WO2024045087A1 - 船用推进器及船舶 - Google Patents

船用推进器及船舶 Download PDF

Info

Publication number
WO2024045087A1
WO2024045087A1 PCT/CN2022/116357 CN2022116357W WO2024045087A1 WO 2024045087 A1 WO2024045087 A1 WO 2024045087A1 CN 2022116357 W CN2022116357 W CN 2022116357W WO 2024045087 A1 WO2024045087 A1 WO 2024045087A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission assembly
driven gear
assembly
driving gear
Prior art date
Application number
PCT/CN2022/116357
Other languages
English (en)
French (fr)
Inventor
王海洋
屈晓峰
万小康
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to PCT/CN2022/116357 priority Critical patent/WO2024045087A1/zh
Priority to CN202280008431.5A priority patent/CN117157231A/zh
Publication of WO2024045087A1 publication Critical patent/WO2024045087A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/30Transmitting power from propulsion power plant to propulsive elements characterised by use of clutches

Definitions

  • This application relates to the technical field of ship equipment, specifically to ship propellers and ships.
  • the speed change structure of existing electric marine propellers is relatively simple. They are mostly used in low-power marine propellers and are suitable for small ships. They can only provide relatively small power and are suitable for limited machines. Moreover, the existing transmission structure lacks a protective device. When the ship is traveling in the water, it is inevitable that it will run aground on a rock or hit other relatively hard objects due to unclear underwater conditions. This will cause greater damage to the transmission mechanism of the marine propeller, and may even directly lead to transmission failure, ultimately causing a greater impact on the operation of the ship.
  • This application provides marine propellers and ships that improve safety.
  • Embodiments of the present application provide a marine propeller, including a motor, a transmission assembly and a propeller.
  • the motor outputs rotational torque.
  • the transmission assembly is connected to the motor and the propeller and is used to transmit the rotational torque to The propeller, the transmission assembly is provided with a first transmission assembly and a transmission protection member on the transmission path, the first transmission assembly is used to convert the rotation rate output by the motor, and the transmission protection member is used to When the propeller is overloaded, the transmission is disconnected to reduce the risk of overload damage to the transmission components and propeller, and to protect the transmission structure and propeller.
  • An embodiment of the present application also provides a ship, including a hull and the ship propeller described in the above embodiment, and the ship propeller is detachably connected to the ship hull.
  • the marine propeller and ship of this application are equipped with a transmission protection piece in the transmission assembly.
  • the transmission protection piece can disconnect the transmission in time, thereby reducing the torque on the propeller and transmission assembly. Play a protective role.
  • the transmission protection piece can restore the transmission connection between the propeller and the transmission assembly and continue to transmit the rotational torque output by the motor, effectively improving the safety and service life of the marine propeller.
  • Figure 1 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 2 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 3 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 4 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 5 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 6 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 7 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 8 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 9 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 10 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 11 is a schematic structural diagram of a marine propeller in an embodiment.
  • Figure 12 is a schematic structural diagram of the ship in the embodiment of the present application.
  • the first box 31 The first box 31
  • the first pipeline 11 The first pipeline 11
  • an embodiment of the present application provides a marine propeller 100 , including a motor 1 , a transmission assembly 3 and a propeller 2 .
  • the motor 1 outputs rotational torque
  • the transmission assembly 3 is connected to the motor 1 and the propeller 2 for transmitting the rotational torque output by the motor 1 to the propeller 2 .
  • the transmission assembly 3 is provided with a first transmission assembly 5 and a transmission protection member 4 on the transmission path.
  • the first transmission assembly 5 is used to convert the rotation rate output by the motor 1, and the transmission protection member 4 is used to disconnect the transmission when the propeller 2 is overloaded. This reduces the problem of the first transmission component 5 and the propeller 2 being damaged due to excessive torque.
  • disconnection of transmission includes various forms such as slip transmission, friction transmission, buffer transmission, etc., and is not limited to the form in which the transmission protection member 4 is disconnected from the propeller 2 .
  • the transmission protection member 4 can restore the transmission connection relationship between the transmission assembly 3 and the propeller 2, so that the transmission assembly 3 can continue to transmit rotational torque to the propeller 2.
  • the first transmission assembly 5 is a gear transmission assembly, and the first transmission assembly 5 is connected to the motor 1 .
  • the transmission assembly 3 is also provided with a second transmission assembly 6 on the transmission path.
  • the second transmission assembly 6 is a gear transmission assembly and is used to convert the rotation rate output by the first transmission assembly 5 to adjust the rotation rate of the propeller 2 .
  • the transmission protection member 4 is provided with a clutch 41 connecting the first transmission assembly 5 and the second transmission assembly 6 .
  • the clutch 41 includes but is not limited to an overload clutch.
  • the clutch 41 can slip when the propeller 2 is overloaded, thereby reducing the speed of the propeller 2 and the first transmission assembly. 5 to protect against the torque received.
  • the transmission protection member 4 can restore the transmission connection between the propeller 2 and the first transmission assembly 5 and continue to transmit the rotational torque output by the motor 1, effectively improving the safety and service life of the marine propeller 100.
  • the marine propeller 100 also includes a frame 90, on which the first transmission assembly 5 and the second transmission assembly 6 are installed.
  • the first transmission assembly 5 and the second transmission assembly 6 operate stably on the frame 90 to achieve an effective conversion rate.
  • the first transmission assembly 5 includes a first driving gear 51 and a first driven gear 52 that mesh with each other.
  • the first driving gear 51 is coaxially arranged with the motor 1 and is fixedly connected to the output shaft of the motor 1 .
  • the second transmission assembly 6 includes a second driving gear 61 and a second driven gear 62 that mesh with each other.
  • the second driving gear 61 is connected to the first driven gear 52 and is used to receive the rotation torque of the first driven gear 52 and drive the second driven gear 62 to rotate, thereby converting the rotation rate output by the first transmission assembly 5 .
  • the first driving gear 51 is provided with a first driving gear shaft 511 , and the first driving gear shaft 511 is rotatably connected to the frame 90 .
  • the frame 90 can be provided with a shaft hole and a bearing fixed in the shaft hole, and the first driving gear shaft 511 can stably rotate relative to the frame 90 by cooperating with the bearing.
  • the output shaft of the motor 1 is fixedly connected to the first driving gear shaft 511 .
  • the first driving gear shaft 511 can rotate stably on the frame 90 to transmit the output torque of the motor 1 .
  • first driven gear 52 is provided with a first driven gear shaft 521
  • second driving gear 61 is provided with a second driving gear shaft 611
  • the second driven gear 62 is provided with a second driven gear shaft 621 .
  • the first driven gear shaft 521 , the second driving gear 611 , and the second driven gear shaft 621 can be installed on the frame 90 in the same manner as the first driving gear shaft 511 , thereby realizing the first transmission assembly 5 and the second transmission assembly 6 Stable operation on rack 90.
  • the diameter of the first driving gear 51 is smaller than the diameter of the first driven gear 52
  • the diameter of the second driving gear 61 is smaller than the diameter of the second driven gear 62 to convert the rotation rate output by the motor 1 to a relatively low speed.
  • the rotation rate is transmitted to the propeller 2, so that the propeller 2 obtains a larger rotation torque, thereby generating sufficient propulsion to provide power for the ship to move.
  • the diameter of the second driving gear 61 can also be larger than the diameter of the second driven gear 62 in order to convert the rotation rate output by the first transmission assembly 5 into a relatively high output rate.
  • the types of each gear include but are not limited to spur gears, helical gears, etc.
  • the ratio between the number of gear teeth can also be selected according to actual needs to meet the transmission requirements, which is not limited in this application.
  • the axes of the first driving gear 51 and the first driven gear 52 are arranged substantially parallel, the second driving gear 61 and the first driven gear 52 are arranged coaxially, and the transmission protection member 4 is connected to the second driving gear. 61 and the first driven gear 52.
  • the transmission protection piece 4 is disposed at the connection between the first driven gear shaft 521 and the second driving gear shaft 611. When the propeller 2 is overloaded, the transmission protection piece 4 disconnects the first driven gear shaft 521 and the second driving gear shaft.
  • the axis of the second driven gear 62 is substantially parallel to the axis of the second driving gear 61 , and the second driven gear 62 is staggered from the first driving gear 51 .
  • the second driven gear 62 is arranged staggeredly.
  • the installation accuracy between the driving gear 61 and the first driven gear 52 only needs to meet the design requirements. There is no need to consider the installation position relationship between the second driven gear 62 and the first transmission assembly 5 , which is beneficial to reducing the assembly of the transmission assembly 3 difficult to facilitate subsequent maintenance and replacement; on the other hand, the staggered arrangement of the second driven gear 62 and the first driving gear 51 can increase the distance between the propeller 2 rotating shaft and the motor 1 rotating shaft, which is suitable for the marine propeller 100 in ships.
  • the installation location is higher than the water surface.
  • the transmission assembly 3 is provided with a belt transmission assembly 33 on the transmission path for transmitting the rotational torque of the second transmission assembly 6 to the propeller 2 and for slip transmission when the propeller 2 is overloaded.
  • the transmission assembly 3 also includes a first box 31 , which is a part of the frame 90 .
  • the first transmission assembly 5 , the transmission protection member 4 and the second transmission assembly 6 are arranged in the first box 31 .
  • the belt transmission assembly 33 is connected to the second transmission assembly 6 on the outside of the first case 31 .
  • the first box 31 is at least partially located on the water surface to facilitate reducing sailing resistance.
  • the belt transmission assembly 33 can also be connected to the second transmission assembly 6 in the first box 31 .
  • the belt transmission assembly 33 includes a first transmission pulley 331 , a second transmission pulley 332 and a transmission belt 333 .
  • the transmission belt 333 is sleeved on the first transmission wheel 331 and the second transmission wheel 332 .
  • the first transmission wheel 331 is connected to the second driven gear 62 for receiving rotational torque.
  • the first transmission wheel 331 is coaxial with the second driven gear 62 , and the rotation axis of the first transmission wheel 331 is fixedly connected to the second driven gear shaft 621 of the second driven gear 62 .
  • the second transmission wheel 332 is used to output rotational torque, and the second transmission wheel 332 is connected to the propeller 2, and the second transmission wheel 332 drives the propeller 2 to rotate.
  • the rotation axis of the second transmission wheel 332 is fixedly connected to the rotation axis of the propeller 2.
  • the belt drive assembly 33 can increase the number of gear changes to adapt to a higher-power motor 1 and provide greater power for the marine propeller 100.
  • the belt drive assembly 33 can Provide a certain buffering effect and protect other transmission structures.
  • the belt drive assembly 33 can also effectively reduce noise and improve the comfort of use of the marine propeller 100 .
  • the marine propeller 100 also includes a circulation pump 10, a first pipe 11, a second pipe 12 and a third pipe 13 to achieve heat dissipation of the motor 1, transmission assembly 3 and other structures, and reduce equipment and mechanical structures. Wait for the problem of overheating failure to occur.
  • the first pipeline 11 communicates with the inlet end of the circulation pump 10 and the first box 31 .
  • the circulation pump 10 draws the cooling liquid in the first box 31 through the first pipeline 11 .
  • the second pipe 12 and the third pipe 13 are connected in parallel to the outlet end of the circulation pump 10 , and the third pipe 13 is connected to the motor 1 , and the second pipe 12 is connected in sequence to the motor 1 and the first box 31 .
  • the circulation pump 10 delivers the cooling liquid to the motor 1 and the first box 31 through the second pipe 12 and the third pipe 13 .
  • the first box 31 is partially submerged under the water surface, so that the temperature of part of the cooling liquid in the first box 31 is consistent with that of the surrounding water environment, thereby achieving cooling of the cooling liquid.
  • the first pipe 11 is used to pump the cooling liquid in the underwater part of the first box 31 to the circulation pump 10, and transport the cooling liquid to the motor 1 and the transmission assembly 3 through the second pipe 12 and the third pipe 13 through the circulation pump 10, Realize the cooling of motor 1 and transmission assembly 3.
  • the housing of the motor 1 can also be connected to the first box 31, and the cooling liquid can flow back into the first box 31 after dissipating heat from the motor 1, and flow to the underwater part of the first box 31 under the action of gravity, using the water environment to control the cooling. Cool the liquid to cool down.
  • the marine propeller 100 can use the natural environment to perform heat exchange on the cooling liquid during the sailing process, without the need to install additional cooling equipment, thereby saving production costs.
  • the first box 31 can also be disposed on the water surface, and the first pipe 11 is partially submerged under the water surface.
  • the liquid in the first box 31 is pumped out to the submerged part of the first pipe 11 , the liquid with a higher temperature exchanges heat with the surrounding water environment to achieve cooling of the cooling liquid, and then the cooling liquid is cooled by the circulation pump 10
  • the heat is transported to the motor 1 and the first box 31 through the second pipe 12 and the third pipe 13 to achieve heat dissipation of the motor 1, transmission assembly 3 and other structures.
  • the marine propeller 100 may further include a filter 14 , which is disposed on the water surface and connected between the second pipe 12 and the third pipe 13 and the circulation pump 10 .
  • the filter 14 is used to filter impurities in the heat dissipation liquid, reduce the wear of the motor 1 and the transmission component 3 by the impurities, and improve the motion stability of the motor 1 and the transmission component 3 .
  • the second pipe 12 and the third pipe 13 are also provided with a plurality of spray parts 15.
  • the spray parts 15 are located in the motor 1 and the first box 31 and are used to spray the cooled cooling liquid evenly on the shell of the motor 1. body and the first box 31, which is beneficial to improving heat dissipation efficiency and reducing the problem of excessive local temperature.
  • the first box 31 is filled with coolant.
  • the coolant has a lubricating effect.
  • the coolant can be lubricating cooling oil.
  • the coolant is used to lubricate the transmission component 3 and can also be thermally coupled with the transmission component 3 .
  • the first transmission assembly 5 is not limited to the above embodiment.
  • the first transmission assembly 5 may also be composed of three gears meshing in sequence, or four gears meshing in sequence. In the embodiment of the present application, the number of gears in the first transmission assembly 5 is not limited.
  • the first transmission assembly 5 can also be composed of multiple damping wheels that cooperate in sequence. Any transmission structure intended to be able to convert the torque of the motor 1 belongs to the embodiments of the present application.
  • the second transmission assembly 6 may also be composed of three or more gears meshing in sequence. This application does not limit the number of gears in the second transmission assembly 6 .
  • the second transmission assembly 6 may also be composed of a turbine and worm structure, or may be composed of multiple damping wheels that are coordinated in sequence. Any structure intended to be able to change the torque conversion rate of the first transmission assembly 5 belongs to the embodiments of the present application.
  • the number of transmission belts 333 in the belt transmission assembly 33 may be one or more, which is not limited in this application.
  • the belt drive assembly 33 can also be replaced by a chain drive structure. Any structure intended to be able to transmit the output torque of the second transmission assembly 6 belongs to the embodiments of the present application.
  • the relative positions of the second driven gear 62 and the first driving gear 51 are changed to form the embodiment shown in FIG. 2 .
  • the second driven gear 62 is arranged opposite to the first driving gear 51.
  • the second driven gear 62 is arranged above the second driving gear 61, which is beneficial to Reducing the overall size of the stacked layout of the first transmission assembly 5 and the second transmission assembly 6 improves space utilization, is conducive to the miniaturization of the marine propeller 100, and is suitable for situations where the installation space is small.
  • the second driven gear 62 can also be coaxially arranged with the first driving gear 51, which is beneficial to reducing the structural asymmetry of the first transmission assembly 5 and the second transmission assembly 6, reducing mechanical vibration during the transmission process, and reducing equipment noise and increase the comfort of using the machine.
  • the belt transmission assembly 33 can also be disposed in the first box 31 to improve the safety of the belt transmission assembly 33 .
  • the structural form of the second transmission component 6 is replaced to form the embodiment shown in Figure 3.
  • the second driving gear 61 and the second driven gear 62 are bevel gears that mesh with each other, and the axis of the second driving gear 61 is perpendicular to the axis of the second driven gear 62 .
  • the transmission protection member 4 is connected between the first driven gear 52 and the second driving gear 61 .
  • the transmission assembly 3 is also provided with a third transmission assembly 7.
  • the third transmission assembly 7 is transmission connected between the second driven gear 62 and the propeller 2, replacing the belt in the embodiment shown in Figure 1.
  • the third transmission assembly 7 is a gear transmission assembly, including a third driving gear 71 and a third driven gear 72 that mesh with each other.
  • the third driving gear 71 and the third driven gear 72 are bevel gears that mesh with each other.
  • the axis of the third driving gear 71 is perpendicular to the axis of the third driven gear 72.
  • the third driving gear 71 is drivingly connected to the second driven gear.
  • the driving gear 62 and the third driven gear 72 are drivingly connected to the propeller 2 .
  • the second transmission assembly 6 and the third transmission assembly 7 having a bevel gear structure have the advantages of changing the transmission direction and improving transmission stability.
  • the second transmission assembly 6 may also include a plurality of second driven gears 62, and the plurality of second driven gears 62 are all bevel gears.
  • the third transmission assembly 7 may also include a plurality of third driven gears 72 , and the plurality of third driven gears 72 are all bevel gears.
  • the second transmission assembly 6 and the third transmission assembly 7 with a bevel gear structure are used instead of the belt drive assembly to transmit the output torque of the first transmission assembly 5 and drive the propeller 2 to rotate, which is beneficial to improving transmission stability. performance and transmission accuracy, and reduce noise when using the machine.
  • the third transmission assembly 7 with a bevel gear structure is also beneficial to reducing the volume of the underwater part of the machine and reducing the sailing resistance.
  • the first transmission component 5 and the transmission protection member 4 are arranged inside the first box 31 , and the second transmission component 6 is arranged outside the first box 31 .
  • the second speed change component 6 is directly connected to the propeller 2, so that the axis of the propeller 2 is perpendicular to the axis of the motor 1.
  • the propeller 2 is directly driven to rotate by the second speed change assembly 6, which reduces the transmission level, which is beneficial to improving the transmission efficiency of the machine, reducing energy loss, and improving propulsion power.
  • a lubricating oil pump 32 is added to the first box 31 in the embodiment shown in Figure 4 to form the embodiment shown in Figure 5.
  • a lubricating oil pump 32 is also provided in the first box 31 .
  • the lubricating oil pump 32 is disposed on the side of the first transmission assembly 5 away from the transmission protection member 4 and is used to drive the lubricating oil pump 32 inside the first box 31 .
  • the coolant circulates to reduce the friction resistance of the internal structure of the machine during operation.
  • the power mechanism (such as gears, impellers, etc.) of the lubricating oil pump 32 is drivingly connected to the first driven gear shaft 521.
  • the power mechanism of the lubricating oil pump 32 rotates with the first driven gear 52.
  • the lubricating oil pump 32 rotates under the action of rotational torque.
  • the coolant is driven to flow, thereby realizing the pumping out and pumping of the coolant in the first box 31, so that the first transmission component 5, the transmission protection part 4, etc. can be fully infiltrated by the coolant during operation, thereby reducing the friction between mechanisms. Frictional resistance, reducing noise, improving transmission stability, and effectively cooling the transmission components 3 at the same time.
  • FIG. 6 Based on the embodiment shown in FIG. 5 , the installation position of the lubricating oil pump 32 in the embodiment shown in FIG. 5 is changed to form the embodiment shown in FIG. 6 .
  • the lubricating oil pump 32 is disposed on the side of the transmission protection member 4 facing the second transmission assembly 6, which is beneficial to improving the infiltration effect of the transmission protection member 4 and reducing the jamming of the transmission protection member 4 due to excessive frictional resistance. Die, causing transmission failure.
  • the lubricating oil pump 32 can also be connected to the output shaft of the second driven gear 62, which can reduce the rotation speed of the lubricating oil pump 32, while ensuring the lubrication effect, minimizing machine vibration and noise, and improving transmission stability.
  • the lubricating oil pump 32 can also be connected to other rotating shafts of the transmission assembly 3 to meet the use requirements of the machine, and this application is not limited to this.
  • the second transmission component 6 in the embodiment shown in FIG. 6 can also be replaced by a belt transmission component.
  • the structure of the belt transmission component is roughly the same as that of the embodiment shown in FIG. 1 and will not be described again here.
  • the clutch in the transmission protection member 4 of the embodiment shown in Figure 6 is replaced with a coupling or a shock absorber to form the embodiment shown in Figure 7 .
  • the transmission protection member 4 includes either a flexible coupling or a shock absorber.
  • the coupling or shock absorber connects the first transmission component 5 and the second transmission component 6 .
  • the coupling or shock absorber can provide a certain buffering effect and reduce the vibration of the transmission component 3 to protect the transmission component 3 .
  • the two ends of the flexible coupling or shock absorber are respectively connected to the rotating shaft of the first driven gear 52 and the rotating shaft of the second driving gear 61.
  • the flexible coupling or shock absorber is provided with a flexible structure, and the flexible structure It can be rubber, spring, electromagnet, thermoplastic plastic and other structural parts.
  • the flexible coupling or the flexible structure in the shock absorber can absorb the overload torque transmitted back from the propeller 2 and prevent the gear structures in the first transmission assembly 5 and the second transmission assembly 6 from being overloaded by excessive torque. mechanical damage caused.
  • the manufacturing cost of flexible couplings and shock absorbers is relatively low, so the selection of flexible couplings, shock absorbers, etc. in the transmission protection part 4 is beneficial to reducing the manufacturing cost of the marine propeller 100 .
  • the flexible structure in the flexible coupling or shock absorber can also help buffer mechanical vibration, reduce machine noise, and maintain transmission stability.
  • a third transmission assembly 7 and a shift assembly 34 are added to the marine propeller 100 of the embodiment shown in Figure 1 to form the embodiment shown in Figure 8 .
  • the transmission assembly 3 also includes a third transmission assembly 7 and a shift assembly 34
  • the third transmission assembly 7 is a gear transmission assembly.
  • the propeller 2 is drivingly connected with the third transmission assembly 7 and the second transmission assembly 6
  • the shifting assembly 34 is disposed between the second transmission assembly 6 and the third transmission assembly 7 for switching the second transmission assembly 6 and the third transmission assembly 7
  • the output speed of the second speed change component 6 is smaller than the output speed of the third speed change component 7.
  • the rotation speed of the propeller 2 can be adjusted through the shift component 34 to adapt to different ship load conditions.
  • the third transmission assembly 7 includes a third driving gear 71 and a third driven gear 72 that mesh with each other.
  • the second driving gear 61 and the third driving gear 71 are coaxially arranged.
  • the shifting assembly 34 is disposed between the second driving gear 61 and the third driving gear 71 .
  • the second driven gear 62 and the third driven gear 72 are coaxially arranged, and the second driven gear 62 and the third driven gear 72 are used to drively connect the propeller 2 .
  • the shifting assembly 34 realizes the adjustment of the rotation rate of the propeller 2 by switching the transmission connection relationship between the second driving gear 61 and the third driving gear 71 and the first driven gear 52.
  • the shifting assembly 34 includes but is not limited to a synchronizer and other devices.
  • the shift assembly 34 engages the second driving gear 61 to connect the second driving gear 61 with the first driven gear 52 , the transmission connection relationship between the third driving gear 71 and the first driven gear 52 is cut off.
  • the second transmission assembly 6 transmits the output torque of the first transmission assembly 5
  • the second driven gear 62 transmits the adjusted rotation rate to the propeller 2 .
  • the shift assembly 34 engages the third driving gear 71 to connect the third driving gear 71 with the first driven gear 52
  • the transmission connection relationship between the second driving gear 61 and the first driven gear 52 is cut off.
  • the third transmission assembly 7 transmits the output torque of the first transmission assembly 5
  • the third driven gear 72 transmits the adjusted rotation rate to the propeller 2 .
  • the output speed of the third transmission assembly 7 is greater than the output speed of the second transmission assembly 6 , and the shifting assembly 34 switches between the second transmission assembly 6 and the third transmission assembly 7 and the first transmission assembly 5 .
  • the rotation speed of the propeller 2 can be switched between high-speed rotation and low-speed rotation to meet different sailing needs.
  • the transmission assembly 3 also includes a fourth transmission assembly 8.
  • the fourth transmission assembly 8 is transmission connected with the second transmission assembly 6 and the third transmission assembly 7.
  • the fourth transmission assembly 8 is used to convert the second transmission assembly 6 or the third transmission assembly.
  • the fourth speed change component 8 is connected to the propeller 2 according to the rotation rate output by the component 7 .
  • the fourth transmission assembly 8 includes a fourth driving gear 81 and a fourth driven gear 82 that mesh with each other.
  • the fourth driving gear 81 is drivingly connected to the second transmission assembly 6 and the third transmission assembly 7 .
  • the axis of the fourth driving gear 81 is perpendicular to the axis of the fourth driven gear 82, and is a bevel gear structure.
  • the transmission assembly 3 also includes a fifth transmission assembly 9.
  • the fifth transmission assembly 9 is transmission connected between the fourth transmission assembly 8 and the propeller 2 to transmit the output torque to the propeller 2, increase the number of transmission stages, and adapt to greater power. of motor 1.
  • the fifth transmission assembly 9 includes a fifth driving gear 91 and a fifth driven gear 92 that mesh with each other.
  • the fifth driving gear 91 is drivingly connected to the fourth driven gear 82
  • the axis of the fifth driving gear 91 is connected with the third driven gear 91 .
  • the axis of the fifth driven gear 92 is vertical and is also a bevel gear structure.
  • the fourth transmission assembly 8 and the fifth transmission assembly 9 are used to change the output direction of the transmission assembly 3, which is beneficial to improving the applicability of the marine propeller 100.
  • the shift assembly 34 is used to switch the transmission connection relationship between the second transmission assembly 6 and the third transmission assembly 7 and the first transmission assembly 5 to adjust the rotation speed of the propeller 2 , so that the marine propeller 100 Suitable for different working conditions to improve machine performance and motor efficiency.
  • the fourth transmission assembly 8 and the fifth transmission assembly 9 with a bevel gear structure transmit the output torque of the second transmission assembly 6 or the third transmission assembly 7 to the propeller 2 and drive the propeller 2 to rotate.
  • the transmission is improved by increasing the transmission level.
  • Component 3 is adapted to a higher-power motor 1, making the marine propeller 100 suitable for ships with larger loads.
  • it is conducive to improving transmission stability and precision, and reducing noise when the machine is used.
  • the fourth transmission assembly 8 and the fifth transmission assembly 9 of the embodiment shown in Figure 8 are replaced with a belt transmission assembly 33 to form an assembly as shown in Figure 9 Example.
  • the belt drive assembly 33 is connected between the third transmission assembly 7 and the propeller 2 , replacing the fourth transmission assembly 8 and the fifth transmission assembly 9 in the embodiment shown in FIG. 8 .
  • the belt drive assembly 33 can provide a certain buffering effect and improve the protection effect of the drive assembly 3.
  • the belt drive assembly 33 can also effectively reduce noise and improve the comfort of the marine propeller 100.
  • the first transmission wheel 331 of the belt transmission assembly 33 is coaxially connected to the second driven gear 62 and the third driven gear 72 , and the shift assembly 34 engages the second driving gear 61 so that the second driving gear 61 and When the first driven gear 52 is connected in transmission, the first transmission wheel 331 rotates synchronously with the second driven gear 62 .
  • the shift assembly 34 engages the third driving gear 71 to drively connect the third driving gear 71 with the first driven gear 52
  • the first transmission wheel 331 rotates synchronously with the third driven gear 72 .
  • the rotating shaft of the second transmission wheel 332 of the belt transmission assembly 33 is fixedly connected to the rotating shaft of the propeller 2.
  • the transmission belt 333 is sleeved on the first transmission wheel 331 and the second transmission wheel 332 to drive the second transmission wheel 332 and the first transmission wheel. 331 rotates synchronously, and then drives the propeller 2 to rotate.
  • the belt transmission assembly 33 is not limited to the replacement of the embodiment shown in FIG. 8 , and can also be a replacement of any embodiment of the connection structure between the transmission assembly 3 and the propeller 2 .
  • a third transmission assembly 7 is added to the marine propeller 100 of the embodiment shown in Figure 1 to change the transmission of the first transmission assembly 5 and the second transmission assembly 6. connection relationship, and replace the transmission protection parts 4 with different structural forms to form the embodiment shown in Figure 10.
  • the transmission assembly 3 also includes a third transmission assembly 7.
  • the third transmission assembly 7 is transmission connected between the motor 1 and the first transmission assembly 5.
  • the third transmission assembly 7 is used to convert the output of the motor 1. Rotation rate.
  • the transmission protection member 4 is connected between the first transmission assembly 5 and the second transmission assembly 6.
  • the transmission protection member 4 includes a shifting structure and a friction structure.
  • the gear shifting structure is used to switch the transmission connection state of the first transmission assembly 5 and the second transmission assembly 6 and the third transmission assembly 7.
  • the first transmission assembly 5 and the second transmission assembly 6 are used to convert the rotation output by the third transmission assembly 7. speed, the friction structure is used to slip the transmission when the propeller 2 is overloaded, reducing overload damage to the transmission assembly 3 and the propeller 2.
  • the third transmission assembly 7 includes a third driving gear 71 and a third driven gear 72 that mesh with each other.
  • the third driving gear 71 is coaxially arranged with the motor 1 and connected to the output shaft of the motor 1 .
  • the third driven gear 72 It is arranged coaxially with the first driving gear 51 and the second driving gear 61 .
  • the second driving gear 61 When the shifting structure engages the second transmission assembly 6, the second driving gear 61 is drivingly connected to the third driven gear 72, and the driving connection relationship between the first driving gear 51 and the third driven gear 72 is cut off, and the third driving gear 61 is connected to the third driven gear 72.
  • the two driven gears 62 transmit output torque to the propeller 2 .
  • the transmission assembly 3 also includes a fourth transmission assembly 8 .
  • One side of the fourth transmission assembly 8 is transmission connected to the first transmission assembly 5 and the second transmission assembly 6 , and the other side of the fourth transmission assembly 8 is transmission connection to the propeller 2 .
  • the fourth transmission assembly 8 includes a fourth driving gear 81 and a fourth driven gear 82 that mesh with each other.
  • the axis of the fourth driving gear 81 is perpendicular to the axis of the fourth driven gear 82.
  • the fourth driving gear 81 is drivingly connected to the second driven gear.
  • the driven gear 62 and the first driven gear 52 When the first driving gear 51 is drivingly connected to the third driven gear 72 , the fourth driving gear 81 rotates synchronously with the first driven gear 52 .
  • the fourth driving gear 81 rotates synchronously with the second driven gear 62 .
  • the transmission assembly 3 also includes a fifth transmission assembly 9 , which is transmission connected between the fourth transmission assembly 8 and the propeller 2 .
  • the fifth transmission assembly 9 includes a fifth driving gear 91 and a fifth driven gear 92 that mesh with each other.
  • the fifth driving gear 91 is drivingly connected to the fourth driven gear 82
  • the fifth driven gear 92 is connected to the propeller 2
  • the fifth driving gear 91 is connected to the propeller 2 .
  • the axis of the gear 91 is perpendicular to the axis of the fifth driven gear 92 and is used to change the output direction of the transmission assembly 3 .
  • a transmission protection member 4 may also be connected between the third driven gear 72 and the first driving gear 51.
  • the transmission protection member 4 includes but is not limited to an overload clutch, so that the transmission assembly 3
  • the multi-stage transmission structure is protected by different transmission protection parts 4, which provides better protection for structures with many transmission stages.
  • the third driven gear 72 and the first driving gear 51 can also be directly connected through a transmission shaft, which is beneficial to improving transmission stability and reducing energy loss.
  • a lubricating oil pump 32 may also be provided in the first box 31 .
  • the connection method of the lubricating oil pump 32 in the transmission assembly 3 is similar to the embodiment shown in FIG. 5 , and will not be described again here.
  • the transmission protection piece 4 may also contain a hydraulic assembly (not shown).
  • the pushing mechanism of the hydraulic assembly is drivingly connected to the shifting structure of the transmission protection piece 4, and the liquid pipeline of the hydraulic assembly is connected to the lubricating oil pump 32.
  • the hydraulic assembly is used for pushing.
  • the shifting structure of the transmission protection member 4 switches the transmission connection state of the first transmission assembly 5, the second transmission assembly 6, and the third transmission assembly 7, thereby adjusting the rotation speed of the propeller 2 and adapting to different operating conditions.
  • the fourth transmission assembly 8 and the fifth transmission assembly 9 of the embodiment shown in Figure 10 are replaced with a belt transmission assembly 33 to form an assembly as shown in Figure 11 Example.
  • the belt drive assembly 33 is connected between the second transmission assembly 6 and the propeller 2 , replacing the fourth transmission assembly 8 and the fifth transmission assembly 9 in the embodiment shown in FIG. 10 .
  • the belt transmission assembly 33 can provide a certain buffering effect, improve the protection effect of the transmission assembly 3, and reduce noise and manufacturing costs.
  • the first transmission wheel 331 of the belt transmission assembly 33 is coaxially connected to the second driven gear 62 and the first driven gear 52 , and the shifting assembly of the transmission protection member 4 engages the first driving gear 51 so that the first When the driving gear 51 is transmission connected with the third driven gear 72 , the first transmission wheel 331 rotates synchronously with the first driven gear 52 .
  • the shift component of the transmission protection member 4 engages the second driving gear 61 to drively connect the second driving gear 61 with the third driven gear 72
  • the first transmission wheel 331 rotates synchronously with the second driven gear 62 .
  • the rotating shaft of the second transmission wheel 332 of the belt transmission assembly 33 is fixedly connected to the rotating shaft of the propeller 2.
  • the transmission belt 333 is sleeved on the first transmission wheel 331 and the second transmission wheel 332 to drive the second transmission wheel 332 and the first transmission wheel. 331 rotates synchronously, and then drives the propeller 2 to rotate.
  • An embodiment of the present application also provides a ship 200, including a hull 201 and the marine propeller 100 described in any of the above embodiments.
  • the marine propeller 100 is detachably connected to the hull 201. To provide sailing power for the hull 201.
  • the marine propeller 100 and ship 200 of the present application provide a transmission protection piece 4 in the transmission assembly 3.
  • the transmission protection piece 4 can disconnect the transmission in time, thereby lowering the propeller 2 And the torque received by the transmission component plays a protective role.
  • the transmission protection member 4 can restore the transmission connection between the propeller 2 and the transmission assembly, and continue to transmit the rotational torque output by the motor 1, effectively improving the safety and service life of the marine propeller 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Transmission Devices (AREA)

Abstract

一种船用推进器及船舶,其中,船用推进器包括电机(1)、传动组件(3)和螺旋桨(2)。电机(1)输出转动扭矩,传动组件(3)连接电机(1)和螺旋桨(2),用于将电机(1)输出的转动扭矩传递至螺旋桨(2)。传动组件(3)在传动路径上设有第一变速组件(5)和传动保护件(4),第一变速组件(5)用于转换电机(1)输出的转动速率,传动保护件(4)用于在螺旋桨过载时断开传动,降低传动组件和螺旋桨产生过载损坏的风险,实现对传动结构和螺旋桨的保护。

Description

船用推进器及船舶 技术领域
本申请涉及船舶设备技术领域,具体而言,涉及船用推进器及船舶。
背景技术
现有电动形式的船用推进器中变速结构相对单一,在小功率的船用推进器中使用较多,适用于小型船舶,只能提供相对小的动力,适用机器有限。并且现有的变速结构中缺少保护装置,船在水里行进时,由于不清楚水下状况,难免发生触礁或者撞上其他较为坚硬的物体的情况。从而对船用推进器的传动机构造成较大的损伤,甚至可能直接导致传动失效,最终对船舶运行造成较大影响。
发明内容
本申请提供提高安全性的船用推进器及船舶。
本申请的实施例提供一种船用推进器,包括电机、传动组件和螺旋桨,所述电机输出转动扭矩,所述传动组件连接于所述电机和所述螺旋桨,用于将所述转动扭矩传递至所述螺旋桨,所述传动组件在传动路径上设有第一变速组件和传动保护件,所述第一变速组件用于转换所述电机输出的转动速率,所述传动保护件用于在所述螺旋桨过载时断开传动,降低传动组件和螺旋桨产生过载损坏的风险,实现对传动结构和螺旋桨的保护。
本申请的实施例还提供一种船舶,包括船体和上述实施例所述的船用推进器,所述船用推进器可拆卸地连接所述船体。
本申请的船用推进器和船舶通过在传动组件中设置传动保护件,当螺旋桨被缠绕或撞击到礁石等阻碍物时,传动保护件能够及时断开传动,从而降低螺旋桨和变速组件受到的扭矩,起到保护作用。当阻碍物清除后,传动保护件可以恢复螺旋桨与变速组件之间的传动连接,继续传递电机输出的转动扭矩,有效提升船用推进器的使用安全性和使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为船用推进器在一实施例中的结构示意图。
图2为船用推进器在一实施例中的结构示意图。
图3为船用推进器在一实施例中的结构示意图。
图4为船用推进器在一实施例中的结构示意图。
图5为船用推进器在一实施例中的结构示意图。
图6为船用推进器在一实施例中的结构示意图。
图7为船用推进器在一实施例中的结构示意图。
图8为船用推进器在一实施例中的结构示意图。
图9为船用推进器在一实施例中的结构示意图。
图10为船用推进器在一实施例中的结构示意图。
图11为船用推进器在一实施例中的结构示意图。
图12为本申请实施例中船舶的结构示意图。
主要元件符号说明:
船用推进器       100
电机             1
螺旋桨           2
传动组件         3
第一箱体         31
润滑油泵         32
带传动组件       33
第一传动轮       331
第二传动轮       332
传动带           333
换挡组件         34
传动保护件       4
离合器           41
第一变速组件     5
第一主动齿轮     51
第一主动齿轮轴   511
第一从动齿轮     52
第一从动齿轮轴   521
第二变速组件     6
第二主动齿轮     61
第二主动齿轮轴   611
第二从动齿轮     62
第二从动齿轮轴   621
第三变速组件     7
第三主动齿轮     71
第三从动齿轮     72
第四变速组件     8
第四主动齿轮     81
第四从动齿轮     82
第五变速组件     9
第五主动齿轮     91
第五从动齿轮     92
机架             90
循环泵           10
第一管道         11
第二管道         12
第三管道         13
过滤器           14
喷淋件           15
船舶             200
船体             201
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右” 以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
参见图1,本申请的一实施例提供一种船用推进器100,包括电机1、传动组件3和螺旋桨2。电机1输出转动扭矩,传动组件3连接于电机1和螺旋桨2,用于将电机1输出的转动扭矩传递至螺旋桨2。传动组件3在传动路径上设有第一变速组件5和传动保护件4,第一变速组件5用于转换电机1输出的转动速率,传动保护件4用于在螺旋桨2过载时断开传动,从而减少第一变速组件5和螺旋桨2因受到的扭矩过大而损坏的问题。
需要说明的是,断开传动包括发生打滑传动、摩擦传动、缓冲传动等多种形式,并不局限于传动保护件4与螺旋桨2断开连接的形式。当螺旋桨2收到的扭矩恢复正常时,传动保护件4可以恢复传动组件3与螺旋桨2之间的传动连接关系,使传动组件3继续传递转动扭矩至螺旋桨2。
具体地,第一变速组件5为齿轮变速组件,且第一变速组件5连接电机1。传动组件3在传动路径上还设有第二变速组件6,第二变速组件6为齿轮变速组件,用于转换第一变速组件5输出的转动速率,从而调整螺旋桨2的转动速率。传动保护件4设有连接第一变速组件5与第二变速组件6的离合器41。
在本申请的实施中,该离合器41包括但不限于过载离合器,当螺旋桨2被缠绕或撞击到礁石等阻碍物时,离合器41能够在螺旋桨2过载时打滑,从而降低螺旋桨2和第一变速组件5受到的扭矩,起到保护作用。当阻碍物清除后,传动保护件4可以恢复螺旋桨2与第一变速组件5之间的传动连接,继续传递电机1输出的转动扭矩,有效提升船用推进器100的使用安全性和使用寿命。
在本申请的实施中,船用推进器100还包括机架90,第一变速组件5和第二变速组件6均安装于机架上。第一变速组件5和第二变速组件6在机架90上稳定运转,实现有效转换速率。
进一步地,第一变速组件5包括相互啮合的第一主动齿轮51和第一从动齿轮52。第一主动齿轮51与电机1同轴设置,固定连接电机1的输出轴。第二变速组件6包括相互啮合的第二主动齿轮61和第二从动齿轮62。第二主动齿轮 61与第一从动齿轮52连接,用于接收第一从动齿轮52的转动扭矩,并带动第二从动齿轮62转动,实现对第一变速组件5输出的转动速率的转换。
在本申请的实施例中,第一主动齿轮51设有第一主动齿轮轴511,第一主动齿轮轴511可转动地连接于机架90上。具体地,机架90上可设置轴孔和固定于轴孔内的轴承,第一主动齿轮轴511可通过与轴承配合稳定地相对机架90转动。电机1的输出轴与第一主动齿轮轴511固定连接。电机1的输出轴转动时,第一主动齿轮轴511可以在机架90上稳定转动,以便传递电机1的输出扭矩。可以理解地,第一从动齿轮52设有第一从动齿轮轴521,第二主动齿轮61设有第二主动齿轮轴611,第二从动齿轮62设有第二从动齿轮轴621。第一从动齿轮轴521、第二主动齿轮611、第二从动齿轮轴621能够与第一主动齿轮轴511相同方式安装在机架90上,从而实现第一变速组件5和第二变速组件6在机架90上的稳定运转。
具体地,第一主动齿轮51的直径小于第一从动齿轮52的直径,第二主动齿轮61的直径小于第二从动齿轮62的直径,以将电机1输出的转动速率转换为相对较低的转动速率,并传递至螺旋桨2,使螺旋桨2获得较大的转动力矩,从而产生足够的推进力,以提供船舶行驶的动力。可以理解,在其他实施例中,第二主动齿轮61的直径也可以大于第二从动齿轮62的直径,以便将第一变速组件5输出的转动速率转换为相对较高的输出速率。各个齿轮的类型包括但不限于直齿轮、斜齿轮等,齿轮齿数之间的比值也可根据实际需求进行选择,满足传动需求即可,本申请不对此进行限定。
在本实施例中,第一主动齿轮51与第一从动齿轮52的轴线大致平行设置,第二主动齿轮61与第一从动齿轮52同轴设置,传动保护件4连接于第二主动齿轮61与第一从动齿轮52之间。具体地,传动保护件4设置于第一从动齿轮轴521与第二主动齿轮轴611的连接处,在螺旋桨2过载时,传动保护件4断开第一从动齿轮轴521与第二主动齿轮轴611之间的传动连接。第二从动齿轮62的轴线与第二主动齿轮61的轴线大致平行设置,且第二从动齿轮62与第一主动齿轮51错开设置,一方面可以在安装第二变速组件6时,第二主动齿轮61与第一从动齿轮52之间的安装精度满足设计需求即可,无需考虑第二从动齿轮62与第一变速组件5之间的安装位置关系,有利于降低传动组件3的组装难度,方便后续的维修和更换;另一方面第二从动齿轮62与第一主动齿轮51错开设置可以增加螺旋桨2转轴与电机1转轴之间的距离,适用于船用推进器100在船舶中的安装位置距离水面较高的情况。
进一步地,所述传动组件3在传动路径上设有带传动组件33,用于传递第二变速组件6的转动扭矩至螺旋桨2,并在所述螺旋桨2过载时打滑传动。传动组件3还包括第一箱体31,第一箱体31为机架90的一部分。第一变速组件5、传动保护件4和第二变速组件6设置于所述第一箱体31内,带传动组件33于第一箱体31的外侧连接第二变速组件6。第一箱体31至少部分位于水面上,以利于减少行船阻力。当然,在其他实施方式中,带传动组件33也可以于第一箱体31内连接第二变速组件6。
具体地,带传动组件33包括第一传动轮331、第二传动轮332和传动带333。传动带333套设于第一传动轮331和第二传动轮332上。第一传动轮331连接第二从动齿轮62,用于接收转动扭矩。第一传动轮331与第二从动齿轮62同轴,并且第一传动轮331的转动轴与第二从动齿轮62的第二从动齿轮轴621固定连接固定。第二传动轮332用于输出转动扭矩,且第二传动轮332连接螺旋桨2,第二传动轮332带动螺旋桨2旋转。具体地,第二传动轮332的转动轴与螺旋桨2的转动轴固定连接,传动带333带动第二传动轮332旋转时,螺旋桨2随第二传动轮332同步转动。
带传动组件33一方面可以增加变速级数,以使适配更大功率的电机1,为船用推进器100提供更大的动力,另一方面,在螺旋桨2受到撞击时,带传动组件33可以提供一定地缓冲作用,保护其他传动结构。此外,带传动组件33还能够有效降低噪音,提高船用推进器100的使用舒适性。
在本实施例中,船用推进器100还包括循环泵10、第一管道11、第二管道12和第三管道13,以实现对电机1、传动组件3等结构的散热,减少设备、机械结构等出现过热失效的问题。第一管道11连通循环泵10的进口端及第一箱体31,循环泵10通过第一管道11抽取第一箱体31内的冷却液体。第二管道12和第三管道13并联至循环泵10的出口端,且第三管道13连通电机1,第二管道12依次连通电机1和第一箱体31。循环泵10通过第二管道12和第三管道13将冷却液体输送至电机1和第一箱体31。在本申请的实施例中,第一箱体31部分浸没在水面下,以使第一箱体31内的部分冷却液体与周围水域环境的温度保持一致,实现冷却液体的降温。第一管道11用于抽取第一箱体31水下部分内的冷却液体至循环泵10,经由循环泵10将冷却液体通过第二管道12和第三管道13输送至电机1和传动组件3,实现电机1和传动组件3的降温。电机1的壳体还可以连通第一箱体31,冷却液体对电机1散热后可以重新流入第一箱体31,并在重力作用下流至第一箱体31的水下部分,利用水域环境对冷却液体 进行降温。如此,船用推进器100可以在行船过程中,利用自然环境对冷却液体进行热交换,无需设置额外的冷却设备,节约生产成本。
可以理解,在其他实施例中,第一箱体31还可以设置在水面上,第一管道11部分浸没在水面下。第一箱体31内的液体抽出至第一管道11浸没水下的部分时,温度较高的液体与周围水域环境进行热交换,实现冷却液体的降温,再由循环泵10将降温后的液体通过第二管道12和第三管道13输送至电机1和第一箱体31,实现对电机1、传动组件3等结构的散热。
进一步地,船用推进器100还可以包括过滤器14,过滤器14设置于水面上,且连接于第二管道12和第三管道13与循环泵10之间。过滤器14用于过滤散热液体中的杂质,减少杂质对电机1和传动组件3的磨损,提升电机1和传动组件3的运动稳定性。第二管道12和第三管道13上还设有若干喷淋件15,喷淋件15位于电机1和第一箱体31内,用于将降温后的冷却液体均匀的喷洒在电机1的壳体和第一箱体31内,有利于提高散热效率,减少局部温度过高的问题。本实施方式中,第一箱体31内填充冷却液,冷却液具有润滑作用,冷却液可以是润滑冷却机油,所述冷却液用于对传动组件3润滑,还可以与传动组件3热耦合。
可以理解的是,第一变速组件5并不局限于上述实施例的方式,第一变速组件5还可以由三个齿轮依次啮合构成,或者是由四个齿轮依次啮合构成。本申请的实施方式中,对第一变速组件5的齿轮数量并不作限定。第一变速组件5也可以由多个阻尼轮依次配合构成。任何旨在能够对电机1的扭矩转换速率的变速结构都属于本申请的实施方式。
第二变速组件6也可以由三个或多个齿轮依次啮合构成,本申请不对第二变速组件6的齿轮数量进行限定。在其他实施例中,第二变速组件6还可以由涡轮蜗杆结构配合构成,或者由多个阻尼轮依次配合构成。任何旨在能够对第一变速组件5的扭矩转换速率进行变速的结构都属于本申请的实施方式。
带传动组件33中的传动带333数量可以为一条或多条,本申请不对此进行限定。在其他实施例中,带传动组件33还可以替换为链传动结构。任何旨在能够对第二变速组件6的输出扭矩进行传递的结构都属于本申请的实施方式。
请参阅图2,在图1所示的实施例基础上,对第二从动齿轮62与第一主动齿轮51的相对位置进行改变,形成如图2所示的实施例。图2所示实施例的船用推进器100中,第二从动齿轮62与第一主动齿轮51相对设置,换句话说,第 二从动齿轮62设置于第二主动齿轮61的上方,有利于缩减第一变速组件5和第二变速组件6的堆叠布局后的整体尺寸,提高空间利用率,有利于船用推进器100的小型化发展,适用于安装空间较小的情况。
进一步地,第二从动齿轮62还可以与第一主动齿轮51同轴设置,有利于减少第一变速组件5和第二变速组件6的结构不对称性,降低传动过程中的机械振动,减少设备噪音,增加机器使用的舒适性。
在图2所示的实施例中,带传动组件33也可以设置在第一箱体31内,以提升带传动组件33的安全性。
请参阅图3,在图1所示的实施例基础上,对第二变速组件6的结构形式进行替换,形成如图3所示的实施例。图3所示实施例的船用推进器100中,第二主动齿轮61和第二从动齿轮62为相互啮合的锥齿轮,第二主动齿轮61的轴线与第二从动齿轮62的轴线垂直。传动保护件4连接于第一从动齿轮52与第二主动齿轮61之间。
图3所示实施例中,传动组件3还设有第三变速组件7,第三变速组件7传动连接于第二从动齿轮62与螺旋桨2之间,替代图1所示实施例中的带传动组件33。第三变速组件7为齿轮变速组件,包括相互啮合的第三主动齿轮71和第三从动齿轮72。具体地,第三主动齿轮71和第三从动齿轮72为相互啮合的锥齿轮,第三主动齿轮71的轴线与第三从动齿轮72的轴线垂直,第三主动齿轮71传动连接第二从动齿轮62,第三从动齿轮72传动连接螺旋桨2。具有锥齿轮结构的第二变速组件6和第三变速组件7具有改变传动方向、提高传动稳定性的优点。
可以理解的是,第二变速组件6还可以包括多个第二从动齿轮62,多个第二从动齿轮62均为锥齿轮。第三变速组件7还可以包括多个第三从动齿轮72,多个第三从动齿轮72均为锥齿轮。
图3所示实施例中利用具有锥齿轮结构的第二变速组件6和第三变速组件7替代带传动组件来传递第一变速组件5的输出扭矩,并带动螺旋桨2转动,有利于提升传动稳定性和传动精度,减少机器使用时的噪音。此外,具有锥齿轮结构的第三变速组件7还有利于减小机器在水下部分的体积,降低行船阻力。
请参阅图4,在图3所示的实施例基础上,对图3所示实施例中电机1与传动组件3的相对位置进行改动,并且取消第三变速组件7,形成如图4所示的实 施例。图4所示的实施例中,电机1与第一变速组件5及第二变速组件6由左右设置形式改变为上下设置形式,第三变速组件7被取消,第二从动齿轮62连接螺旋桨2,且第二从动齿轮62的轴线与所述螺旋桨2的轴线同轴设置,所述螺旋桨2的轴线与所述电机1的轴线垂直设置。第一变速组件5和传动保护件4设置于第一箱体31内,第二变速组件6设置于第一箱体31外。第二变速组件6直接连接螺旋桨2,使螺旋桨2的轴线与电机1的轴线垂直设置,通过改变第一变速组件5、第二变速组件6与电机1的位置及变速比,适应不同的安装和使用需求,增加了船用推进器100的适用性。
图4所示实施例的船用推进器100中,直接由第二变速组件6带动螺旋桨2转动,减少了传动层级,有利于提高机器的传动效率,减少能量损失,提升推进动力。
请参阅图5,在图4所示的实施例基础上,在图4所示实施例中的第一箱体31内添加润滑油泵32,形成如图5所示的实施例。图5所示实施例中,第一箱体31内还设有润滑油泵32,该润滑油泵32设置于第一变速组件5背离传动保护件4的一侧,用于驱使第一箱体31内的冷却液循环流动,减少机器内部结构运转时的摩擦阻力。具体地,润滑油泵32的动力机构(如齿轮、叶轮等结构)传动连接第一从动齿轮轴521,润滑油泵32的动力机构随第一从动齿轮52转动,润滑油泵32在转动力矩作用下驱动冷却液流动,从而实现第一箱体31内冷却液的泵出和泵入,让第一变速组件5、传动保护件4等在运转过程中能够被冷却液充分浸润,减少机构之间的摩擦阻力,降低噪音,提升传动稳定性,并同时对传动组件3有效冷却。
请参阅图6,在图5所示的实施例基础上,对图5所示实施例中润滑油泵32的设置位置进行变换,形成如图6所示的实施例。图6所示实施例中,润滑油泵32设置于传动保护件4朝向第二变速组件6的一侧,有利于提升传动保护件4的浸润效果,减少传动保护件4因摩擦阻力过大导致卡死,造成传动失效的问题。
在其他实施例中,润滑油泵32还可以连接至第二从动齿轮62的输出轴,能够降低润滑油泵32的转动速度,在保证润滑效果的同时,尽量降低机器振动和噪音,提升传动平稳性。可以理解,润滑油泵32还可以连接至传动组件3的其他转轴上,满足机器的使用需求即可,本申请不对此进行限定。
进一步地,图6所示实施例中的第二变速组件6还可以替换为带传动组件,带传动组件的结构与图1所示实施例大致相同,此处不再赘述。
请参阅图7,在图6所示的实施例基础上,对图6所示实施例的传动保护件4中的离合器替换为联轴器或减震器,形成如图7所示的实施例。图7所示实施例中,传动保护件4包括柔性联轴器、减震器中的任一种,联轴器或减震器连接第一变速组件5与第二变速组件6。在螺旋桨2发生过载情况时,联轴器或减震器能够提供一定的缓冲作用,并减少传动组件3的振动,达到保护传动组件3的目的。具体地,柔性连轴器或减震器的两端分别连接第一从动齿轮52的转轴和第二主动齿轮61的转轴,柔性连轴器或减震器中设有柔性结构,该柔性结构可以是橡胶、弹簧、电磁体、热塑性塑胶等结构件。在螺旋桨2发生过载情况时,柔性连轴器或减震器中的柔性结构能够吸收螺旋桨2回传的过载扭矩,避免第一变速组件5和第二变速组件6中的齿轮结构因扭矩过大造成的机械损坏。
此外,与离合器相比,柔性联轴器、减震器的制造成本相对较低,因此在传动保护件4中柔性联轴器、减震器等的选用有利于降低船用推进器100制造成本。第一从动齿轮52通过传动保护件4传递扭矩至第二主动齿轮61时,柔性连轴器或减震器中的柔性结构还能够帮助缓冲机械振动,降低机器噪音,维持传动平稳性。
请参阅图8,在图1所示的实施例基础上,对图1所示实施例的船用推进器100中增加第三变速组件7和换挡组件34,形成如图8所示的实施例。图8所示实施例中,传动组件3还包括第三变速组件7和换挡组件34,第三变速组件7为齿轮变速组件。螺旋桨2传动连接第三变速组件7和第二变速组件6,换挡组件34设置于第二变速组件6与第三变速组件7之间,用于切换第二变速组件6和第三变速组件7与第一变速组件5之间的传动连接状态。第二变速组件6的输出转速小于第三变速组件7的输出转速,通过换挡组件34可以实现螺旋桨2转动速率的调整,适配不同的船舶载重条件。
具体地,第三变速组件7包括相互啮合的第三主动齿轮71和第三从动齿轮72,第二主动齿轮61与第三主动齿轮71同轴设置。换挡组件34设置于第二主动齿轮61与第三主动齿轮71之间。第二从动齿轮62与第三从动齿轮72同轴设置,且第二从动齿轮62与第三从动齿轮72用于传动连接螺旋桨2。换挡组件34通过切换第二主动齿轮61和第三主动齿轮71与第一从动齿轮52之间的传动 连接关系,实现螺旋桨2转动速率的调整。本申请的实施例中,换挡组件34包括但不限于同步器等装置。当换挡组件34扣接第二主动齿轮61,使第二主动齿轮61与第一从动齿轮52传动连接时,第三主动齿轮71与第一从动齿轮52之间的传动连接关系被切断,由第二变速组件6传递第一变速组件5的输出扭矩,第二从动齿轮62将调整后的转动速率传递至螺旋桨2。当换挡组件34扣接第三主动齿轮71,使第三主动齿轮71与第一从动齿轮52传动连接时,第二主动齿轮61与第一从动齿轮52之间的传动连接关系被切断,由第三变速组件7传递第一变速组件5的输出扭矩,第三从动齿轮72将调整后的转动速率传递至螺旋桨2。在图8所示实施例中,第三变速组件7的输出速率大于第二变速组件6的输出速率,换挡组件34切换第二变速组件6和第三变速组件7与第一变速组件5之间的传动连接关系时,螺旋桨2的转速可以在高速转动和低速转动之间进行切换,以满足不同的行船需求。
进一步地,传动组件3还包括第四变速组件8,第四变速组件8传动连接第二变速组件6和第三变速组件7,第四变速组件8用于转换第二变速组件6或第三变速组件7输出的转动速率,第四变速组件8传动连接螺旋桨2。在本实施例中,第四变速组件8包括相互啮合的第四主动齿轮81和第四从动齿轮82,第四主动齿轮81传动连接第二变速组件6和第三变速组件7。第四主动齿轮81的轴线与第四从动齿轮82的轴线垂直,为锥齿轮结构。
传动组件3还包括第五变速组件9,第五变速组件9传动连接于第四变速组件8与所述螺旋桨2之间,以传递输出扭矩至螺旋桨2,提升传动级数,适配更大功率的电机1。
第五变速组件9包括相互啮合的第五主动齿轮91和第五从动齿轮92,第五主动齿轮91传动连接第四从动齿轮82,且所述第五主动齿轮91的轴线与所述第五从动齿轮92的轴线垂直,也为锥齿轮结构。第四变速组件8和第五变速组件9用于改变传动组件3的输出方向,有利于提升船用推进器100的适用性。
图8所示实施例中利用换挡组件34切换第二变速组件6和第三变速组件7与第一变速组件5之间的传动连接关系,实现螺旋桨2的转速调整,可以使船用推进器100适用于不同工况,提高机器性能和电机效率。具有锥齿轮结构的第四变速组件8和第五变速组件9将第二变速组件6或第三变速组件7的输出扭矩传递至螺旋桨2,并带动螺旋桨2转动,一方面通过增加传动层级使传动组件3适配更大功率的电机1,让船用推进器100适用于载重较大的船舶,另一方面有利于提升传动稳定性和传动精度,减少机器使用时的噪音。
请参阅图9,在图8所示的实施例基础上,利用带传动组件33对图8所示实施例的第四变速组件8和第五变速组件9进行替换,形成如图9所示的实施例。图9所示实施例中,带传动组件33连接于第三变速组件7与螺旋桨2之间,替换图8所示实施例中的第四变速组件8和第五变速组件9。在螺旋桨2受到撞击时,带传动组件33可以提供一定地缓冲作用,提升传动组件3的保护效果,并且带传动组件33还能够有效降低噪音,提高船用推进器100的使用舒适性。
具体地,带传动组件33的第一传动轮331与第二从动齿轮62和第三从动齿轮72同轴连接,换挡组件34扣接第二主动齿轮61,使第二主动齿轮61与第一从动齿轮52传动连接时,第一传动轮331随第二从动齿轮62同步转动。当换挡组件34扣接第三主动齿轮71,使第三主动齿轮71与第一从动齿轮52传动连接时,第一传动轮331随第三从动齿轮72同步转动。带传动组件33的第二传动轮332的转轴与螺旋桨2的转轴固定连接,传动带333套设于第一传动轮331和第二传动轮332上,以带动第二传动轮332与第一传动轮331同步转动,继而带动螺旋桨2旋转。
带传动组件33并不局限于对图8所示实施例中替换,还可以是传动组件3与螺旋桨2之间连接结构的任意实施例的替换。
请参阅图10,在图1所示的实施例基础上,对图1所示实施例的船用推进器100中增加第三变速组件7,改变第一变速组件5与第二变速组件6的传动连接关系,并更换不同结构形式的传动保护件4,形成如图10所示的实施例。图10所示实施例中,传动组件3还包括第三变速组件7,第三变速组件7传动连接于电机1与第一变速组件5之间,第三变速组件7用于转换电机1输出的转动速率。传动保护件4连接于第一变速组件5和第二变速组件6之间,传动保护件4包括换挡结构和摩擦结构。换挡结构用于切换第一变速组件5和第二变速组件6与第三变速组件7的传动连接状态,第一变速组件5和第二变速组件6用于转换第三变速组件7输出的转动速率,摩擦结构用于在螺旋桨2过载时打滑传动,减少传动组件3和螺旋桨2的过载损坏。
具体地,第三变速组件7包括相互啮合的第三主动齿轮71和第三从动齿轮72,第三主动齿轮71与电机1同轴设置并连接电机1的输出轴,第三从动齿轮72与所述第一主动齿轮51和所述第二主动齿轮61同轴设置。换挡结构扣接第一变速组件5时,第一主动齿轮51与所述第三从动齿轮72传动连接,第二主 动齿轮61与第三从动齿轮72之间传动连接关系被切断,由第一从动齿轮52传递输出扭矩至螺旋桨2。换挡结构扣接第二变速组件6时,第二主动齿轮61与第三从动齿轮72传动连接,第一主动齿轮51与第三从动齿轮72之间的传动连接关系被切断,由第二从动齿轮62传递输出扭矩至螺旋桨2。
进一步地,传动组件3还包括第四变速组件8,第四变速组件8的一侧传动连接第一变速组件5和第二变速组件6,第四变速组件8的另一侧传动连接螺旋桨2。第四变速组件8包括相互啮合的第四主动齿轮81和第四从动齿轮82,第四主动齿轮81的轴线与第四从动齿轮82的轴线垂直,第四主动齿轮81传动连接第二从动齿轮62和第一从动齿轮52。第一主动齿轮51与所述第三从动齿轮72传动连接时,第四主动齿轮81随第一从动齿轮52同步转动。第二主动齿轮61与第三从动齿轮72传动连接时,第四主动齿轮81随第二从动齿轮62同步转动。
传动组件3还包括第五变速组件9,第五变速组件9传动连接于第四变速组件8与所述螺旋桨2之间。第五变速组件9包括相互啮合的第五主动齿轮91和第五从动齿轮92,第五主动齿轮91传动连接第四从动齿轮82,第五从动齿轮92连接螺旋桨2,且第五主动齿轮91的轴线与第五从动齿轮92的轴线垂直,用于改变传动组件3的输出方向。
在本申请的其中一实施例中,第三从动齿轮72与第一主动齿轮51之间还可以连接一传动保护件4,该传动保护件4包括但不限于过载离合器,使得传动组件3的多级传动结构分别受到不同传动保护件4的保护,对传动级数多的结构起到更好的保护效果。可以理解,第三从动齿轮72与第一主动齿轮51也可以通过传动轴直接连接,有利于提高传动稳定性,减少能量损耗。
在本申请的其中一实施例中,第一箱体31内还可以设置润滑油泵32,润滑油泵32在传动组件3内的连接方式与图5所示实施例类似,此处不再赘述。传动保护件4内还可以包含液压组件(图未示),液压组件的推动机构与传动保护件4的换挡结构传动连接,且液压组件的液体管道与润滑油泵32连通,液压组件用于推动传动保护件4的换挡结构切换第一变速组件5和第二变速组件6与第三变速组件7的传动连接状态,实现螺旋桨2转速的调整,适应不同的使用工况。
请参阅图11,在图10所示的实施例基础上,利用带传动组件33对图10所示实施例的第四变速组件8和第五变速组件9进行替换,形成如图11所示的实 施例。图11所示实施例中,带传动组件33连接于第二变速组件6与螺旋桨2之间,替换图10所示实施例中的第四变速组件8和第五变速组件9。在螺旋桨2受到撞击时,带传动组件33可以提供一定地缓冲作用,提升传动组件3的保护效果,并且降低噪音和降低制造成本。
具体地,带传动组件33的第一传动轮331与第二从动齿轮62和第一从动齿轮52同轴连接,传动保护件4的换挡组件扣接第一主动齿轮51,使第一主动齿轮51与第三从动齿轮72传动连接时,第一传动轮331随第一从动齿轮52同步转动。当传动保护件4的换挡组件扣接第二主动齿轮61,使第二主动齿轮61与第三从动齿轮72传动连接时,第一传动轮331随第二从动齿轮62同步转动。带传动组件33的第二传动轮332的转轴与螺旋桨2的转轴固定连接,传动带333套设于第一传动轮331和第二传动轮332上,以带动第二传动轮332与第一传动轮331同步转动,继而带动螺旋桨2旋转。
请参阅图12,本申请的实施例还提供一种船舶200,包括船体201和上述任一实施例所述的船用推进器100,所述船用推进器100可拆卸地连接所述船体201,用于为船体201提供行船动力。
本申请的船用推进器100和船舶200通过在传动组件3中设置传动保护件4,当螺旋桨2被缠绕或撞击到礁石等阻碍物时,传动保护件4能够及时断开传动,从而降低螺旋桨2和变速组件受到的扭矩,起到保护作用。当阻碍物清除后,传动保护件4可以恢复螺旋桨2与变速组件之间的传动连接,继续传递电机1输出的转动扭矩,有效提升船用推进器100的使用安全性和使用寿命。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (38)

  1. 一种船用推进器,其特征在于,包括电机、传动组件和螺旋桨,所述电机输出转动扭矩,所述传动组件连接于所述电机和所述螺旋桨,用于将所述转动扭矩传递至所述螺旋桨,所述传动组件在传动路径上设有第一变速组件和传动保护件,所述第一变速组件用于转换所述电机输出的转动速率,所述传动保护件用于在所述螺旋桨过载时断开传动。
  2. 根据权利要求1所述的船用推进器,其特征在于,所述第一变速组件连接所述电机。
  3. 根据权利要求1所述的船用推进器,其特征在于,所述第一变速组件为齿轮变速组件。
  4. 根据权利要求1所述的船用推进器,其特征在于:
    所述传动组件在传动路径上设有第二变速组件,所述第二变速组件用于转换所述第一变速组件输出的转动速率。
  5. 根据权利要求4所述的船用推进器,其特征在于,所述第二变速组件为齿轮变速组件。
  6. 根据权利要求4所述的船用推进器,其特征在于,所述传动保护件设有连接所述第一变速组件与所述第二变速组件的离合器。
  7. 根据权利要求4所述的船用推进器,其特征在于:
    所述第一变速组件包括相互啮合的第一主动齿轮和第一从动齿轮,所述第一主动齿轮与所述电机同轴设置。
  8. 根据权利要求7所述的船用推进器,其特征在于,所述第一主动齿轮的直径小于所述第一从动齿轮的直径。
  9. 根据权利要求7所述的船用推进器,其特征在于:
    所述第二变速组件包括相互啮合的第二主动齿轮和第二从动齿轮,所述第二主动齿轮连接所述第一从动齿轮,所述第二主动齿轮用于接收所述第一从动齿轮的转动扭矩。
  10. 根据权利要求9所述的船用推进器,其特征在于,所述第二从动齿轮与所述第一主动齿轮同轴设置。
  11. 根据权利要求10所述的船用推进器,其特征在于,所述第二主动齿轮的 直径小于所述第二从动齿轮的直径。
  12. 根据权利要求9所述的船用推进器,其特征在于,所述第二从动齿轮与所述第一主动齿轮错开。
  13. 根据权利要求12所述的船用推进器,其特征在于,所述第二主动齿轮的直径大于所述第二从动齿轮的直径。
  14. 根据权利要求1-13任一项所述的船用推进器,其特征在于,
    所述传动组件在传动路径上设有带传动组件,所述带传动组件用于在所述螺旋桨过载时打滑传动。
  15. 根据权利要求14所述的船用推进器,其特征在于,所述带传动组件包括第一传动轮、第二传动轮和传动带,所述第一传动轮用于接收转动扭矩,所述第二传动轮用于输出转动扭矩所述传动带套设于第一传动轮和第二传动轮上。
  16. 根据权利要求15所述的船用推进器,其特征在于,所述第二传动轮连接所述螺旋桨。
  17. 根据权利要求9所述的船用推进器,其特征在于,所述第二主动齿轮的轴线与所述第二从动齿轮的轴线垂直。
  18. 根据权利要求17所述的船用推进器,其特征在于,第二从动齿轮的轴线与所述螺旋桨的轴线同轴设置,所述螺旋桨的轴线与所述电机的轴线垂直设置。
  19. 根据权利要求9所述的船用推进器,其特征在于,所述传动组件还设有第三变速组件,所述第三变速组件传动连接于所述第二从动齿轮与所述螺旋桨之间。
  20. 根据权利要求19所述的船用推进器,其特征在于,所述第三变速组件为齿轮变速组件。
  21. 根据权利要求19所述的船用推进器,其特征在于,所述第三变速组件包括相互啮合的第三主动齿轮和第三从动齿轮,所述第三主动齿轮连接所述第二从动齿轮。
  22. 根据权利要求21所述的船用推进器,其特征在于,所述第三主动齿轮的轴线与所述第三从动齿轮的轴线垂直,所述第三主动齿轮传动连接所述第二从动齿轮,所述第三从动齿轮传动连接所述螺旋桨。
  23. 根据权利要求1~13任意一项所述的船用推进器,其特征在于:
    所述传动组件还包括第一箱体,所述第一箱体部分位于水面上,所述第一变 速组件和所述传动保护件设置于所述第一箱体内。
  24. 根据权利要求23所述的船用推进器,其特征在于:
    第一箱体内填充有润滑油,所述润滑油用于对传动组件润滑。
  25. 根据权利要求4所述的船用推进器,其特征在于,所述传动保护件包括柔性联轴器、减震器中的任一种,所述联轴器或所述减震器连接所述第一变速组件与所述第二变速组件。
  26. 根据权利要求9所述的船用推进器,其特征在于:
    所述传动组件还包括第三变速组件和换挡组件,所述螺旋桨传动连接所述第三变速组件和所述第二变速组件;所述换挡组件设置于所述第二变速组件与所述第三变速组件之间,用于切换所述第二变速组件和所述第三变速组件与所述第一变速组件之间的传动连接状态,所述第二变速组件的输出转速小于所述第三变速组件的输出转速。
  27. 根据权利要求26所述的船用推进器,其特征在于,所述第三变速组件为齿轮变速组件。
  28. 根据权利要求26所述的船用推进器,其特征在于:
    所述第三变速组件包括相互啮合的第三主动齿轮和第三从动齿轮,所述第二主动齿轮与所述第三主动齿轮同轴设置,所述换挡组件设置于所述第二主动齿轮与所述第三主动齿轮之间,所述第二从动齿轮与所述第三从动齿轮同轴设置,所述第二从动齿轮与所述第三从动齿轮用于传动连接所述螺旋桨。
  29. 根据权利要求28所述的船用推进器,其特征在于:
    所述传动组件还包括第四变速组件,所述第四变速组件传动连接所述第二变速组件和所述第三变速组件,所述第四变速组件用于转换所述第二变速组件或所述第三变速组件输出的转动速率,所述第四变速组件传动连接所述螺旋桨。
  30. 根据权利要求29所述的船用推进器,其特征在于:
    所述第四变速组件包括相互啮合的第四主动齿轮和第四从动齿轮,所述第四主动齿轮的轴线与所述第四从动齿轮的轴线垂直,所述第四主动齿轮传动连接所述第二变速组件和所述第三变速组件。
  31. 根据权利要求1所述的船用推进器,其特征在于:
    所述传动组件还包括第二变速组件和第三变速组件,所述第三变速组件传动连接于所述电机与所述第一变速组件之间,所述第三变速组件用于转换所述电 机输出的转动速率,所述传动保护件连接于所述第一变速组件和所述第二变速组件之间,所述传动保护件包括换挡结构和摩擦结构,所述换挡结构用于切换所述第一变速组件和所述第二变速组件与所述第三变速组件的传动连接状态,所述第一变速组件和所述第二变速组件用于转换所述第三变速组件输出的转动速率,所述摩擦结构用于在所述螺旋桨过载时打滑传动。
  32. 根据权利要求31所述的船用推进器,其特征在于:
    所述传动组件还包括第四变速组件,所述第四变速组件的一侧传动连接所述第一变速组件和所述第二变速组件,所述第四变速组件的另一侧传动连接所述螺旋桨。
  33. 根据权利要求32所述的船用推进器,其特征在于:
    所述第四变速组件包括相互啮合的第四主动齿轮和第四从动齿轮,所述第四主动齿轮的轴线与所述第四从动齿轮的轴线垂直,所述第四主动齿轮传动连接所述第二变速组件和所述第一变速组件。
  34. 根据权利要求30或33所述的船用推进器,其特征在于:
    所述传动组件还包括第五变速组件,所述第五变速组件传动连接于所述第四变速组件与所述螺旋桨之间;
    所述第五变速组件包括相互啮合的第五主动齿轮和第五从动齿轮,所述第五主动齿轮传动连接所述第四从动齿轮,且所述第五主动齿轮的轴线与所述第五从动齿轮的轴线垂直,用于改变所述传动组件的输出方向。
  35. 根据权利要求23所述的船用推进器,其特征在于:
    还包括循环泵、第一管道、第二管道和第三管道,所述第一管道连通所述循环泵的进口端与所述第一箱体,且所述第一箱体和/或所述第一管道部分浸没在水面下,所述第二管道和所述第三管道并联至所述循环泵的出口端,且所述第二管道连通所述电机和所述第一箱体,所述第三管道连通所述电机;
    所述循环泵用于抽取所述第一箱体内的冷却液体,经由位于水面下的第一箱体和/或所述第一管道对冷却液体散热后,通过所述第二管道和所述第三管道输送至所述电机和所述第一箱体。
  36. 根据权利要求35所述的船用推进器,其特征在于:
    还包括过滤器,所述过滤器连接于所述第二管道和所述第三管道与循环泵之间。
  37. 根据权利要求35所述的船用推进器,其特征在于:
    所述第二管道和所述第三管道上还设有若干喷淋件,所述喷淋件位于所述电机和所述第一箱体内。
  38. 一种船舶,其特征在于,包括船体和权利要求1-37任一项所述的船用推进器,所述船用推进器可拆卸地连接所述船体。
PCT/CN2022/116357 2022-08-31 2022-08-31 船用推进器及船舶 WO2024045087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/116357 WO2024045087A1 (zh) 2022-08-31 2022-08-31 船用推进器及船舶
CN202280008431.5A CN117157231A (zh) 2022-08-31 2022-08-31 船用推进器及船舶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116357 WO2024045087A1 (zh) 2022-08-31 2022-08-31 船用推进器及船舶

Publications (1)

Publication Number Publication Date
WO2024045087A1 true WO2024045087A1 (zh) 2024-03-07

Family

ID=88885293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116357 WO2024045087A1 (zh) 2022-08-31 2022-08-31 船用推进器及船舶

Country Status (2)

Country Link
CN (1) CN117157231A (zh)
WO (1) WO2024045087A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201264717Y (zh) * 2008-09-08 2009-07-01 苏州百胜动力机器有限公司 水冷电动舷外机
DE102009015207A1 (de) * 2009-03-26 2010-09-30 Renk Ag Kupplung
CN106467162A (zh) * 2015-08-19 2017-03-01 浙江派尼尔科技股份有限公司 一种舷外机的动力传动机构
JP2017065302A (ja) * 2015-09-28 2017-04-06 株式会社 神崎高級工機製作所 舶用減速逆転装置
CN206590093U (zh) * 2017-03-10 2017-10-27 浙江派尼尔科技股份有限公司 一种水平轴发动机和齿轮箱变速传动的舷外机
CN207536112U (zh) * 2017-11-15 2018-06-26 宁波海伯集团有限公司 固定式船用推进器
CN112061360A (zh) * 2020-09-08 2020-12-11 浙江大学 一种舵桨推进系统及船舶
CN112373675A (zh) * 2020-11-13 2021-02-19 重庆宗申航空发动机制造有限公司 一种用于航空动力的螺旋桨传动系统
CN215904727U (zh) * 2021-03-17 2022-02-25 广东逸动科技有限公司 一种船用驱动装置及船用推进器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201264717Y (zh) * 2008-09-08 2009-07-01 苏州百胜动力机器有限公司 水冷电动舷外机
DE102009015207A1 (de) * 2009-03-26 2010-09-30 Renk Ag Kupplung
CN106467162A (zh) * 2015-08-19 2017-03-01 浙江派尼尔科技股份有限公司 一种舷外机的动力传动机构
JP2017065302A (ja) * 2015-09-28 2017-04-06 株式会社 神崎高級工機製作所 舶用減速逆転装置
CN206590093U (zh) * 2017-03-10 2017-10-27 浙江派尼尔科技股份有限公司 一种水平轴发动机和齿轮箱变速传动的舷外机
CN207536112U (zh) * 2017-11-15 2018-06-26 宁波海伯集团有限公司 固定式船用推进器
CN112061360A (zh) * 2020-09-08 2020-12-11 浙江大学 一种舵桨推进系统及船舶
CN112373675A (zh) * 2020-11-13 2021-02-19 重庆宗申航空发动机制造有限公司 一种用于航空动力的螺旋桨传动系统
CN215904727U (zh) * 2021-03-17 2022-02-25 广东逸动科技有限公司 一种船用驱动装置及船用推进器

Also Published As

Publication number Publication date
CN117157231A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN111697743A (zh) 双冷却总成
WO2024045087A1 (zh) 船用推进器及船舶
WO2008080285A1 (fr) Dispositif de refroidissement avec ventilateur pour véhicule
CN101412439A (zh) 带pto的双机并车离合船用齿轮箱
CN218506124U (zh) 船用推进器及船舶
CN218489887U (zh) 螺旋桨组件、船用推进器及船舶
CN111895074B (zh) 一种具有过载保护的循环冷却减速器
CN218506123U (zh) 螺旋桨组件、船用推进器及船舶
CN218506125U (zh) 螺旋桨组件、船用推进器及船舶
CN218489888U (zh) 螺旋桨组件、船用推进器及船舶
CN218506122U (zh) 螺旋桨组件、船用推进器及船舶
CN111853175A (zh) 一种具有较短动力传递路线的齿轮箱
CN201292006Y (zh) 双机并车离合船用齿轮箱
CN214648954U (zh) 一种舵桨推进器
CN107521649A (zh) 船舶对转桨推进装置整机结构
JP6978521B2 (ja) 船舶用船外推進システムの変速機
CN209892696U (zh) 斜角传动船用齿轮箱
CN109595331B (zh) 一种滑油冷却结构和尾传动轴一体化的装置
EP2662277B1 (en) Hybrid marine propulsion
CN103527645A (zh) 船舶中间轴承风冷装置
CN213270894U (zh) 一种海上钻井平台行星齿轮传动机构
US3691862A (en) Transmission
CN221189059U (zh) 舵桨推进器
CN208820661U (zh) 一种永磁耦合器正车减速箱
CN101372834B (zh) 双电机驱动绞刀传动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956913

Country of ref document: EP

Kind code of ref document: A1