WO2024044909A1 - 微发光二极管,微发光元件及其制备方法和显示器 - Google Patents

微发光二极管,微发光元件及其制备方法和显示器 Download PDF

Info

Publication number
WO2024044909A1
WO2024044909A1 PCT/CN2022/115586 CN2022115586W WO2024044909A1 WO 2024044909 A1 WO2024044909 A1 WO 2024044909A1 CN 2022115586 W CN2022115586 W CN 2022115586W WO 2024044909 A1 WO2024044909 A1 WO 2024044909A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
micro
epitaxial stack
microluminescent
Prior art date
Application number
PCT/CN2022/115586
Other languages
English (en)
French (fr)
Inventor
王彦钦
王晶
陈劲华
郭桓邵
彭钰仁
Original Assignee
天津三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津三安光电有限公司 filed Critical 天津三安光电有限公司
Priority to PCT/CN2022/115586 priority Critical patent/WO2024044909A1/zh
Publication of WO2024044909A1 publication Critical patent/WO2024044909A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the invention relates to the field of semiconductor manufacturing, and specifically to microluminescent diodes, microluminescent elements and preparation methods thereof, and displays.
  • Microluminescent diodes have the advantages of self-illumination, high efficiency, low power consumption, high brightness, high stability, ultra-high resolution and color saturation, fast response speed, long life, etc., and have been used in displays, optical communications, indoor positioning, biology, etc. It has gained relevant applications in the medical and medical fields, and is expected to be further expanded to wearable/implantable devices, augmented display/virtual reality, vehicle-mounted display, ultra-large display, optical communication/optical interconnection, medical detection, smart car lights, and spatial imaging. and many other fields, with clear and promising market prospects. Mass transfer technology is an indispensable link in micro-light-emitting diode display technology.
  • micro-light-emitting diodes It mainly transfers micro-light-emitting diodes to a specific substrate and assembles them into a two-dimensional periodic array. How to improve the photoelectric performance and mass transfer yield of micro-light-emitting diodes is an urgent technical problem that needs to be solved.
  • the micro-luminescent element includes: a substrate, and at least one micro-luminescent diode, which is provided on the substrate;
  • the micro-luminescent diode includes: a semiconductor epitaxial stack layer, including a first type semiconductor layer, an active layer and a second type semiconductor layer arranged in sequence;
  • the semiconductor epitaxial stack has an opposite first surface and a second surface, the first surface is close to the first type One side of the semiconductor layer; the second surface is close to the second type semiconductor layer; the first surface is close to the substrate; an adhesive film layer is located between the substrate and the first semiconductor epitaxial stack between surfaces; characterized in that: there is an etching protective layer between the adhesive film layer and the first surface of the semiconductor epitaxial stack.
  • the invention also proposes a method for preparing microluminescent elements, which includes the following steps:
  • the semiconductor epitaxial stack includes a first type semiconductor layer, an active layer and a second type semiconductor layer arranged in sequence;
  • the invention also proposes a micro-light emitting diode, which includes: a semiconductor epitaxial stack, including a first type semiconductor layer, an active layer and a second type semiconductor layer arranged in sequence; the semiconductor epitaxial stack has an opposite first surface and The second surface, the first type semiconductor layer is located on the side of the semiconductor epitaxial stack close to the first surface; the second type semiconductor layer is located on the side of the semiconductor epitaxial stack close to the second surface; the protective layer , covering the first surface of the semiconductor epitaxial stack; the first electrode is electrically connected to the first type semiconductor layer; the second electrode is electrically connected to the second type semiconductor layer.
  • the present invention proposes a display, which is characterized in that it includes a substrate with a driving circuit and at least one of the aforementioned micro-luminescent diodes provided on the substrate, and the micro-luminescent diode is electrically connected to the driving circuit.
  • the etching protection layer and the adhesive film layer that are retracted to a certain width on the first surface of the semiconductor epitaxial stack can be used alone or in combination, and are not limited to the embodiments of the present invention.
  • the present invention can reduce the damage to the semiconductor epitaxial stack during the removal of residual glue after laser stripping off the micro-luminescent diode, and improve the photoelectric performance and reliability of the micro-luminescent element.
  • the present invention can focus the center of gravity of the micro-luminescent diode on the center of the micro-luminescent diode, thereby reducing the flipping of the micro-luminescent diode during the transfer process after the micro-luminescent element is peeled off by laser, and improving the micro-luminescence efficiency. Transfer yield of light-emitting diodes.
  • Figure 1 is a schematic diagram showing the presence of residual glue on the surface of a micro-light emitting diode in the prior art.
  • FIGS 2 to 3 are schematic structural diagrams of the micro-luminescent element mentioned in Embodiment 1 of the present invention.
  • FIGS 4 to 6 are schematic structural diagrams of the micro-luminescent element mentioned in Embodiment 2 of the present invention.
  • FIG. 7 to 16 are schematic structural diagrams of the manufacturing process of the micro-luminescent element mentioned in Embodiment 3 of the present invention.
  • Figure 17 is a schematic structural diagram of the micro-light emitting diode mentioned in Embodiment 4 of the present invention.
  • FIG. 18 is a schematic structural diagram of the display mentioned in Embodiment 5 of the present invention.
  • growth substrate 100; semiconductor epitaxial stack: 1; first type semiconductor layer: 101; active layer: 102; second type semiconductor layer: 103; first mesa: S1; second mesa: S2 ; First electrode: 104; Second electrode: 105; Adhesive layer: 106; First transfer substrate: 107; Etching protective layer: 108; Adhesive film layer: 109; Substrate: 110: the first surface of the semiconductor epitaxial stack : A1; the second surface of the semiconductor epitaxial stack: A2; the distance between the adhesive film layer and the edge of the first surface: D1; the length of the microluminescent diode: a1; the length of the adhesive film layer: a2; the width of the microluminescent diode: b1 ; Width of the adhesive film layer: b2; First area: A1a; Second area: A1b; Micro-luminescent diode: I.
  • This embodiment provides a micro-luminescent element.
  • the micro-luminescent element can reduce the damage to the semiconductor epitaxial stack during the removal of residual glue after laser stripping the micro-luminescent diode, and improve the optoelectronic performance and reliability of the micro-luminescent element. sex.
  • the microluminescent element includes: a substrate 110; at least one microluminescent diode disposed on the substrate 110; the microluminescent diode passes through the adhesive film layer 109 bonded to the substrate 110 .
  • Micro-light-emitting diodes refer to micron-level light-emitting diodes. Due to their small size, the manufacturing process of micro-light-emitting diodes is very different from traditional light-emitting diodes. Micro-light-emitting diodes are light-emitting diodes without a substrate and need to be removed through a stripping process. Growth substrate, using mass transfer technology to realize the transfer of micro-light emitting diodes to circuit substrates.
  • Laser mass transfer technology is a relatively commonly used mass transfer technology, which includes the following processes:
  • One side of the micro-luminescent diode is connected to the substrate through an adhesive film layer, which can be peeled off under a laser;
  • the other side of the micro-light-emitting diode is bonded to the substrate with the driver circuit, and a laser lift-off process is used to separate the substrate from the micro-light-emitting diode and remove the adhesive film layer.
  • the microluminescent diode in the present invention mainly refers to the size, including length, width or height, ranging from greater than or equal to 2 ⁇ m to less than 5 ⁇ m, from greater than or equal to 5 ⁇ m to less than 10 ⁇ m, from greater than or equal to 10 ⁇ m to less than 20 ⁇ m, from greater than or equal to 20 ⁇ m to less than 20 ⁇ m. Less than 50 ⁇ m or from 50 ⁇ m or more to 100 ⁇ m or less; several of them are 1 or more.
  • the substrate 110 includes, but is not limited to, a sapphire substrate, glass, silicon substrate or silicon nitride substrate, preferably a transparent substrate, and the transparent substrate is a sapphire substrate or a glass substrate.
  • the adhesive film 109 is made of polyimide or acrylic glue. Polyimide or acrylic glue can pass through laser light in the ultraviolet band and can be fully decomposed by laser light in the ultraviolet band, ensuring that the micro-luminescent diode is not damaged by the laser.
  • the transmittance of the film to light with a wavelength of 400nm to 750nm is not less than 90%, and can be fully decomposed by laser in the ultraviolet band, especially the absorption rate of light with a wavelength below 360nm is not less than 90%. Less than 90%.
  • the thickness of the adhesive film 109 is 0.1 ⁇ 2 ⁇ m, preferably more than 0.5 ⁇ m and less than 1.5 ⁇ m, to ensure sufficient adhesion between the semiconductor epitaxial stack and the substrate.
  • the micro-light emitting diode includes: a semiconductor epitaxial stack 1, including a first type semiconductor layer 101, an active layer 102 and a second type semiconductor layer 103 arranged in sequence; the semiconductor epitaxial stack has Opposite the first surface A1 and the second surface A2, the first type semiconductor layer 101 is located on the side of the semiconductor epitaxial stack close to the first surface A1; the second type semiconductor layer 103 is located on the semiconductor epitaxial stack.
  • the side of the layer close to the second surface A2; the first mesa S1 is composed of the first type semiconductor 101 exposed in the depression of the semiconductor epitaxial stack, the second mesa S2 is composed of the second type semiconductor layer 103; the first electrode 104 is formed The first mesa S1 is electrically connected to the first type semiconductor layer 101 .
  • the second electrode 105 is formed on the second mesa S2 and is electrically connected to the second type semiconductor layer 103 .
  • the semiconductor epitaxial stack 1 can be deposited by physical vapor deposition (Physical Vapor Deposition, PVD), chemical vapor deposition (Chemical Vapor Deposition (CVD), epitaxial growth (Epitaxy Growth Technology) and atomic beam deposition (Atomic Layer Deposition, ALD) or other methods are formed on the growth substrate 100 .
  • the semiconductor epitaxial stack 1 is a semiconductor material that can provide conventional radiation such as ultraviolet, blue, green, yellow, red, infrared light, etc. Specifically, it can be a 200 ⁇ 950nm material, such as common nitride, specifically such as nitride.
  • Gallium-based semiconductor epitaxial stacks gallium nitride-based epitaxial stacks are commonly doped with aluminum, indium and other elements, mainly providing radiation in the 200 ⁇ 550nm band; or common aluminum gallium indium phosphorus-based or aluminum gallium arsenic-based semiconductor epitaxial stacks , mainly providing radiation in the 550 ⁇ 950nm band.
  • the first type semiconductor layer 101 may be composed of a III-V group or a II-VI group compound semiconductor, and may be doped with a first dopant.
  • the first type semiconductor layer 101 may be composed of a semiconductor material having the chemical formula In X1 Al Y1 Ga 1-X1- Y1 N (0 ⁇ AlGaN, InGaN, InAlGaN, etc., or a material selected from AlGaAs, GaP, GaAs, GaAsP and AlGaInP.
  • the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, and Te.
  • the first conductive type semiconductor layer 101 doped with the first dopant is an n-type semiconductor layer.
  • the first dopant may also be a p-type dopant, such as Mg, Zn, Ca, Sr and Ba.
  • the first type semiconductor layer 101 is a p-type semiconductor layer.
  • the first surface A1 of the semiconductor epitaxial stack is the main light-emitting surface.
  • the surface of the first type semiconductor layer 101 away from the active layer can be roughened to form a roughened structure, as shown in FIG. 3 . In some optional embodiments, the surface of the first type semiconductor layer 101 away from the active layer may not be roughened, as shown in FIG. 2 .
  • the active layer 102 is disposed between the first type semiconductor layer 101 and the second type semiconductor layer 103 .
  • the active layer 102 is a region that provides light radiation for recombination of electrons and holes. Different materials can be selected according to different emission wavelengths.
  • the active layer 102 can be a periodic structure of a single quantum well or multiple quantum wells.
  • the active layer 102 includes a well layer and a barrier layer, where the barrier layer has a larger band gap than the well layer. By adjusting the composition ratio of the semiconductor materials in the active layer 102, it is expected to radiate light of different wavelengths.
  • the second type semiconductor layer 103 is formed on the active layer 102 and may be composed of a III-V group or a II-VI compound semiconductor.
  • the second type semiconductor layer 103 may be doped with a second dopant.
  • the second conductive type semiconductor layer 103 may be composed of a semiconductor material having the chemical formula In X2 Al Y2 Ga 1-X2-Y2 N (0 ⁇ Materials AlGaAs, GaP, GaAs, GaAsP and AlGaInP.
  • the second dopant is a p-type dopant, such as Mg, Zn, Ca, Sr and Ba
  • the second conductive type semiconductor layer 103 doped with the second dopant is a p-type semiconductor layer.
  • the second dopant may also be an n-type dopant such as Si, Ge, Sn, Se and Te.
  • the second type semiconductor layer 103 doped with the second dopant is an n-type semiconductor layer.
  • the first type semiconductor layer 101 is an n-type semiconductor layer
  • the second type semiconductor layer 103 is a p-type semiconductor layer; conversely, when the first type semiconductor layer 101 is a p-type semiconductor layer, the second type semiconductor layer 103 is an n-type semiconductor layer. type semiconductor layer;
  • the semiconductor epitaxial stack may also include other layer materials, such as current spreading layers, window layers or ohmic contact layers, which are arranged into different multi-layers according to different doping concentrations or component contents.
  • the semiconductor epitaxial stack 1 is made of AlGaInP-based material, and the semiconductor epitaxial stack 1 radiates red light.
  • the present invention is not limited to red light micro-luminescent diodes.
  • the present invention also Suitable for blue-green light-emitting diodes.
  • an insulating dielectric layer (not shown in the figure) on the first mesa and the second mesa of the micro-light-emitting diode.
  • the material of the insulating dielectric layer can be a Bragg reflective layer ( DBR) structure, the Bragg reflective layer structure is composed of two insulating dielectric layer materials with different refractive indexes alternately stacked, and the Bragg reflective layer structure is composed of SiO 2 , SiNx, TiO 2 , Al 2 O 3 and other non-metallic materials .
  • DBR Bragg reflective layer
  • the Bragg reflective layer can reflect the light radiated from the semiconductor epitaxial stack to the light exit surface, thereby improving the luminous efficiency of the micro-light emitting diode.
  • the thickness of the insulating dielectric layer material is 0.5 ⁇ m or more. In some embodiments, the thickness of the insulating dielectric layer on the first mesa preferably ranges from 0.5 to 1.5 ⁇ m.
  • the first electrode 104 and the second electrode 105 are located on the opposite side of the light-emitting side.
  • the first electrode 104 and the second electrode 105 can contact external electrical connectors through the opposite side of the light-emitting side to form a flip-chip structure. Therefore, the first electrode 104 and the second electrode 105 include an ohmic contact part and a pad electrode (not shown in the figure).
  • the pad electrode may be at least one layer of gold, aluminum or silver to achieve the first
  • the electrode 104 and the second electrode 105 are solidified.
  • the first electrode 104 and the second electrode 105 may have the same height or different heights, and the pad metal layers of the first electrode and the second electrode do not overlap in the thickness direction.
  • the substrate 110 is separated from the micro-luminescent diode using a laser lift-off process, and the dissociation surface of the laser is the interface between the substrate and the adhesive film layer.
  • the micro-luminescent element is laser-stripped from the substrate 110, part of the adhesive film layer 109 will be peeled off together with the substrate 110, and the remaining part of the adhesive film layer will remain on the first surface of the semiconductor epitaxial stack.
  • the glue film layer on the surface of the layer is called residual glue 109a, as shown in Figure 1.
  • residual glue 109a will affect the photoelectric performance of the micro-light emitting diode, so it is necessary to use plasma or ICP method to remove the residual glue.
  • this embodiment provides an etching protective layer 108 in the adhesive film 109 and the first surface A1 of the semiconductor epitaxial stack.
  • the etching protective layer 108 can isolate The etching gas or etching liquid used in the process of etching and removing the semiconductor epitaxial stack and residual glue protects the semiconductor epitaxial stack from damage.
  • the etching protective layer 108 can be used as a protective layer to isolate water vapor for the semiconductor epitaxial stack, thereby improving the reliability of the micro-light emitting diode.
  • the etching protective layer 108 is silicon oxide, silicon nitride, aluminum oxide, titanium oxide or magnesium fluoride.
  • the thickness of the etching protection layer 108 is 500 ⁇ 10000A, preferably 5000 ⁇ 8000A, in order to effectively protect the semiconductor epitaxial stack.
  • the adhesive film layer 109 is preferably disposed in the first area A1a of the first surface A1 of the micro-light emitting diode.
  • the first surface A1 also includes a second area A1b, the first area A1a is located within the second area A1b, and the second area A1b is located at the edge of the first surface A1.
  • the adhesive film layer 109 does not exceed the edge of the first surface A1. It should be noted that the edge that does not exceed the first surface A1 refers to the top view of the product in the vertical direction.
  • the projection of the adhesive film layer 109 is located on the semiconductor epitaxial stack.
  • the distance D1 from the adhesive film layer 109 to the edge of the first surface A1 of the semiconductor epitaxial stack is 0.3 ⁇ m to 6 ⁇ m, preferably 1.5 ⁇ m or more and 5 ⁇ m or less.
  • the D1 is too large, The adhesion between the substrate and the semiconductor epitaxial stack cannot be guaranteed, and the micro-luminescent diodes are prone to fall off during the transfer and transportation process; the D1 is too small, which cannot effectively improve the center of gravity of the micro-luminescent components and cannot improve the transfer of the micro-luminescent components. Problems with core particle flipping during the process.
  • the distance D1 between the adhesive film layer 109 and the first surface of the semiconductor epitaxial stack may vary with the size of the micro-light emitting diode.
  • the adhesive film layer The length a2 or width b2 is 60% to 85% of the length a1 or width b1 of the micro-light emitting diode.
  • the area of the adhesive film layer 109 covering the first surface A1 of the semiconductor epitaxial stack is 60% to 90% of the area of the first surface A1 of the semiconductor epitaxial stack, preferably 70%. % ⁇ 80% to ensure sufficient adhesion between the semiconductor epitaxial stack and the substrate 110, improve the problem of micro-light emitting diodes flipping during the transfer process, and improve the transfer yield of micro-light emitting diodes.
  • the first surface of the semiconductor epitaxial stack has a roughened structure, which can improve the light extraction efficiency of the semiconductor epitaxial stack, as shown in FIG. 6 .
  • the weight of the micro-light-emitting diode can be concentrated in the center of the micro-light-emitting diode, thereby reducing the flipping of the micro-light-emitting diode during the transfer process after the micro-luminescent element is peeled off by laser. , improve the transfer yield of micro-light-emitting diodes.
  • the first surface A1 of the semiconductor epitaxial stack of the micro-luminescent element may not cover the etching protective layer 108, and is not limited to this embodiment.
  • FIG. 7 to 16 show schematic structural diagrams of the manufacturing process of the micro-luminescent element according to Embodiment 2 of the present invention.
  • the manufacturing method of the micro-luminescent element of the present invention will be described in detail below in conjunction with the schematic diagrams.
  • an epitaxial structure which specifically includes the following steps: providing a growth substrate 100, preferably a gallium arsenide substrate, and growing a semiconductor epitaxial stack on the growth substrate 100 through an epitaxial process such as MOCVD. layer, the semiconductor epitaxial stack includes a first type semiconductor layer 101, a second type semiconductor layer 103, and an active layer 102 located between the first type semiconductor layer and the second type semiconductor layer sequentially stacked on the surface of the growth substrate 100.
  • the semiconductor epitaxial stack is made of AlGaInP-based material, and the active layer radiates red light.
  • a portion of the semiconductor epitaxial stack is removed by dry etching to form a first mesa S1 and a second mesa S2.
  • the first electrode 104 and the second mesa S2 are respectively formed on the first mesa S1 and the second mesa S2.
  • the second electrode 105, the first electrode 104 and the second electrode 105 are electrically connected to the first type semiconductor layer 101 and the second type semiconductor layer 103 respectively.
  • the first transfer substrate 107 has an adhesive layer 106, and the adhesive layer 106 and Semiconductor epitaxial stack bonding.
  • the growth substrate 100 is removed, and the first type semiconductor layer 101 is leaked.
  • the roughening method includes wet etching or dry etching, as shown in Figure 12 The structure shown.
  • an etching protective layer 108 is formed on the surface of the semiconductor epitaxial stack away from the first transfer substrate.
  • the etching protective layer 109 at least covers the first surface A1 of the semiconductor epitaxial stack.
  • the etching protection layer 109 may also extend to cover the sidewalls of the semiconductor epitaxial stack.
  • the first surface of the semiconductor epitaxial stack may or may not be roughened. In this embodiment, roughening of the first surface of the semiconductor epitaxial stack is used as an example, but is not limited to this.
  • the first type semiconductor layer is imprinted and fixed in the adhesive film 109 of the substrate 110 , and the micro-light emitting diode is fixed on the substrate 110 through the adhesive film 109 .
  • the first transfer substrate 107 and the adhesive layer 106 are removed, and the micro-luminescent diode is fixed from the first transfer substrate 107 to the substrate 110.
  • the electrode surface of the micro-luminescent diode is turned upside down to obtain micro-luminescence as shown in Figure 3. element.
  • part of the adhesive film layer 109 in the edge area is removed, so that the size of the adhesive film layer 109 is indented, so that the center of gravity of the micro-light-emitting diode is concentrated at the center of the micro-light-emitting diode, thereby reducing the size of the micro-light-emitting diode.
  • the uneven center of gravity causes the micro-luminescent diodes to flip over during the transfer process, thereby improving the transfer yield of the micro-luminescent diodes.
  • the microluminescent element shown in Figure 5 can be obtained.
  • the adhesive film shrinkage removal here is performed by etching.
  • the etching method includes dry etching or wet etching. In this embodiment, dry etching is preferably used. After the removal process, the coverage of the adhesive film layer 109 does not exceed the semiconductor epitaxy. The surface of the stack is covered with the adhesive film layer 109 in the first area A1a of the first surface of the semiconductor epitaxial stack, and the adhesive film layer is removed from the second peripheral area A1b, and the adhesive film layer 109 reaches the first area of the semiconductor epitaxial stack. The distance between the edges of the surface is 0.3 to 6 ⁇ m, preferably 1.5 ⁇ m or more and 5 ⁇ m or less.
  • the D1 is too large to ensure the adhesion between the substrate and the semiconductor epitaxial stack, and micro-luminescent diodes are prone to appear during the transfer and transportation process. falling off; the D1 is too small and cannot effectively improve the center of gravity of the micro-luminescent element, and cannot improve the problem of core particle flipping during the transfer process of the micro-luminescent element.
  • the chip structure in this embodiment constitutes a microluminescent array and is fixed on the wafer for transportation and transmission, and is used for laser pickup by downstream users.
  • the following steps are also included: laser decomposition of the glue film layer 109 , the area where the laser acts is located at the interface between the glue film layer 109 and the substrate 110 , and a part of the glue film layer 109 , that is, the residual glue 109 a Together with the micro-light emitting diode, it is separated from the substrate 110 .
  • the wavelength of the laser is preferably the non-visible ultraviolet band. It is preferred that the chip with a transmission wavelength of the film of 400nm to 750nm excites light.
  • Transmission means that the transmittance in the air is not less than 90 %, the material of the adhesive film layer 109 is such as the polyimide or acrylic adhesive proposed in the above steps, and at least partially absorbs light with wavelengths below 360 nm.
  • the absorption here refers to an absorption rate of not less than 90%, in the ultraviolet band It can be fully decomposed by laser to avoid laser damage to the semiconductor epitaxial stack.
  • the residual glue on the surface of the micro-light emitting diode is removed by etching.
  • the etching protective layer 108 covering the first surface of the semiconductor epitaxial stack can reduce the damage to the semiconductor epitaxial stack during the removal of the residual glue after laser stripping of the micro-light emitting diode. Improve the optoelectronic performance and reliability of micro-luminescent components.
  • This embodiment provides a micro-luminescent diode.
  • the minimum side length of the micro-luminescent diode is 50 ⁇ m to 100 ⁇ m, or less than 50 ⁇ m. In this embodiment, it is preferably less than 50 ⁇ m.
  • a micro-light emitting diode includes a semiconductor epitaxial stack, a first electrode 104 and a second electrode 105.
  • the semiconductor epitaxial stack includes a first type semiconductor layer 101, an active layer 102 and a second type semiconductor layer 103 arranged in sequence, with opposite first surfaces A1 and second surfaces A2, the first type semiconductor layer 101 being close to the semiconductor.
  • the first surface A1 of the epitaxial stack, the second type semiconductor layer 103 is close to the second surface A2 of the semiconductor epitaxial stack.
  • the first electrode 104 and the second electrode 105 of the micro-light emitting diode are located on the same side of the semiconductor epitaxial stack.
  • the first surface A1 of the semiconductor epitaxial stack is the main light-emitting surface.
  • the first surface of the semiconductor epitaxial stack A1 is covered with an etching protective layer, which is silicon oxide, silicon nitride, aluminum oxide, titanium oxide or magnesium fluoride.
  • the thickness of the etching protective layer is 500 ⁇ 10000A, preferably 5000 ⁇ 8000A, to achieve effective protection of the semiconductor epitaxial stack.
  • the etching protective layer can be used as a protective layer for isolating water vapor for the semiconductor epitaxial layer, thereby improving the photoelectric performance and reliability of the micro-light emitting diode.
  • This embodiment provides a display 300. Please refer to Figure 18.
  • the display 300 includes a plurality of micro light-emitting diodes 1 arranged in an array as in any of the previous embodiments.
  • a part of the micro light-emitting diodes is shown in an enlarged schematic manner. I.
  • the display 300 is a display corresponding to the display screen of a smartphone.
  • the display may also be a display of other types of electronic products, such as a computer display, or a display of a smart wearable electronic product, etc.
  • the display Due to having the micro light-emitting diodes 1 of the aforementioned embodiments, the display has the advantages brought by the micro light-emitting diodes of the aforementioned embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)

Abstract

本发明公开微发光二极管,微发光元件及其制备方法和显示器,微发光元件包括基板,至少一个微发光二极管,设置在所述基板上;所述微发光二极管包括:半导体外延叠层,包括顺序排列的第一类型半导体层、有源层和第二类型半导体层;具有相对的第一表面和第二表面,所述第一表面靠近所述第一类型半导体层的一侧;所述第二表面靠近所述第二类型半导体层的一侧;所述第一表面靠近所述基板;胶膜层,位于所述基板和所述半导体外延叠层的第一表面之间;其特征在于:所述胶膜层和所述半导体外延叠层的第一表面之间含有蚀刻保护层。本发明可减少激光剥离微发光二极管后的残胶去除过程中对半导体外延叠层的损伤,提升微发光元件的可靠性。

Description

微发光二极管,微发光元件及其制备方法和显示器 技术领域
本发明涉及半导体制造领域,具体涉及微发光二极管,微发光元件及其制备方法和显示器。
背景技术
微发光二极管具有自发光、高效率、低功耗、高亮度、高稳定性、超高分辨率与色彩饱和度、响应速度快、寿命长等优点,已经在显示、光通信、室内定位、生物和医疗领域获得了相关的应用,并有望进一步扩展到可穿戴/可植入器件、增强显示/虚拟现实、车载显示、超大型显示以及光通信/光互联、医疗探测、智能车灯、空间成像等多个领域,具有明确可观的市场前景。巨量转移技术是微发光二极管显示技术中不可或缺的一个环节,其主要是将微发光二极管转移到特定基板上,并组装成二维周期阵列。如何提升微发光二极管的光电性能和巨量转移良率是当前急需解决的技术难题。
技术解决方案
为了解决背景技术中提到的问题,本发明提出一种微发光元件,微发光元件,包括:基板,至少一个微发光二极管,设置在所述基板上;所述微发光二极管包括:半导体外延叠层,包括顺序排列的第一类型半导体层、有源层和第二类型半导体层;所述半导体外延叠层具有相对的第一表面和第二表面,所述第一表面靠近所述第一类型半导体层的一侧;所述第二表面靠近所述第二类型半导体层一侧;所述第一表面靠近所述基板;胶膜层,位于所述基板和所述半导体外延叠层的第一表面之间;其特征在于:所述胶膜层和所述半导体外延叠层的第一表面之间含有蚀刻保护层。
本发明还提出微发光元件的制备方法,包括以下步骤:
(1)提供生长衬底,在生长衬底上制造半导体外延叠层,半导体外延叠层包括顺序排列的第一类型半导体层,有源层和第二类型半导体层;
(2)通过干法蚀刻方式移除部分的半导体外延叠层形成第一台面和第二台面,分别在第一台面和第二台面上制作第一电极和第二电极,与第一类型半导体层和第二类型半导体层形成电连接;
(3)将半导体外延叠层远离生长衬底的一侧通过第一胶膜固定在第一转移基板上,然后去除生长衬底;
(4)将半导体层序列远离第一转移基板的表面制造蚀刻保护层,然后制作胶膜,通过胶膜固定在第二转移基板上,
(5)利用激光去除第一胶膜,剥离第一转移基板,漏出第一电极和第二电极。
本发明还提出一种微发光二极管,包括:半导体外延叠层,包括顺序排列的第一类型半导体层、有源层和第二类型半导体层;所述半导体外延叠层具有相对的第一表面和第二表面,所述第一类型半导体层位于所述半导体外延叠层靠近第一表面的一侧;所述第二类型半导体层位于所述半导体外延叠层靠近第二表面的一侧;保护层,覆盖所述半导体外延叠层的第一表面;第一电极,与第一类型半导体层电连接;第二电极,与所述第二类型半导体层电连接。
本发明提出一种显示器,其特征在于,包括具有驱动电路的基底、设在所述基底上的至少一个前述的微发光二极管,所述微发光二极管与所述驱动电路电连接。
本发明在半导体外延叠层的第一表面设置蚀刻保护层和胶膜层内缩一定的宽度可以单独使用,也可以合并使用,并不以本发明列举的实施例为限。
有益效果
本发明具有以下的有益效果:
1.      本发明通过设置蚀刻保护层,可减少激光剥离微发光二极管后的残胶去除过程中对半导体外延叠层的损伤,提升微发光元件的光电性能和可靠性。
2.      本发明通过胶膜层内缩一定的宽度,可使微发光二极管的重心集中于微发光二极管的中心,从而减小微发光元件经过激光剥离后,转移过程中产生微发光二极管的翻转,提升微发光二极管的转移良率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。 
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为现有技术中微发光二极管表面存在残胶的示意图。
图2~图3为本发明实施例1中所提到的微发光元件的结构示意图。
图4~图6为本发明实施例2中所提到的微发光元件的结构示意图。
图7~图16 为本发明实施例3中所提到的微发光元件的制作过程中的结构示意图。
图17为本发明实施例4中所提到的微发光二极管的结构示意图。
图18为本发明实施例5中所提到的显示器的结构示意图。
附图标记:生长衬底:100;半导体外延叠层:1;第一类型半导体层: 101;有源层:102;第二类型半导体层:103;第一台面:S1;第二台面:S2;第一电极:104;第二电极:105;粘结层:106;第一转移基板:107;蚀刻保护层:108;胶膜层:109;基板:110:半导体外延叠层的第一表面:A1;半导体外延叠层的第二表面:A2;胶膜层距第一表面边缘的距离:D1;微发光二极管的长度:a1;胶膜层的长度:a2;微发光二极管的宽度:b1;胶膜层的宽度:b2;第一区域:A1a;第二区域:A1b;微发光二极管:Ⅰ。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例 1
本实施例提供微发光元件,所述微发光元件通过设置蚀刻保护层,可减少激光剥离微发光二极管后的残胶去除过程中对半导体外延叠层的损伤,提升微发光元件的光电性能和可靠性。
图1和图2为本实施例中的微发光元件的结构示意图,所述微发光元件包括:基板110;至少设置在基板110上的一个微发光二极管;所述微发光二极管通过胶膜层109键合在所述基板110上。微发光二极管指的是微米级的发光二极管,由于微发光二极管的尺寸较小,因此其制作工艺跟传统发光二极管具有很大的区别,微发光二极管为无基板的发光二极管,需要通过剥离工艺去除生长衬底,通过巨量转移技术实现微发光二极管到电路基板的转移。
激光巨量转移技术是一种较为常用的巨量转移技术,其包括以下过程:
1)微发光二极管的一侧通过胶膜层与基板连接,该胶膜层可在激光下剥离;
2)微发光二极管的另一侧与具有驱动电路的基底键合,利用激光剥离工艺将基板与微发光二极管分离,并去除胶膜层。
在本发明中的微发光二极管主要指尺寸,包含长度、宽度或者高度的范围为从大于等于2μm到小于5μm,从大于等于5μm到小于10μm,从大于等于10μm到小于20μm,从大于等于20μm到小于50μm或从大于等于50μm到小于等于100μm;其中若干个为大于等于1。
基板110包括不限于是蓝宝石衬底、玻璃、硅衬底或者氮化硅的衬底,优选为透明衬底,透明衬底为蓝宝石衬底或者玻璃衬底。胶膜109的制备材料包括聚酰亚胺或者亚克力胶,聚酰亚胺或者亚克力胶能够透过紫外波段的激光,且在紫外波段即可被激光充分分解,保证微发光二极管不受激光损伤。较佳地,所述胶膜对波长为400nm至750nm的光的透过率不小于90%,且被紫外波段即可被激光充分分解,尤其是对波长为360nm以下波长的光的吸收率不小于90%。胶膜109的厚度为0.1~2μm,优选为0.5μm以上,1.5μm以下,以保证半导体外延叠层和基板之间具有足够的粘结力。
参看图1和图2,所述微发光二极管包括:半导体外延叠层1,包括顺序排列的第一类型半导体层101、有源层102和第二类型半导体层103;所述半导体外延叠层具有相对的第一表面A1和第二表面A2,所述第一类型半导体层101位于所述半导体外延叠层靠近第一表面A1的一侧;所述第二类型半导体层103位于所述半导体外延叠层靠近第二表面A2的一侧;第一台面S1,由半导体外延叠层凹陷露出的第一类型半导体101构成,第二台面S2,由第二类型半导体层103构成;第一电极104,形成于第一台面S1之上,与所述第一类型半导体层101形成电连接;第二电极105,形成于第二台面S2之上,与所述第二类型半导体层103形成电连接。
半导体外延叠层1可以通过物理气相沉积(Physical Vapor Deposition,PVD)、化学气相沉积(Chemical Vapor Deposition,CVD)、外延生长(Epitaxy Growth Technology)和原子束沉积 (Atomic Layer Deposition,ALD)等方式形成在生长衬底100上。半导体外延叠层1为能够提供常规的如紫外、蓝、绿、黄、红、红外光等辐射的半导体材料,具体的可以是200~950nm的材料,如常见的氮化物,具体的如氮化镓基半导体外延叠层,氮化镓基外延叠层常见有掺杂铝、铟等元素,主要提供200~550nm波段的辐射;或者常见的铝镓铟磷基或铝镓砷基半导体外延叠层,主要提供550~950nm波段的辐射。
所述第一类型半导体层101可以由III-V族或II-VI族化合物半导体组成,并且可以掺杂有第一掺杂剂。第一类型半导体层101可以由具有化学式In X1Al Y1Ga 1-X1-Y1N(0≤X1≤1,0≤Y1≤1,0≤X1+Y1≤1)的半导体材料组成,例如GaN,AlGaN,InGaN,InAlGaN等,或选自AlGaAs,GaP,GaAs,GaAsP和AlGaInP的材料。另外,第一掺杂剂可以是n型掺杂剂,例如Si,Ge,Sn,Se和Te。当第一掺杂剂是n型掺杂剂时,掺杂有第一掺杂剂的第一导电型半导体层101为n型半导体层。第一掺杂剂也可以是p型掺杂剂,例如Mg,Zn,Ca,Sr和Ba时,掺杂有第一掺杂剂的第一类型半导体层101为p型半导体层。所述半导体外延叠层的第一表面A1为主要出光面。为了提升微发光二极管的出光效率,可对第一类型半导体层101远离有源层的表面进行粗化处理,形成粗化结构,如图3所示。在一些可选的实施例中,第一类型半导体层101远离有源层的表面也可以不经过粗化处理,如图2所示。
所述有源层102设置在第一类型半导体层101和第二类型半导体层103之间。有源层102为提供电子和空穴复合提供光辐射的区域,根据发光波长的不同可选择不同的材料,有源层102可以是单量子阱或多量子阱的周期性结构。有源层102包含阱层和垒层,其中垒层具有比阱层更大的带隙。通过调整有源层102中半导体材料的组成比,以期望辐射出不同波长的光。
所述第二类型半导体层103形成在有源层102上,并且可以由III-V族或II-VI族化合物半导体组成。第二类型半导体层103可以掺杂第二掺杂剂。第二导电型半导体层103可由具有化学式In X2Al Y2Ga 1-X2-Y2N(0≤X2≤1,0≤Y2≤1,0≤X2+Y2≤1)的半导体材料组成,或选自AlGaAs,GaP,GaAs,GaAsP和AlGaInP的材料。当第二掺杂剂为p型掺杂剂,例如Mg,Zn,Ca,Sr和Ba时,掺杂第二掺杂剂的第二导电型半导体层103为p型半导体层。第二掺杂剂也可以为n型掺杂剂,例如Si,Ge,Sn,Se和Te。当第二掺杂剂是n型掺杂剂时,掺杂有第二掺杂剂的第二类型半导体层103为n型半导体层。当第一类型半导体层101为n型半导体层时,第二类型半导体层103为p型半导体层;反之,当第一类型半导体层101为p型半导体层时,第二类型半导体层103为n型半导体层;
半导体外延叠层还可以包括其它层材料,如电流扩展层、窗口层或欧姆接触层等,根据掺杂浓度或组分含量不同进行设置为不同的多层。在本实施例中,以所述半导体外延叠层1为AlGaInP基材料组成,所述半导体外延叠层1辐射红光为例,但本发明不以此限定于红光微发光二极管,本发明也适用于蓝绿光微发光二极管。
为了提高微发光二极管的可靠性,优选在所述微发光二极管的第一台面和第二台面上形成绝缘介质层(图中未示出),所述绝缘介质层的材料可以采用布拉格反射层(DBR)结构,所述布拉格反射层结构由两种不同折射率的绝缘介质层材料交替堆叠而成,所述布拉格反射层结构由SiO 2, SiNx, TiO 2,Al 2O 3等非金属材料构成。所述布拉格反射层可将半导体外延叠层辐射出的光反射至出光面上出射,从而提升微发光二极管的发光效率。所述绝缘介质层材料的厚度为0.5μm以上。在一些实施例中,优选所述第一台面上绝缘介质层的厚度范围为0.5~1.5μm。
所述第一电极104和第二电极105位于出光侧的相反侧,第一电极104和第二电极105可以通过出光侧的相反侧与外部电连接件进行接触,形成倒装的结构。因此所述的第一电极104和第二电极105包括欧姆接触部分和以及焊盘电极(图中未示出),焊盘电极可以是如金、铝或银等至少一层,以实现第一电极104和第二电极105的固晶。第一电极104和第二电极105可以等高或不等高,在厚度方向上第一电极和第二电极的焊盘金属层不重叠。                             
利用激光剥离工艺将基板110与微发光二极管分离,激光的解离面为基板与胶膜层的界面。微发光元件在激光剥离基板110后,胶膜层109中的一部分会随基板110一起被剥离,胶膜层的剩余部分会残留在半导体外延叠层的第一表面,所述残留在半导体外延叠层表面的胶膜层称为残胶109a,如图1所示。残胶109a的存在会影响微发光二极管的光电性能,因此需要使用plasma或ICP方法去除残胶。为了减小残胶去除过程中对半导体外延叠层的损伤,本实施例在所述胶膜109和所述半导体外延叠层的第一表面A1中设置蚀刻保护层108,蚀刻保护层108可隔绝半导体外延叠层与残胶蚀刻去除过程中的蚀刻气体或者蚀刻液,保护半导体外延叠层不受损伤。所述蚀刻保护层108可作为半导体外延叠层隔离水汽的保护层,提升微发光二极管的可靠性
所述蚀刻保护层108为氧化硅,氮化硅、氧化铝、氧化钛或者氟化镁。所述蚀刻保护层108的厚度为500~10000A,优选为5000~8000A,以实现对半导体外延叠层的有效保护。
实施例二
如图4和图5所示 与实施例1中图2的区别在于,本实施例中优选所述胶膜层109设置在微发光二极管的第一表面A1的第一区域内A1a,所述第一表面A1还包括第二区域A1b,第一区域A1a位于第二区域A1b内,第二区域A1b位于所述第一表面A1的边缘。胶膜层109不超过第一表面A1的边缘,需要说明的是,不超过第一表面A1的边缘指的是产品在竖直方向上的俯视图中,胶膜层109的投影位于半导体外延叠层的第一表面A1内,具体地说,胶膜层109至半导体外延叠层的第一表面A1边缘的距离D1为0.3μm至6μm,优选为1.5μm以上,5μm以下,所述D1过大,无法保证基板和半导体外延叠层之间的粘附性,在转移运输过程中容易出现微发光二极管的脱落;所述D1过小,无法有效改善微发光元件的重心位置,无法改善微发光元件转移过程中的芯粒翻转问题。
在本实施例中,所述胶膜层109距离所述半导体外延叠层第一表面的距离D1可随微发光二极管的尺寸大小而变化,在一些可选的实施例中,所述胶膜层的长度a2或宽度b2为所述微发光二极管的长度a1或宽度b1的60%~85%。在一些可选的实施例中,所述胶膜层109覆盖半导体外延叠层的第一表面A1的面积为所述半导体外延叠层的第一表面A1面积的60%~90%,优选为70%~80%,以保证半导体外延叠层和基板110之间有足够的粘合力,改善转移过程中微发光二极管翻转的问题,提升微发光二极管的转移良率。
在一些可选的实施例中,优选所述半导体外延叠层的第一表面具有粗化结构,可以提升半导体外延叠层的出光效率,如图6所示。
本实施例中通过胶膜层109内缩一定的宽度,可使微发光二极管的重量集中于微发光二极管的中心,从而减小微发光元件经过激光剥离后,转移过程中产生微发光二极管的翻转,提升微发光二极管的转移良率。
在一些可选的实施例中,所述微发光元件的半导体外延叠层的第一表面A1可不覆盖蚀刻保护层108,并不以此实施例为限。
实施例三
图7~图16 显示了根据本发明实施例2的微发光元件的制造过程中的结构示意图,下面结合示意图对本发明的微发光元件的制造方法进行详细的描述。
首先,如图7所示,提供一个外延结构,其具体包括以下步骤:提供一个生长衬底100,优选为砷化镓衬底,生长衬底100上通过磊晶工艺如MOCVD外延生长半导体外延叠层,半导体外延叠层包括依次层叠在生长衬底100表面的第一类型半导体层101、第二类型半导体层103和位于第一类型半导体层和第二类型半导体层之间的有源层102。优选所述半导体外延叠层为AlGaInP基材料,所述有源层辐射红光。
然后,如图8所示,通过干法蚀刻方式移除部分的半导体外延叠层形成第一台面S1和第二台面S2,分别在第一台面S1和第二台面S2上制作第一电极104和第二电极105,所述第一电极104和第二电极105分别与所述第一类型半导体层101和第二类型半导体层103电连接。
然后,如图9和图10所示,将半导体外延叠层远离生长衬底100的一侧固定在第一转移基板107上,第一转移基板上107具有粘结层106,粘结层106与半导体外延叠层粘结。
然后,如图11所示,去除生长衬底100,漏出第一类型半导体层101。在一些可选的实施例中,优选对半导体外延叠层去除衬底后漏出的第一类型半导体层101进行粗化,所述粗化的方式包括湿法蚀刻或者干法蚀刻,得到如图12所示的结构。
接着,如图13和图14所示,将半导体外延叠层远离第一转移基板的一侧表面制作蚀刻保护层108,所述蚀刻保护层109至少覆盖所述半导体外延叠层的第一表面A1上,所述蚀刻保护层109也可以延伸覆盖到半导体外延叠层的侧壁。所述半导体外延叠层的第一表面可以进行粗化或者不粗化。本实施例中,以所述半导体外延叠层的第一表面进行粗化为例,并不以此为限。
接着,如图15~图16所示,通过将第一类型半导体层压印固定在基板110的胶膜109中,微发光二极管通过胶膜109固定在基板110上。
然后,去除第一转移基板107和粘结层106,实现微发光二极管从第一转移基板107固定在基板110上,其将微发光二极管的电极面倒置朝上得到如图3所示的微发光元件。
在一些可选的实施例中,去除部分边缘区域的胶膜层109,使得所述胶膜层109的尺寸向内缩进,使微发光二极管的重心集中于微发光二极管的中心,从而减小微发光元件经过激光剥离后,转移过程中由于重心不平均产生微发光二极管的翻转,提升微发光二极管的转移良率。内缩后可得到如图5所示的微发光元件。这里的胶膜内缩去除采用蚀刻的方式进行,蚀刻方式包括干法蚀刻或者湿法蚀刻,本实施例中优选采用干法蚀刻经过去除工艺后,胶膜层109的覆盖面不超过所述半导体外延叠层的表面,在半导体外延叠层的第一表面的第一区域A1a内覆盖胶膜层109,而外围的第二区域A1b移除胶膜层,胶膜层109至半导体外延叠层第一表面的边缘的距离为0.3至6μm,优选为1.5μm以上,5μm以下,所述D1过大,无法保证基板和半导体外延叠层之间的粘附性,在转移运输过程中容易出现微发光二极管的脱落;所述D1过小,无法有效改善微发光元件的重心位置,无法改善微发光元件转移过程中的芯粒翻转问题。本实施例中的芯片结构构成微发光阵列固定在晶圆上用于运输传递,供下游用户激光拾取使用。
在一些实施例的一些实施方式中,还包括以下步骤,激光分解胶膜层109,激光作用的区域位于胶膜层109和基板110交界的界面,胶膜层109中的一部分,即残胶109a连同微发光二极管一起与基板110分离。在本步骤中,激光的波长优选为非可见光的紫外波段,优选所述胶膜透光波长为400nm至750nm的芯片激发出光,这里的透过指的是在空气中的透过率不小于90%,胶膜层109的材料例如上述步骤中提出的聚酰亚胺或者亚克力胶,而至少部分吸收波长为360nm以下波长的光,这里的吸收指的是吸收率不小于90%,在紫外波段可被激光充分分解,避免激光伤害到半导体外延叠层。然后,通过蚀刻的方式去除微发光二极管表面的残胶,半导体外延叠层第一表面覆盖的蚀刻保护层108可减少激光剥离微发光二极管后的残胶去除过程中对半导体外延叠层的损伤,提升微发光元件的光电性能和可靠性。
实施例四
本实施例中提供一种微发光二极管,微发光二极管的最小边长为50μm至100μm,或者50μm以下,本实施例中优选为50μm以下。
如图17所示,一种微发光二极管,包括半导体外延叠层,第一电极104和第二电极105。半导体外延叠层包括顺序排列的第一类型半导体层101,有源层102和第二类型半导体层103,具有相对的第一表面A1和第二表面A2,所述第一类型半导体层101靠近半导体外延叠层的第一表面A1,第二类型半导体层103靠近半导体外延叠层的第二表面A2。所述微发光二极管的第一电极104和第二电极105位于半导体外延叠层的同一侧,所述半导体外延叠层的第一表面A1为主要出光面,所述半导体外延叠层的第一表面A1覆盖有蚀刻保护层,所述蚀刻保护层为氧化硅,氮化硅、氧化铝、氧化钛或者氟化镁。所述蚀刻保护层的厚度为500~10000A,优选为5000~8000A,以实现对半导体外延叠层的有效保护。同时所述蚀刻保护层可作为半导体外延层隔离水汽的保护层,提升微发光二极管的光电性能和可靠性。
实施例五
本实施例提供一种显示器300,请参考图18,显示器300包括如前述任意实施例的多个阵列排布的微型发光二极管1,在图18中用放大显示的示意方式显示了一部分微型发光二极管Ⅰ。
本实施例中,显示器300为智能手机的显示屏对应的显示器。其它实施例中,显示器也可以是其它各类电子产品的显示器,如电脑显示器,或者智能穿戴电子产品显示器等。
由于具有前述各实施例的微型发光二极管1,显示器具有前述各实施例微型发光二极管带来的优点。
需要说明的是,以上实施方式仅用于说明本发明,而并非用于限定本发明,本领域的技术人员,在不脱离本发明的精神和范围的情况下,可以对本发明做出各种修饰和变动,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应视权利要求书范围限定。

Claims (28)

  1. 微发光元件,包括:
    基板,
    至少一个微发光二极管,设置在所述基板上;
    所述微发光二极管包括:
    半导体外延叠层,包括顺序排列的第一类型半导体层、有源层和第二类型半导体层;具有相对的第一表面和第二表面,所述第一表面靠近所述第一类型半导体层的一侧;所述第二表面靠近所述第二类型半导体层的一侧;所述第一表面靠近所述基板;
    胶膜层,位于所述基板和所述半导体外延叠层的第一表面之间;
    其特征在于:所述胶膜层和所述半导体外延叠层的第一表面之间含有蚀刻保护层。
  2. 根据权利要求1所述的微发光元件,其特征在于:所述蚀刻保护层为氧化硅,氮化硅、氧化铝、氧化钛或者氟化镁。
  3. 根据权利要求1所述的微发光元件,其特征在于:所述微发光元件被剥离基板后,所述微发光二极管上包含所述蚀刻保护层。
  4. 根据权利要求1所述的微发光元件,其特征在于:所述蚀刻保护层在基板剥离后残胶去除的过程中可保护微发光二极管的半导体外延叠层不受刻蚀。
  5. 根据权利要求1所述的微发光元件,其特征在于:所述蚀刻保护层的厚度为500~10000A(埃)。
  6. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层对波长为400nm至750nm的光的透过率大于对波长为360nm以下波长的光的透过率。
  7. 根据权利要求1所述的微发光元件,其特征在于,所述胶膜层对波长为360nm以下波长的光的吸收率大于等于90%,所述胶膜层吸收紫外激光分解。
  8. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层的材料包括聚酰亚胺或者亚克力胶。
  9. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层的厚度为0.1~2μm。
  10. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层距离半导体外延叠层的第一表面的边缘的距离为0.3~6μm。
  11. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层的长度或者宽度为所述微发光二极管的长度或宽度的60%~85%。
  12. 根据权利要求1所述的微发光元件,其特征在于:所述胶膜层覆盖半导体外延叠层的第一表面的面积为所述半导体外延叠层第一表面的面积的60~90%。
  13. 根据权利要求1所述的微发光元件,其特征在于:所述半导体外延叠层的第一表面包括规则或者不规则的粗化表面。
  14. 根据权利要求1所述的微发光元件,其特征在于: 所述基板包括透明衬底,所述透明衬底包括蓝宝石衬底或者玻璃衬底。
  15. 根据权利要求1所述的微发光元件,其特征在于:所述微发光二极管还包括第一电极,与所述第一类型半导体层形成电连接;第二电极,与所述第二类型半导体层形成电连接。
  16. 根据权利要求11所述的微发光元件,其特征在于;所述微发光二极管的第一电极和第二电极位于半导体外延叠层的同一侧。
  17. 根据权利要求1所述的微发光元件,其特征在于:所述半导体外延叠层的厚度为2.5~6μm。
  18. 根据权利要求1所述的微发光二极管,其特征在于:所述微发光二极管具有从2μm到5μm、5μm到10μm、10μm到20μm、20μm到50μm或从50μm到100μm的宽度或长度或高度。
  19. 微发光元件的制备方法,包括以下步骤:
    提供生长衬底,在生长衬底上制作半导体外延叠层,所述半导体外延叠层包括顺序排列的第一类型半导体层,有源层和第二类型半导体层;
    通过干法蚀刻方式移除部分的半导体外延叠层形成第一台面和第二台面,分别在第一台面和第二台面上制作第一电极和第二电极,与第一类型半导体层和第二类型半导体层形成电连接;
    将半导体外延叠层远离生长衬底的一侧通过粘结层固定在第一转移基板上,然后去除生长衬底;
    将半导体外延叠层远离第一转移基板的表面制造蚀刻保护层,然后制作胶膜层,通过胶膜层固定在基板上;
    利用激光去除粘结层,剥离第一转移基板,漏出第一电极和第二电极。
  20. 根据权利要求19所述的微发光元件的制备方法,其特征在于:步骤(4)中还包括蚀刻去除边缘部分的胶膜层,胶膜层至半导体外延叠层的第一表面的边缘的距离为0.3~6μm。
  21. 根据权利要求19所述的微发光元件的制备方法,其特征在于:所述蚀刻保护层的材料为氧化硅,氮化硅,氧化铝,氧化钛或者氟化镁,所述蚀刻保护层的厚度为500~10000A。
  22. 根据权利要求19所述的微发光元件的制备方法,其特征在于:所述胶膜层的材料为聚酰亚胺或者亚克力胶;所述胶膜层的厚度为0.1~2μm。
  23. 根据权利要求19所述的微发光元件的制备方法,其特征在于:所述基板包括透明衬底,所述透明衬底为蓝宝石衬底或者玻璃衬底。
  24. 微发光二极管,其特征在于:
    包括:
    半导体外延叠层,包括顺序排列的第一类型半导体层、有源层和第二类型半导体层;所述半导体外延叠层具有相对的第一表面和第二表面,所述第一类型半导体层位于所述半导体外延叠层靠近第一表面的一侧;所述第二类型半导体层位于所述半导体外延叠层靠近第二表面的一侧;
    保护层,覆盖所述半导体外延叠层的第一表面;
    第一电极,与第一类型半导体层电连接;
    第二电极,与所述第二类型半导体层电连接。
  25. 根据权利要求24所述的微发光二极管,其特征在于:所述保护层隔绝水汽,保护发光二极管。
  26. 根据权利要求24所述的微发光二极管,其特征在于:所述微发光二极管为无基板的发光二极管。
  27. 根据权利要求24所述的微发光二极管,其特征在于:所述蚀刻保护层的材料为氧化硅,氮化硅,氧化铝,氧化钛或者氟化镁;所述蚀刻保护层的厚度为500~10000A。
  28. 一种显示器,其特征在于,包括具有驱动电路的基底、设在所述基底上的至少一个如权利要求24~27中所述的微发光二极管,所述微发光二极管与所述驱动电路电连接。
PCT/CN2022/115586 2022-08-29 2022-08-29 微发光二极管,微发光元件及其制备方法和显示器 WO2024044909A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115586 WO2024044909A1 (zh) 2022-08-29 2022-08-29 微发光二极管,微发光元件及其制备方法和显示器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115586 WO2024044909A1 (zh) 2022-08-29 2022-08-29 微发光二极管,微发光元件及其制备方法和显示器

Publications (1)

Publication Number Publication Date
WO2024044909A1 true WO2024044909A1 (zh) 2024-03-07

Family

ID=90100209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115586 WO2024044909A1 (zh) 2022-08-29 2022-08-29 微发光二极管,微发光元件及其制备方法和显示器

Country Status (1)

Country Link
WO (1) WO2024044909A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823030A1 (en) * 2018-07-13 2021-05-19 Samsung Electronics Co., Ltd. Micro-led display and method for manufacturing same
CN114038953A (zh) * 2021-10-09 2022-02-11 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器及制作方法
CN114388668A (zh) * 2021-12-10 2022-04-22 厦门市三安光电科技有限公司 微发光二极管及其制备方法、微发光元件和显示器
CN114864784A (zh) * 2022-05-26 2022-08-05 厦门市三安光电科技有限公司 一种发光二极管及发光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3823030A1 (en) * 2018-07-13 2021-05-19 Samsung Electronics Co., Ltd. Micro-led display and method for manufacturing same
CN114038953A (zh) * 2021-10-09 2022-02-11 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器及制作方法
CN114388668A (zh) * 2021-12-10 2022-04-22 厦门市三安光电科技有限公司 微发光二极管及其制备方法、微发光元件和显示器
CN114864784A (zh) * 2022-05-26 2022-08-05 厦门市三安光电科技有限公司 一种发光二极管及发光装置

Similar Documents

Publication Publication Date Title
US10862010B2 (en) Integrated colour LED micro-display
TWI697133B (zh) 光電元件
US8704246B2 (en) Light emitting device and method of manufacturing the same
CN102099976B (zh) 在降低的温度下制造的(Al、Ga、In)N二极管激光器
JP4415572B2 (ja) 半導体発光素子およびその製造方法
US8022430B2 (en) Nitride-based compound semiconductor light-emitting device
KR20190090485A (ko) 반도체 발광소자
CN104396032A (zh) 设置有在其后侧上具有图案的基板的发光二极管及其制造方法
KR20090101604A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자 및 이의 제조방법
WO2021119906A1 (zh) 一种发光二极管
KR20090115906A (ko) 그룹 3족 질화물계 반도체 발광다이오드 소자를 위한 표면요철 형성 방법
WO2021035676A1 (zh) 一种超薄结构深紫外led及其制备方法
WO2023087314A1 (zh) 发光二极管及制备方法和显示面板
US11450788B2 (en) Semiconductor device
US20230105156A1 (en) Display panel, display apparatus, and preparation method for display panel
WO2024044909A1 (zh) 微发光二极管,微发光元件及其制备方法和显示器
CN114784156A (zh) 发光二极管和发光装置
JP2006261266A (ja) 半導体発光素子およびその製造方法並びに電子機器
CN114497300B (zh) 发光二极管和发光装置
TWI833576B (zh) 發光元件、包含其之發光裝置及發光裝置之製造方法
US20230317765A1 (en) Light-emitting device
CN114497299B (zh) 微发光二极管和显示面板
WO2023212898A1 (zh) 微发光二极管和显示面板
US20240113262A1 (en) Light-emitting device, backlight unit and display apparatus having the same
TWI836732B (zh) 光電半導體元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956744

Country of ref document: EP

Kind code of ref document: A1