结构300-导热片402-导热层403-导热柱401。导热层403的设置可以使热量比较可靠地传递到导热柱401上,可以增加导热面积,提高散热效率。具体实施时,导热层403可以在第二过孔101内沿第二过孔101的周向设置,导热层403可以形成空心圆柱体状结构,导热层403环绕导热柱401设置。导热柱401插接进入第二过孔101内,可以采用焊接、压接或粘接等方式将导热柱401固定在第二过孔101内,例如,可以将导热柱401与导热层403焊接连接,以使导热柱401的位置稳定。当导热柱401包括分体式的柱身4011和头部4012时,柱身4011可以与导热层403焊接连接,头部4012再与柱身4011焊接连接。
在一种可能的实施方式中,导热柱401的第一端可以超出基板100的一侧表面,导热柱401的第二端可以超出基板100的另一侧表面,即导热柱401的两端可以分别伸出基板100的第一侧和第二侧。基于图2所示的相对位置关系,位于图中右侧的导热柱401即为两端分别伸出基板100的第一侧和第二侧。采用这种设置方式的导热柱401可以将热量导出到基板100的两侧表面,通过基板100的两侧表面散热,可以提高散热效率。
在另一种可能的实施方式中,导热柱401的第一端可以超出基板100的一侧表面,导热柱401的第二端可以位于基板100内,即导热柱401的第二端未超出基板100的另一侧表面。基于图2所示的相对位置关系,位于图中左侧的导热柱401即为第二端位于基板100 内。采用这种设置方式的导热柱401占用空间较小,便于在基板100表面设置其他器件。此时,第二过孔101可以为通孔,也可以为盲孔;当第二过孔101为盲孔时,第二过孔101的深度可以与导热柱401的长度相适应,具体地,第二过孔101的深度可以与柱身4011的长度相适应。
参考图3,图3示出了本申请另一实施例提供的电磁装置的剖视结构示意图,图3中的标号可参考图2中的相同标号。如图3所示,在其他可能的实施方式中,导热柱401的第一端可以超出基板100的一侧表面,导热柱401的第二端可以与基板100的另一侧表面平齐,即导热柱401的第二端也未超出基板100的另一侧表面。基于图3所示的相对位置关系,位于图中左侧的导热柱401即为第二端与基板100表面平齐。相似地,采用这种设置方式的导热柱401占用空间也较小,同样便于其他器件在基板100表面的设置。
在具体实施中,导热柱401的数量可以为多个。具体地,基板100可以具有多个第二过孔101,从而可以设置多个导热柱401。多个第二过孔101可以围绕第一过孔设置。一个第二过孔101内可以设置有至少一个导热柱401,以提升导热效果。导热柱401的导热能力与其材质、直径、布设位置以及布设数量等相关,实际应用时,可以根据散热需求进行平衡。
参考图4及图5,图4示出了本申请实施例提供的电磁装置的一种可能的导热柱设置方式的立体结构示意图,图5示出了本申请实施例提供的电磁装置的一种可能的导热柱设置方式的平面结构示意图。一并参考图4和图5所示,在一种可能的实施方式中,绕组结构300的外围的某一区域的第二过孔内可以设置有多个直径较小的导热柱401,以加快这一区域的热量散发。图4具体示例了在绕组结构的外围的五个位置设置十一个直径较小的导热柱401的情况;图4中未示出绕组结构,关于导热柱401的设置位置,图中以导热柱401设置在磁芯200的外围示意了导热柱401设置在绕组结构的外围。
参考图6,图6示出了本申请实施例提供的电磁装置的另一种可能的导热柱设置方式的立体结构示意图,如图6所示,在另一种可能的实施方式中,绕组结构的外围的某一区域的第二过孔内可以设置一个直径较大的导热柱401,也可以实现加快这一区域的热量散发。图6具体示例了在绕组结构的外围的五个位置设置五个直径较大的导热柱401的情况;图6中未示出绕组结构,关于导热柱401的设置位置,图中以导热柱401设置在磁芯200的外围示意了导热柱401设置在绕组结构的外围。
在其他可能的实施方式中,绕组结构的外围的某一区域可以集中设置有多个第二过孔,这多个第二过孔中的每个第二过孔可以设置有至少一个导热柱401,同样可以实现加快这一区域的热量散发。上述这几种导热柱401的设置方式,在需要对热量较高区域进行针对性散热时均可以采用。
参考图7,图7示出了本申请另一实施例提供的电磁装置的剖视结构示意图。如图7所示,多个导热柱401中的部分导热柱401可以设置在绕组结构300的外围而不与绕组结构300连接,绕组结构300的热量可以通过基板100本身传递到这部分导热柱401。基于图7所示的相对位置关系,位于图中右侧的导热柱401即为不与绕组结构300连接。导热柱401的这种设置方式可以适用于对热量相对不高的区域进行散热。
作为一种可能的实施例,导热片402可以设置有第三过孔,具体地,第三过孔可以设置在导热片402的第一端。第三过孔可以与第二过孔同轴设置。实际设置时,导热柱401可以同时穿设在第二过孔和第三过孔内,实现导热柱401与导热片402连接。导热柱401 与导热片402可以焊接连接。当第二过孔内设置有导热层403时,导热柱401可以与导热层403焊接连接,导热片402的第一端可以与导热层403焊接连接,从而实现导热柱401与导热片402的连接。
参考图8,图8示出了本申请另一实施例提供的电磁装置的剖视结构示意图,图中未示出磁芯。如图8所示,导热片402的第一端可以与导热柱401连接,导热片402的第二端可以与绕组结构300连接。导热片402的第一端可以与多个导热柱401连接,从而在一条导热路径上可以布置多个导热柱401,可以提高导热效率。当绕组结构300的外围的某一区域设置有多个导热柱401时,位于这一区域的多个导热柱401可以沿绕组结构300的径向依次远离绕组结构300排布,图8示出了导热柱401的这种设置方式;或者,位于这一区域的多个导热柱401可以沿垂直于绕组结构300的径向的方向并排设置。这些导热柱401可以通过一个导热片402与绕组结构300连接,此时,导热片402可以对应设置有多个第三过孔。
在具体实施中,导热片402可以与绕组结构300的多个金属层301中的一个金属层301连接,导热片402可以与这一个金属层301平齐设置。具体地,导热片402可以与这一个金属层301设置在电路板的同一层。导热片402可以与这一个金属层301焊接连接,或者采用相同材质而一体成型。
参考图9,图9示出了本申请另一实施例提供的电磁装置的剖视结构示意图。如图9所示,导热片402的数量可以为多个。例如,一个导热柱401上可以连接有多个导热片402,这多个导热片402中的一个导热片402可以与绕组结构300的金属层301连接;其他导热片402不与绕组结构300的金属层301连接,绕组结构300的热量可以通过基板100本身传递到这些导热片402,再通过这些导热片402传递到导热柱401,这些导热片402的设置可以提高导热效率,加快热量散发。
继续参考图9,图9中的标号可参考图2中的相同标号。在具体实施中,导热片402将导热柱401与绕组结构300连接。第一绕组302中的不同金属层301可以分别与不同的导热柱401连接,也就是说,相互串联的不同金属层301在与导热柱401连接时,通过不同的导热片402与不同的导热柱401单独连接,一个金属层301对应一个导热片402和一个导热柱401。
再次参考图2,第二绕组303中的不同金属层301可以与同一个导热柱401连接,也就是说,相互并联的不同金属层301可以通过一个导热片402与一个导热柱401连接。或者,第二绕组303中的不同金属层301可以分别与不同的导热柱401连接,也就是说,相互并联的不同金属层301可以通过不同的导热片402与不同的导热柱401单独连接,一个金属层301对应一个导热片402和一个导热柱401。或者,第二绕组303中的一部分金属层301通过一个导热片402与某一导热柱401连接,另一部分金属层301通过一个导热片402与其他导热柱401连接,至少一个金属层301对应一个导热片402和一个导热柱401。
本申请实施例提供的电磁装置,绕组结构300的内层部分的热量可以通过导热片402传递到导热柱401,再通过导热柱401导出到基板100表面,进而可以通过其他导热材料或导热器件等传递到周围空间,实现绕组结构300的温度的降低。电磁装置的工作温度较低,可以支持电源设备等向高功率密度、小型化演进。
实际应用时,相较于提升基板100的板材的导热系数来降低绕组结构300的温度的方式,本申请实施例提供的电磁装置的绕组结构300的内层部分的温度降低收益较高,绕组 结构300的内层部分的温度可以降低约5~20℃,可以满足大功率高密电源产品的使用需求。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (15)

  1. 一种电磁装置,其特征在于,包括基板、磁芯、绕组结构和导热组件;
    所述基板具有第一过孔和第二过孔;
    所述磁芯设置在所述第一过孔内;
    所述绕组结构设置在所述基板内,且所述绕组结构围绕所述磁芯设置;
    所述导热组件包括导热柱和导热片,所述导热柱设置在所述第二过孔内,所述导热片设置在所述基板内,所述导热柱通过所述导热片与所述绕组结构连接。
  2. 如权利要求1所述的电磁装置,其特征在于,所述第二过孔的孔壁设置有导热层,所述导热柱与所述导热层连接,所述导热片与所述导热层连接。
  3. 如权利要求1或2所述的电磁装置,其特征在于,所述导热片设置有第三过孔,所述第三过孔与所述第二过孔同轴设置。
  4. 如权利要求1~3任一项所述的电磁装置,其特征在于,所述导热柱包括柱身和头部,所述柱身设置在所述第二过孔内,所述头部与所述柱身焊接连接。
  5. 如权利要求1~4任一项所述的电磁装置,其特征在于,所述导热柱的第一端超出所述基板的一侧表面,所述导热柱的第二端超出所述基板的另一侧表面。
  6. 如权利要求1~4任一项所述的电磁装置,其特征在于,所述导热柱的第一端超出所述基板的一侧表面,所述导热柱的第二端与所述基板的另一侧表面平齐或位于所述基板内。
  7. 如权利要求1~6任一项所述的电磁装置,其特征在于,所述基板具有多个所述第二过孔,多个所述第二过孔围绕所述第一过孔设置;
    一个所述第二过孔设置有至少一个所述导热柱。
  8. 如权利要求1~7任一项所述的电磁装置,其特征在于,所述导热片的第一端与所述导热柱连接,所述导热片的第二端与所述绕组结构连接;
    所述导热片的第一端与多个所述导热柱连接。
  9. 如权利要求1~8任一项所述的电磁装置,其特征在于,所述绕组结构包括多个环状的金属层,多个所述金属层沿所述磁芯的轴向层叠设置。
  10. 如权利要求9所述的电磁装置,其特征在于,所述导热片与多个所述金属层中的一个金属层连接,所述导热片与所述一个金属层平齐设置。
  11. 如权利要求9或10所述的电磁装置,其特征在于,多个所述金属层中的一部分所述金属层形成第一绕组,所述第一绕组中的相邻所述金属层串联连接;
    多个所述金属层中的另一部分所述金属层形成第二绕组,所述第二绕组中的所述金属层并联连接。
  12. 如权利要求11所述的电磁装置,其特征在于,所述第一绕组中的不同所述金属层分别与不同的所述导热柱连接。
  13. 如权利要求11或12所述的电磁装置,其特征在于,所述第二绕组中的不同所述金属层与同一个所述导热柱连接。
  14. 如权利要求1~13任一项所述的电磁装置,其特征在于,所述磁芯包括第一部分和第二部分,所述第一部分由所述基板的一侧插接设置在所述第一过孔内,所述第二部分由所述基板的另一侧插接设置在所述第一过孔内。
  15. 一种电源设备,其特征在于,包括如权利要求1~14任一项所述的电磁装置。
PCT/CN2022/116845 2022-09-02 2022-09-02 电磁装置及电源设备 WO2024045183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116845 WO2024045183A1 (zh) 2022-09-02 2022-09-02 电磁装置及电源设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116845 WO2024045183A1 (zh) 2022-09-02 2022-09-02 电磁装置及电源设备

Publications (1)

Publication Number Publication Date
WO2024045183A1 true WO2024045183A1 (zh) 2024-03-07

Family

ID=90100080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116845 WO2024045183A1 (zh) 2022-09-02 2022-09-02 电磁装置及电源设备

Country Status (1)

Country Link
WO (1) WO2024045183A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209045285U (zh) * 2018-10-24 2019-06-28 抚州市双菱磁性材料有限公司 一种导热型环形电感壳体
CN209962846U (zh) * 2019-07-08 2020-01-17 深圳市迈翔科技有限公司 一种扁平线组装弯脚结构贴片大电流电感器
CN110838475A (zh) * 2018-08-17 2020-02-25 深南电路股份有限公司 芯片组件及其制作方法
CN214068517U (zh) * 2021-01-19 2021-08-27 广东力王高新科技股份有限公司 平面变压器
CN114388237A (zh) * 2022-01-17 2022-04-22 华为数字能源技术有限公司 电子器件、电源模块及电子设备
CN114446594A (zh) * 2020-11-05 2022-05-06 深圳顺络汽车电子有限公司 一种高导热性能的车用功率电感及装配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838475A (zh) * 2018-08-17 2020-02-25 深南电路股份有限公司 芯片组件及其制作方法
CN209045285U (zh) * 2018-10-24 2019-06-28 抚州市双菱磁性材料有限公司 一种导热型环形电感壳体
CN209962846U (zh) * 2019-07-08 2020-01-17 深圳市迈翔科技有限公司 一种扁平线组装弯脚结构贴片大电流电感器
CN114446594A (zh) * 2020-11-05 2022-05-06 深圳顺络汽车电子有限公司 一种高导热性能的车用功率电感及装配方法
CN214068517U (zh) * 2021-01-19 2021-08-27 广东力王高新科技股份有限公司 平面变压器
CN114388237A (zh) * 2022-01-17 2022-04-22 华为数字能源技术有限公司 电子器件、电源模块及电子设备

Similar Documents

Publication Publication Date Title
US10141107B2 (en) Miniature planar transformer
US6181231B1 (en) Diamond-based transformers and power convertors
JP7151361B2 (ja) 半導体装置
US20060082945A1 (en) Modular heatsink, electromagnetic device incorporating a modular heatsink and method of cooling an electromagnetic device using a modular heatsink
US20130308272A1 (en) Heat pipe and electronic component having the heat pipe
EP3648128B1 (en) Transformer module and power module
US2770785A (en) Directly-cooled electromagnetic components
EP0267108A1 (en) Miniaturized transformer
JP2008136311A (ja) 複合平面コイル
KR20160038304A (ko) 회로기판
US9734943B2 (en) Electromagnetic device and conductive structure thereof
WO2024045183A1 (zh) 电磁装置及电源设备
US20210329809A1 (en) Power module having metallic heat-dissipation substrate
US8446244B1 (en) Integrated magnetic element
TWI779272B (zh) 一種磁性裝置和堆疊式電子結構
EP3522181B1 (en) Magnetic component with heat dissipation structure
US8917524B2 (en) Multi-function inductor and manufacture thereof
US10748700B2 (en) Coil structure and magnetic component
US20190373740A1 (en) Method for manufacturing printed wiring board
CN113225891B (zh) 具有散热结构的电路板及其制作方法
TWI738019B (zh) 用於射頻組件之多堆疊冷卻結構
WO2016197805A1 (zh) 一种印制电路板以及通信终端
TWI272623B (en) Power inductor with heat dissipating structure
US10355608B2 (en) Power converter module
JP6696332B2 (ja) プリント基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957003

Country of ref document: EP

Kind code of ref document: A1